
Improving flexibility and protecting
against worst-case scenarios

with HTML5 and CSS3

Dan Cederholm

Bulletproof
Web

Design

T h i r D E D i T i o n

Improving flexibility and protecting against
worst-case scenarios with HTML5 and CSS3

Bulletproof
Web

Design
No matter how visually appealing or content packed a web site may be,
if it doesn’t reach the widest possible audience, it isn’t truly successful.
In Bulletproof Web Design, Third Edition, bestselling author and web
designer Dan Cederholm outlines standards-based strategies for building
designs that can accommodate the myriad ways users choose to view
the content. Each chapter starts out with an example of an unbulletproof
approach—one that employs traditional HTML-based techniques—which
Dan deconstructs, pointing out its limitations. He then gives the example
a makeover using HTML and CSS, so you can learn to replace bloated code
with lean markup and CSS for fast-loading sites that are accessible to all
users. Finally, he assembles all of the page components discussed in prior
chapters into a single-page template. This fully revised and updated third
edition introduces CSS3 and HTML5 methods and features redesigned case
studies including new responsive design examples.

 Size text using keywords, percentages, and ems to allow more user control.

 Plan for vertical expansion of horizontal page components.

 Use floats to achieve grid-like results.

 Ensure that content is still readable in the absence of images or CSS.

 Strip the presentation from data tables, and rebuild with CSS.

 Progressively enhance your designs using HTML5 and CSS3.

 Visit the companion website at simplebits.com/bulletproof to download
finished files, additional resources, and book updates.

ISBN-13:
ISBN-10:

978-0-321-80835-6
0-321-80835-5

9 7 8 0 3 2 1 8 0 8 3 5 6

5 4 4 9 9

US $44.99 CaN $46.99

Book Level: Intermediate / advanced
Computer Book Shelf Category: Web Design / Web Development / Scripting
Covers: CSS and HTML scripting on Windows, Mac OS, and Unix

Dan Cederholm is
a designer, author,
speaker, husband,
and father living
in Massachusetts.
He’s the Founder

and Principal of SimpleBits LLC, a
tiny design studio. A recognized
expert in the field of standards-
based web design, Dan has worked
with YouTube, Microsoft, Google,
MTV, ESPN, Electronic Arts, Blogger,
Fast Company, Inc. Magazine, and
others. Dan is co-founder and
designer of Dribbble, a vibrant
community for sharing screenshots
of your work. His other bestselling
books include CSS3 For Web
Designers and Handcrafted CSS:
More Bulletproof Web Design. He’s
currently an aspiring clawhammer
banjoist and occasionally wears a
baseball cap.

Co
ve

r D
es

ig
n:

 M
im

i H
ef

t a
nd

 D
an

 C
ed

er
ho

lm

T h i r D E D i T i o n

www.newriders.com

Bulletproof W
eb D

esign
Im

proving flexibility and protecting against
w

orst-case scenarios w
ith H

TM
L5 and CSS3

Cederholm
T

h
ir

D

E
D

iT
io

n

Bulletproof
Web Design
Improving flexibility and protecting
against worst-case scenarios
with HTML5 and CSS3

Third Edition

Dan Cederholm

Bulletproof Web Design: Improving flexibility and protecting against worst-case scenarios with HTML5 and CSS3, Third Edition
Dan Cederholm

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the web at: www.newriders.com
To report errors, please send a note to: errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education.

Copyright © 2012 by Daniel Cederholm

Editor: Rebecca Gulick
Copy Editor: Liz Merfeld
Technical Reviewer: Patrick H. Lauke
Proofreader: Patricia Pane
Production Coordinator and Compositor: Danielle Foster
Indexer: Valerie Haynes Perry
Cover Designers: Mimi Heft and Dan Cederholm
Interior Designers: Charlene Will and Maureen Forys

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission
for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the
preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software
and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested by the owner
of the trademark. All other product names and services identified throughout this book are used in editorial fashion only and for the
benefit of such companies with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended
to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-80835-6
ISBN-10: 0-321-80835-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

For Jack & Tenley.

Acknowledgments
To Michael Nolan for connecting me with New Riders as well as helping me
solidify the concept of the book early on. Similarly, big thanks also go to the
late, great Marjorie Baer for her guidance at the beginning of the project.

To Dave Roberts for stealing second.

To everyone at Peachpit who was involved in this book in some way, but
especially Rebecca Gulick for steering the entire project, making the entire
process as smooth as possible.

To Ethan Marcotte for being an excellent technical editor on the first edition.
It was great to work with Ethan on this, and his comments and insight were
invaluable. Thanks also to Virginia DeBolt for tech-editing the second edition
and Patrick H. Lauke for tech-editing the third edition.

To my colleagues who continue to provide inspiration, sharing their tech-
niques and knowledge, on and off line. This book wouldn’t have been written
if it weren’t for the previous work of the following (as well as many more who
I’m forgetting to mention here): John Allsopp, Dan Benjamin, Holly Bergevin,
Douglas Bowman, Andy Budd, Tantek Çelik, Joe Clark, Andy Clarke, Mike
Davidson, Todd Dominey, Jason Fried, John Gallant, Patrick Griffiths, Jon
Hicks, Molly Holzschlag, Shaun Inman, Ryan Irelan, Richard Ishida, Roger
Johansson, Jeremy Keith, Ian Lloyd, Drew McLellan, Eric Meyer, Cameron Moll,
Matt Mullenweg, Mark Newhouse, Dunstan Orchard, Veerle Pieters, D. Keith
Robinson, Richard Rutter, Jason Santa Maria, Christopher Schmitt, Dave Shea,
Ryan Sims, Greg Storey, Jeffrey Veen, Josh Williams, and Jeffrey Zeldman.

Special thanks to Jon Hicks for creating the original 3D CSS Box Model
Illustration (www.hicksdesign.co.uk/3dboxmodel/), which inspired those
found in the book.

To the readers and clients of SimpleBits, you’ve made it possible for me to
work on things I love.

To the Greater Beverly Adult Dodgeball league, for providing a necessary
escape every Tuesday evening at 7:30.

To my always amazingly supportive parents, my brother Matt and his family,
and the rest of my extended family and friends.

And as always, to my partner in crime, Kerry, for being the rock star wife
that she is.

Lastly, thank you for reading.

www.hicksdesign.co.uk/3dboxmodel/

Contents

Introduction. xiii

	 CHAPTERONE	 Flexible	Text.1

Size text using keywords and percentages or

ems to allow user control and

maximum flexibility. 2

A Common Approach . 3

Why it’s not bulletproof . 4

Weighing Our Options . 6

Length units . 6

Relative-size keywords . 6

Percentages. 7

Absolute-size keywords . 7

A Bulletproof Approach . 8

Keywords explained . 8

Letting go of “pixel precision” . 9

Why It’s Bulletproof . 10

A Flexible Base. Now What? . 10

Set it and forget it . 10

Use percentages to stray from the base11

Working with Keywords and Percentages 15

Setting an in-between keyword base 15

Be careful when nesting percentages 17

Experiment with percentage values for consistency . . . 18

Flexible Text Using Ems . 20

The rem unit . 22

Summary . 23

vi  Contents

	 CHAPTERTWO	 Scalable	Navigation	. 25

Provide site navigation that scales to any

text size or content amount. 26

A Common Approach . 27

Strong tabs . 27

Common rollovers . 28

Why It’s Not Bulletproof . 29

Mountains of code . 29

Inaccessibility issues . 29

Scalability issues . 30

Lack of flexibility . 30

A Bulletproof Approach . 30

Sans style . 31

Two tiny images . 31

Applying style . 32

Float to fix . 33

Making the tabs take shape . 34

Aligning the background images 35

Adding the bottom border . 37

Hovering swap . 38

Selected state . 38

Why It’s Bulletproof . 39

An Imageless Variation Using CSS3 Gradients 40

A Variation Using Ems . 44

Additional Examples . 46

Mozilla.org . 46

Slants . 46

ESPN.com Search . 47

Summary . 49

Contents  vii

	CHAPTERTHREE	 Expandable	Rows	. .51

Resist specifying height and plan for vertical

expansion of horizontal page components. 52

A Common Approach . 53

Why It’s Not Bulletproof . 54

Nonessential graphics . 54

Thinking in fixed height . 55

Code bloat . 55

A Bulletproof Approach . 56

The markup structure . 56

Identifying the pieces . 57

Sans style . 57

Adding background . 58

Positioning the content . 59

Missing background . 60

Adding the details . 62

Four rounded corners . 64

Text and link details . 65

The final step . 67

A fix for IE7 . 69

Why It’s Bulletproof . 70

Separation of structure and design 70

No more fixed heights . 71

A variation using border-radius . 72

Another Example of Expanding . 74

The markup . 75

Creating the two images . 76

Applying the CSS . 77

Expand-o-matic . 79

Summary . 79

viii  Contents

	CHAPTERFOUR	 Creative	Floating	. 81

Use floats to achieve grid-like results. 82

A Common Approach . 83

Why It’s Not Bulletproof . 84

A Bulletproof Approach . 85

The endless choices for markup 86

Using definition lists . 87

The markup structure . 88

Sans style . 89

Styling the container . 89

Identifying the image . 90

Applying base styles . 91

Positioning the image . 96

Opposing floats . 97

Clear the way for any description length 100

Self-clearing floats . 101

The finishing touches . 103

Toggling the float direction . 106

The grid effect . 108

An alternate background . 111

Applying a box-shadow . 114

More float-clearing fun . 115

Easy clearing using generated content 117

Why It’s Bulletproof . 121

Summary . 121

	 CHAPTERFIVE	 Indestructible	Boxes	. .123

Plan for the unknown when constructing

styled boxes. 124

A Common Approach . 125

Why It’s Not Bulletproof . 127

A Bulletproof Approach . 127

The markup structure . 128

Contents  ix

An image strategy . 129

Applying styles . 130

Why It’s Bulletproof . 133

A Variation Using CSS3 . 134

Other Rounded-Corner Techniques 138

Happily rounded . 139

Box Hinting . 147

Single rounded corner . 147

Corner hinting . 150

A bulletproof arrow . 150

Limitations breed creativity . 152

Summary . 152

	 CHAPTERSIX	 No	Images?	No	CSS?	No	Problem! 153

Ensure that content is still readable in the

absence of images or CSS. 154

A Common Approach . 155

Why It’s Not Bulletproof . 158

A Bulletproof Approach . 159

Why It’s Bulletproof . 160

With or Without Style . 163

The 10-second usability test . 163

A Common Approach . 164

A Bulletproof Approach . 165

The Dig Dug Test . 167

Bulletproofing Tools . 168

Favelets . 168

Web Developer Extension . 170

Web Accessibility Toolbar . 172

Firebug . 172

Validation as a tool . 173

Summary . 176

x  Contents

	CHAPTERSEVEN	 Convertible	Tables 	. 177

Strip the presentation from data tables,

and refinish with CSS.. 178

A Common Approach . 179

Why It’s Not Bulletproof . 181

A Bulletproof Approach . 182

The markup structure . 182

Applying style . 188

Why It’s Bulletproof . 201

Summary . 202

	CHAPTEREIGHT	 Fluid	and	Elastic	Layouts	. 203

Experiment with page layouts that

expand and contract. . 204

A Common Approach . 205

Why It’s Not Bulletproof . 207

An abundance of code . 207

A maintenance nightmare . 207

Nonoptimal content ordering . 208

A Bulletproof Approach . 209

The markup structure . 209

Creating columns: float vs. positioning 210

Applying style . 212

Gutters . 216

Column padding . 219

Setting min and max width . 225

Sliding faux columns . 230

3-column layouts . 233

Why It’s Bulletproof . 241

Em-Based Layouts . 241

An elastic example . 242

The markup . 244

The CSS . 246

Contents  xi

Consistency is ideal . 248

Beware of Scrollbars . 248

Summary . 249

	 CHAPTERNINE	 Putting	It	All	Together 	. .251

Apply bulletproof concepts to an entire

page design. . 252

The Goal . 253

Why It’s Bulletproof . 254

A fluid, responsive design . 254

Flexible text . 256

No images? No CSS? No problem! 257

Internationalization . 258

The Construction . 259

The markup structure . 260

Basic styles . 261

Layout structure . 261

A flexible grid . 263

Setting a max-width . 263

The header. 266

Flexible images . 268

Sidebar details . 271

CSS3’s multi-column layout . 275

The magic of media queries . 276

Conclusion . 284

Index . 285

This page intentionally left blank

Introduction

I have a confession to make. There’s no such thing as a completely bulletproof
website. Now, before you close the book and put it back up on the shelf (hope-
fully sticking out a bit farther than the others, thanks), allow me to explain.

Just as a police officer straps on a bulletproof vest for protection, so too can
we take measures that protect our web designs. This book will guide you
through several strategies for bulletproofing websites: improving flexibility
and preparing for worst-case scenarios.

the bulletproof concept
Out in the nonvirtual world, a bulletproof vest never guarantees complete,
100% protection, but rather being bulletproof is something that’s constantly
strived for. You’re far better off wearing a bulletproof vest than if you weren’t.

The same rule applies to web design and the techniques described in this
book. By increasing a page’s flexibility and taking the necessary steps to
ensure that it’s readable in as many circumstances as possible, we’re making
a real difference in our work. It’s an ongoing process, and one that becomes
easier when utilizing web standards such as semantic HTML and CSS to con-
struct compelling, yet adaptable, designs.

As the adoption of CSS-based layouts has become common over the past
several years, it’s become increasingly important to learn how to utilize CSS
well. The goal is to harness the benefits that make the technology powerful
from a design standpoint: less code, increased accessibility, and easier main-
tenance, to name a few.

But just using CSS and HTML doesn’t necessarily mean things are automati-
cally better. By embracing the flexibility that can be gained from separating
the core content from the design, you’ll be well on your way to creating better
designs for all the web’s citizens. But what do I mean by flexibility exactly?

xiv Introduction

why it’s importAnt
Around the time that I began thinking about the topic for this book, I real-
ized that there are two important pieces that make up great, compelling web
designs. One piece is the visual component—the piece that’s obvious to
anyone just looking at the finished page. This is a combination of the graphic
design, colors, and typography the designer chose. Just visit the CSS Zen
Garden (www.csszengarden.com), and it becomes obvious that compelling
visual design is certainly possible and thriving when HTML and CSS are used.

The second (but equally important) piece to building a great website is the
bulletproof implementation. It’s this piece that the book will focus on: You’ve
wisely decided to use HTML and CSS to build websites to reap all of the ben-
efits that come along with them. And now you’re ready to leverage those web
standards with some ingenuity to create visually compelling websites that
are also as flexible, adaptable, and accessible as possible.

As the adoption of web standards such as HTML and CSS increases rapidly, it
becomes more and more important to have resources that discuss how these
standards can be utilized and implemented in the most optimal way.

the book’s structure
Each chapter of the book describes a certain bulletproof guideline. We’ll start
by looking at an existing design from the web, and we’ll note why it isn’t bul-
letproof. We’ll then rebuild the example using HTML and CSS, with the goal of
improving its flexibility and decreasing its code.

Many of these examples are specific components of the page, which makes
it easier to talk about how they might be bulletproofed in chunks. In the final
chapter, “Putting It All Together,” we’ll round up all of the techniques from
previous chapters to create a full-page template—reminding ourselves along
the way why we’ve chosen the bulletproof techniques, and illustrating how
they all can work together in one place.

The step-by-step nature of each chapter’s examples should make it easy to
follow along—even if you are new to using HTML and CSS in your daily work.
Along the way, I’ll explain why these web standards are beneficial, and specifi-
cally how each chapter’s guideline can improve a website’s bulletproofness.

www.csszengarden.com

Introduction  xv

note

I’m using the term bulletproof partly to describe flexibility—in other words, designs
for the web that can easily accommodate various text sizes and amounts of con-
tent, designs that expand or contract along with whatever is placed within them.

In addition, we can (and will) talk about flexibility from an editing, mainte-
nance, or development view as well—improving the ease with which content is
edited and code updated and maintained, while at the same time not hindering
the design. This can be especially helpful and important for internationalization
issues, where length of content can drastically vary between the various lan-
guages of the world.

And last, we’ll also talk about flexibility from an environment standpoint. How
will designs impact the integrity of a website’s content and function? We’ll make
sure that what we create can adapt to a variety of scenarios, be it a web browser,
screen reader, or mobile device. Designing with flexibility in mind means better
interpretation by a wider range of devices and software.

the context of the book’s exAmples
All of the examples assume a basic page structure that surrounds them. In
other words, what is shown in each chapter in terms of HTML and CSS code
happens within an assumed, existing HTML5 document in between the
<body> and </body>.

For instance, the basic framework for the book’s examples could be set up
like this:

<!DOCTYPE html>
<html lang=”en”>
<head>
 <title>Page Title</title>
 <meta charset=”utf-8” />
 <style type=”text/css”>
 ... example CSS goes here ...
 </style>
</head>

xvi Introduction

<body>
 ... example markup goes here ...
</body>
</html>

While the CSS is placed in the <head> of the page for convenience, it could
(and probably should) be pulled out into its own file.

Using HTML5 today
All the examples in the book assume an HTML5 document, and we’ll be using
some elements that are new in HTML5 throughout the book. Anyone can start
using HTML5 right now, simply by using the simple DOCTYPE shown earlier.

There are, however, two small steps to ensure that the new HTML5 elements
are recognized and can be styled in all browsers. New HTML5 elements that
didn’t exist prior aren’t acknowledged in Internet Explorer 8 and below. The
easiest way to “tell” those browsers about the new elements is to use a sim-
ple little JavaScript shim developed by Remy Sharp: http://remysharp.
com/2009/01/07/html5-enabling-script/

Simply add this line to the <head> of your documents, which will condition-
ally load it (from Google) for IE8 and below, enabling these fresh new HTML5
elements in IE:

<!DOCTYPE html>
<html lang=”en”>
<head>
 <title>Page Title</title>
 <meta charset=”utf-8” />
 <style type=”text/css”>
 ... example CSS goes here ...
 </style>
 <!-- enable HTML5 elements in IE7+8 -->
 <!--[if lt IE 9]>
 <script src=”http://html5shim.googlecode.com/svn/trunk/
 ➝ html5.js”></script>
 <![endif]-->
</head>

http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/

Introduction  xvii

Reset styles
In order to zero out margins, padding, and other styles that browsers typi-
cally apply by default, I’ll often use a reset stylesheet: a batch of CSS rules
that sets a consistent base for which to start styling upon. These styles come
before all others, either at the top of the main stylesheet, or linked before
others if using external stylesheets.

I recommend using Eric Meyer’s version, which he keeps up to date here:
http://meyerweb.com/eric/tools/css/reset/

One crucial part of the reset stylesheet when using HTML5 is to declare the
new HTML5 elements as display: block; for older browsers that didn’t
know about them at the time (otherwise, you may encounter some oddness
when styling them).

Here is Eric’s latest version of reset (at the time of this writing), where I’ve
highlighted the important HTML5 bits:

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0 | 20110126
 License: none (public domain)
*/

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}

http://meyerweb.com/eric/tools/css/reset/

xviii Introduction

/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
 display: block;
}
body {
 line-height: 1;
}
ol, ul {
 list-style: none;
}
blockquote, q {
 quotes: none;
}
blockquote:before, blockquote:after,
q:before, q:after {
 content: ‘’;
 content: none;
}
table {
 border-collapse: collapse;
 border-spacing: 0;
}

So, with the HTML5 JS shim and reset styles in place as part of your frame-
work, you’ll be ready to plug in the examples that happen throughout the
book. Each example assumes this setup, and that’ll help us focus on the
important stuff rather than repeating ourselves each time.

common terms used throughout the book
There are times throughout the book that I’ll refer to various browser ver-
sions by their abbreviations. For instance, it’s much easier to say IE6/Win
than “Internet Explorer version 6 for Windows.” Here are a few browser
terms we’ll be using:

n IE = Internet Explorer for Windows

n WebKit = Browser engine that powers Safari and Chrome

n Mozilla = Browser engine that powers Firefox

Introduction  xix

When describing the older approaches found in the examples used for each
chapter, I often refer to nested tables and spacer GIF shims. This describes
the traditional techniques often used to build websites, in which tables were
used to create pixel-perfect but inflexible beasts. Nesting tables inside one
another made it easier to precisely align graphics and text, yet the result was
a gigantic amount of code with accessibility problems galore.

The term spacer GIF shim refers to the use of a single transparent GIF image
that’s stretched to various dimensions in order to create gaps, columns, and
divisions throughout a page. An unbulletproof website will have these littered
throughout its markup, adding code and creating a maintenance nightmare.

But there are better ways of accomplishing the same visual goal using lean,
meaningful markup and CSS. By embracing these web standards, we can still
create compelling designs that at the same time are flexible and ready for
whatever situation is thrown at them. This is Bulletproof Web Design.

This page intentionally left blank

Creative
Floating4

Use floats to achieve
grid-like results.
In previous chapters, we started each bulletproof approach by first

deciding how the component we’re dealing with should be struc-

tured—that is, what markup is most appropriate for the content

being displayed? This, I believe, is an important step when building

any website. With a goal of selecting elements that convey the most

meaning to what they surround, you hope to be left with enough

“style hooks” to apply a compelling design with CSS. But more impor-

tantly, choosing the best markup for the job means the content of the

page has the best chance of being understood properly across the

widest possible range of browsers and devices. It’s the foundation

and should convey a clear message, regardless of the design applied

on top of it via CSS. Additionally, if we take time to consider optimal

structure (meaningful HTML) and design (CSS) separately, changing

that design later on down the road becomes less like finding a needle

in a haystack and more like changing the slipcover on a sofa.

Settling on an optimal structure doesn’t have to limit the way it’s

displayed, however. As we’ll explore in this chapter, the creative use

of the float property can give us grid-like results—with a fraction of

the code we’d need with the nested-tables approach. By paring down

the markup to its barest essentials, we make it easier for browsers,

software, and all devices to read our content—at the same time mak-

ing it easier for other designers and developers to modify and edit

these components.

Creative Floating  83

We start this chapter off by rebuilding a box containing multiple

pairings of an image, title, and description. This is a common layout

requirement found on sites all over the web, and one that we can

handle elegantly using minimal markup and CSS.

A Common Approach
Often found on sites to display teasers to articles, products, files, and so
forth, the image/title/description package should look familiar to you.
A related image is usually aligned to one side against the title and quick
description (Figure 4.1).

Image Description

There might also be several of these pairings in a row, each pointing to an
article, product, or other destination. Historically, one might use a <table>
to structure all of this, using spacer GIFs to control white space and gutters
between the items (Figure 4.2).

<table>

Spacer GIFs

Figure	4.1 Image, title, and
description “packages”
like this one are found
throughout the web.

Figure	4.2 Tables
and spacer GIFs may
be used to space and
position the items.

84 Chapter 4

Some could argue that what we’re dealing with here is tabular data (think
spreadsheets, calendars, statistics), and I’m not here to debate the use of
tables. What we will do is use a particular component from a popular real-
world site as a guideline, which we’ll then reconstruct using far less markup
and CSS to achieve table-esque results. In the end, we’ll toss out extraneous
markup and unnecessary images to create something more flexible, acces-
sible, and manageable from an editing viewpoint.

Figure 4.3 shows the component from Furniture Shack (a fictitious online
merchant of fine home furnishings) that we’ll reconstruct. As you can see, it’s
a bordered box containing three “teasers” to a variety of products available
from the Furniture Shack stores.

Each “teaser” contains a product image, title, and short description. Both the
style and layout fit the look of the company’s stores and catalogs—so, well
done there.

Under the hood, this box is built using a series of nested tables and spacer
GIFs, and it’s worth pointing out that the title text is served as an image.
The code required to render this particular layout could easily fill a beautiful
cherry-stained chest of drawers (with brushed-nickel knobs).

Why It’s Not Bulletproof
For this particular example, the amount of code required could be reason
enough for considering a better approach (Figure 4.4). Reducing the code will
not only cut down on file size (which in turn will reduce required server space
and speed up the downloading of pages), but it will also make the editing of
the component from a production standpoint far easier. When we take the
time to choose the best markup for the task at hand, the simplified results
will be easier for servers and site editors to read and understand. Think of it
as flexibility in terms of maintenance as well.

Because of the code bloat, the common approach also scores low in terms of
accessibility to a wide range of software and devices. Accessing the rigid con-
struction of nested tables and spacer GIF shims that are used to lay out the
design with anything but a standard web browser could certainly prove to be
trying for any user. As we’ll discover, deflating the code bloat and increasing
the accessibility doesn’t have to compromise the design.

Figure	4.3 The Furniture
Shack home page features
a box of “teasers.”

Creative Floating  85

Figure	4.4 Avoid drowning in a sea of code.

A Bulletproof Approach
To simplify the structure of this box, we’ll strip away the tables in favor of
minimal markup. We’ll then turn to our friend CSS to replicate the grid-like
layout of the teasers (the image/title/description grouping), while still creat-
ing a compelling design.

As always, to get things started, let’s decide how best to structure the box
with markup.

86 Chapter 4

the endless choices for mArkup
In assessing what we need in terms of markup for this design, let’s refamiliarize
ourselves with our goal by sketching out what we need in the way of structure.

Figure 4.5 illustrates the basic framework we’re dealing with. We’ll need an
outer container for the box to hold everything and create the border. Inside,
the three teasers each contain an image floated to one side, alongside a title
and short description.

Title

Description

Outer container

Image

Figure	4.5 This wireframe of the structure will help us lay out our example.

Because I know what we’ll be up against further on, I know we need an ele-
ment that also surrounds each teaser. This element will group each image,
title, and description together as a unit. And semantically, this makes sense
as well, isolating each discrete chunk (or teaser) with a containing element.

With that said, we can weigh our options in terms of the markup we choose
here. As in most things web design, there are no wrong choices—only
choices and better choices.

Creative Floating  87

using definition lists
Definition lists are underused in my opinion, especially for applications that
aren’t an obvious title and description pairing (as they are commonly used
for). A definition list consists of an outer <dl> element, with any number of
definition terms <dt> and descriptions <dd>:

<dl>
 <dt>This is the Term</dt>
 <dd>This is the description.</dd>
</dl>

In its specification for definition lists (http://www.w3.org/TR/html5/
grouping-content.html#the-dl-element), the W3C hints at other uses
for these elements by suggesting that a) definition lists can contain multiple
terms and/or definitions and b) definition lists can also be used for “…terms
and definitions, metadata topics and values, questions and answers, or any
other groups of name-value data.” Or also, for example, a dialogue that could
be marked up like so:

<dl>
 <dt>Younger Cop</dt>
 <dd>And was there anything of value in the car?</dd>
 <dt>The Dude</dt>
 <dd>Oh, uh, yeah, uh... a tape deck, some Creedence tapes,
 ➝ and there was a, uh... uh, my briefcase.</dd>
 <dt>Younger Cop</dt>
 <dd>[expectant pause] In the briefcase?</dd>
 <dt>The Dude</dt>
 <dd>Uh, uh, papers, um, just papers, uh, you know, uh,
 ➝ my papers, business papers.</dd>
 <dt>Younger Cop</dt>
 <dd>And what do you do, sir?</dd>
 <dt>The Dude</dt>
 <dd>I’m unemployed.</dd>
</dl>

It’s b) that I (and other designers) have taken to heart, using definition lists
for a variety of markup applications to provide a more meaningful and clearly
organized structure.

So, with that in mind, I’ve chosen to use a series of definition lists to struc-
ture each image, title, and description.

http://www.w3.org/TR/html5/grouping-content.html#the-dl-element
http://www.w3.org/TR/html5/grouping-content.html#the-dl-element

88 Chapter 4

the mArkup structure
To make things more interesting (although I suppose furniture can be inter-
esting), I’ll be swapping out the Furniture Shack content for something of
my own, featuring a few photos from a past trip to Sweden. Each tease will
consist of a definition list containing the title as the definition term and the
image and description as… well, descriptions of that title. As mentioned ear-
lier, we’ll also need an outer containing element to set a width and the border
that surrounds the entire component.

With all of that mapped out, our simple markup structure looks like this:

<article id=”sweden”>
 <dl>
 <dt>Stockholm</dt>
 <dd><img src=”img/gamlastan.jpg” width=”80” height=”80”
 ➝ alt=”Gamla Stan” /></dd>
 <dd>This was taken in Gamla Stan (Old Town) in a large
 ➝ square of amazing buildings.</dd>
 </dl>
 <dl>
 <dt>Gamla Uppsala</dt>
 <dd><img src=”img/uppsala.jpg” width=”80” height=”80”
 ➝ alt=”Gamla Uppsala” /></dd>
 <dd>The first three Swedish kings are buried here,
 ➝ under ancient burial mounds.</dd>
 </dl>
 <dl>
 <dt>Perpetual Sun</dt>
 <dd><img src=”img/watch.jpg” width=”80” height=”80”
 ➝ alt=”Wristwatch” /></dd>
 <dd>During the summer months, the sun takes forever to
 ➝ go down. This is a good thing.</dd>
 </dl>
</article>

We’ve given the outer <article> (a new HTML5 element) container an id of
sweden, and inside we have three definition lists, each containing a title, fol-
lowed by an associated image and short description. At this point, you may
be wondering why we chose to use three separate <dl>s as opposed to one
big list. The reasoning here will be revealed a bit later.

Creative Floating  89

sAns style
Without any style applied to our markup, the structure is still apparent when
viewed in a browser (Figure 4.6).

Figure	4.6 With CSS disabled, or not applied, the structure of the
example is still readable and easily understood.

Typically, a browser will indent <dd> elements, making it easier to view
the relationship between them and the <dt> elements that precede them.
Because we’ve chosen lean, simple markup, any device or browsing software
should have no problems whatsoever understanding what we’re delivering
here. But it doesn’t exactly look the way we want it to yet. Let’s start adding
some style.

styling the contAiner
To begin, let’s add a declaration that will set a width and blue border around
the entire list. We’ll add these styles to the outer <article> previously
marked with id=”sweden”.

90 Chapter 4

#sweden {
 width: 300px;
 border: 2px solid #C8CDD2;
 }

By setting a width of 300px and a colored border around our entire box,
we end up with the results shown in Figure 4.7.

Figure	4.7 Setting a width of 300 pixels contains everything within the
<article>.

identifying the imAge
To make things easy to control later on, one step we need to take before
going any further is to add a class to each <dd> element that holds the
image. Because we’ll float the image (and not the second <dd> that holds
the description text), we need a way to uniquely identify that element in the
markup so that we may later apply style to it with CSS:

note

A default font of Arial has
been set on the entire page,

with font-size set using
the absolute-size

keyword small.

Creative Floating  91

<article id=”sweden”>
 <dl>
 <dt>Stockholm</dt>
 <dd class=”img”><img src=”img/gamlastan.jpg” width=”80”
 ➝ height=”80” alt=”Gamla Stan” /></dd>
 <dd>This was taken in Gamla Stan (Old Town) in a large
 ➝ square of amazing buildings.</dd>
 </dl>
 <dl>
 <dt>Gamla Uppsala</dt>
 <dd class=”img”><img src=”img/uppsala.jpg” width=”80”
 ➝ height=”80” alt=”Gamla Uppsala” /></dd>
 <dd>The first three Swedish kings are buried here,
 ➝ under ancient burial mounds.</dd>
 </dl>
 <dl>
 <dt>Perpetual Sun</dt>
 <dd class=”img”><img src=”img/watch.jpg” width=”80”
 ➝ height=”80” alt=”Wristwatch” /></dd>
 <dd>During the summer months, the sun takes forever to
 ➝ go down. This is a good thing.</dd>
 </dl>
</article>

With each <dd> that contains the image flagged with a class=”img”, we’re
now prepared to move on.

Applying bAse styles
Let’s now apply base styles for each tease, leaving only the positioning of the
image to be done a bit later.

To evenly apply 20 pixels of space around the teasers as well as the inside
of the box (Figure 4.8), we’ll break up the margins between the containing
<article> and the teasers themselves. First, let’s apply 10 pixels of padding
to the top and bottom of the containing <article id=”sweden”>. Then,
we’ll apply 10-pixel margins on the top and bottom of each <dl>, as well as
20-pixel margins on both the left and right of each <dl>.

92 Chapter 4

#sweden {
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 margin: 10px 20px;
 padding: 0;
 }

Figure 4.9 shows the results of adding the margins and padding. We’ve also
zeroed out any default padding that may be attached to definition lists. And
the box is already looking better.

Figure	4.8 Our goal is a
consistent gutter of 20 pixels
(marked in gray) that flows
around the inside of the box and
its teasers.

Creative Floating  93

Figure	4.9 With margins and padding distributed among the elements,
the box begins to take shape.

Next, let’s introduce color and custom text treatment to the title of each tease
by styling <dt> elements within our box:

#sweden {
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 margin: 10px 20px;
 padding: 0;
 }
#sweden dt {
 margin: 0;

94 Chapter 4

 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }

Looking at Figure 4.10, you’ll notice that we’ve increased the size of the title,
added the lovely slate-blue shade, and increased space between letters by a
fraction using the letter-spacing property, mimicking the style from the
Furniture Shack example, where images were used in place of styled text.

Figure	4.10 Simple text styling can do wonders for a component’s design,
and often eliminates the need for image-based type.

note

I’m using the Safari browser
throughout this example,
taking advantage of Mac

OS X’s beautiful antialiasing
of text. You could get similar
results using Windows with

ClearType enabled. Users
of other operating systems

would receive mixed results.

Creative Floating  95

We’ll also want to add a bit of style to the <dd> elements as well, matching
the smaller, gray text from the Furniture Shack example:

#sweden {
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 margin: 10px 20px;
 padding: 0;
 }
#sweden dt {
 margin: 0;
 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }
#sweden dd {
 margin: 0;
 padding: 0;
 font-size: 85%;
 line-height: 1.5em;
 color: #666;
 }

Figure 4.11 shows the results, with the short description text now looking
smaller and gray. We’ve also increased the line-height (the space between
lines of text) to one and a half times the height of normal text. This lets the
description breathe a bit more. Also important is the removal of the default
indenting that’s often applied to <dd> elements by the browser. We’ve over-
ridden that by zeroing out margins and padding.

96 Chapter 4

Figure	4.11 To match the Furniture Shack example, we’ve decreased the size
of the description and made the text gray.

positioning the imAge
Our next challenge is to position the image to one side of both the title and
description. For now, let’s worry about lining things up on the left only. Later,
we’ll address how best to alternate the alignment as seen in the Furniture
Shack example.

Because of the order in which things appear in the markup—title, image,
then description—if we simply just float the image to the left we’ll have the
title always sitting above everything else (Figure 4.12). What we really want is
the top of the image and title to be aligned at the same level.

Creative Floating  97

In the past, I’ve swapped the order of elements to make this work, putting
the image in the <dt> element and using <dd> elements for both the title and
description. Because the image appeared first, floating to either side would
allow us to line it up just right. But semantically, it makes far more sense
to have the title be the definition term, followed by an image and text that
describe that title (as we’ve done in our markup structure for this example).
It takes only a little more CSS magic to have the best of both worlds: optimal
markup structure and the image to one side of both the title and description.

opposing floAts
You may remember the “opposing floats” method explained in Chapter 3,
“Expandable Rows.” Essentially, we used the float property to place two
elements on opposite ends of a container. We use the same method here,
allowing us to align the image to the left of both the title and the short
description while keeping the markup in an optimal order.

Remember that we’ve previously tagged <dd> elements that contain the
image with a class=”img”—which allows us to float images within those
elements to one side while keeping the descriptions in place.

So, to begin let’s float <dt> elements right and images left:

#sweden {
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 margin: 10px 20px;
 padding: 0;
 }
#sweden dt {
 float: right;
 margin: 0;

Figure	4.12 With the image
coming after the title in the
markup, just floating it to one
side leaves the title above
everything.

98 Chapter 4

 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }
#sweden dd {
 margin: 0;
 padding: 0;
 font-size: 85%;
 line-height: 1.5em;
 color: #666;
 }
#sweden dd.img img {
 float: left;
 }

By using the opposing floats method, we can position the image to the left of
both the title and description, regardless of the fact that the title comes first
in the markup (Figure 4.13).

Figure	4.13 Here we see opposing floats at work, aligning the tops of the
image and title.

Notice that while we’ve successfully positioned the image, the description
has slipped between the image and title. To fix this, we need to apply a little
math to set up a grid-like layout for each tease.

Creative Floating  99

Quite simply, we just need to assign a width on the <dt> elements,
forcing them to span across the top of each description on their
own line. To calculate this width, let’s start with the total width of
the box (300 pixels), minus the margins around each definition list
(20 pixels times 2), minus the width of the image (80 pixels). The
result is 180 pixels (Figure 4.14).

By simply adding a width of 180px to the declaration for <dt>
elements, we ensure that things start falling into their intended
places:

#sweden dt {
 float: right;
 width: 180px;
 margin: 0;
 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }

Figure 4.15 shows where we are at this point, having successfully positioned
the image, title, and description via opposing floats.

Figure	4.15 With the width assigned for <dt> elements, the items fall into place.

300px

20px 80px 180px 20px

Figure	4.14 Determining the width
for the <dt> elements involves a little
calculation.

100 Chapter 4

cleAr the wAy for Any description length
Thus far in the example, each description has been long enough to roughly meet
the bottom of each image. Because of this length, we haven’t yet had to worry
about clearing the floats. To illustrate what could happen when the description is
shortened, take a look at Figure 4.16. Not exactly bulletproof, is it?

Figure	4.16 With a shorter description, the floated images can lead to
undesired results.

When you are first learning how to use floats, understanding how they need
to be properly cleared can be tricky. When an element is floated, it is taken
out of the normal flow of the document and doesn’t affect the vertical stack-
ing of elements that follow it. Floated elements will always extend beyond
the height of their containers. If the description happens to be long enough
to meet or exceed the bottom of the floated image, then all is right with the
world. But if the content next to the floated image is shorter, that’s when
you’ll run into problems.

Figure 4.17 shows the outline of the definition list marked in red. You can
see that the image is taller than the title and description combined in the
first teaser. And since the image is floated left, the next definition list in line
will attempt to wrap around it. What we need is a way to clear the floated
image before going on to the next teaser. For example, in the old days one

Creative Floating  101

might add <br clear=”all”> to clear any previously declared floats in
the markup. This works, but is rather unnecessary when we’re dealing with
CSS-based designs, not to mention that the clear attribute is considered
invalid in recent HTML specifications. What we’d rather do is use CSS (and not
markup) to clear floats, and we’ll explore a few ways to do just that next.

self-cleAring floAts
There are several ways to clear floats using CSS, and to get a handle on many
of them (and why problems arise), I encourage you to start off by reading CSS
guru Eric Meyer’s article “Containing Floats” (www.complexspiral.com/
publications/containing-floats/).

I’m going to share three popular methods for self-clearing floats—that is,
the process of applying CSS to a container that has floated elements inside
it. By self-clearing the floats within, it keeps	the	container	independent,
regardless of what comes before or after it in the flow of the document. This
is a key element of being bulletproof: If we keep “modules” (containers of
various mini-layouts) independent, they stand a better chance of staying
intact if moved around, changed, or edited later by either you or your client
or boss. Self-clearing is essential for that modularization when you’re using
floats and requires no extra markup (such as <br clear=”all”>).

Let’s look at three ways to do this, applying each method to our example:

n The	“Set	a	Float	to	Fix	a	Float”	method (described in Eric Meyer’s article
and used previously in this book). This technique often depends on what
comes after the container on the page, but this cross-browser method is
simple to implement.

n The	“Simple	Clearing	of	Floats”	method	using	the	overflow	property.
This is probably the simplest method to implement but has some possible
side effects. It’s described in detail at SitePoint: www.sitepoint.com/
blogs/2005/02/26/simple-clearing-of-floats/.

Figure	4.17 The red box shows
where the <dl> containing the
float really ends.

www.complexspiral.com/publications/containing-floats/
www.complexspiral.com/publications/containing-floats/
www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/

102 Chapter 4

n The	“Easy	Clearing”	method	using	generated	content (described at
http://positioniseverything.net/easyclearing.html). This
method requires jumping through a few hoops for Internet Explorer, but
once you grasp the idea, I think it’s the most solid choice.

First, we’ll use the “Set a Float to Fix a Float” method and apply that to our
example.

Setting a float to fix a float
Essentially, a container will stretch to fit around floated elements within it—
if the container is also floated. So, taking Eric Meyer’s advice, we want to
float each <dl> left in order to force each teaser below the floated image
above it. In addition, we need to float the entire containing <article>,
ensuring that the border will enclose all of the floated elements within it:

#sweden {
 float: left;
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 float: left;
 margin: 10px 20px;
 padding: 0;
 }
#sweden dt {
 float: right;
 width: 180px;
 margin: 0;
 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }
#sweden dd {
 margin: 0;
 padding: 0;
 font-size: 85%;
 line-height: 1.5em;

http://positioniseverything.net/easyclearing.html

Creative Floating  103

 color: #666;
 }
#sweden dd.img img {
 float: left;
 }

Adding the previous rules to our example, we have properly cleared floats,
with each teaser ending up below the other—regardless of description length
(Figure 4.18).

Figure	4.18 Even with a short description, we have properly cleared floats.

the finishing touches
To put the final polish on this example, let’s adjust the spacing between images
and text, and later allow for floating the image both to the left and right.

To adjust the spacing between the images and text, we’ll just have to add a right
margin to the image, then subtract that amount from the width we’ve defined for
the <dt> elements. While we’re at it, let’s also add a little framed border around
each image. We can fold these additions into the master stylesheet for this exam-
ple, where you can see that the CSS remains rather compact:

104 Chapter 4

#sweden {
 float: left;
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 float: left;
 width: 260px;
 margin: 10px 20px;
 padding: 0;

 }
#sweden dt {
 float: right;
 width: 162px;
 margin: 0;
 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }
#sweden dd {
 margin: 0;
 padding: 0;
 font-size: 85%;
 line-height: 1.5em;
 color: #666;
 }
#sweden dd.img img {
 float: left;
 margin: 0 8px 0 0;
 padding: 4px;
 border: 1px solid #D9E0E6;
 border-bottom-color: #C8CDD2;
 border-right-color: #C8CDD2;
 background: #FFF;
 }

Creative Floating  105

Figure 4.19 shows the results of the new styles. We’ve added an 8-pixel margin
to the right of each floated image, as well as 4 pixels of padding and a 1-pixel
border around the image itself to create a frame. Since we’ve added this extra
width, we have to add all that up, then subtract that total from the width we
previously set on <dt> elements. The math goes like this: 8-pixel right margin +
4-pixel padding on both sides + 1-pixel border on both sides = 18 pixels. So, as
you can see, we’ve dropped the width for <dt> elements down to 162 pixels to
accommodate the extra space that the image will now take up.

Figure	4.19 We’ve achieved proper spacing between images and text.

106 Chapter 4

For the border around the image, we’ve chosen to make the right and bot-
tom edges a slightly darker shade than the top and left. This creates a
subtle three-dimensional effect on the photo, as if it’s lying on top of the box
(Figure 4.20).

Lighter shade

Darker shade

Figure	4.20 A simple trick for creating dimension is to use darker right and
bottom borders.

toggling the floAt direction
Another aspect of the original Furniture Shack example that we’ll want to
replicate is that the side to which each image floats swaps back and forth.
One teaser will have the image aligned left, while another will have it aligned
right. We want to build in the ability to change this at will, with a simple
class=“alt” added to the <dl> when a swap is desired.

First, we tag the <dl> that we’d like to change float direction on. We’ve cho-
sen the second teaser:

<article id=”sweden”>
 <dl>
 <dt>Stockholm</dt>
 <dd class=”img”><img src=”img/gamlastan.jpg” width=”80”
 ➝ height=”80” alt=””Gamla Stan” /></dd>
 <dd>This was taken in Gamla Stan (Old Town) in a large
 ➝ square of amazing buildings.</dd>
 </dl>
 <dl class=”alt”>
 <dt>Gamla Uppsala</dt>

Creative Floating  107

 <dd class=”img”><img src=”img/uppsala.jpg” width=”80”
 ➝ height=”80” alt=”Gamla Uppsala” /></dd>
 <dd>The first three Swedish kings are buried here,
 ➝ under ancient burial mounds.</dd>
 </dl>
 <dl>
 <dt>Perpetual Sun</dt>
 <dd class=”img”><img src=”img/watch.jpg” width=”80”
 ➝ height=”80” alt=”Wristwatch” /></dd>
 <dd>During the summer months, the sun takes forever to
 ➝ go down. This is a good thing.</dd>
 </dl>
</div>

Having added the alt class to the second teaser, we can now include a few
rules at the end of our stylesheet that will override the default, which cur-
rently aligns the image to the left. The alt style will reverse the direction,
floating the image on the right. This class could be swapped in and out at
will, giving site editors easy control over the layout of the box.

The following CSS should be placed after the previous declarations we’ve
already written:

/* reverse float */

#sweden .alt dt {
 float: left;
 }
#sweden .alt dd.img img {
 float: right;
 margin: 0 0 0 8px;
 }

Here we’re telling the browser that it should do the following:

n For <dt> elements within a <dl> marked with the alt class, float those left
(instead of the default right).

n Float images within the alt class right (instead of the default left).

n Change the 8-pixel margin that was to the right of the image over to the
left instead.

108 Chapter 4

Figure 4.21 shows the results of adding these two little declarations to the
stylesheet. Because the second teaser is marked with the alt class, its
image is aligned to the right. The idea here is that we can add or remove a
simple class at any time to assign the float direction for a particular image.

Figure	4.21 Toggling the image alignment is as simple as adding or
removing the alt class.

the grid effect
If we were dealing with longer descriptions (or if the user increased the text
size), we’d find that the description text would wrap down around the image.
That’s the nature of a float: It will take up as much space as it needs to but
will let content flow around it (Figure 4.22).

Creative Floating  109

This could be the intended effect, but if a more column-like grid is what
you’re after, applying a margin to the description will keep the text and
images away from each other.

The width of the margin that we’ll add to the description should equal the
width of the image, plus the padding, borders, and margin already specified
between the image and description (Figure 4.23).

98px

So by adding a left margin of 98px to all <dd> elements and then overriding
that value to 0 for <dd class=”img”> elements (since we don’t want the
image to have a margin, yet it resides inside a <dd>), we’ll in a sense be cre-
ating columns on either side.

Figure	4.22 Longer descriptions
will wrap around the floated
image.

Figure	4.23 Adding the image
width, margin, padding, and
border together comes to
98 pixels.

110 Chapter 4

To reverse the margins for the alt class when the image is floated right
instead of left, we need to add another rule to our “reverse float” section at
the end of the stylesheet:

#sweden {
 float: left;
 width: 300px;
 padding: 10px 0;
 border: 2px solid #C8CDD2;
 }
#sweden dl {
 float: left;
 width: 260px;
 margin: 10px 20px;
 padding: 0;
 }
#sweden dt {
 float: right;
 width: 162px;
 margin: 0;
 padding: 0;
 font-size: 130%;
 letter-spacing: 1px;
 color: #627081;
 }
#sweden dd {
 margin: 0 0 0 98px;
 padding: 0;
 font-size: 85%;
 line-height: 1.5em;
 color: #666;
 }
#sweden dl dd.img {
 margin: 0;
 }
#sweden dd.img img {
 float: left;
 margin: 0 8px 0 0;
 padding: 4px;

Creative Floating  111

 border: 1px solid #D9E0E6;
 border-bottom-color: #C8CDD2;
 border-right-color: #C8CDD2;
 background: #FFF;
 }

/* reverse float */

#sweden .alt dt {
 float: left;
 }
#sweden .alt dd {
 margin: 0 98px 0 0;
 }
#sweden .alt dd.img img {
 float: right;
 margin: 0 0 0 8px;
 }

Notice that we’ve added a declaration that resets the mar-
gin value to 0 for <dd> elements that are flagged with
class=“img”. This will override the right margin set in the
“reverse float” section farther down the stylesheet. It will also
save us from repeating the override after the #sweden .alt
dd declaration assigns a right margin that we again don’t want
showing up on <dd> elements that contain our floated image.

Figure 4.24 shows the results of the previous additions to the
stylesheet. You can see that with the text size significantly
increased, and/or with longer descriptions, the text and
image both stick to their respective “columns,” as if we’d used
a table here for layout.

An AlternAte bAckground
As a final touch to this example, let’s trade in the solid blue
border that surrounds the box for a background image that
fades to white. We’ll create the image in Photoshop, at a width
of 304 pixels (300 pixels plus a 2-pixel border on both sides).

Figure	4.24 With a margin applied to the
description, it’s as if the text is held within
columns.

112 Chapter 4

Figure 4.25 shows the completed image, which we created by filling a bor-
dered box with a lighter shade of blue and then using the Gradient tool
(Figure 4.26) to fade white to transparent from bottom to top.

Figure	4.25 We created a blue background by using the Gradient tool.

To reference this image in our stylesheet, we just adjust the declaration for
the main containing <article>:

#sweden {
 float: left;
 width: 304px;
 padding: 10px 0;
 background: url(img/bg.gif) no-repeat top left;
 }

We’ve adjusted the width of the container from 300 pixels to 304 pixels to
account for the loss of the 2-pixel border (which is now part of the back-
ground image), and we’ve aligned the fade top and left. Because it fades to
white (the background color of the page) and is aligned at the top, we need
not worry about what’s contained in the box; it will accommodate any height,
with its contents just spilling out of the fade. Another plus is that I happen to
think it just looks cool (Figure 4.27).

Gradient tool

Figure	4.26 You’ll find the
Gradient tool in the Tools
palette in Photoshop.

Creative Floating  113

Figure	4.27 Here is our completed, bulletproof example.

If we zoom in on the top image, you can see that the padded frame remains
white on top of the blue background (Figure 4.28). You may remember that
we assigned a background: #FFF; in addition to 4px of padding on the
floated images to accomplish this. If we hadn’t specified a background color
here, then the blue fade would show through the image’s frame.

White background

4-pixel padding

Figure	4.28 Combining
padding and a background
color creates a frame around
the image.

114 Chapter 4

Applying A box-shAdow
As an additional detail, let’s apply a CSS3 box-shadow to each thumbnail
image. The box-shadow property is a wonderfully flexible way of adding
shadows to elements without the need to add extra markup or images to the
design. The support for box-shadow is also decent in recent browsers—but
again it’s one of those nonessential treatments that is often unmissed in
browsers that don’t support it.

To add a subtle drop-shadow to each image in our example, we need to add
just a few rules to the following declaration:

#sweden dd.img img {
 float: left;
 margin: 0 8px 0 0;
 padding: 4px;
 border: 1px solid #D9E0E6;
 border-bottom-color: #C8CDD2;
 border-right-color: #C8CDD2;
 background: #FFF;
 -webkit-box-shadow: 1px 1px 3px rgba(0,0,0,.12);
 -moz-box-shadow: 1px 1px 3px rgba(0,0,0,.12);
 box-shadow: 1px 1px 3px rgba(0,0,0,.12);
 }

Here we’re adding a box-shadow with the appropriate vendor prefixes for
WebKit and Mozilla browsers. As usual, we always end with the non-prefixed
version of the property for future proofing.

The syntax for box-shadow takes a top and left coordinate for where the
shadow should begin from in relation to the element (in this case 1px from
the top and 1px from the left). The third value in the rule tells the browser
how much blur to apply to the shadow (in this case 3px of blur). Finally, we
define the color of the shadow. Here we’re using an RGBA value, which will
allow us to set the color as partially transparent, letting whatever back-
ground is behind the thumbnail blend in. I almost always use RGBA values
when setting box-shadows. In this particular case, we are setting 0,0,0 (the
RGB value of black) at .12 (or 12%) opacity.

Figure 4.29 shows the results in Safari after adding the box-shadow rules.
For browsers that don’t yet support box-shadow (e.g., IE8 and below), they’ll
safely ignore those rules and not display the shadow. No harm done.

Creative Floating  115

The nice thing about using box-shadow for drop shadows, rather than
attaching images, is that the shadows don’t require space to be allotted
in the layout. In other words, the shadows will bleed out into gutters or
other areas of the site that aren’t explicitly accounted for in the stylesheet.
Historically, you’d need to create the space where the shadow appears with
padding, or extra markup with specific widths. With box-shadow, it either
adds the shadow where it needs to, or doesn’t (if the browser doesn’t sup-
port the property). Worry-free bulletproofing.

more floAt-cleAring fun
We’ve just finished the example using the “float to fix a float” method that’s
been used previously in the book. We floated each <dl> in order to clear the
opposing floats that were contained within.

This is a simple concept to grasp—and an easy method to implement cross-
browser. But it’s somewhat reliant on a few things: We must set a width on
the container (so that the floated containers stack vertically), and we must
anticipate what comes before or after the container of floats (since we could
run into issues with the floated container needing to be cleared as well, thus
starting a vicious, never-ending cycle).

So while floating a container to clear floats within it can work in certain cir-
cumstances, there are other methods that are consistent regardless of the
scenario. Let’s take a look at a few more options.

Figure	4.29 A zoomed-in
view of the thumbnail image
with subtle box-shadow
rendering in Safari.

116 Chapter 4

Simple clearing of floats using the overflow property
Applying the overflow property on a container will self-clear any floats
within it (see Alex Walker’s article at SitePoint: www.sitepoint.com/
blogs/2005/02/26/simple-clearing-of-floats/). The approach is
simple and easy to implement, although it’s not obvious that it will work
under most circumstances. But it does.

Using our example, if we removed the floats from each <dl> and replaced
them with overflow: auto, we’d be achieving the same goal.

Here’s the original declaration:

#sweden dl {
 float: left;
 width: 260px;
 margin: 10px 20px;
 padding: 0;
 }

And here it is with the overflow trick to clear floats instead:

#sweden dl {
 overflow: auto;
 width: 260px;
 margin: 10px 20px;
 padding: 0;
 }

Now in most circumstances, the overflow trick will likely work out fine—
but there are situations where it could become problematic. We’ve used the
value auto, which could trigger scrollbars around the element should its
contents be wider than its specified width (260px). So that’s one possible
scenario. You could also specify overflow: hidden; instead of overflow:
auto;. The hidden value will (you guessed it) hide its contents should they
exceed the container’s width.

If you’re positive that neither of those scenarios will happen, then perhaps
overflow is worth a shot. As for me, I’m more likely to want a solution that
I don’t have to worry about in the future—and that’s just what we’ll get with
the next method.

www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/

Creative Floating  117

eAsy cleAring using generAted content
The most robust, reliable solution for self-clearing I’ve found is documented
in an article at Position Is Everything: “How to Clear Floats Without Structural
Markup” (http://positioniseverything.net/easyclearing.html).
The idea is rather clever: It uses the :after pseudo-element in CSS
(www.w3.org/TR/CSS21/selector.html#before-and-after) to insert
a period after the container of floats. The clear: both rule is also added
to clear all floats, and then the period is hidden. Let’s take a look at the
declaration in action:

#sweden dl {
 width: 260px;
 margin: 10px 20px;
 padding: 0;
 }
#sweden dl:after {
 content: “.”;
 display: block;
 height: 0;
 clear: both;
 visibility: hidden;
 }

For the main #sweden dl declaration, we don’t need to add float or over-
flow as we did for the previous methods. It’s the next declaration that does
the float-clearing magic, so let’s break it down and figure out exactly what is
happening here.

We’re essentially saying, “Put a period after each definition list (content:
“.”; will do that), clear all floats that precede them (clear: both;),
and then make sure the period is hidden (height: 0; and visibility:
hidden;).” Pretty crafty, eh?

By using the :after pseudo-element to self-clear any floats, we’ve done
so without having to float the container, and we don’t have to worry that
overflow may cause issues down the road.

If only this worked in *cough* Internet Explorer. Yes, that’s right, IE6 and 7
don’t support the :after pseudo-element (ditto for :before). But not to
worry—fortunately, there are additional rules we can target to those specific

www.w3.org/TR/CSS21/selector.html#before-and-after
http://positioniseverything.net/easyclearing.html

118 Chapter 4

versions of IE that self-clear floats just as confidently. And the good news is
that IE8+ supports the :after and :before pseudo-elements, so no addi-
tional trickery is required for the future.

Autoclearing in IE6
Conveniently, IE/Win will do its own “autoclearing” on containers as long
as a dimension is applied to it. This isn’t correct behavior, of course, but
we’ll use this spec deviation to our advantage. Historically called the “Holly
Hack”(named after Holly Bergevin, the hack’s author), it involves setting a
height: 1%;, targeted specifically to IE and IE only, that forces the con-
tainer to expand around its contents (even floated elements). If the height
of the container’s contents exceeds 1% (which it almost always will), that’s
OK—it will expand as needed, thus ignoring the height rule. Again, this isn’t
correct behavior in terms of the spec, but it’s an inconsistency that actually
helps us solve this autoclearing problem (among others).

The hack uses the * html selector (which precedes the declaration) and is
read only by IE/Win version 6 (we’ll tackle IE7 in just a moment):

* html #sweden dl { height: 1%; }

That one declaration will autoclear any floats in each definition list, and by
using the * html hack, you will target IE6 only. Other modern browsers will
ignore it, likely because it’s a nonsensical selector—there’s never an element
before the <html> element.

So, by offering the :after declaration for modern browsers that recognize
it (Mozilla, Firefox, Safari, and so on), as well as the Holly Hack (for IE6), we
have a majority of the browser market share covered with solutions that self-
clear in a solid, reliable way. Ideally, we’d keep the Holly Hack (and any other
IE-specific CSS) quarantined in its own stylesheet (we’ll talk more about why
later in Chapter 9).

Solving the IE7 problem
IE7 was released with significantly better standards support—a lot was fixed,
and we thank the developers for that. But support for everything that browsers
like Firefox, Safari, and Opera have provided for years didn’t materialize—which
makes a few things a little tricky. This easy-clearing method is one of them.

tip

If you’re curious,
height: 1%; is actually

triggering something in IE
called hasLayout.

You can read a thorough
(but lengthy) article titled

“On Having Layout”
(www.satzansatz.de/cssd/

onhavinglayout.html)
if you’re interested in

understanding the inner
workings. Tread softly and

pour yourself an extra large
coffee before diving into

this article.

www.satzansatz.de/cssd/onhavinglayout.html
www.satzansatz.de/cssd/onhavinglayout.html

Creative Floating  119

IE7 fixed the height: 1%; bug. Where IE6 would expand a container to
shrink-wrap its contents—even when that exceeded a dimension specified
with CSS—IE7 will now correctly honor that dimension. This is now proper
behavior, so we can’t blame the IE7 developers for fixing this. And like other,
more standards-aware browsers, IE7 also now ignores declarations that
begin with the * html selector, which is also proper behavior.

The problem, though, is that IE7 doesn’t support the :after pseudo- element.
And so by fixing the height: 1% bug and not supporting :after, the IE7
developers ensured that we’re stuck in terms of getting the browser to auto-
clear floats using one of these methods.

To address this issue, enter this bit of code:

*:first-child+html #sweden dl { min-height: 1px; }

Setting a min-height on a container in IE7 also expands a container in the
same fashion that adding a height in IE6 does. That wacky-looking selector
that precedes #sweden dl (*:first-child+html) is the piece that targets
IE7 and IE7 only.

Hooray! Now we have the three pieces in place that will self-clear things in the
most popular browsers. Let’s take a look at all of them together in one place:

#sweden dl:after { /* for browsers that support :after */
 content: “ .”;
 display: block;
 height: 0;
 clear: both;
 visibility: hidden;
 }
* html #sweden dl { height: 1%; } /* for IE5+6 */
:first-child+html #sweden dl { min-height: 1px; } /
➝ for IE7 */

Again, ideally the patches that target IE specifically would be placed in a sep-
arate stylesheet, kept separate so as to avoid tainting the clean code (more
about that in Chapter 9, “Putting It All Together”). But with these three dec-
larations, we have a solid, reliable way of self-clearing floats. The code may
seem a bit verbose at first, but once you start using these rules consistently,
you’ll find that they become indispensable for creating flexibility without con-
cern that your floats will fall apart in the future.

120 Chapter 4

Combining selectors to save code
You can also combine selectors that share this self-clearing code by building a
single declaration instead of repeating them for each container. For instance,
suppose you are also self-clearing floats found in the header of the document:

#header:after,
#sweden dl:after { /* for browsers that support :after */
 content: “.”;
 display: block;
 height: 0;
 clear: both;
 visibility: hidden;
 }

* html #header,
* html #sweden dl { height: 1%; } /* for IE6 */

*:first-child+html #header,
:first-child+html #sweden dl { min-height: 1px; } /
➝ for IE7 */

As you’re constructing your layout, you simply add elements to these three
declarations as necessary, thus saving you from repeating the code for each.

Choosing what works for you
Now that we’ve looked at three methods for self-clearing, I’d like to point out
that (as with almost everything in web design) there’s no one way that is cor-
rect 100% of the time. After experimenting with them all, you’ll find that one
method might work better than the others for you, depending on the situation.

I like the easy-clearing method because of its robustness in just about any
scenario, but I’ll often throw overflow: hidden; on a container when ini-
tially building a layout, which is quick and easy to remember while prototyp-
ing. Later, I’ll do a quick search for that rule and build the three declarations
that make up the easy-clearing method.

Whatever method you choose, the important thing to remember is that self-
clearing	can	be	a	powerful	tool that maintains the flexibility that floats can
bring to layout while keeping components of the page independent.

Creative Floating  121

Why It’s Bulletproof
After all of the CSS sorcery we’ve applied to this example, we may have long
forgotten why we went down this path to rebuild this box of image, title, and
descriptions. But in choosing a lean, semantic markup structure over the lines
and lines of code that it takes to create this using tables and spacer GIFs,
we’re left with a compact and flexible unit—flexible in part because of its ease
in updating, adding, or removing the content. The simplicity of the code also
makes it easier for browsers, software, and even site editors to read.

You could also chalk this up as a big win for database-driven sites, where a
uniform and more predictable markup structure could be reused more eas-
ily. Instead of worrying about whether the image comes before the title and
description in the markup (when dealing with tables), the structure remains
consistent and easily repeated in dynamic templates.

In choosing to use CSS to structure our grid-like layout, we’ve removed presen-
tational code and graphic titles from the component, and in turn have gained
flexibility in image placement and title/description size, style, and content.

Summary
By working through the construction of this example, my hope is that it will
help make a case for creatively using floats to achieve grid-like effects. By
understanding how to clear floats, you gain access to a wide range of pos-
sibilities without having to add extra markup. There are certainly times when
using a <table> is appropriate (for tabular data), but even using compact
and meaningful markup doesn’t mean the design has to suffer. We can serve
markup that a wider range of devices and software can easily understand,
and use CSS to do the rest.

Here are a few points to consider:

n Choose optimal markup from the start. You can always adjust as needed,
but try to get by with the most compact, most meaningful structure when
you are just beginning.

n Consider the “opposing floats” method for aligning items on either side of
each other, regardless of where they appear in the markup. In our example,
the title came before the image, but we wanted both to line up vertically.
Opposing floats to the rescue!

122 Chapter 4

n Be aware of clearing floats: Test various amounts of content and text sizes
to ensure your intended layout doesn’t break down.

n Use the box-shadow property to handle nonessential drop shadows on
elements to avoid extra markup, images, and layout adjustments.

n Experiment with the different methods of self-clearing floats to maintain
flexibility and components with independence.

Index

Arial versus Helvetica font, 58
arrow

adding, 68–69
creating from box, 150–151
width and padding, 151

<article> element, using with floats, 89–90
auto margins, setting, 264. See also margins

B
background colors

3-column layouts, 236
adding to layouts, 212
combining with padding, 113
RGBA option, 272

background images. See also images
Bulletproof Pretzel Company, 265
faux columns, 232–233
providing color equivalents, 159, 161
stacking in 3-column layouts, 239
support for, 64

base font size, normalizing, 20
base text size, setting, 15
BaseballDog.com, 164
:before pseudo-element, using with boxes, 139
The Best Store Ever e-commerce site, 53. See also

expandable rows
Arial font family, 58
arrow graphic, 68–69
“Find a store” list item, 68
magnifying glass icon, 67–68, 72
padding for list item, 69
positioning graphics, 54
table cells, 53
top of, 53

Blogger, TicTac template, 74

2-column layouts, 230. See also layouts
Bulletproof Pretzel Company, 253
elastic, 243–248
using ems, 243–248

3-column layouts
applying styles, 235–237
background colors, 236
floating #content, 236–237
floating #sidebar, 236–237
floating <div>s, 234–235
gutters, 238
image behind sidebar, 238
markup structure, 233–235
padding, 238, 240
positioning images, 239
results, 237
#sidebar, 236
Sliding Faux Columns, 238–240
stacking background images, 239
structure and float order, 234

10-second usability test, 163, 258

A
<abbr> elements, rendering, 21
absolute-size keywords

combining with percentages, 8
setting values for, 10–11

Accessify.com website, 168–170
actions, applying to web pages, 170–171
:after pseudo-element, 117–118, 139
alt class, reversing margins for, 110–111
antialiasing, 94
ARIA role. See also WAI-ARIA landmark roles

on <nav> element, 267
using on <header>, 266–267

286  Index

<body> element, Bulletproof Pretzel Company, 261
border-bottom, using with rounded boxes, 132
border-box value, using with column padding, 225
border-radius

adding to Netflix box, 135, 137–138
using to round box, 273
variation for rows, 72–74

Bowman, Douglas
Sliding Doors of CSS, 46, 129
“Sliding Faux Columns,” 231

box building. See also Netflix box design;
rounded boxes

applying styles, 130–133
bulletproof approach, 133–134
common approach, 125–127
CSS3 variation, 134–138
image strategy, 129–130
markup structure, 128–129
progressive enhancement, 138
rounded corners, 138–146

box hinting
arrow, 150–151
consistent style, 150
corner hinting, 150
ordered list with background color, 147, 149
single rounded corner, 147–150

box model
limitations, 152
web resources, 124

boxes
:after pseudo-element, 139
:before pseudo-element, 139
creating arrows from, 150–151
fixed-width, 138
fluid-width, 138
generated content, 139
rounded, 125
rounding, 273

box-shadow property
applying to thumbnails, 114–115
using with tables, 198–200

box-sizing property
Bulletproof Pretzel Company, 261–262
using with column padding, 224–225

breaking point, testing for, 168
Browse Happy website, 139–140. See also rounded

boxes
browsers. See also Firebug browser extension;

Internet Explorer; Safari
1.5 scaling factor for keywords, 7
adjusting widths, 269–270
default “medium” settings, 11
disabling images in, 155, 159
images used behind text, 155–156
removing tiled images from, 158
testing for breaking points, 168
tiling images vertically in, 156

Bulletproof Pretzel Company
2-column layout, 253
10-second usability test, 258
adding photo, 268–269
adjusting width of browser, 269–270
ARIA role on <header>, 266–267
auto margins, 264
background image, 265–266
<body> element, 261
border-radius, 273
box-sizing property, 261–262
.callout class, 271–274
capping width, 263–264
centering layout, 263–264
columns, 260–261
CSS3’s multi-column layout, 275–276
disabling CSS, 257
<div id= “wrap”>, 263
<figure> element, 268–269
flexible images, 268–271
floating columns, 262
fluid design, 254–259
font-size property, 261
footer, 260–261
goal, 253
grid, 263
header, 260–261, 266–267

Index  287

images, 268–270
internationalization, 258–259
layout structure, 261–262
logo, 266–267
markup structure, 260–261
max-width, 263–266, 269–271
media queries, 276–284
media types, 271
multi-column layout, 275–276
navigation, 266–267
page structure, 257–258
promotional row, 260–261, 265
responsive design, 255
RGBA for box background color, 272
rounded callout, 271–273
sawtooth pattern, 265
sidebar, 262, 271–274
styles, 261
text flexibility, 256
unordered lists in sidebar, 275

C
.callout class, Bulletproof Pretzel Company,

271–274
<caption> element, using with tables, 186–187,

196–198
cellspacing attribute, using with tables, 188
cm unit, 6
col value, using with tables, 185–186
<col> element, using with tables, 187
<colgroup> element, using with tables, 187
ColorZilla’s Ultimate CSS Gradient Generator, 41
column padding. See also padding

adding pixel amount, 219–220
adding to sidebar, 219
applying separately from column width, 223
applying to inside elements, 221
border-box value, 225
box-sizing property, 224–225
downside, 224
extra <div> method, 221–224
fixed-width layout, 219
fluid-width, 219

options, 220
#sidebar div selector, 222–223

column widths, elastic layouts, 241–248
columns. See also faux columns

absolute positioning, 210–211
Bulletproof Pretzel Company, 260–261
faking equal-height, 230–233
fixed-width objects in, 228
floating, 262
grouping in tables, 187
multi-column layout, 275–276
overlapping, 211
preventing overlapping, 229
using float property with, 211–216
widths, 213

content, commingling with design, 181
convertible tables. See also tables

accessibility, 181–182
adding title, 186–187
alternating row colors, 192–193
applying CSS styles, 188
background color, 188
benefits of headers, 195
border and background, 189
box-shadow property, 198–200
bulletproof approach, 201
<caption> element, 186–187
cellspacing attribute, 188
col value, 185–186
<col> element, 187
<colgroup> element, 187
column groupings, 182–188
column headings, 180, 182–188
common approach, 179–182
custom alignment, 191
date of last post, 182–188
denoting headers, 184
design, 180
design and content, 181
display: block; on link, 194
drop shadow, 180
:first-child pseudo-element, 191
forum name, 182–188

288  Index

convertible tables (continued)
grouping columns, 187
grouping rows, 187
header color, 195–196
Lance Spacerunner example, 179
left-aligning text, 191
markup structure, 182–188
message boards, 179–180
nested tables, 181
new line without
, 193–194
:nth-child, 192–193
offset drop shadow, 198–200
outlining table cells, 181
padding and dividing line, 190
row colors, 180
row separators, 180
row value, 186
scope attribute, 185–186
<section> element, 199
spacer GIF shims, 179
styling <caption>, 196–198
<tbody> element, 187
<tfoot> element, 187
<th> element, 195
<thead> element, 187
title, 180
topics/messages, 182–188
<tt> element, 184–185
zebra striping, 192–193

CSS
:after pseudo-element, 117–118
disabling, 163–165, 168, 257
function of, 164–165
mixing with presentational markup, 164
removing, 166
validating, 173–176

CSS rules, non-prefixed, 73. See also media queries
CSS Zen Garden, 243
CSS3

background image support, 64
background images, 129
layout modules, 275
multi-column layout, 275–276
rounded box, 134–138

CSS3 gradients, 40–43
border-radius property, 72–74
code volume, 43
defining background color, 43
imageless tabs, 43
vendor prefixes, 43

D
<dd> elements

adding classes for, 90–91
styling, 95

definition lists, using with floats, 87
descendant selector, 38–39
design

commingling with content, 181
fluid, 254–255
responsive, 254–255, 283
separating from structure, 70–71
testing scalability of, 168
testing states of, 168

devices, small-screen, 276–283
Dig Dug test, 167–168
display: block;, setting on link, 194
display: none, avoiding in narrow views, 280
<div> element

floating in 3-column layouts, 234–235
outlining with favelet, 170

<div> method, using with column padding, 221–224
<div> wrapper, using with layouts, 210
<div> tags

expandable rows, 54
keywords, 15

<dl> element
floating, 102–103
using with floats, 87

DOCTYPES
choosing, 174
using in validation, 174

drop shadow, using in tables, 180, 198–200
<dt> elements

floating, 97–99
styling in box, 93

Index  289

E
e-commerce site, 53. See also expandable rows

Arial font family, 58
arrow graphic, 68–69
“Find a store” list item, 68
magnifying glass icon, 67–68, 72
padding for list item, 69
positioning graphics, 54
table cells, 53
top of, 53

edits, testing, 171
“Elastic Lawn,” 243
elastic layouts, 241–242. See also layouts

2-column, 243–248
columns with gutter, 245
considering, 255
consistent style, 248
CSS, 246–247
floats, 244–245
margins, 247
markup structure, 244–245
padding, 247
scaling design, 243
scrollbars, 248
ToupeePal example, 242–243
#wrap<div>, 244

em unit, 6
versus rem unit, 22
sizing text with, 20–22

as inline element, 146
using with rounded boxes, 141, 145–146

em-based layouts. See also layouts
2-column, 243–248
columns with gutter, 245
considering, 255
consistent style, 248
CSS, 246–247
floats, 244–245
margins, 247
markup structure, 244–245
padding, 247
scaling design, 243

scrollbars, 248
ToupeePal example, 242–243
#wrap<div>, 244

ems
swapping for pixels, 45
using for padding, 45
using for width and padding, 151
using with tabs, 44–45

ESPN.com Search tabs, 47–48
events, triggering with favelets, 168–170
ex unit, 6
expandable rows. See also e-commerce site; rows

3D view of stacking order, 63
accessibility, 56–57
adding background, 58–59
adding details, 62–63
assigning ids, 54
base font size on <body> element, 58
border-radius variation, 72–74
bulletproof approach, 70–72
code bloat, 55
common approach, 53–54
containing elements, 56
<div> elements, 54
fix for IE7, 69–70
fixed heights, 55, 71–72
floating elements, 60
header for TicTac template, 74–79
identifying pieces, 57
link details, 65–67
list items, 59
margins and padding, 60
markup structure, 56–57
#message for corners, 64
missing background, 60–61
nonessential graphics, 54
opposing floats method, 60
positioning content, 59–60
preventing bullets, 60
#register declaration, 58, 62
restoring background color, 60–61
rounded corners, 62, 64–65
structure and design, 70–71

290  Index

expandable rows (continued)
style hooks, 54
text details, 65–67
unstyled markup, 57–58
viewing in IE8, 73–74
viewing in Safari, 73–74

eyebuydirect.com website, text sizing example, 3–6

F
faux columns. See also columns

background image, 231–232
positioning image, 232–233
window viewport, 233

favelets
“Disable stylesheets,” 168
“Show all DIVs,” 170
using to trigger events, 168–170

<figure> element, Bulletproof Pretzel Company,
268–269

Firebug browser extension, 172–173.
See also browsers

inspection tools, 172–173
modifying CSS, 172
modifying HTML, 172

:first-child pseudo-element, using with elements,
191

fixed heights, avoiding, 71–72
float property, 33

applying styles, 212–216
background colors, 212
clear rule for footer, 214
column widths, 213
fixing footers, 213–214
using with columns, 211

floated box, width of, 61
floated layout, 215
floating

base styles, 91–96
bulletproof approach, 121
common approach, 83–85
definition lists, 87
description length, 100–101
<dl> elements, 102–103

<dt> elements, 97–99
elements, 60–61
identifying image, 90–91
markup choices, 86
markup structure, 88
opposing floats, 97–99
positioning image, 96–97
styling container, 89–90
without styles, 89

floats. See also Furniture Shack home page;
opposing floats

adjusting container width, 112
alt class for teaser, 107
alternate background, 111–113
autoclearing in IE6, 118
border image, 106
box-shadow, 114–115
clearing with generated content, 117–120
clearing with overflow property, 101, 116, 120
color, 93–94
combining selectors, 120
creating frame for image, 113
custom text, 93–94
description, 86
elastic layouts, 244–245
Gradient tool, 111–112
grid effect, 108–111
image, 86
letter-spacing property, 94
line-height property, 95
margins and padding, 105
outer container, 86
period after containers, 117
self-clearing, 101–103, 120
setting and fixing, 102–103
space used by, 108
spacing between images, 103–106
structure, 86
styling <dd> elements, 95
styling <dt> elements in box, 93
text spacing, 105
title, 86
toggling direction, 106–108

Index  291

“Fluid Images,” 271
fluid layouts. See also layouts

3-column, 233–240
benefits, 255
column padding, 219–225
gutters, 216–218
line length, 225–229
max-width, 225–229
min-width, 225–229
sliding faux columns, 230–233

font sizes, table of, 7
font-family, adding to TicTac template, 77
font-size property

Bulletproof Pretzel Company, 261
increasing levels of, 167
using on <body> element, 4

footer, Bulletproof Pretzel Company, 260–261
frame, creating for image, 113
Furniture Shack home page, 84. See also floats

accessibility, 84
<article> element, 89–90
class for <dd> elements, 90–91
code bloat, 84–85
description, 86
image, 86
outer container, 86
stripping tables, 85
structure, 86
title, 86

G
Google’s Translate tool, 259
Gradient App for Mac OS X, 41
gradient background, creating for Netflix box, 136–137
Gradient tool, using with floats, 111–112
gradients. See CSS3 gradients
graphics, positioning, 54
grid effect, 108–111

achieving, 121
adding margins, 109
applying margin to description, 111
reversing margins for alt class, 110–111

Griffiths, Patrick, 241
gutters

2-column layout, 217
3-column layouts, 238
defined, 216
elastic layouts, 245
fixed-width, 216, 224
fluid columns, 216
percentage values, 216–218

H
<h3> elements, padding for rounded boxes, 132
hasLayout, triggering in IE, 117
header, Bulletproof Pretzel Company, 260–261,

266–268
<header> rules, 77
Helvetica versus Arial font, 58
Hicks, Jon, 148
HTML, validating, 174–176
HTML5 specification for tables, 187
hyperlinks, improving, 194

I
ids, using with expandable rows, 54
IE8, 73–74
IE9/Win, note class in, 19
images. See also background images

behind text in browsers, 155–156
checking absence of, 171
hiding, 171
tiling vertically, 156

in unit, 6
internationalization, 258–259
Internet Explorer, standards-compliant alternatives,

139. See also browsers
Internet Explorer 7 (IE7)

clearing floats, 118–119
expandable rows, 69–70
page zoom feature, 5
triggering hasLayout, 117

292  Index

J
JAWS screen-reading application, 32
Jehl, Scott, 284
Johansson, Roger, 187

K
Keith, Jeremy, 33
keywords

absolute-size, 7
adjusting values of, 15
alternative to, 20
function of, 8
“pixel precision,” 9
scale in Safari, 9
setting in-between base, 15–17
using <div> tags with, 15
using percentages with, 15–19
values for, 8

L
Lance Spacerunner example, 179–180. See also

convertible tables
LanceArmstrong.com example, 27. See also scalable

navigation
accessibility, 29
code volume, 29
flexibility, 30
rollovers, 28
scalability, 30
tabs, 28

landmark roles, 31
larger relative-size keyword, 6
layouts. See also 2-column layouts; 3-column layouts;

elastic layouts; em-based layouts; fluid layouts
2-column structure, 205, 209–210
3-column layouts, 233–240
absolute positioning of columns, 210–211
achieving fluidity, 206–207
applying styles, 212–216
bulletproof approach, 241
cell widths as percentages, 206–207
code bloat, 207
colspan attribute for tables, 206

column padding, 219–225
columns, 205
common approach, 205–209
common structure, 205
content ordering, 208
creating columns, 210–211
CSS3, 275
<div> wrapper, 210
dividing content, 209–210
faux columns, 230–233
fixed- versus fluid-width, 219
fixed-width, 255
float property for columns, 211–216
floating, 215
fluid versus elastic, 204–205
fluid-width, 255
footer, 205
gutters, 216–218
header, 205
maintaining nested tables, 207
markup structure, 209–210
max-width, 225–229
min-width, 225–229
multi-column, 275–276
nesting tables, 206
position: absolute; for columns, 211
setting width of, 277–278
sidebars, 210–211
using tables for, 206

letter-spacing property, 94
 elements, floating, 33–34
line length, setting, 225
line-height property, increasing, 95
link colors, defining for rows, 65–67
A List Apart

elastic layouts, 241
“Faux Columns” article, 230
“Responsive Web Design,” 255

list items
floating, 60
padding for, 69

list-style property, using with rounded boxes, 133
lowercase text, 67

Index  293

M
magnifying glass icon, adding, 67–68, 72
Marcotte, Ethan

Browse Happy website, 139
“Fluid Images,” 271
“Responsive Web Design,” 229, 255

margins. See also auto margins
adding for floats, 105
adding to elastic layouts, 247

markup, validating, 173, 175
max-width property

breakpoints, 284
Bulletproof Pretzel Company, 263–266, 269–271
setting for columns, 225–229
using with scrollbars, 247

McAffee’s site
CSS turned off, 165
structure, 166

media queries, 276. See also CSS rules
adding rules to, 279–280
applying rules, 281–283
breakpoints, 278
layout in single column, 281
max-width breakpoints, 284
reducing font size, 279–280
responsive styles, 278–283
support for, 284
using on narrow screens, 283
viewport meta element, 277–278

#message, assigning corners to, 64
message board example, 179–180. See also

convertible tables
Meyer, Eric

“Containing Floats,” 101
“Sliding Faux Columns,” 231–233

min-width property
setting for columns, 225–229
using with scrollbars, 247

mm unit, 6
Mozilla.org tabs, 45
Multi-Column Layout, 275–276

N
<nav> element

role attribute, 31
scalable navigation, 30–31

navigation. See also LanceArmstrong.com example; tabs
accessibility, 29
adding bottom border, 37
advantages of lists, 32
aligning background images, 35–37
applying style, 32–33
background color, 34–35
borders, 34–35
bottom border, 37
bulletproof approach, 39–40
changing text for tabs, 40
clickable tab, 35
code volume, 29
common approach, 27–28
common rollovers, 28
CSS rules, 32–33
CSS3 gradients, 40–43
descendant selector, 38–39
ems, 44–45
ESPN.com Search example, 47–48
flexibility, 30
float property, 33
float to fix, 33–34
floating elements, 33–34
floating elements, 33–34
gradient fade, 32
hover and selected states, 38
hovering swap, 38
id for list items, 31
image size, 31–32
increasing padding, 38
JAWS screen-reading application, 32
landmark roles, 31
list of links, 30–31
markup, 30–31
Mozilla.org example, 46
narrowing targets, 39
<nav> element, 30–33
navigation landmark role, 31

294  Index

navigation (continued)
order of elements, 39
padding, 34–35
selected state, 38–39
shaping tabs, 34–35
slants, 46–47
stacking order, 36–37
strong tabs, 27–28
tiled background image, 36–37
two images, 31–32
unstyled, unordered list, 31

navigation landmark role, 31–33
Netflix box design. See also box building; rounded

boxes
background color, 134–135
border-radius rules, 137–138
border-radius stack, 135
gradient background, 136–137
removing background image, 134–135
removing images from, 134–135
rounded corners, 125

note class, in Safari and IE9/Win, 19
:nth-child, using with tables, 192–193

O
offset drop shadow, using in tables, 198–200
Opera Dragonfly developer tools, 173
opposing floats, 60, 97–99. See also floats
overflow property, using with floats, 101, 116, 120

P
padding. See also column padding

3-column layouts, 238, 240
adding for floats, 105
adding to convertible tables, 190
adding to elastic layouts, 247
combining with background color, 113
for list item, 69
unordered list, 132–133
using ems for, 45

padding property, adjusting for TicTac template, 78

page design
commingling with content, 181
fluid, 254–255
responsive, 254–255, 283
separating from structure, 70–71
testing scalability of, 168
testing states of, 168

page layouts. See also 2-column layouts; 3-column
layouts; elastic layouts; em-based layouts; fluid
layouts

2-column structure, 205, 209–210
3-column layouts, 233–240
absolute positioning of columns, 210–211
achieving fluidity, 206–207
applying styles, 212–216
bulletproof approach, 241
cell widths as percentages, 206–207
code bloat, 207
colspan attribute for tables, 206
column padding, 219–225
columns, 205
common approach, 205–209
common structure, 205
content ordering, 208
creating columns, 210–211
CSS3, 275
<div> wrapper, 210
dividing content, 209–210
faux columns, 230–233
fixed- versus fluid-width, 219
fixed-width, 255
float property for columns, 211–216
floating, 215
fluid versus elastic, 204–205
fluid-width, 255
footer, 205
gutters, 216–218
header, 205
maintaining nested tables, 207
markup structure, 209–210
max-width, 225–229
min-width, 225–229
multi-column, 275–276

Index  295

nesting tables, 206
position: absolute; for columns, 211
setting width of, 277–278
sidebars, 210–211
using tables for, 206

page structure
bulletproof approach, 159–162, 165–166
common approach, 155–159
Dig Dug test, 167–168
favelets, 168–170
integrity test, 167–168, 257–258
text readability, 159–160

pages
10-second usability test, 163
applying actions to, 170–171
checking accessibility, 172
checking for readability, 171
increasing text sizes of, 162
looking at bare structure of, 163
presentational markup, 163
readability without images, 159–162
viewing without CSS, 165
viewing without images, 160–162

paragraphs of text, making smaller, 12–13
parent elements, basing elements on, 39
pc unit, 6
Pedrick, Chris, 170
percentages

benefits, 24
combining absolute-size keywords with, 8
decreasing elements, 14
experimenting with, 17–18
increasing elements, 14
nesting, 17–18
using to stray from base, 11–14
using with keywords, 15–19

photo, adding to Bulletproof Pretzel Company, 268–
269

pixels
defined, 6
“precision,” 9
setting type in, 21

position: absolute;, using with columns, 211

presentational markup, mixing with CSS, 164
Pretzel Company example

2-column layout, 253
10-second usability test, 258
adding photo, 268–269
adjusting width of browser, 269–270
ARIA role on <header>, 266–267
auto margins, 264
background image, 265–266
<body> element, 261
border-radius, 273
box-sizing property, 261–262
.callout class, 271–274
capping width, 263–264
centering layout, 263–264
columns, 260–261
CSS3’s multi-column layout, 275–276
disabling CSS, 257
<div id= “wrap”>, 263
<figure> element, 268–269
flexible images, 268–271
floating columns, 262
fluid design, 254–259
font-size property, 261
footer, 260–261
goal, 253
grid, 263
header, 260–261, 266–267
images, 268–270
internationalization, 258–259
layout structure, 261–262
logo, 266–267
markup structure, 260–261
max-width, 263–266, 269–271
media queries, 276–284
media types, 271
multi-column layout, 275–276
navigation, 266–267
page structure, 257–258
promotional row, 260–261, 265
responsive design, 255
RGBA for box background color, 272
rounded callout, 271–273

296  Index

Pretzel Company example (continued)
sawtooth pattern, 265
sidebar, 262, 271–274
styles, 261
text flexibility, 256
unordered lists in sidebar, 275

progressive enhancement, 138
promotional row

adding styles for, 265
Bulletproof Pretzel Company, 260–261

pt unit, 6
px unit, 6

R
readability of text, ensuring, 159–160
#register declaration, 58, 62
rem unit, 6, 22–23
Respond.js for media queries, 284
responsive design. See design
“Responsive Web Design,” 229, 255
rounded boxes. See also box building; Browse Happy

website; Netflix box design
aligning images, 131, 144
applying styles, 130–133, 143–146
assigning width, 130–131
background, 126
background images, 130–132, 143–146
border-bottom, 132
bottom-left corner, 144–145
bulletproof approach, 133
class, 128–129
class for box styles, 131
construction of, 126
container <div>, 141
contracting, 146
, 141, 145–146
expanding, 140, 146
fixed-width, 128
gradient fade, 126
image strategy, 129–130, 141–143
indestructible nature, 146
list-style property, 133
markup structure, 128–129, 140–141

padding <h3> elements, 132
padding unordered list, 132–133
presentational markup, 127
referencing images, 131
text sizing, 127
top-left corner, 144
turning off default bullets, 133
turning off default margins, 133
vertical flexibility, 127–128
wrapping in <div>, 128–129
wrapping in <section>, 128–129

rounded callout box, 271–274
rounded corners, 64–65, 138
row colors, alternating in tables, 192–193
row value, using with tables, 186
rows, grouping in tables, 187. See also expandable rows
Rutter, Richard, 20

S
Safari. See also browsers

note class, 19
viewing expandable rows in, 73–74

scalable navigation. See also LanceArmstrong.com
example; tabs

accessibility, 29
adding bottom border, 37
advantages of lists, 32
aligning background images, 35–37
applying style, 32–33
background color, 34–35
borders, 34–35
bottom border, 37
bulletproof approach, 39–40
changing text for tabs, 40
clickable tab, 35
code volume, 29
common approach, 27–28
common rollovers, 28
CSS rules, 32–33
CSS3 gradients, 40–43
descendant selector, 38–39
ems, 44–45
ESPN.com Search example, 47–48

Index  297

flexibility, 30
float property, 33
float to fix, 33–34
floating elements, 33–34
floating elements, 33–34
gradient fade, 32
hover and selected states, 38
hovering swap, 38
id for list items, 31
image size, 31–32
increasing padding, 38
JAWS screen-reading application, 32
landmark roles, 31
list of links, 30–31
markup, 30–31
Mozilla.org example, 46
narrowing targets, 39
<nav> element, 30–33
navigation landmark role, 31
order of elements, 39
padding, 34–35
selected state, 38–39
shaping tabs, 34–35
slants, 46–47
stacking order, 36–37
strong tabs, 27–28
tiled background image, 36–37
two images, 31–32
unstyled, unordered list, 31

scope attribute, using with tables, 185–186
screens, narrow, 283
scrollbar issues, alleviating, 247
<section> element, wrapping around table, 199
#sidebar, using in 3-column layouts, 235–236
#sidebar div selector, using with column padding,

222–223
sidebars

adding column padding, 219
including in layouts, 210–211

Simonson, Mark, 58
SimpleBits site and blog, 155

columns, 155–156
decorative border, 155–156

sidebar headings, 161
vertical tiled image, 156

SitePoint website, 116
slants example, 46–47
Sliding Doors technique, 46, 129
Sliding Faux Columns

2-column layouts, 231–233
3-column layouts, 238–240

small value, decreasing, 16
smaller relative-size keyword, 6
structure

mixing with presentational markup, 164
separating from design, 70–71

style hooks, using with expandable rows, 54
stylesheets, disabling, 168

T
tab navigation, 27
table cells, outlining, 181
tables. See also convertible tables

HTML5 specification, 187
nesting in layouts, 206
nesting in tables, 181

tabs. See also scalable navigation
ESPN.com Search, 47–48
gradient fade, 27
imageless, 43
making clickable, 35
Mozilla.org, 46
on and off state, 27
set and logo, 27
single-pixel highlight, 27
slants, 46–47
strong, 27
without bottom border, 43

<tbody> element, using with tables, 187
teasers

adding margins and padding, 91–93
adding space around, 91–92
color, 93–94
common approach, 83–84
custom text, 93–94
Furniture Shack home page, 84

298  Index

text
lowercase, 67
uppercase, 67

text colors, defining for rows, 65–67
text readability, ensuring, 159–160
text sizing

absolute-size keywords, 7
adding precision to, 17
adjusting, 5
base-plus-percentage model, 14
bulletproof approach, 10
cm unit, 6
common approach, 3–6
considering poor vision, 10
em unit, 6, 20–22
ex unit, 6
eyebuydirect.com website, 3–6
flexibility, 256
font-size property, 4
increasing, 5, 162, 167
increasing consistency, 18–19
increasing readability, 4
menu in IE/Win, 4
mm unit, 66
of paragraphs, 12–13
pc unit, 6
percentages, 7
with pixels, 4
pt unit, 6
px unit, 6
with relative units, 10
relative-size keywords, 6–7
rem unit, 6
small keyword versus 12px, 11
in unit, 6
units, 6
zoom selection in IE 7, 5

text styling, 94
<tfoot> element, using with tables, 187
<th> element, using with tables, 195
<thead> element, using with tables, 187

TicTac Blogger template
applying CSS, 77–78
font-family, 77
font-size property, 78
header for, 74–79
<header> rules, 77
heading element, 78
images, 76–77
markup, 75–76
padding property, 78
site title, 79
testing, 79
title, 75–76

tiled images
appearance in browsers, 156–157
removing, 158

ToupeePal elastic layout, 242–243
Translate tool, 259
<tt> element, convertible tables, 184–185

U
 elements, floating, 33–34
units, relative versus absolute, 6
unordered list, padding, 132–133
uppercase text, 67
usability test, 10-second, 163

V
validating

CSS, 173–176
during initial design phase, 174
markup, 173–176
process of, 174–176

validator, using, 175
Veerle’s Blog, 150
viewport

element, 277–278
width, 283

Index  299

W
W3C validators, 175–176
WAI-ARIA landmark roles. See also ARIA role

using in scalable navigation, 31
using with layouts, 210

Web Accessibility Toolbar, 172
Web Developer Extension toolbar, 170–171

dashboard of tools, 171
Hide Images option, 171

web pages. See also page structure
10-second usability test, 163
applying actions to, 170–171
checking accessibility, 172
checking for readability, 171
increasing text sizes of, 162
looking at bare structure of, 163
presentational markup, 163
readability without images, 159–162
viewing without CSS, 165
viewing without images, 160–162

web resources
Accessify.com, 168–170
:after pseudo-element, 117–118
Arial versus Helvetica font, 58
background image support, 64
box model, 124
“Bring on the tables,” 187
Browse Happy, 139
clearing floats, 102, 117
ColorZilla’s Ultimate CSS Gradient Generator, 41
“Containing Floats,” 101
CSS validator, 176
CSS Zen Garden, 243
CSS3 background images, 129
DOCTYPES, 174
“Elastic Lawn,” 243

“Faux Columns,” 230
favelets, 170
Firebug browser extension, 172–173
“Fluid Images,” 271
Google’s Translate tool, 259
Gradient App for Mac OS X, 41
hasLayout, 117
Hicksdesign, 148
HTML5 specification for tables, 187
hyperlinks, 194
JAWS screen-reading application, 32
LanceArmstrong.com example, 27
landmark roles, 31
A List Apart, 230, 241, 255
markup validator, 175
Multi-Column Layout, 275–276
normalizing base font sizes, 20
Opera Dragonfly developer tools, 173
overflow property, 116
pixel size, 6
Respond.js for media queries, 284
“Responsive Web Design,” 229, 255
SimpleBits, 155
SitePoint, 116
“Sliding Faux Columns,” 231
styling via landmark roles, 33
ToupeePal elastic layout, 242
Translate tool, 259
Veerle’s Blog, 150
Web Accessibility Toolbar, 172
Web Developer Extension toolbar, 170

#wrap<div>, using in elastic layouts, 244

X
XHTML syntax, using with HTML5 markup, 174

	Contents
	Introduction
	CHAPTER FOUR: Creative Floating
	Use floats to achieve grid-like results
	A Common Approach
	Why It’s Not Bulletproof
	A Bulletproof Approach
	The endless choices for markup
	Using definition lists
	The markup structure
	Sans style
	Styling the container
	Identifying the image
	Applying base styles
	Positioning the image
	Opposing floats
	Clear the way for any description length
	Self-clearing floats
	The finishing touches
	Toggling the float direction
	The grid effect
	An alternate background
	Applying a box-shadow
	More float-clearing fun
	Easy clearing using generated content

	Why It’s Bulletproof
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

