
10 PRINT CHR$(205.5+RND(1)); : GOTO 10

NICK MONTFORT, PATSY BAUDOIN,

JOHN BELL, IAN BOGOST, JEREMY DOUGLASS,

MARK C. MARINO, MICHAEL MATEAS,

CASEY REAS, MARK SAMPLE, NOAH VAWTER

INTRODUCTION {1}

10
INTRODUCTION

ONE LINE

CORE CONTRIBUTIONS

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

PLAN OF THE BOOK

{2} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 10.1

From left to right and top to bottom, the 10 PRINT program is typed into the

Commodore 64 and is run. Output scrolls across the screen until it is stopped.

INTRODUCTION {3}

Computer programs process and display critical data, facilitate communi-

cation, monitor and report on sensor networks, and shoot down incoming

missiles. But computer code is not merely functional. Code is a peculiar

kind of text, written, maintained, and modified by programmers to make

a machine operate. It is a text nonetheless, with many of the properties of

more familiar documents. Code is not purely abstract and mathematical; it

has significant social, political, and aesthetic dimensions. The way in which

code connects to culture, affecting it and being influenced by it, can be

traced by examining the specifics of programs by reading the code itself

attentively.

 Like a diary from the forgotten past, computer code is embedded with

stories of a program’s making, its purpose, its assumptions, and more. Ev-

ery symbol within a program can help to illuminate these stories and open

historical and critical lines of inquiry. Traditional wisdom might lead one to

believe that learning to read code is a tedious, mathematical chore. Yet in

the emerging methodologies of critical code studies, software studies, and

platform studies, computer code is approached as a cultural text reflecting

the history and social context of its creation. “Code . . . has been inscribed,

programmed, written. It is conditioned and concretely historical,” new me-

dia theorist Rita Raley notes (2006). The source code of contemporary soft-

ware is a point of entry in these fields into much larger discussions about

technology and culture. It is quite possible, however, that the code with the

most potential to incite critical interest from programmers, students, and

scholars is that from earlier eras.

 This book returns to a moment, the early 1980s, by focusing on a

single line of code, a BASIC program that reads simply:

 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

One line of code, set to repeat endlessly, which will run until interrupted

(figure 10.1).

 Programs that function exactly like this one were printed in a variety

of sources in the early days of home computing, initially in the 1982 Com-

modore 64 User’s Guide, and later online, on the Web. (The published

versions of the program are documented at the end of this book, in “Vari-

ants of 10 PRINT.”) This well-known one-liner from the 1980s was recalled

by one of the book’s authors decades later, as discussed in “A Personal

{4} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Memory of 10 PRINT” in the BASIC chapter. This program is not presented

here as valuable because of its extreme popularity or influence. Rather, it

serves as an example of an important but neglected type of programming

practice and a gateway into a deeper understanding of how computing

works in society and what the writing, reading, and execution of computer

code mean.

ONE LINE

This book is unusual in its focus on a single line of code, an extremely con-

cise BASIC program that is simply called 10 PRINT throughout. Studies of

individual, unique works abound in the humanities. Roland Barthes’s S/Z,

Samuel Beckett’s Proust, Rudolf Arnheim’s Genesis of a Painting: Picasso’s

Guernica, Stuart Hall et al.’s Doing Cultural Studies: The Story of the Sony

Walkman, and Michel Foucault’s Ceci n’est pas une pipe all exemplify the

sort of close readings that deepen our understanding of cultural produc-

tion, cultural phenomena, and the Western cultural tradition. While such

literary texts, paintings, and consumer electronics may seem significantly

more complex than a one-line BASIC program, undertaking a close study

of 10 PRINT as a cultural artifact can be as fruitful as close readings of

other telling cultural artifacts have been.

 In many ways, this extremely intense consideration of a single line

of code stands opposed to current trends in the digital humanities, which

have been dominated by what has been variously called distant reading

(Moretti 2007), cultural analytics (Manovich 2009), or culturomics (Michel

et al. 2010). These endeavors consider massive amounts of text, images,

or data—say, millions of books published in English since 1800 or a million

Manga pages—and identify patterns and trends that would otherwise re-

main hidden. This book takes the opposite approach, operating as if under

a centrifugal force, spiraling outward from a single line of text to explore

seemingly disparate aspects of culture. Hence its approach is more along

the lines of Brian Rotman’s Signifying Nothing (1987), which documents the

cultural importance of the symbol 0. Similarly, it turns out that in the few

characters of 10 PRINT, there is a great deal to discover regarding its texts,

contexts, and cultural importance.

 By analyzing this short program from multiple viewpoints, the book

INTRODUCTION {5}

explains how to read code deeply and shows what benefits can come from

such readings. And yet, this work seeks to avoid fetishizing code, an error

that Wendy Chun warns about (2011, 51–54), by deeply considering con-

text and the larger systems at play. Instead of discussing software merely

as an abstract formulation, this book takes a variorum approach, focusing

on a specific program that exists in different printed variants and executes

on a particular platform. Focusing on a particular single-line program fore-

grounds aspects of computer programs that humanistic inquiry has over-

looked. Specifically, this one-line program highlights that computer pro-

grams typically exist in different versions that serve as seeds for learning,

modification, and extension. Consideration of 10 PRINT offers new ways

of thinking about how professional programmers, hobbyists, and human-

ists write and read code.

 The book also considers how the program engages with the cultural

imagination of the maze, provides a history of regular repetition and ran-

domness in computing, tells the story of the BASIC programming language,

and reflects on the specific design of the Commodore 64. The eponymous

program is treated as a distinct cultural artifact, but it also serves as a grain

of sand from which entire worlds become visible; as a Rosetta Stone that

yields important access to the phenomenon of creative computing and the

way computer programs exist in culture.

CORE CONTRIBUTIONS

The subject of this book—a one-line program for a thirty-year-old micro-

computer—may strike some as unusual and esoteric at best, indulgent and

perverse at worst. But this treatment of 10 PRINT was undertaken to offer

lessons for the study of digital media more broadly. If they prove persua-

sive, these arguments will have implications for the interpretation of soft-

ware of all kinds.

 First, to understand code in a critical, humanistic way, the practice of

scholarship should include programming: modifications, variations, elab-

orations, and ports of the original program, for instance. The programs

written for this book sketch the range of possibilities for maze generators

within Commodore 64 BASIC and across platforms. By writing them, the

10 PRINT program is illuminated, but so, too, are some of the main plat-

{6} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

forms of home computing, as well as the many distinctions between Com-

modore 64 BASIC and contemporary programming environments.

 Second, there is a fundamental relationship between the formal work-

ings of code and the cultural implications and reception of that code. The

program considered in this book is an aesthetic object that invites its authors

to learn about computation and to play with possibilities: the importance of

considering specific code in many situations. For instance, in order to fully

understand the way that redlining (financial discrimination against residents

of certain areas) functions, it might be necessary to consider the specific

code of a bank’s system to approve mortgages, not simply the appearance

of neighborhoods or the mortgage readiness of particular populations.

 This book explores the essentials of how a computer interprets code

CRITICAL CODE STUDIES, SOFTWARE STUDIES, PLATFORM STUDIES

Critical Code Studies (CCS) is the application of critical theory and hermeneutics to

the interpretation of computer source code, as defined by one of this book’s authors

(Marino 2006). During an online, collaborative conference, another of this book’s

authors challenged the 2010 Critical Code Studies Working Group to apply these

methodologies to the one-line program that is this book’s focus (Montfort 2010). Un-

til then, a number of exemplary readings had taken up software and other encoded

objects possessing considerably more code, clear social implications (for example, a

knowledge base about terrorists), and more free space for writing of human signifi-

cance in the form of comments or variable names. Members of the working group

had demonstrated they could interpret a large program, a substantial body of code,

but could they usefully interpret a very spare program such as this one? What fol-

lowed, with some false starts, was a great deal of productive discussion, an article

in Emerging Language Practices (Marino 2010), and eventually this book, with those

who replied in the Critical Code Studies Working Group thread being invited to work

together as coauthors.

 CCS is a set of methodologies for the exegesis of code. Working together

with platform studies, software studies, and media archaeology and forensics, critical

code studies uses the source code as a means of entering into discussion about the

technological object in its fullest context. CCS considers authorship, design process,

INTRODUCTION {7}

function, funding, circulation of the code, programming languages and paradigms,

and coding conventions. It involves reading code closely and with sustained and rig-

orous attention, but is not limited to the sort of close reading that is detached from

historical, biographical, and social conditions. CCS invites code-based interpretation

that invokes and elucidates contexts.

 This book also employs other approaches to the interpretation of technical

objects and culture, notably software studies and platform studies. While software

studies can include the consideration and reading of code, it generally emphasizes

the investigation of processes, focusing on function, form, and cultural context at a

higher level of abstraction than any particular code. Platform studies conversely fo-

cuses on the lower computational levels, the platforms (hardware system, operating

system, virtual machines) on which code runs. Taking the design of platforms into

account helps to elucidate how concepts of computing are embodied in particular

platforms, and how this specificity influences creative production across all code and

software for a particular system. This book examines one line of code as a means of

discussing issues of software and platform.

 In addition to being approaches, software studies and platform studies

also refer to two book series from MIT Press. This book is part of the Software

Studies series.

and how particular platforms relate to the code written on them. It is not

a general introduction to programming, but instead focuses on the con-

nection of code to material, historical, and cultural factors in light of the

particular way this code causes its computer to operate.

 Third, code is ultimately understandable. Programs cause a computer

to operate in a particular way, and there is some reason for this operation

that is grounded in the design and material reality of the computer, the

programming language, and the particular program. This reason can be

found. The way code works is not a divine mystery or an imponderable.

Code is not like losing your keys and never knowing if they’re under the

couch or have been swept out to sea through a storm sewer. The working

of code is knowable. It definitely can be understood with adequate time

{8} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

and effort. Any line of code from any program can be as thoroughly expli-

cated as the eponymous line of this book.

 Finally, code is a cultural resource, not trivial and only instrumental,

but bound up in social change, aesthetic projects, and the relationship of

people to computers. Instead of being dismissed as cryptic and irrelevant

to human concerns such as art and user experience, code should be val-

ued as text with machine and human meanings, something produced and

operating within culture.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The pattern produced by this program is represented on the endpapers of

this book. When the program runs, the characters appear one at a time, left

to right and then top to bottom, and the image scrolls up by two lines each

time the screen is filled. It takes about fifteen seconds for the maze to fill

the screen when the program is first run; it takes a bit more than a second

for each two-line jump to happen as the maze scrolls upward.

 Before going through different perspectives on this program, it is use-

ful to consider not only the output but also the specifics of the code—what

exactly it is, a single token at a time. This will be a way to begin to look at

how much lies behind this one short line.

10

The only line number is this program is 10, which is the most conventional

starting line number in BASIC. Most of the programs in the Commodore 64

User’s Guide start with line 10, a choice that was typical in other books and

magazines, not only ones for this system. Numbering lines in increments of

10, rather than simply as 1, 2, 3, . . . , allows for additional lines to be insert-

ed more easily if the need arises during program development: the lines

after the insertion point will not have to be renumbered, and references to

them (in GOTO and GOSUB commands) will not have to be changed.

 The standard version of BASIC for the Commodore 64, BASIC version

2 by Microsoft, invited this sort of line numbering practice. Some exten-

sions to this BASIC later provided a RENUMBER or RENUM command that

would automatically redo the line numbering as 10, 20, 30, and so on.

	10PRINT_001_11
	10PRINT_002_11
	10PRINT_003_11

