
M A N N I N G

IN ACTION
Martin Evans
Joshua Noble
Jordan Hochenbaum

Arduino in Action

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Arduino in Action

MARTIN EVANS
JOSHUA NOBLE

JORDAN HOCHENBAUM

M A N N I N G

SHELTER ISLAND
Download from Wow! eBook <www.wowebook.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Photographs in this book were created by Martin Evans and Jordan Hochenbaum, unless
otherwise noted. Illustrations were created by Martin Evans, Joshua Noble, and Jordan
Hochenbaum. Fritzing (fritzing.org) was used to create some of the circuit diagrams.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617290244
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13
Download from Wow! eBook <www.wowebook.com>

www.manning.com

brief contents
PART 1 GETTING STARTED . ..1

1 ■ Hello Arduino 3

2 ■ Digital input and output 21

3 ■ Simple projects: input and output 41

PART 2 PUTTING ARDUINO TO WORK59
4 ■ Extending Arduino 61

5 ■ Arduino in motion 81

6 ■ Object detection 114

7 ■ LCD displays 129

8 ■ Communications 152

9 ■ Game on 188

10 ■ Integrating the Arduino with iOS 216

11 ■ Making wearables 244

12 ■ Adding shields 261

13 ■ Software integration 278
v

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

contents
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxii

PART 1 GETTING STARTED. ...1

1 Hello Arduino 3
1.1 A brief history of the Arduino 4
1.2 The Arduino hardware 5

Arduino Uno 5 ■ Arduino Duemilanove 5
 Arduino Ethernet 6 ■ Arduino Mega 6
Other Arduino boards 7 ■ Attack of the clones 8
Getting an Arduino 9

1.3 Setting up your working environment 10
Software for Arduino 10 ■ Basic hardware setup 10
Your Arduino toolbox 11

1.4 Make something happen! 11
Your first blinking LED 11 ■ Sketch to make an LED blink 12
Connecting everything 12 ■ Uploading and testing 13
vii

Download from Wow! eBook <www.wowebook.com>

CONTENTSviii
1.5 Touring the IDE 14
The main editor 14 ■ Serial monitor 15 ■ Catching errors 16
Process 16

1.6 Anatomy of a sketch 17
A routine called setup 17 ■ The endless loop 18

1.7 Commenting code 18
1.8 Summary 20

2 Digital input and output 21
2.1 Getting started 21

Using a breadboard 22 ■ Circuit diagram 22
Adding the LEDs 24 ■ Connecting the hardware 24
Sketch to flash five LEDs 25 ■ Upload and test 27

2.2 Gaining control 27
Circuit diagram 27 ■ Connections 28
Interrupts butting in 29 ■ Sketch to control the LEDs with
a push button 30 ■ Upload and test 32 ■ Time for a break 32
Upload and test 33

2.3 Reaction tester 33
Circuit diagram 33 ■ Connections 33 ■ Sketch to test
reaction speed 33 ■ Upload and test 36

2.4 Reactometer: Who really has the fastest
reaction time? 37
Sketch to measure reaction speed 37 ■ Upload and test 38

2.5 Summary 39

3 Simple projects: input and output 41
3.1 Time to get analog 42

What’s the difference between analog and digital? 42
Reading a potentiometer 43 ■ Connecting the hardware 43
Sketch to read a potentiometer 44 ■ Upload and test 45

3.2 A piezoelectric transducer 46
The circuit diagram 47 ■ Connecting the hardware 48
Sketch to measure output from a piezoelectric transducer 49
Upload and test 51 ■ Circuit with added speaker 51
Connecting the hardware 51 ■ Sketch to generate a tone 53
Upload and test 53
Download from Wow! eBook <www.wowebook.com>

CONTENTS ix
3.3 Making a pentatonic or five-tone keyboard 54
Circuit diagram 54 ■ Connecting the hardware 54
Sketch to create a pentatonic keyboard 56 ■ Upload and test 57

3.4 Summary 58

PART 2 PUTTING ARDUINO TO WORK59

4 Extending Arduino 61
4.1 Extending the Arduino with libraries 62
4.2 Core library 62
4.3 Standard libraries 63

Test-driven development with ArduinoTestSuite 63
Storing values using EEPROM 64 ■ Storing more data
with SD 65 ■ Get connected with Ethernet 67
Serial communication with Firmata 68 ■ Displaying data
using the LiquidCrystal library 69 ■ Controlling
a servo motor 70 ■ Turning a stepper motor 70
Communicating with SPI peripherals 71
Communicating with the two-wire interface 72
Get more serial ports with SoftwareSerial 74

4.4 Contributed libraries 75
Installing a new library 76

4.5 Expanding the Arduino with shields 76
Common shields 77 ■ Gotchas: will it work
with my Arduino? 80

4.6 Summary 80

5 Arduino in motion 81
5.1 Getting up to speed with DC motors 82

Stopping and starting 83 ■ Sketch to turn a small DC motor
on and off 84 ■ Connecting the hardware 84
Upload and test 86

5.2 Speed control and reverse 87
PWM to the rescue 87 ■ The H-bridge for motor control 89
The L293D dual H driver 90 ■ Connecting the hardware 91
Sketch to control a motor with an L293D 92
Upload and test 93 ■ Changing motor speed 93
Upload and test 94
Download from Wow! eBook <www.wowebook.com>

CONTENTSx
5.3 Stepper motors: one step at a time 94
Unipolar or bipolar 95 ■ Connecting the hardware 98
Stepper motor library functions 99 ■ Sketch to control
a stepper motor 101 ■ Upload and test 101

5.4 Try not to get in a flap with servomotors 102
Controlling a servomotor 102 ■ Servomotor functions
and methods 103 ■ Sketch to control a servomotor 104
Connecting the hardware 105 ■ Upload and test 105

5.5 Mighty power comes in small packages with brushless
DC motors 106
Why go brushless 106 ■ Gaining control 107 ■ Sketch to control
a brushless motor 108 ■ Connecting the hardware 109
Upload and test 110 ■ Reverse 110 ■ Sketch to reverse
a brushless motor 110 ■ Connecting the hardware 111
Upload and test 111

5.6 The motor control shield for more motors 112
5.7 Summary 113

6 Object detection 114
6.1 Object detection with ultrasound 115

Choosing an ultrasonic sensor 115 ■ Three wires or four 116
Sketches for ultrasonic object finding 116 ■ Connecting the
hardware 118 ■ Upload and test 118

6.2 Infrared for range finding 119
Infrared and ultrasound together 120 ■ The Sharp
GP2D12 range finder 121 ■ Nonlinear algorithm
for calculating distance 121 ■ Sketch for range finding 122
Connecting the hardware 123 ■ Upload and test 123

6.3 Passive infrared to detect movement 124
Using the Parallax PIR sensor 125 ■ Sketch for infrared
motion detection 125 ■ Connecting the hardware 127
Upload and test 128

6.4 Summary 128

7 LCD displays 129
7.1 Introduction to LCDs 130

String variables: String type vs. char type 130

7.2 Parallel character LCDs: the Hitachi HD44780 133
4-bit or 8-bit? 133 ■ Library and functions 133
Circuit diagram 134 ■ Connecting everything up
Download from Wow! eBook <www.wowebook.com>

CONTENTS xi
in 4-bit mode 135 ■ Sketch for writing to the
Hitachi HD44780 137 ■ Upload and test 138

7.3 Serial LCD weather station 139
Serial vs. parallel LCDs 139 ■ SerLCD library
and functions 139 ■ The Maxim IC DS18B20
temperature sensor 141 ■ OneWire and DallasTemperature
libraries 141 ■ Circuit diagram 142 ■ Connecting
everything up 143 ■ Sketch for an LCD weather station 144
Upload and test 145

7.4 Graphic LCDs: the Samsung KS0108 GLCD 146
Library and functions 146 ■ Circuit diagram 147
Connecting everything up 148 ■ Sketch for drawing
to a GLCD 150 ■ Upload and test 151

7.5 Summary 151

8 Communications 152
8.1 Ethernet 153

The Ethernet library 154 ■ Ethernet Shield
with SD data card 155

8.2 Arduino web server 156
Setting up the server 156 ■ Sketch for creating a web server 158
Upload and test 159 ■ Troubleshooting 159

8.3 Tweet tweet: talking to Twitter 159
Of Twitter and tokens 160 ■ Libraries and functions 160
Circuit diagram and connecting the hardware 161 ■ Sketch for
the Twitter button-press tweeter 161 ■ Upload and test 163

8.4 Wi-Fi 163
Arduino Wifi Shield 164 ■ WiFi library and functions 165
Gestures: wireless accelerometers 167 ■ Connecting the
hardware 168 ■ Sketch for Bluetooth communication 168
Upload and test 171

8.5 Bluetooth wireless 171
ArduinoBT 172 ■ Adding Bluetooth 172
Establishing a Bluetooth connection 173
Sketch for Bluetooth communication 174

8.6 Serial peripheral interface (SPI) 175
SPI library 176 ■ SPI devices and digital potentiometers 176
Circuit diagram and connecting the hardware 177
Sketch for a digital LED dimmer 178
Download from Wow! eBook <www.wowebook.com>

CONTENTSxii
8.7 Data logging 179
Types of memory 180 ■ SD cards and SD library 180
Sketch for an SD card sensor logger 181

8.8 Cosm 182
Sign up for an account and get an API key 182 ■ Creating a new
data feed 183 ■ Sketch for Cosm sensor logging 184
Upload and test 186

8.9 Summary 186

9 Game on 188
9.1 Nintendo Wii salutes you 188

Wii Nunchuk 189 ■ Nunchuk connections 191
Wii will talk 193 ■ Wii will test 201

9.2 Release the Xbox 202
Getting connected 203 ■ USB Host library 203
Learning about the Xbox controller using the USB Host Shield 204
Xbox reporting for duty 206 ■ Let’s boot it 208
Interfacing with code 208 ■ Xboxhid.ino 210
Hardware connections and testing 213

9.3 Summary 214

10 Integrating the Arduino with iOS 216
10.1 Connecting your device to the Arduino 218

The Redpark serial cable 218 ■ The final connection 220

10.2 iOS code 220
Creating a single-view application in Xcode 221
Writing the code 225

10.3 The Arduino gets involved 228
Sketch to switch LED from iOS device 229
Testing the sketch 229

10.4 Doing more with Xcode 230
Adding a Slider control 230

10.5 Arduino sliding 235
Arduino slider circuit 236 ■ Testing the circuit 236

10.6 Moving data to the iOS device 237
Xcode coding 237 ■ The GP2D12 IR distance sensor 241
Testing 243

10.7 Summary 243
Download from Wow! eBook <www.wowebook.com>

CONTENTS xiii
11 Making wearables 244
11.1 Introducing the LilyPad 245

LilyPad accessories 247 ■ Conductive thread
and fabric 247

11.2 Creating a turn-signal jacket 249

11.3 Creating a wearable piano 251

11.4 The Arduino Pro Mini 254

11.5 Creating a smart headphone 254

11.6 Creating a jacket with a compass 257

11.7 Summary 260

12 Adding shields 261
12.1 Shield basics 261
12.2 The Adafruit motor shield 262

The AFMotor library 263 ■ Using the motor
shield with a stepper motor 264 ■ Using the motor
shield with a DC motor 265 ■ Getting a
motor shield 269

12.3 Creating your own shield 269
Memory 269 ■ Level shifters 270 ■ The SD card holder 270
Connecting the SD card to the Arduino 271
Preparing the perfboard 273 ■ Testing the shield 276

12.4 Summary 277

13 Software integration 278
13.1 The serial channel 279

13.2 Servos for face tracking 280
Assembling the face-tracking hardware 281
Code for face-tracking 282

13.3 Using Firmata to create an equalizer 286
Using Firmata in your application 286 ■ Audio analysis
in Processing 287 ■ Assembling the equalizer hardware 288
Code for the equalizer 288

13.4 Using Pure Data to create a synthesizer 292
Assembling the synthesizer hardware 293
Code for the synthesizer 294
Download from Wow! eBook <www.wowebook.com>

CONTENTSxiv
13.5 Using Python to monitor temperatures 296
The Serial library in Python 296
Assembling the thermometer hardware 298
Code for monitoring temperatures 299

13.6 Summary 301

appendix A Installing the Arduino IDE 302
appendix B Coding primer 310
appendix C Libraries 324
appendix D Components list 328
appendix E Useful links 332

index 334
Download from Wow! eBook <www.wowebook.com>

preface
My Arduino journey started after watching Elise Huard present her talk, “The internet
of things,” at Rails Underground in the summer of 2009. Following the conference, I
immediately purchased a copy of Massimo Banzi’s Getting Started with Arduino (O’Reilly,
2008), which I read from cover to cover on the train back to where I was staying.

 Shortly afterwards, I purchased my first Arduino and started playing, experimenting,
and building small projects. My first major project was an obstacle-avoidance robot,
which I presented at the 2010 Scottish Ruby conference in Edinburgh, Scotland.

 I’ve had a lifelong interest in underwater vehicles and the marine environment, and
following the conference I started work on an Arduino-controlled underwater remote-
operated vehicle (ROV), which I duly presented at the 2011 Scottish Ruby conference.

 Since then, I’ve toured the UK and Ireland displaying my ROV at a number of
Maker Faires, where it has generated much interested and discussion.

 I’m one of the founding members of Aberduino, a hack space based in Aberdeen,
Scotland, where we produce installations for various events.

 Other Arduino-based projects I’ve worked on include the development of a medi-
cal training aid and helping with the Wikispeed project, an open source car.

 I continue to work with underwater vehicles and am actively developing a new
Arduino-based underwater ROV that can be distributed as a kit.

MARTIN EVANS

I first started working with microcontrollers with the same introduction that a lot of
artists and designers had ten years ago: PIC controllers. I found them difficult to
xv

Download from Wow! eBook <www.wowebook.com>

PREFACExvi
understand, finicky, slow to build with, and yet they were the only option. Later I dis-
covered Teleo controllers and then Wiring boards, but when the Arduino arrived in
my world, I was hooked.

 I’ve used Arduinos for everything from prototyping smart spray-paint cans to
building interactive exhibits for museums to creating tools for science experiments.
I’m in love with the boards, the environment, and, most especially, the community
that has grown up around the Arduino and that’s so willing to teach, experiment,
explore, and share.

JOSHUA NOBLE

My interest in music technology led me to discover the Arduino as a platform for
rapid development and physical computing sometime around 2008. I was originally
introduced to the Arduino as a tool for designing musical interfaces for live perfor-
mance. This led to the Arduinome project, an open source port of the popular
Monome USB MIDI controller, which I worked on with longtime collaborator Owen
Vallis. The success of the Arduinome project was a true testament to the uniqueness of
the Arduino itself—a device that empowers musicians and artists of all technical back-
grounds to create unique and powerful tools for expression. Around the same time, I
was taking a course in musical robotics and kinetic sculpture, and we used the Ardu-
ino to drive a collaborative musical robotic instrument.

 Since then, the Arduino has been at the heart of my work. In 2009 I began pursu-
ing my PhD, which investigated the affordances of multimodal sensor systems for
musical performance and pedagogy. Using the Arduino, I’ve built numerous inter-
faces and hyperinstruments for capturing data and metrics from musical perfor-
mance. I built the SmartFiducial, which added z-depth (in-air proximity) and pressure
sensing to tangible tabletop surfaces. Embedding multimodal sensing systems within
instruments or placing them on human performers, I’ve investigated a wide variety of
machine learning tasks, such as performer recognition and drum-hand recognition.
I completed my PhD and became a professor in Music Technology: Interaction, Intel-
ligence, and Design at California Institute of the Arts in 2012, and the Arduino con-
tinues to be an important part of my artistic and academic practice. My work with the
Arduino has been featured online and in print, including in WIRED and Computer
Arts magazine, and my current Arduino-based projects range from kinetic surfaces
for live projection mapping and visuals to wireless sensing systems for interactive
dance performance.

JORDAN HOCHENBAUM
Download from Wow! eBook <www.wowebook.com>

acknowledgments
We would like to thank the following people at Manning: Sebastian Stirling for his
endless patience and support; Cynthia Kane for guiding us and giving gentle prods
over the final review stages to bring the manuscript to publication; Troy Mott who
handled the preproduction stages; technical editors Sharon Cichelli and Daniel Soltis
who offered help and advice on how to improve the final manuscript; and copyeditor
Andy Carroll who carefully combed through the manuscript, removing unnecessary
words and tidying everything up.

 We also want to thank our reviewers who helped clarify parts of the book that
needed further explanation and who pointed out inconsistencies. Thanks to Alan
Burlison, Andrew Davidson, Bill Westfield, Daniel Soltis, George Entenman, Howard
R. Hansen, Jeroen Benckhuijsen, John Raines, Margriet Bruggeman, Matt Scarpino,
Nikander Bruggeman, P. David Pull, Philipp K. Janert, Scott Couprie, Scott Howard,
Steve Prior, and Ursin Stauss.

MARTIN EVANS would like to thank his wife Henrietta and children Leanne, Heather,
and Luke, who all in one way or another encouraged him to keep on working on this
book. He would also like to thank Paul and the team at Symposium Coffee House,
Peterhead, who kept him fueled with coffee when most needed.

JOSHUA NOBLE would like to acknowledge a huge debt of gratitude to Simona Maschi,
David Gauthier, and everyone at CIID who let him slack off a little on his thesis proj-
ect so he could finish his chapters for this book, his lovely girlfriend Rachel Buker,
xvii

Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTSxviii
and of course the man who originally taught him to program in his first halting steps,
Morgan Schwartz.

JORDAN HOCHENBAUM would like acknowledge his friend and mentor Ajay Kapur for
introducing him to the Arduino and to systematically thinking about musical inter-
face design. He’d also like to thank longtime friend and collaborator Owen Vallis for
his help as they stumbled through their first Arduino sketches together and delved
deeper into the world of the AVR.
Download from Wow! eBook <www.wowebook.com>

about this book
This book is organized into two parts. Part 1 discusses the Arduino in general and
includes a tutorial that introduces you to your first project before looking at a couple
of simple projects that use the Arduino inputs and outputs. Part 2 looks at the Ardu-
ino in more depth, and this is where we really start to put the Arduino to work with a
number of advanced techniques that you can use in your own projects.

 Code for the sketches covered in each chapter is available online via the book’s
website: www.manning.com/ArduinoinAction. We suggest trying to follow along with
the projects in the book as much as you can. Typing in the individual code listings will
help to fix concepts and ideas into your mind.

 This book is suitable for both beginners and intermediate Arduino users. It starts
from a very basic level and assumes no prior knowledge, but we think even expert
users will gain things from the second part of the book, which covers a wide variety of
subjects, many of which can be combined into your own projects. A basic understand-
ing of electronics will help with some project circuits, although we endeavor to
explain them as much as we can.

Roadmap
Part 1 of the book discusses the Arduino in general.

 Chapter 1 explains how to get started by setting up your development environ-
ment and a basic software and hardware toolbox. It shows you how to blink your first
LED and walks you through the anatomy of an Arduino sketch.
xix

Download from Wow! eBook <www.wowebook.com>

www.manning.com/ArduinoinAction

ABOUT THIS BOOKxx
 Chapter 2 takes the form of a tutorial that introduces your first project and covers
a number of key concepts.

 Chapter 3 builds on the knowledge gained in chapter 2 by looking at a couple of
simple projects that use the Arduino inputs and outputs.

 Part 2 of the book looks at the Arduino in more depth. This is where we put the
Arduino to work.

 Chapter 4 covers software libraries that extend the Arduino’s functionality.
 Chapter 5 gets the Arduino into motion by showing how an Arduino can be used

to control a range of motors.
 Object detection is covered in chapter 6 with a section on how ultrasound and

ultrasonic sensors can be interfaced.
 Chapter 7 is all about outputting data to LCD displays. It covers communication

with the Hitachi HD44780 parallel LCD as well as the KS0108 graphic LCD that can also
display graphics.

 In chapter 8 we cover communication with the external world. We start by using an
Ethernet Shield to create a web server and then move on to tweeting messages from
an Arduino to Twitter, using a Wi-Fi network and Bluetooth communication, logging
data to an SD card and the internet using the Cosm service, and communicating with
other devices over the serial peripheral interface (SPI).

 Chapter 9 details connecting an Arduino to game controllers, starting with the
widely available Wii Nunchuk over I2C. Then we take a detailed look at using a USB
shield to interface with a USB Xbox controller.

 Chapter 10 covers integration with iOS devices like the iPhone and iPad using the
Redpark serial cable.

 In chapter 11 we look at two alternative forms of the Arduino that can be used as
wearables: the LilyPad that can be sewn into clothing, and the Arduino Mini Pro,
which is a special customized version of the Arduino notable for its small size.

 Chapter 12 looks at shields, which provide a simple method of extending or
enhancing the Arduino hardware. This chapter includes instructions for creating your
own shields.

 Finally, chapter 13 is on software integration, and it covers communicating with
the Arduino from other software programs.

 There are also several appendices.
 Appendix A is about installing the Arduino software on Windows, Mac OS X, and

Linux operating systems.
 Appendix B is a coding primer for the Arduino language.
 Appendix C is about Arduino software libraries and their structure.
 Appendix D provides a listing of all the components required to complete the indi-

vidual projects in each chapter.
 Appendix E is a list of useful links.
Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOK xxi
Code conventions and downloads
There are many code examples in this book, edited using the Arduino integrated
development environment (IDE). Source code in listings and text is in a fixed-width
font like this, to separate it from ordinary text, and code annotations accompany
many of the listings.

 You’ll find the source code for the examples in this book available from the pub-
lisher’s website at www.manning.com/ArduinoinAction.

Author Online
The purchase of Arduino in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/ArduinoinAction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Download from Wow! eBook <www.wowebook.com>

http://www.manning.com/ArduinoinAction
http://www.manning.com/50AnroidHacks

about the cover illustration
The figure on the cover of Arduino in Action is captioned “Travailleur de déplace-
ment,” which means an itinerant laborer. The illustration is taken from a 19th-century
edition of Sylvain Maréchal’s four-volume compendium of regional dress customs
published in France. Each illustration is finely drawn and colored by hand. The rich
variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke dif-
ferent dialects and languages. In the streets or in the countryside, it was easy to iden-
tify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxii

Download from Wow! eBook <www.wowebook.com>

Part 1

Getting started

Part 1 of this book (chapters 1 to 3) is a discussion of the Arduino in general.
You’ll start by learning your way around the Arduino and its development
environment and completing a tutorial that introduces you to your first proj-
ect. Then you’ll look at a couple of simple projects that use the Arduino inputs
and outputs.
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Hello Arduino
What can the Arduino be used for? The answers are surprisingly diverse. The Ardu-
ino has been used in a wide variety of projects:

■ Video games such as Pong and Space Invaders that will remind some readers
of their childhood and introduce others to the games their parents played
when they were young, complete with monochrome graphics and simple
sound effects

■ Line-following robots that introduce robotics principles but are also used in
factories and warehouses to deliver components along predetermined paths

■ Light harps that produce music with a wave of your hands, as used interna-
tionally by the performer Little Boots

■ MIDI controllers that control a series of instruments
■ Self-balancing robots that mimic the Segway

This chapter covers
■ The history of the Arduino
■ Arduino hardware
■ Hardware and software setup
■ The first blinking LED
3

Download from Wow! eBook <www.wowebook.com>

4 CHAPTER 1 Hello Arduino
These are all examples of projects built using the Arduino, a microcontroller so small
that it fits in the palm of your hand. Originally designed to be used as a tool for physi-
cal computing projects by design and art students, the Arduino has been adopted as
the tool of choice by communities of tinkerers and makers interested in building and
prototyping their own projects.

 In this chapter, we’ll start with a look at the history of Arduino and how it became
the tool that many makers reach for when starting a new project. This background
includes its origins at the Interaction Design Institute Ivrea and explains why it was so
desperately needed. We’ll then review the different types of Arduinos available and
the advantages and disadvantages of each. We’ll also look at what you need to get
started: tools, equipment, and suggested electronic components. Finally, we’ll round
this opening chapter out with a look at the Arduino integrated development environ-
ment (IDE) before making our first project: an LED that blinks on and off.

 Let’s start by learning where the Arduino comes from.

1.1 A brief history of the Arduino
The Arduino got its start at the Interaction Design Institute in the city of Ivrea, Italy, in
2005. Professor Massimo Banzi was looking for a low-cost way to make it easier for the
design students there to work with technology. He discussed his problem with David
Cuartielles, a researcher visiting from Malmö University in Sweden who was looking
for a similar solution, and Arduino was born.

 Existing products on the market were expensive and relatively difficult to use.
Banzi and Cuartielles decided to make a microcontroller that could be used by their
art and design students in their projects. The main requirements were that it be inex-
pensive—the target price was to be no more than a student would spend going out for
a pizza—and be a platform that anyone could use. David Cuartielles designed the
board, and a student of Massimo’s, David Mellis, programmed the software to run
the board. Massimo contacted a local engineer, Gianluca Martino, who also worked
at the Design Institute helping students with their projects. Gianluca agreed to pro-
duce an initial run of 200 boards.

 The new board was named Arduino after a local bar frequented by faculty mem-
bers and students from the institute. The boards were sold in kit form for students to
build themselves. The initial run was soon sold out, and more were produced to keep
up with demand. Designers and artists from other areas heard about the Arduino and
wanted to use it in their projects. Its popularity soon grew when the wider maker audi-
ence realized that the Arduino was an easy-to-use, low-cost system that could be used
in their own projects, as well as a great introduction to programming microcon-
trollers. The original design was improved upon and new versions were introduced.
Sales of official Arduinos have now reached over 300,000 units, and they’re sold all
over the world through a range of distributors.

 There are now a number of different versions of Arduino boards, so we’ll take a
look at them in the next section.
Download from Wow! eBook <www.wowebook.com>

5The Arduino hardware
1.2 The Arduino hardware
There have been a number of Arduino versions, all based on an 8-bit Atmel AVR
reduced instruction set computer (RISC) microprocessor. The first board was based
on the ATmega8 running at a clock speed of 16 MHz with 8 KB flash memory; later
boards such as the Arduino NG plus and the Diecimila (Italian for 10,000) used the
ATmega168 with 16 KB flash memory. The most recent Arduino versions, Duemilanove
and Uno, use the ATmega328 with 32 KB flash memory and can switch automatically
between USB and DC power. For projects requiring more I/O and memory, there’s the
Arduino Mega1280 with 128 KB memory or the more recent Arduino Mega2560 with
256 KB memory.

 The boards have 14 digital pins, each of which can be set as either an input or out-
put, and six analog inputs. In addition, six of the digital pins can be programmed to
provide a pulse width modulation (PWM) analog output. A variety of communication
protocols are available, including serial, serial peripheral interface bus (SPI), and I2C/
TWI. Included on each board as standard features are an in-circuit serial program-
ming (ICSP) header and reset button.

NOTE Specialist boards called shields can expand the basic functionality
of the Arduino; these can be stacked on top of each other to add even
more functionality.

We’re now going to look at the more commonly available Arduino models, starting
with the Arduino Uno.

1.2.1 Arduino Uno

“Dinner is Served” was the blog title announcing on September 25, 2010, the arrival of
the Arduino Uno (meaning one in Italian), and its bigger brother, the Mega2560. The
Arduino Uno is pin-compatible with previous Arduinos, including the Duemilanove
and its predecessor the Diecimila.

 The major difference between the Uno and its predecessors is the inclusion of an
ATmega8U2 microcontroller programmed as a USB-to-serial converter, replacing the
ageing FTDI chipset used by previous versions. The ATmega8U2 can be reprogrammed
to make the Arduino look like another USB device, such as a mouse, keyboard, or joy-
stick. Another difference is that it has a more reliable onboard 3.3 volts, which helps
with the stability of some shields that have caused problems in the past. See appendix
C for the full technical specifications.

 Figure 1.1 shows the board layout and pins of the Arduino Uno.
 The Uno is a good all-purpose Arduino and is your best bet for a starter board with

its auto-switching power supply and regulated onboard 3.3 volts.

1.2.2 Arduino Duemilanove

The Duemilanove (which means 2009 in Italian) is one of the most popular Arduino
boards produced, having replaced its predecessor, the Arduino Diecimila. But it, in turn,
Download from Wow! eBook <www.wowebook.com>

6 CHAPTER 1 Hello Arduino
has been superseded by the newer, more up-to-date Arduino Uno. The Duemilanove
features auto-switching power selection between the external and USB, and it uses the
ATmega328 processor, although models prior to March 2009 used the ATmega168. Its
pin layout and capabilities are identical to the Uno, and it uses the FTDI chipset for
USB-to-serial communication.

 If you’re purchasing a new Arduino, you should get the Arduino Uno. If you
already have a Duemilanove, consider upgrading to the Uno if you need the more sta-
ble 3.3 volts or want to do some advanced programming with the ATmega8U2.

1.2.3 Arduino Ethernet

The Arduino Ethernet is a low-power version of the Arduino announced at the same
time as the Uno. The main differences between it and other Arduino versions are that it
has an onboard RJ45 connector for an Ethernet connection and a microSD card reader.
The Arduino Ethernet doesn’t have an onboard USB-to-serial driver chip, but it does
have a six-pin header that can be connected to an FTDI cable or USB serial board to pro-
vide a communication link so that the board can be programmed. It can also be pow-
ered by an optional Power over Ethernet (POE) module, which enables the Arduino
Ethernet to source its power from a connected twisted-pair Category 5 Ethernet cable.

 The Arduino Ethernet is ideally suited for use in remote monitoring and data log-
ging stations with the onboard microSD card reader and a connection to a wired
Ethernet network for power.

1.2.4 Arduino Mega

The big brother of the Arduino family, the Mega, uses a larger surface-mount micro-
processor. The ATmega1280, the Mega, was updated at the same time as the Uno, and

8U2
Arduino

USB

POWER

IC
S

P

POWER ANALOG IN

V
in

R
E

S
E

T

3.
3V

5V G
nd

Tx
Rx

L

T
X

R
X

A
R

E
F

G
N

D

ON

G
nd

ATmega328

+
- 6-20 VDC

7-12 V optimal A
0

A
1

A
2

A
3

A
4

A
5

13 12 -1
1

-1
0 -9 8 7 -6 -5 4 -3 2 1 0

DIGIT AL (PWM-)

RESET

UNO

MADE
IN ITALY

Figure 1.1 Board layout and pins of the Arduino Uno
Download from Wow! eBook <www.wowebook.com>

7The Arduino hardware
the microprocessor now used is the ATmega2560. The new version has 256 KB of flash
memory compared to the 128 KB of the original.

 The Mega provides significantly increased input-output functionality compared to
the standard Arduino, so with the increased memory, it’s ideal for those larger proj-
ects that control lots of LEDs, have a large number of inputs and outputs, or need
more than one hardware serial port—the Arduino Mega has four. The boards have 54
digital input-output pins, 14 of which can provide PWM analog output, and 16 analog
input pins. Communication is handled with up to four hardware serial ports. SPI com-
munication and support for I2C/TWI devices is also available. The board also includes
an ICSP header and reset button. An ATmega8U2 replaces the FTDI chipset used by its
predecessor and handles USB serial communication.

 The Mega works with the majority of the shields available, but it’s a good idea to
check that a shield will be compatible with your Mega before purchasing it. Purchase
the Mega when you have a clear need for the additional input-output pins and larger
memory. See appendix C for the full technical specifications.

 Figure 1.2 shows the pin and board layout.
 Now let’s take a look at a few more specialized Arduino options.

1.2.5 Other Arduino boards
The original Arduino has spawned a number of variations that package the design in
different ways, usually in response to a need. Let’s take a look at two of them: the Lily-
Pad and the Nano.

LILYPAD ARDUINO

Designed by SparkFun Electronics and Leah Buechley, the LilyPad Arduino is great
for textile projects and for strutting your stuff on the catwalk. It’s designed with large

8U2USB

POWER

IC
S

P

POWER ANALOG IN

V
in

R
E

S
E

T

3.
3V

5V G
nd

Tx
Rx

L

T
X

0

R
X

0A
R

E
F

G
N

D

ON

G
nd

+
- 6-20 VDC

7-12V optimal A
0

A
1

A
2

A
3

A
4

A
5

13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWM

R
E

S
E

T

6 A
7 A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

52
50
48
46
44
42
40
38
36

34
32
30
28
26

53
51
49
47
45
43
41
39
37
35
33

24
2214 15 16 17 18 19 20 21

T
X

3

31

MEGA
2560

ARDUINO

ATmega2560

R
X

3

T
X

2

R
X

2

T
X

1

R
X

1

S
D

A

S
C

L

COMMUNICATION

D
IG

IT
A

L

MADE
IN ITALY

Figure 1.2 The Arduino Mega pins and layout; note the additional input-output pins and the extra
serial ports compared to the Arduino Uno.
Download from Wow! eBook <www.wowebook.com>

8 CHAPTER 1 Hello Arduino
connecting pads that can be sewn to fabric, and there’s a range of sewable accessories
available, including light sensors, buzzers, tri-color LEDs, temperature sensors, E-sewing
kits, and accelerometers. This low-power version is even washable; just don’t forget to
take out the batteries first.

 The main difference between the LilyPad and other Arduinos is a slower process-
ing speed of 8 MHz, as opposed to the normal 16 MHz. One thing to watch out for:
the input voltage must not exceed 5.5 volts. See figure 1.3 for a picture of the Lily-
Pad Arduino.

ARDUINO NANO
If your project has limited space, the Arduino Nano is the right choice. Designed and
produced by Gravitech, version 3.0 of the Nano (with the ATmega328 processor) has a
mini USB onboard, a compact format for use on breadboards.

 The Nano has similar functionality to the Duemilanove, but it has two additional
analog input pins. Power to the board is supplied either by USB or two separate pins:
pin 30 can accept an unregulated supply between 6 and 20 volts, or pin 27 can accept
a regulated supply of 5.5 volts. The board selects whichever voltage is the highest.

 The small size of the board makes it ideal for projects with limited space.

1.2.6 Attack of the clones

From the beginning, Arduino was conceived as open-source hardware. Users were
free to take the design, download the published computer-aided design (CAD) files,
and produce and sell hardware based on them. This has led to the production of a
number of clones or copies of Arduino, with many of the clone manufacturers taking
the original specification and making their own changes.

 The Arduino name is trademarked, preventing derivatives from using the Arduino
name in their products unless permission is given by the Arduino team.

Figure 1.3 The LilyPad Arduino is
suitable for sewing onto fabric, and
there’s a range of sewable
accessories available.
Download from Wow! eBook <www.wowebook.com>

9The Arduino hardware
SEEEDUINO (YES, 3 E’S)
If you like the color red, this is the board to get. Designed and produced by Seeed Stu-
dio, in Shenzhen, China, the Seeeduino is based on the Diecimila design, one of the
early Arduino boards, and can be purchased with either an ATmega168 or ATmega328
microprocessor. It uses low-profile surface-mount components and has a distinctive
red color.

 The board is compatible with the Diecimila’s pin layout and dimensions. Improve-
ments include auto-sensing between USB and external power, and better onboard
power supplies.

SEEEDUINO FILM

The Seeeduino Film is a different take on wearables than the LilyPad’s fabric-based
architecture. This flexible Arduino clone, which can also be used in data-logging proj-
ects, has a surface-mount ATmega168 on a flexible printed circuit board. Instead of
shields, expansion is achieved by what the manufacturer calls frames. One frame has
been produced so far, consisting of a barometer, 32 MB of flash memory, and a three-
axis accelerometer, which should be more than enough to get you going.

BOARDUINO

The Boarduino is a small board similar to the Nano 3.0, but available as a kit only, so
soldering skills will be required. Produced by Adafruit Industries, the Boarduino is
designed to plug directly into a solderless breadboard. The kit is available in two ver-
sions, one with USB and the other with a serial connection for which an additional
cable is required. It uses the ATmega328.

SIPPINO
The Sippino is a miniature Arduino-compatible clone from SpikenzieLabs sold in
kit form, so like the Boarduino, it requires soldering skills. The Sippino uses the
ATmega328, but it can also use the ATmega168. All the digital and analog input-
output pins are brought out into a single line so it can be plugged directly into a sol-
derless breadboard. A FTDI-USB serial cable is required to program the board.

EBAY
A number of clone boards are sold on eBay, many of them copies of the Duemilanove.
Here are some things to look out for in any clone: make sure it has an ATmega328
microprocessor, and that the headers are suitable for adding shields.

 The first Arduino we purchased from eBay had male instead of female headers,
which made it difficult to add shields. We also had to buy some special jumpers to con-
nect to a breadboard. It was enough to get us started, but it’s better to avoid such mis-
takes and check that you’re buying what you really want.

1.2.7 Getting an Arduino
If you’re looking to get started with Arduinos, we recommend getting the Uno, with
its superior USB connection and better regulated onboard power supply.

 The Arduino Uno is available from a number of online retailers. The three
most prominent in the USA are SparkFun Electronics (www.sparkfun.com), Adafruit
Download from Wow! eBook <www.wowebook.com>

www.sparkfun.com

10 CHAPTER 1 Hello Arduino
Industries (http://adafruit.com), and Maker Shed (http://makershed.com/). In the
UK, there are SK Pang Electronics (http://skpang.co.uk) and oomlout (http://
oomlout.co.uk). A full list of worldwide distributors is available at the main Arduino
website (http://arduino.cc/en/Main/Buy).

 Once you have an Arduino, you can move on to connecting it to your system and
setting up your working environment.

1.3 Setting up your working environment
Once you receive a shiny new Arduino, you’ll probably be itching to get started.
This section should help scratch that itch, as we’ll look at connecting your Arduino
to your computer for the first time, and you’ll learn what’s required to set up your
working environment.

 To get started, you’ll need an Arduino. As mentioned in the previous section, a
Duemilanove or a Uno is a good place to start. You’ll also need a USB cable to connect
the Arduino to your computer.

1.3.1 Software for Arduino

At the moment, your Arduino is just a board with some electronic components on it.
To make it do some useful work, you need to give it instructions, which is why you
need the Arduino software IDE. The Arduino software IDE provides everything
required for programming the Arduino, including a number of example programs or
sketches that demonstrate how to connect it to and communicate with some common
devices, such as LEDs, LCDs, and some sensors.

 You’ll be glad to know that, just like the hardware, the software for Arduino is open
source and can be freely downloaded from http://arduino.cc/en/Main/Software.
Just make sure you download the correct version for your system. Versions of the IDE
are available for Windows, Mac OS X, and Linux. For full installation instructions for
each platform see appendix A.

 It’s important to familiarize yourself with the IDE because it’s where you’ll write all
your code. In the world of Arduino, a block of code is called a sketch. A sketch gives an
Arduino a list of instructions and the Arduino goes off and sketches out your idea.
The IDE helps to hide much of the complexity of the Arduino, making it much easier
to develop projects.

NOTE The term sketch comes from Processing, a language often taught to
design and art students, and on which the Arduino IDE is based. Those
already familiar with programming should think of a sketch as being like a
software program.

1.3.2 Basic hardware setup

The Arduino board connects to your computer via USB. The USB cable provides the 5
volts required to power the Arduino, and it provides enough power to light up a cou-
ple of LEDs and allow for some basic experimentation.
Download from Wow! eBook <www.wowebook.com>

http://adafruit.com
http://makershed.com/
http://oomlout.co.uk
http://oomlout.co.uk
http://arduino.cc/en/Main/Buy
http://skpang.co.uk
http://arduino.cc/en/Main/Software

11Make something happen!
1.3.3 Your Arduino toolbox

Here’s a shopping list we recommend to someone just starting with Arduino:

■ Arduino (Uno or Duemilanove)
■ Mini breadboard and jumpers (used to build small circuits)
■ Selection of LEDs
■ Selection of resistors
■ 9 volt battery
■ Battery connector
■ Light-dependent resistor
■ Small DC motor or servo
■ Piezo buzzer (a type of small loudspeaker, like those found in musical cards)
■ Potentiometer (a type of variable resistor)

Typical projects you could build with these components include flashing LEDs, model
traffic lights, a musical buzzer, and a light-activated switch.

 If you’re feeling a little more adventurous, you could add the following components:

■ Adafruit GPS and data logging shield for recording sensor data, time, and position
■ Adafruit Wave shield for playing audio from an SD memory card for special effects
■ Motor shield for driving a couple of motors, possibly the beginnings of robot

motion

A kit of basic components, including an Arduino and a selection of components, can
be purchased from a number of sellers, who often offer a discount when you purchase
a kit.

 Now that your working environment is set up, it’s time to write your first sketch
and perform the hardware equivalent of “Hello World.”

1.4 Make something happen!
Before you rush out to pick up all those exciting attachments, all you need for your
first example is an Arduino, because all of them have an onboard LED connected to
digital pin 13. For this first example, you’re going to make an LED blink on and
off repeatedly.

NOTE In case you want to be a little more adventurous, we’ve also included
instructions for adding an external LED in section 1.4.3.

1.4.1 Your first blinking LED

LEDs are available in a range of colors, but the LED connected to pin 13 on the Ardu-
ino is normally green. The LED lights up when a current is applied to it, so you can use
pin 13 like a switch. When you switch it on, it will light up the LED, and when you
switch it off, it will turn off the LED.

 Let’s start by writing the sketch.
Download from Wow! eBook <www.wowebook.com>

12 CHAPTER 1 Hello Arduino
1.4.2 Sketch to make an LED blink

Start up the Arduino IDE and copy the following code. It might look a little over-
whelming at first, but don’t worry. We’ll go into more detail about what this all means
later in the chapter.

void setup(){
 pinMode(13, OUTPUT);
}

void loop(){
 digitalWrite(13, HIGH);
 delay(1000);
 digitalWrite(13, LOW);
 delay(1000);
}

The code is straightforward. You’re assigning digital pin 13 as an output, and then
you’re looping through some code that switches pin 13 on to HIGH or LOW for 1 sec-
ond. The delay value is given in milliseconds, so 1000 milliseconds give you a delay
time of 1 second.

NOTE Make sure that you copy the listing exactly. Watch out for the semi-
colon (;) at the end of some lines and the correct use of capital letters. As far
as Arduino is concerned, digitalwrite isn’t the same as digitalWrite.

1.4.3 Connecting everything
If you connect your Arduino to your computer via the USB cable, this sketch will con-
trol the onboard LED next to pin 13.

 You can also control an external LED by connecting it between pin 13 and GND.
The connection is shown in figure 1.4. Note that the LED must be connected the

Listing 1.1 Code required to make an LED blink

Figure 1.4 LED inserted between
pin 13 and GND. Note that the
shorter leg is connected to GND.
Download from Wow! eBook <www.wowebook.com>

13Make something happen!
correct way around—the shorter leg is the cathode or –, and the longer is the anode or
+, so push the longer lead into pin 13 and the shorter into GND. If you’re struggling with
some of the electronics terms, a good primer can be found at www.kpsec.freeuk.com/
compon.htm.

NOTE A current-limiting resistor would normally be required to prevent the
LED from burning out, and we’ll cover that in chapter 2. For now, let’s just
use the existing onboard LED.

Once the LED has been inserted, you can move on to the next section to test the sketch.

1.4.4 Uploading and testing

Time to see if your sketch works! First, connect the Arduino to your computer via a USB
cable. You now have a couple of settings to make between the software and the Arduino.

 First you need to set the board type. Select Tools > Board and then select the type
of Arduino you’re using. See figure 1.5.

 Next, you need to set the serial port because the USB sees the Arduino as a serial
connection. Select Tools > Serial Port and then choose your serial port (see figure 1.6).
On a system using Mac OS X for an Arduino Uno, the port will be something like /dev/
tty.usbmodem; for older boards like the Duemilanove or Diecimila, it will be some-
thing like /dev/tty.usbserial. On a Windows system, the port will be identified as
something like COM3.

NOTE Figure 1.6 shows the selection for a system using Mac OS X. The port
on a Windows system will be different and will be something like COM3.

The next step is to click the Upload button in the IDE. See figure 1.7.
 Wait a few seconds, and the LED should start blinking at the rate of about once

a second.

Figure 1.5 In this example,
the Duemilanove has been
selected, but you can see
there’s quite a list to
choose from.
Download from Wow! eBook <www.wowebook.com>

www.kpsec.freeuk.com/
compon.htm
www.kpsec.freeuk.com/
compon.htm

14 CHAPTER 1 Hello Arduino
NOTE The Arduino retains the program in its memory even if it’s switched
off until you upload another sketch.

It’s always exciting when you see that first LED blinking and know everything is work-
ing properly, but that’s not all you can do with your Arduino. You’re now going to get
a more detailed look at the IDE and take a tour of the main coding editor screen.

1.5 Touring the IDE
As stated earlier, the IDE is based on Processing, which was designed for ease of use
and ease of learning. The IDE provides everything you need to write and upload
sketches (programs) to the Arduino.

1.5.1 The main editor

When the IDE is first loaded, it opens with a blank sketch; the sketch is automatically
given a temporary name with a date reference. The name can be changed later to
something more appropriate when you save the sketch.

 Figure 1.8 shows the IDE containing a sketch, with annotations for the various
buttons and windows. The toolbar along the top of the main editor has the follow-
ing functions:

■ Verify—Checks sketches for errors. Errors are reported at the bottom of the screen.
■ New—Opens a new sketch.
■ Open—Opens up a list of previously-saved sketches and example sketches.
■ Save—Saves the sketch and prompts for a name if this is the first save.
■ Upload—Checks the code for errors before uploading the sketch to Arduino.
■ Serial monitor—Opens the serial monitor in a new window (see figure 1.9 in the

next section).

Figure 1.6 Select the correct serial
board from the list.

Figure 1.7 Click the upload button to upload the sketch to
the Arduino.
Download from Wow! eBook <www.wowebook.com>

15Touring the IDE
At the bottom of the main screen are two windows. The first provides status information
and feedback; the second provides information when you’re verifying and uploading
sketches. Any coding errors will also be reported here.

 The code editor additionally matches the curly braces, {}, used to denote blocks
of code, and it performs syntax highlighting and automatically indents your code
for readability.

1.5.2 Serial monitor

The serial monitor mentioned in the previous section monitors data between the Ardu-
ino and the host computer system over the connected USB cable. The Arduino can send
information using code, and it can also receive it. You can see this in figure 1.9.

Figure 1.8 A typical sketch with the buttons and areas of the screen labeled
Download from Wow! eBook <www.wowebook.com>

16 CHAPTER 1 Hello Arduino
The top part of the serial monitor window is used for sending data to the Arduino.
You could, for example, use it to send control commands to the Arduino to turn a ser-
vomotor a varying number of degrees, or to open or close a switch. The main part of
the window displays data output from the Arduino. This could be used to check the
output from a GPS or to perform other signal monitoring.

 The serial monitor is very useful for debugging code when linking the Arduino to
a computer system running software that interacts in some way with the Arduino; you
can use the serial monitor to check that the Arduino is outputting the correct data in
the format expected. In the serial monitor, you can also set the baud rate used for
communication, autoscroll of text, and the form of line ending that is appended to
data sent to the Arduino.

1.5.3 Catching errors

Now let’s return to the main editor. The main area of the screen is the code editor
where you type your code. Once you’ve finished inputting code, you have the option
to either verify or upload your sketch to the Arduino.

 Any code errors are reported in the bottom window. In figure 1.10 we’ve intro-
duced an error by omitting a semicolon (;) at the end of one of the lines of code.

 Details of the error are provided, as well as the line on which the error occurs.
Hopefully the code checker can provide enough information to point you in the right
direction if it doesn’t point out exactly what’s wrong. As you can see in figure 1.10, the
code checker has correctly identified the missing ; and where the error occurred.

1.5.4 Process

What does the IDE actually do with your code? When you press the upload button, it
checks the code for errors and performs some minor translations to convert the
sketch to valid C++. The code is then compiled, which means it’s converted to a form
that can be understood by the Arduino. The resulting file is then combined with the
standard Arduino libraries before being uploaded to the Arduino hardware.

Figure 1.9 The serial
monitor showing the
output from an Arduino
printing out an ASCII
table
Download from Wow! eBook <www.wowebook.com>

17Anatomy of a sketch
Now that you’ve had a tour of the IDE, it’s time to get a better sense of Arduino sketches.

1.6 Anatomy of a sketch
A typical sketch consists of two parts or routines: the first is the initialization routine
called setup, and the second is a routine called loop, usually containing the main body
of code. We’ll take a more detailed look at these two routines next.

1.6.1 A routine called setup

When you want to go out for a jog, there are things you must do before you can go:
put on your shoes or trainers, get a bottle of water, and stretch. It’s the same with an
Arduino. It must be prepared or set up before it can go to work.

 This setup is contained within an initialization routine or function appropriately
called setup (see the following listing). Typical things you would do in setup include

Figure 1.10 The code editor reports an error we’ve introduced into the code.
The code checker indicates which line it thinks the error is on, as well as what
it expected.
Download from Wow! eBook <www.wowebook.com>

18 CHAPTER 1 Hello Arduino
initializing digital pins—setting them as INPUT or OUTPUT—and setting the baud rate
for serial communication.

void setup()
{
pinMode(13,OUTPUT);
Serial.begin(9600);
}

The setup code in listing 1.2 sets digital pin 13 as an output and configures serial com-
munication at baud rate 9600. The void in front of setup just means the function
doesn’t return a value.

 Even if you don’t have anything to set up, the routine is still required or an error
will be generated when verifying or uploading a sketch. Just type an empty function
with a code comment:

void setup(){
 // nothing to setup
{

Now let’s look at the other required function, loop.

1.6.2 The endless loop

When you go for a jog, you keep running until you’re done (however you define
done). It’s the same with an Arduino; it runs continually in a looping routine or func-
tion called loop until some condition is met or the Arduino is powered down. The fol-
lowing listing shows the loop for the blinking LED from listing 1.1.

void loop()
{
digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13,LOW);
delay(1000);
}

In this case, the Arduino loops repeatedly, turning the LED on for a second and then
off for a second, continuing until the Arduino is powered down.

 Now that you know the basics of writing a sketch, it’s time to close out the chapter
with an important reminder.

1.7 Commenting code
You’ve written a great piece of code that you’re really proud of. Now imagine that
six months later, someone else is browsing through your past work and comes
upon the same sketch, but they can’t quite figure out what it does or how it works.

Listing 1.2 The setup function

Listing 1.3 An example loop function that blinks an LED on and off
Download from Wow! eBook <www.wowebook.com>

19Commenting code
A simple description would help enormously. This is where commenting your code
becomes invaluable.

 There are two main ways to place comments in a sketch: either as a single line or as
a block. A single line comment has a double slash (//) at the start of the line. This
tells the compiler that it’s just a comment and can be ignored. When you want to add
a block of code as a comment, start the block with /* and end with */.

 Both methods are demonstrated here:

// This is a single-line comment

/* And this is a block carried over
a couple of lines
*/

Where should you put comments? Each sketch should have a comment block at the
top or header of the sketch, giving a description of what the sketch does, who wrote it,
the date, and the version number. The next listing shows an example header.

/*
Code to blink LED
Author: Martin Evans
Date created : 1st September 2009
Version 1.0
*/

Single-line comments spread throughout the sketch will quickly allow you to see what
the individual pieces of code do. You don’t need to comment every piece of code, just
places where you think it would help you or someone else understand the code at a
later date. It’s probably better to have too many comments than too few. The following
listing shows some typical code comments.

void setup()
{
 Serial.begin(9600);

 // prints title with ending line break
 Serial.println("ASCII Table ~ Character Map");
}

// first visible ASCIIcharacter '!' is number 33:
int thisByte = 33;
/* you can also write ASCII characters in single quotes.
for example. '!' is the same as 33, so you could also use this:
int thisByte = '!'; */

We’ve looked at the code editor and the IDE, seen how a sketch is formed with the
setup and loop functions, and discussed the importance of code comments.

Listing 1.4 Example header code

Listing 1.5 Example code comments
Download from Wow! eBook <www.wowebook.com>

20 CHAPTER 1 Hello Arduino
1.8 Summary
This has been a busy chapter, and we’ve covered a lot of ground. We started by learn-
ing a little of the history of Arduino and its beginnings at the Interaction Design Insti-
tute in Italy. We saw the layout of the pins and main components of the Arduino Uno
and Mega. We caught a glimpse of some other Arduino versions, including the Lily-
Pad and the Seeeduino Film, and what they offer. You set up a working environment
and wrote your first sketch, getting to see your Arduino come to life.

 We looked in detail at the Arduino software IDE and the components of a sketch,
with the setup and loop routines, we looked at using the serial monitor, and we saw
the importance of commenting your code.

 The next chapter is a tutorial that covers the gradual development of a project and
the steps involved in completing it.
Download from Wow! eBook <www.wowebook.com>

Digital input and output
Now that you have a sense of what an Arduino can do and have completed your
first test run, it’s time to delve deeper. You’re going to build on what you learned in
chapter 1 and build your first complete project, a reactometer that uses LEDs, a
push button, and a timer to record reaction times.

 Let’s get started.

2.1 Getting started
To complete your reactometer, you need a handful of components:

■ A breadboard on which to assemble the project
■ A selection of jumpers to connect components together
■ Six red LEDs; you can use other colors if you want

This chapter covers
■ Blinking more than one LED
■ Using a push button to control a sequence of

blinking LEDs
■ Building a project step by step
■ Learning about interrupts
■ Building a reactometer
21

Download from Wow! eBook <www.wowebook.com>

22 CHAPTER 2 Digital input and output
■ One green LED
■ One momentary-contact push button
■ Seven resistors, each around 180 ohms or slightly greater in value
■ One 10k ohm resistor

You can see these components in figure 2.1.
 Next, you’ll assemble the circuit on a breadboard.

2.1.1 Using a breadboard

Breadboards are great for assembling circuits, particularly during the development phase
of a project, because they make it easy to move components around or add new ones.

 A typical breadboard layout is shown in figure 2.2. The breadboard is made up of a
number of sockets. In the central part of the board, the sockets are connected vertically
with a break in the center, and they’re connected horizontally at the top and bottom.
The top and bottom areas are used to provide the power supplies to the circuit being
built. Connections between components are made using jumpers of varying lengths.

 It’s now time to start populating the breadboard by adding your first batch of LEDs
and resistors.

2.1.2 Circuit diagram

For the first part of the project, you’re going to add five LEDs to the breadboard. Fig-
ure 2.3 shows a diagram, or schematic, of the circuit you’re going to build. Don’t worry
if you don’t understand it at the moment—you’ll soon get the hang of reading a cir-
cuit diagram and translating it to use on a breadboard.

 In the circuit diagram, digital pins D8 to D12 of the Arduino each connect to an LED
(LED1 through LED5); a current-limiting resistor is connected to each LED (R1 through

Figure 2.1 The
components required to
complete this tutorial
Download from Wow! eBook <www.wowebook.com>

23Getting started
Figure 2.2 Breadboard layout:
the sockets in the top and bottom
two rows are connected
horizontally; the other sockets are
connected vertically with a break
in the center of the breadboard.

Arduino1

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

LED5

R5

R4

R3

R2

R1

LED1

LED2

LED3

LED4

Figure 2.3 Schematic diagram showing Arduino connected to five LEDs
Download from Wow! eBook <www.wowebook.com>

24 CHAPTER 2 Digital input and output
R5). The cathode, normally the shorter leg of each LED, is connected to GND on the
Arduino. Power for the circuit is provided by the USB connection to your computer.

 When you’ve made yourself familiar with the circuit diagram and have seen how
the LEDs, resistors, and Arduino connect together, you can move onto placing the
components into the breadboard.

2.1.3 Adding the LEDs

In figure 2.3, LED1 through LED5 are connected to digital pins 8 through 12 on the
Arduino, which are labeled D8 through D12 on the schematic diagram. Each LED goes
to a separate pin.

 A resistor is connected in series with each LED; these are current-limiting resistors,
and they act to limit the amount of current that flows through the LEDs, protecting
them from burning out.

2.1.4 Connecting the hardware

Make sure the Arduino isn’t connected to your computer yet; you don’t want to have it
powered up while you’re connecting the hardware.

 Figure 2.4 shows how to make the first connection to the first LED by connecting a
jumper from pin 12 on the Arduino to the first resistor. Note that the resistor jumps
over the break in the breadboard; make sure that the longer leg, or anode, of the LED
connects to the resistor, and the shorter leg, or cathode, to GND on the top power rail.

 Now connect the other four LEDs as shown in figure 2.5, following the same pat-
tern as for the first LED.

Calculating resistor values
The resistor value is calculated using the following formula:

(Operating voltage – LED forward voltage) / current in amperes
= resistor value in ohms

As a rule of thumb, most LEDs can take a maximum of 20 mA of current before suf-
fering damage; mA stands for milliamperes, usually called milliamps. Forward oper-
ating voltage for red, yellow, and orange LEDs is 1.5V, for green LEDs 2.0V, and for
blue and white LEDs 3.0V.

You’re going to use the USB connection for power, which is 5V. If you’re using red
LEDs, which have a forward voltage value of 1.5V, and a current of 20 mA, you can
calculate the needed resistance as follows:

(5V – 1.5V) / 0.02 A = 175 ohms

The nearest available resistor is 180 ohms, so to safely protect the LED, you need
to use a resistor of 180 ohms or greater. We used 270 ohm resistors because we
had plenty of them available, and the LEDs still light up when using them.
Download from Wow! eBook <www.wowebook.com>

25Getting started
Figure 2.6 shows the completed circuit. Note the connection of the long jumper from
GND on the Arduino to the common rail on the breadboard. You can use the USB con-
nection to provide the power for this project because the LEDs only require a small
amount of current.

 Now that you’ve finished assembling the circuit, you can move on to develop your
code sketch to make the LEDs flash.

2.1.5 Sketch to flash five LEDs

With the connection of the hardware complete, you can now start to program your
code sketch. Launch the Arduino IDE and start a new sketch. Carefully type the follow-
ing code into the editor window.

Figure 2.4 Making connections
to the first LED with a current-
limiting resistor and pin 12 of
the Arduino

Figure 2.5 Connections of the five
resistors to pins 8 through 12 on the
Arduino
Download from Wow! eBook <www.wowebook.com>

26 CHAPTER 2 Digital input and output
int ledArray[] = {8, 9, 10, 11, 12};
int count = 0;
int timer = 75;

void setup(){
 for (count=0;count<5;count++){
 pinMode(ledArray[count], OUTPUT);
 }
}

void loop(){
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], HIGH);
 delay(timer);
 digitalWrite(ledArray[count], LOW);
 delay(timer);
 }
}

In the first part of the sketch, the sketch variables are declared. An array, ledArray, is
used to set the digital pin numbers you’re going to use.

 You could have used direct pin assignment, as shown here:

int ledPin1 = 8;
int ledPin2 = 9;
int ledPin3 = 10;
int ledPin4 = 11;
int ledPin5 = 12;

But it’s more efficient to use an array when you have a collection of pin numbers that
you’ll treat similarly.

 During the setup routine, you use a for loop so that each pin from 8 through 12 is
set as an output.

Listing 2.1 Five flashing LEDs, flashing after each other

Figure 2.6 The completed
circuit with power being
provided by the USB
connection

LED array

A for loop

digitalWrite writes
LOW or HIGH
Download from Wow! eBook <www.wowebook.com>

27Gaining control
 In the sketch’s main loop, you use another for loop to set each pin in turn to HIGH,
turning the LED on with a digitalWrite function that accesses the LED to be written
to from the ledArray array by its index value, count. Then, after a delay of 75 millisec-
onds, the pin is set to LOW and the LED is turned off again using digitalWrite.

 The loop continues to run, turning each LED on and off in turn, with a slight delay
in between. You could alter the delay time by changing the value of the timer variable.

NOTE The digitalWrite function works by writing either a HIGH or a LOW
value to the pin. If the pin is set to HIGH, digitalWrite sets the pin at 5V,
which is enough to power an LED; if the pin is set to LOW, digitalWrite sets
the pin at 0V, which turns the LED off.

Now that you’ve built your circuit and written your sketch, let’s move on and test it.

2.1.6 Upload and test
Connect the USB cable between your computer and the Arduino and then verify that
the sketch will compile. If any errors are generated, check that you’ve typed the code
exactly as shown in listing 2.1. Pay careful attention to opening and closing braces, {},
and to the semicolons (;). Once the sketch compiles correctly, upload it to the Ardu-
ino. If you see any error messages, check that the correct Arduino type and serial port
have been selected.

 Once the sketch has been uploaded to the Arduino, and after a short delay, the
LEDs should start to flash in turn. If no errors are generated and the sketch uploads
correctly to the Arduino, but the LEDs don’t flash, disconnect the Arduino from the
USB cable and carefully check your connections. Check that the LEDs are plugged in
correctly, with the cathodes connected to ground, and then try connecting the USB
cable again.

NOTE You shouldn’t need to re-upload the sketch because the Arduino
should retain the code in its onboard memory.

Your LEDs are now flashing, so it’s time to make things more complex. In the next
part of the tutorial, you’re going to add a push button to the circuit.

2.2 Gaining control
Now that your sketch is working, with the LEDs flashing on and off in turn, it’s time to
add some control to the circuit by adding a push button. This will be used to start and
stop the LEDs’ flashing sequence.

2.2.1 Circuit diagram
The circuit diagram is shown in figure 2.7. You’ll keep the same components that you
used for the first version and add a push button (S1) and a resistor (R6) with a value of
10k ohms.

 Once you’ve had a chance to study the updated circuit diagram, you can add the
new components to the breadboard.
Download from Wow! eBook <www.wowebook.com>

28 CHAPTER 2 Digital input and output
2.2.2 Connections

First, disconnect the Arduino from the USB cable, and then mount the push button
onto the breadboard, as shown in figure 2.8. Note how it straddles the center of the
breadboard. The resistor R6 is used as a pull-down resistor, which prevents the input
to D2 from floating and ties the input D2 to ground (GND), LOW, when the switch isn’t
being pressed. When the switch is pressed, the input to D2 switches to 5V or HIGH.

 Figure 2.9 shows an overview of the completed circuit laid out on the breadboard;
the Arduino’s power is provided by the USB cable connected to the computer.

Pull-up and pull-down resistors
It’s common in a circuit using switched inputs to use either a pull-up or a pull-down
resistor to prevent false positives that are caused by electrical noise or interference.
The resistor holds the input at the opposite state to that which the sketch is pro-
grammed to detect. A pull-up resistor pulls the voltage up to 5 volts, and a pull-down
resistor pulls it down to ground.

Arduino

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/

O
u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

LED5
R5

R4

R3

R2

R1

LED1

LED2

LED3

LED4

R6

S1
Figure 2.7 Schematic of
an Arduino connected to
five LEDs controlled by a
push button
Download from Wow! eBook <www.wowebook.com>

29Gaining control
Once you’ve connected the push button and additional resistor, it’s time to look at the
code side of things. In this sketch, you’re going to use a special feature of the Arduino
called an interrupt.

2.2.3 Interrupts butting in

Interrupts on the Arduino are very powerful; they can interrupt the sketch or program
flow at any time. An interrupt is like someone ringing the doorbell when you’re just
about to step into the shower—you have to deal with it immediately. The Arduino is
exactly the same; when an interrupt is signaled, your sketch must go and deal with it.

 The standard Arduino can use a maximum of two interrupts, but for this project
you’re going to use just one. The interrupt will detect when the push button has been
pressed; pressing the push button the first time stops the lighting up sequence of the
LEDs, pressing it again restarts the sequence, and so on.

Figure 2.8 Connecting the push
button to the breadboard

Figure 2.9 The completed
circuit connected to the USB
for power
Download from Wow! eBook <www.wowebook.com>

30 CHAPTER 2 Digital input and output
2.2.4 Sketch to control the LEDs with a push button

The following listing shows the new sketch. You can either amend your existing sketch
or start a new one.

volatile int state = LOW;
int ledArray[] = {8, 9, 10, 11, 12};
int count = 0;
int timer = 75;
int pause = 500;

void setup(){
 for (count=0;count<5;count++){
 pinMode(ledArray[count], OUTPUT);
 }
 attachInterrupt(0, ledOnOff, RISING);
}

void loop(){
 if (state) {
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], HIGH);
 delay(timer);
 }
 delay(pause);

 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], LOW);
 delay(timer);
 }
 delay(pause);
 }
}

void ledOnOff() {
 static unsigned long lastMillis = 0;
 unsigned long newMillis = millis();
 if (newMillis - lastMillis < 50){
 }
 else {
 state = !state;
 lastMillis = newMillis;
 }
}

At the beginning of this code, you declare the state variable as volatile B. The
volatile keyword is used for variables that can be altered by something outside the
part of the sketch where it appears; one of the main uses of volatile is when using
interrupts, as we’re doing here.

 The standard Arduino has two interrupts: interrupt 0 is attached to digital pin 2,
and interrupt 1 is attached to digital pin 3. The Arduino Mega has an additional
four interrupts: interrupt 2 is attached to digital pin 21, interrupt 3 is attached to

Listing 2.2 Start-stop display

Sets up volatile
variableb

Initializes
interruptc

Pauses code
operationd

Uses static
variablee

Performs
debounce checkf
Download from Wow! eBook <www.wowebook.com>

31Gaining control
digital pin 20, interrupt 4 is attached to digital pin 19, and interrupt 5 is attached
to digital pin 18.

NOTE The function attachInterrupt(interrupt, function, mode) takes three
arguments. The first is interrupt, which can be set to 0 or 1; the second is
the function to call, which must have no arguments and return nothing;
and the third is the mode that generates the interrupt. This mode can have
one of four values: LOW triggers whenever the pin is low; CHANGE triggers when-
ever the pin changes value; RISING triggers whenever the pin changes from LOW
to HIGH; and FALLING triggers whenever the pin changes from HIGH to LOW.

In this sketch, you set the interrupt to RISING c. The interrupt will be triggered when
the push button is pressed and the pin switches from LOW to HIGH. Another change in
this sketch is that now the LEDs light up one after the other with a slight delay between
each; then, when all the LEDs are lit, there is a slight pause d and all the LEDs are
switched off. The sequence then repeats. Pressing the push button stops the sequence;
pressing it again restarts it.

In this sketch, you counter the effect of the switch bouncing by using a static variable
called lastMillis e. Static variables keep their values between calls to a function.
The millis() function returns the number of milliseconds since the program started,
and each time the interrupt-service routine is called, you assign the value of millis()
to the variable newMillis. You then compare the value of newMillis to lastMillis f;
if the result is less than 50 milliseconds (the bounce period), you do nothing and
return to the main sketch loop. If the value is greater than or equal to 50 milliseconds,
you’re outside the bounce period, meaning that the button has really been pressed
again. In that case, you update the state variable and assign the value of newMillis to
lastMillis before returning to the main sketch loop.

CAUTION Many people consider interrupts an advanced technique, but if
you're careful, you should have no problem using them. During interrupt-
service routines, keep your sketch code as small as possible; this will help you
avoid unexpected things happening in the rest of your sketch. Another caveat
is that you can’t use the delay function inside an interrupt-service routine.

Let’s move on now and test our newest sketch.

Debounce
In the interrupt-service routine, the ledOnOff() function, we’ve also included some
code to help with a problem found in mechanical switches called bounce. When a
switch is pressed and moves from an open to a closed position, the contact often isn’t
perfect and produces a number of spurious signals called bounces, causing the con-
nected pin to switch from LOW to HIGH a number of times until it settles to a constant
state. It normally takes between 10 and 50 milliseconds to settle, but you can try lon-
ger values if you’re getting strange results that you suspect are caused by bounce.
Download from Wow! eBook <www.wowebook.com>

32 CHAPTER 2 Digital input and output
2.2.5 Upload and test

Connect the Arduino to your computer with the USB cable. Verify that the sketch
compiles correctly, and then upload it to the Arduino. When the sketch has com-
pleted uploading, no LEDs will be lit until you press the push button. Try pressing the
push button a few times to see how the LED sequence starts and stops.

2.2.6 Time for a break

Keeping the same circuit, you’re now going to add a statement called a break to your
sketch; the break command is used to break out of a loop or switch statement. You’re
going to use it stop the LED sequence and leave the LED lights lit until the button is
pressed again, so if three LEDs are lit when the button is pressed, three will stay lit
until the button is pressed again and the sequence starts over.

 The following listing shows the new sketch with the break command.

volatile int state = LOW;
int ledArray[] = {8, 9, 10, 11, 12};
int count = 0;
int timer = 75;
int pause = 500;

void setup(){
 for (count=0;count<5;count++){
 pinMode(ledArray[count], OUTPUT);
 }
 attachInterrupt(0, ledOnOff, RISING);
}

void loop(){
 if (state) {
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], HIGH);
 delay(timer);
 if (!state) {
 break;
 }
 }
 delay(pause);
 if (state){
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], LOW);
 }
 delay(pause);
 }
 }
}

void ledOnOff() {
 static unsigned long lastMillis = 0;
 unsigned long newMillis = millis();

Listing 2.3 Adding a break

Checks state
variable

b

Breaksc

Checks value
of state

Function delay(timer)
removed from for loop
Download from Wow! eBook <www.wowebook.com>

33Reaction tester
 if (newMillis - lastMillis < 50){
 }
 else {
 state = !state;
 lastMillis = newMillis;
 }
}

After each LED lights up, you check the status of the state variable to see if the push
button has been pressed B. If the button has been pressed, the break statement is
called and the sketch exits from the loop c. When the button is pressed again, the
sequence restarts.

 It’s now time to check that your sketch functions correctly.

2.2.7 Upload and test

Verify that the sketch compiles correctly, and then upload and test it. When the but-
ton is pressed the sequence of flashing LEDs should halt; pressing it again should
restart the sequence.

 It’s now time to move on to the next stage of your project. You’re going to make a
reaction tester.

2.3 Reaction tester
This is the last circuit change you’re going to make in this chapter. You’re going to
add two LEDs to the circuit, preferably a green one and a red one, to be used as start
and stop indicators. The red LED will initially be lit; when it goes out and the green
LED lights up, you’ll have to press the push button as quickly as you can to halt the
light sequence you set up in the previous section. Someone with an average reaction
time should be able to stop the sequence when two or three LEDs are lit.

2.3.1 Circuit diagram

Look at the circuit diagram in figure 2.10 and note how the two new LEDs connect to
the Arduino. Green LED6 and red LED7 have been added to the circuit, along with
two 220 ohm current-limiting resistors, R7 and R8.

2.3.2 Connections

Figure 2.11 shows the completed connections between the Arduino and breadboard,
with the two additional LEDs and resistors added to the existing circuit.

 That’s the circuit completed for this chapter. It’s now time to look at your penulti-
mate sketch for this chapter.

2.3.3 Sketch to test reaction speed

The next listing shows the sketch for the reaction meter; type it carefully into a
new sketch.
Download from Wow! eBook <www.wowebook.com>

34 CHAPTER 2 Digital input and output
volatile int state = 0;
int ledArray[] = {8, 9, 10, 11, 12};
int count = 0;
int timer = 50;
int stopLed = 6;
int goLed = 7;
int randMin = 250;
int randMax = 750;
int startDelay;

Listing 2.4 Reaction tester

Arduino1

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

LED5

R5

R4

R3

R2

R1

LED1

LED2

LED3

LED4

R7

R6

S1

R8

LED7

LED6

Figure 2.10 Schematic of Arduino with a push button and seven LEDs: two of them
are used as start/stop indicators.

Minimum value for
random function

b

Maximum value for
random functionc
Download from Wow! eBook <www.wowebook.com>

35Reaction tester
void setup(){
 for (count=0;count<5;count++){
 pinMode(ledArray[count], OUTPUT);
 }
 attachInterrupt(0, ledOnOff, RISING);
 pinMode(stopLed, OUTPUT);
 pinMode(goLed, OUTPUT);
 randomSeed(analogRead(0));
}

void loop(){
 //start state
 if (state == 0) {
 digitalWrite(stopLed, HIGH);
 digitalWrite(goLed, LOW);
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], LOW);
 }
 }
 // start button pressed
 if (state == 1) {
 // random start
 startDelay = random(randMin,randMax);
 delay(startDelay);
 digitalWrite(stopLed, LOW);
 digitalWrite(goLed, HIGH);
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], HIGH);
 delay(timer);
 if (state == 2) {
 break;
 }
 }
 }
}

void ledOnOff() {
 static unsigned long lastMillis = 0;
 unsigned long newMillis = millis();
 if (newMillis - lastMillis < 50){
 }
 else {
 state = state++;
 if (state == 3) {
 state = 0;
 }
 lastMillis = newMillis;
 }
}

In this sketch, you set the two pins 6 and 7, which are connected to your two new
LEDs, as OUTPUTs. You also use one of the Arduino functions, random, which can take
two arguments—in this case, randMin B and randMax c. The function returns a long
value between randMin, inclusive, and randMax, exclusive.

Function to generate
random seedd
Download from Wow! eBook <www.wowebook.com>

36 CHAPTER 2 Digital input and output
The state variable is used to control the sketch logic and is tied to presses of the push
button. The first press starts the sequence of events with the original five LEDs being
turned off, the red stopLed on, and the green goLed off. After a random amount of
time, the stopLed goes off and the green goLed goes on, starting the sequence of the
original five LEDs lighting up one by one. Pressing the push button stops the LEDs
from lighting up. Pressing the push button again restarts the whole sequence.

2.3.4 Upload and test

Connect the Arduino to the USB cable, verify that the sketch compiles correctly, and
upload it to the Arduino. Press the push button, and play to see how quick your reac-
tion times are. Play with other people to see whose reaction time is the quickest.

 You can add some more code to your sketch to more accurately record reaction
times using a timer. We’ll cover that in the next section.

Seeding the random number generator
To seed the random number generator, you call randomSeed during setup d:

randomSeed(analogRead(0));

The value given to randomSeed is obtained by reading in an analog value from the
unconnected analog 0 pin. An analog pin that’s unconnected will have varying values
on it due to electrical noise.

Figure 2.11 Completed
connections with two
additional LEDs for stop
and start
Download from Wow! eBook <www.wowebook.com>

37Reactometer: Who really has the fastest reaction time?
2.4 Reactometer: Who really has the fastest
reaction time?
For the last sketch of this chapter, you’re going to more accurately measure your reac-
tion times using a timer. The circuit stays the same, but you’re going to make some
changes to the sketch.

2.4.1 Sketch to measure reaction speed

The following listing shows your new reactometer sketch; either edit the previous
sketch or create a new one and type in the following listing.

volatile int state = 0;
int ledArray[] = {8, 9, 10, 11, 12};
int count = 0;
int timer = 50;
int stopLed = 6;
int goLed = 7;
int randMin = 250;
int randMax = 750;
int startDelay;
volatile float time;
float start_time;

void setup(){
 for (count=0;count<5;count++){
 pinMode(ledArray[count], OUTPUT);
 }
 attachInterrupt(0, ledOnOff, RISING);
 pinMode(stopLed, OUTPUT);
 pinMode(goLed, OUTPUT);
 randomSeed(analogRead(0));
 Serial.begin(9600);
}

void loop(){
 //start state
 if (state == 0) {
 digitalWrite(stopLed, HIGH);
 digitalWrite(goLed, LOW);
 for (count=0;count<5;count++){
 digitalWrite(ledArray[count], LOW);
 }
 }
 // start button pressed
 if (state == 1) {
 // random start
 startDelay = random(randMin,randMax);
 delay(startDelay);
 start_time = millis();
 digitalWrite(stopLed, LOW);

Listing 2.5 Reaction timer

Sets up serial
communication.

b

Download from Wow! eBook <www.wowebook.com>

38 CHAPTER 2 Digital input and output
 digitalWrite(goLed, HIGH);
 for (count=0;count<5;count++){
 delay(timer);
 if (state == 2) {
 time = (time - start_time)/1000;
 Serial.print("Reaction time: ");
 Serial.print(time);
 Serial.println(" seconds");
 delay(1000);
 break;
 }
 digitalWrite(ledArray[count], HIGH);
 }
 }
}

void ledOnOff() {
 static unsigned long lastMillis = 0;
 unsigned long newMillis = millis();
 if (newMillis - lastMillis < 50){
 }
 else {
 state = state++;
 if (state == 2){
 time = millis();
 }
 if (state == 3) {
 state = 0;
 }
 lastMillis = newMillis;
 }
}

In this sketch you’ve added a timer so you can more accurately determine your reac-
tion time. When it has been calculated, the time is sent out to the serial port. The
serial port is enabled during the setup function in your sketch with this command B:

Serial.begin(9600);

The 9600 is the baud rate, or speed, at which the Arduino sends data. To understand
the data, the host computer (in this case, the serial monitor) must have its baud rate
set to the same speed.

 When printing out the data, you use two functions: Serial.print c and
Serial.println d. The only difference between the two is that the Serial.println
function appends a carriage return and newline character to the end of the string.

2.4.2 Upload and test

Verify that the sketch compiles correctly and then upload it to the Arduino. As before,
the push button controls the start and stop of the reactometer. Figure 2.12 shows the
working completed project.

Serial.print prints
the reaction time.

c

Serial.println prints a
carriage return at
the end of the line.d
Download from Wow! eBook <www.wowebook.com>

39Summary
To see the reaction times, you’ll need to select the serial monitor in the Arduino IDE;
make sure the baud rate is set at 9600. Figure 2.13 shows some recorded reaction times.

 Displaying these reaction times will help settle arguments between you and
your friends!

2.5 Summary
In this chapter, you’ve seen how a typical project can develop, starting from a simple
sketch and gradually building in complexity. Building a project by making small
changes with each development makes it easier to debug and find errors. If the sketch
doesn’t compile correctly or the correct result isn’t displayed, you only need to look at
the most recent changes and additions.

Figure 2.12 Final
circuit running the
reactometer

Figure 2.13 Serial
monitor displaying
reaction times
Download from Wow! eBook <www.wowebook.com>

40 CHAPTER 2 Digital input and output
This project introduced you to the digital world with digital inputs and outputs: HIGH
or LOW. You’ve explored some of the capabilities of Arduino, including the available
functions, such as interrupts, which can be powerful. In later chapters, you’ll look fur-
ther at some of the digital pins and at the more specialized functionality those pins
can have.

 In the next chapter, you’re going to leave the digital world for a while and look at
some of the analog functionality that Arduino provides.
Download from Wow! eBook <www.wowebook.com>

Simple projects:
input and output
In the previous chapter, we looked at the digital side of the Arduino, building a
series of incremental projects that showed off Arduino features like digital inputs
and outputs and interrupts. In this chapter we’re going to look at another aspect of
the Arduino and how it interfaces with the world around us.

 In basic terms, the world around us can be split into two parts—digital and analog—
and in this chapter we’re going to investigate interacting with the analog part. We’ll
once again start from a basic component, a potentiometer, which reads analog inputs
into the Arduino. Then we’ll experiment by adding a sensor—a piezo transducer that
can be used as an analog input or output. We’ll round up by adding four more piezo
transducers and a small speaker to build a working five-key pentatonic keyboard.

 These are the components required to complete this chapter:

■ An Arduino board.
■ A breadboard and a selection of jumper leads.

This chapter covers
■ Looking at the analog world
■ Reading an analog input
■ Producing sound from a speaker
■ Building a pentatonic keyboard
41

Download from Wow! eBook <www.wowebook.com>

42 CHAPTER 3 Simple projects: input and output
■ A small potentiometer. (A trimpot is ideal, as it can easily plug into a breadboard.)
■ Five zener diodes, 0.5 watt 5V1. (We used a BZX55C5V.)
■ Five uncased piezoelectric transducers (knock sensors) with wire connectors.
■ Five resistors, 1M ohm (1 mega ohm).
■ One resistor, 1k ohm.
■ A small speaker, 8 ohm.

Let’s start by learning the basics of working in analog.

3.1 Time to get analog
In previous chapters, you experimented with buttons that could be either on or off,
but what if you wanted to measure an analog input like a photo or force-sensing resis-
tor? If the Arduino was purely a digital device, you wouldn’t be able to measure these
devices, which would limit the scope of your projects. Luckily, the Arduino has this
covered and can interact with the analog world as well.

 The Arduino can alter the brightness of an LED not by varying the voltage applied
to it but by using a special technique called pulse width modulation, or PWM (more on
this in a moment). In addition to providing an analog output using PWM, the Arduino
can also take an analog input of between 0 and 5 volts.

 The standard Arduino has six analog inputs labeled ANALOG IN A0, A1, A2, A3, A4,
A5; in addition, there are six analog outputs.

 In this chapter, we’ll concentrate on the analogRead function; we’ll leave analog-
Write to a later chapter.

 Let’s start by taking a look at the difference between digital and analog devices.

3.1.1 What’s the difference between analog and digital?
So what’s the difference between the analog and digital worlds? In the digital world,
everything has two states; a switch can only be on or off, an LED is either lit or it isn’t,
you’re either awake or asleep. These states can be thought of in a variety of ways as
ones or zeros, on or off, high or low. The Arduino digital pins work in the same way;
when set as an output, they’re either 0 or 5 volts, with a 0 voltage being a logical zero
and 5 volts being logical one. In the analog world, things have a range of values. Music
has notes that span a range of frequencies, a car accelerates through a range of
speeds, a sine wave flows smoothly between maximum and minimum values, and tem-
perature varies between a maximum and minimum.

 We often want to explore the analog world, and the Arduino has six analog inputs
that help us with this. But the Arduino is still a digital device, so you need a means of
converting the input signal to a digital representation. This is done with an analog-to-
digital converter (ADC). Table 3.1 shows the resolution, voltage range, and pins used for
analog input and output for the Arduino and Arduino Mega.

 In the next section, you’re going to use a potentiometer to provide an analog
input that you can manually vary, and you’ll instantly see the effect of these changes by
displaying the results using the serial monitor.
Download from Wow! eBook <www.wowebook.com>

43Time to get analog
3.1.2 Reading a potentiometer

A potentiometer is one of the simplest ways to show how the Arduino’s analog input
works. Potentiometers come in all shapes and sizes, as shown in figure 3.1, and they’re
used in many different devices all around us. If you have a stereo with a rotary volume
control, it’s likely based on turning a potentiometer. Other examples include dimmer
controls on lights and temperature controls on electric cookers or ovens. Despite the
different shapes and sizes, they all have some means of varying resistance, either in a
linear or logarithmic way.

 The majority of potentiometers have three connections; the middle one is usually
called the wiper and is used to vary the resistance by moving a contact along a fixed
resistor. For this chapter, you want a potentiometer that varies resistance linearly and
that’s suitable for plugging into a breadboard; trimpots are often ideal.

 Figure 3.2 shows the schematic symbols for a potentiometer. The central arrow,
known as the wiper, is overlaid over the standard symbol for a resistor and indicates
that the resistance is variable.

 Let’s now move on to connecting a potentiometer to the Arduino.

3.1.3 Connecting the hardware

Now that you know which potentiometer to use, let’s get it set up. The circuit dia-
gram shown in figure 3.3 has your potentiometer, labeled R1, connected between

Table 3.1 The Arduino’s analog resolution and analog input and output pins

Analog input Analog output

Resolution 10 bit (0 through 1023) 8 bit (0 through 254)

Voltage range 0 through 5 volts 0 through 5 volts

Arduino pins A0 through A5 Digital pins 3, 5, 6, 9, 10, 11

Arduino Mega pins A0 through A15 Digital pins 2 through 13

Figure 3.1 A selection
of potentiometers
Download from Wow! eBook <www.wowebook.com>

44 CHAPTER 3 Simple projects: input and output
five volts and ground, with the wiper connected to analog input A0. As you turn the
potentiometer clockwise or counterclockwise, you’ll adjust the voltage between 0
and 5 volts on A0.

 Plug the potentiometer into the breadboard. The central leg is normally the wiper,
and this is the one you want to connect to your analog input, A0. The completed con-
nections are shown in figure 3.4.

 The potentiometer shown in figure 3.4 doesn’t have a rotary knob, but it can be
turned by inserting a pot trimmer tool. If you don’t have a pot trimmer tool, you can use
a small slot-head screwdriver instead.

 With the potentiometer connected, you can move on to writing a sketch to read
values from it.

3.1.4 Sketch to read a potentiometer

The following listing shows the sketch you’re going to use to read an analog value
between 0 and 5 volts into analog pin A0.

Figure 3.2 Schematic symbols for a potentiometer:
U.S. (left), International (center), Fritzing (right)

Arduino1

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

R1

Figure 3.3 A circuit diagram
showing the potentiometer
connected to the Arduino
Download from Wow! eBook <www.wowebook.com>

45Time to get analog
int sensorPin = A0;
int sensorValue = 0;

void setup(){
 Serial.begin(9600);
}

void loop(){
 sensorValue = analogRead(sensorPin);
 Serial.print("Sensor = ");
 Serial.println(sensorValue, DEC);
 delay(10);
}

You don’t need to set the sensorPin as an input during the setup routine because all
analog input pins are set by default to be input. The sensorValue variable stores the
value read by the analogRead function, which returns a number between 0 and 1023
inclusive, with 0 representing 0 volts and 1023 representing 5 volts.

 The 10 millisecond delay between each reading gives the Arduino’s ADC time to
settle and capture an accurate reading. The DEC in the Serial.println(sensorValue,
DEC); line instructs the println function to output data as base decimal. Other options
include HEX (hexadecimal), BIN (binary), and OCT (octal).

3.1.5 Upload and test

After entering the sketch into the IDE, verify that it compiles, and then connect the
Arduino to your computer and upload the sketch to it. Load the serial monitor in the
IDE and rotate the potentiometer fully clockwise and counterclockwise. You should

Listing 3.1 Reading a potentiometer

Figure 3.4 The potentiometer
connected to the Arduino
Download from Wow! eBook <www.wowebook.com>

46 CHAPTER 3 Simple projects: input and output
see the number output to the serial monitor changing as the potentiometer is rotated.
Example output is shown in figure 3.5.

 You’ve now seen how to read a value into one of the analog input pins. In the next
section, you’re going to connect the Arduino to a piezoelectric transducer. For this you’ll
need some additional components, because a piezoelectric transducer can produce
some very high voltages that could potentially damage the Arduino.

3.2 A piezoelectric transducer
If you’ve ever received a birthday card that plays a tinny version of “I’m So Excited” by
the Pointer Sisters when opened, you’ve likely encountered a piezoelectric transducer
being used as a speaker. Piezoelectric transducers are also found in a variety of other
devices, including mobile phones, door buzzers, and underwater sonar.

 Figure 3.6 shows a typical piezoelectric transducer that can be used to produce
sounds similar to those used in some musical cards.

Figure 3.5 Output
displayed as the
potentiometer is rotated

Figure 3.6 A typical
piezoelectric transducer used
in some musical cards and as
sensors on drum kits
Download from Wow! eBook <www.wowebook.com>

47A piezoelectric transducer
How do they work? The word piezoelectricity means “elec-
tricity resulting from pressure.” When a piezoelectric device
is squeezed, it produces an electric charge, as shown in fig-
ure 3.7. A typical application for this with an Arduino is to
use the transducer as a knock sensor. When the trans-
ducer is hit or knocked, the Arduino detects this and per-
forms the required action, such as switching on an LED or
producing a tone from a speaker.

 Conversely, when an electric charge is applied to a
piezoelectric transducer, it distorts or changes shape as
shown in figure 3.8. If you apply a varying voltage at a cer-
tain frequency, the movement of the transducer can cause
it to produce a sound or note. It’s in this mode that piezo-
electric transducers are used in musical greeting cards or
as buzzers.

 As you’ve seen, a single piezoelectric transducer can
be used either as an input or an output device. Sonar
devices, which have at their heart a piezoelectric trans-
ducer, send out a sound signal and listen for the echo.
This is most familiar as the classic ping sound in subma-
rine movies. The time it takes for the ping to return
gives an indication of how far away a target is. We’ll
look at another example of this in chapter 6 when the
Devantech SRF05 is used as a rangefinder.

 Now that you’ve had a quick look at piezoelectric
transducers and how they work, you’re going to use a
piezoelectric transducer as a knock sensor. When the
Arduino detects that the knock sensor has been hit or
knocked, it will light up an LED.

3.2.1 The circuit diagram

For this project, you’ll need the following components:

■ An Arduino.
■ A breadboard and jump wires.
■ A zener diode 0.5 watt 5V1. (We used a BZX55C5V.)
■ An uncased piezoelectric transducer. (We used a 27 mm one from eBay.)
■ A resistor, 1M ohm.

You’ll use an uncased piezoelectric transducer because this will give better results than
a cased one.

 When hit, piezoelectric transducers can produce very high voltages, which are
capable of causing damage to the Arduino. A zener diode is used to protect the

V

Figure 3.7 When a
piezoelectric transducer is
distorted, it produces an
electric charge; alternately
squeezing and releasing the
transducer will produce a
varying voltage.

Figure 3.8 When varying
voltage is applied to a
piezoelectric transducer, the
transducer’s shape distorts.
Download from Wow! eBook <www.wowebook.com>

48 CHAPTER 3 Simple projects: input and output
Arduino from these high voltages, and the resistor is there to bleed off the voltage
from the transducer.

 Figure 3.9 shows the complete circuit diagram. Note the orientation of the zener
diode and how both it and the resistor are parallel to the piezoelectric transducer.

 Now that you’ve looked at the circuit diagram, you can move on to assembling the
circuit on your breadboard.

3.2.2 Connecting the hardware

The circuit has three main parts in addition to the Arduino: a 5.1 V zener diode, a 1M
ohm resistor, and a piezoelectric transducer. As already described, the zener diode
and the resistor are connected in parallel to the piezoelectric transducer.

 Start by placing the three components onto the breadboard, paying careful
attention to the polarity of the piezoelectric transducer, which normally has a red
and black wire presoldered onto it using a special low-melting-point solder. The

Arduino

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

Zener 5V1

1M

Piezoelectric

Figure 3.9 A piezoelectric transducer attached to analog input A0. The zener
diode protects the Arduino from the high voltages produced by the transducer
when it’s struck.
Download from Wow! eBook <www.wowebook.com>

49A piezoelectric transducer
black wire connects to the GND part of the circuit, and the red connects to the Ardu-
ino’s analog input A0.

 The zener diode needs to be connected the correct way so that it protects the
Arduino’s analog input from any voltages exceeding 5 volts. Conventionally, the cath-
ode or negative end of the diode, normally designated with a black band, would be
connected to GND, but in your circuit you’re going to reverse-bias the diode and con-
nect it the other way so that the cathode is connected to the positive side of the cir-
cuit. The zener diode works by only conducting electricity when its breakdown voltage
is exceeded, which in this case is 5.1 volts. Any voltages over 5.1 volts will cause the
diode to connect and short circuit the voltage to GND, thus protecting the input of
the Arduino.

 When the three components have been connected to the breadboard, you can
make the final connections to the Arduino’s GND and analog input A0. Figure 3.10
shows a picture of the completed circuit, including the connections to the Arduino.

 With your components connected together and to the Arduino, you can now move
on to writing your sketch and interfacing the Arduino with your piezoelectric transducer.

3.2.3 Sketch to measure output from a piezoelectric transducer

To start with, you’re going to use the sketch that was shown in listing 3.1. If you didn’t
save the sketch before, create a new sketch and type in the listing.

Diodes
Diodes are two-terminal devices that have low resistance to current flow in one direc-
tion, and high (ideally infinite) resistance in the other. Zener diodes are a special type
of diode that is designed to allow current to flow in either direction once its break-
down or knee voltage is exceeded.

Figure 3.10 The completed
circuit connected to the
Arduino. Note the
orientation of the zener
diode and the polarity of the
piezoelectric transducer.
Download from Wow! eBook <www.wowebook.com>

50 CHAPTER 3 Simple projects: input and output
Go ahead and plug in the Arduino to the USB port, upload your sketch, and start the
serial monitor. Initially the serial monitor should just print 0 values. Now try lightly
hitting or squeezing the transducer, and notice how the sensor values change. A typi-
cal output is shown in figure 3.11.

 When the transducer is hit, the numbers should quickly rise to a maximum value
and then fall back to 0. The differing values indicate how hard the transducer is
squeezed or hit: the higher the value, the harder it has been hit or squeezed. If noth-
ing happens, check your connections, paying careful attention to the orientation of
the transducer and the zener diode.

 You’re now going to amend your sketch so that only values over a certain threshold
are printed. You can either alter your existing potentiometer sketch or create a new
one. The new sketch is shown in the following listing; save this sketch as threshold.

int sensorPin = A0;
int sensorValue = 0;
int threshold = 200;

void setup(){
 Serial.begin(9600);
}

void loop(){
 sensorValue = analogRead(sensorPin);
 if (sensorValue > threshold) {
 Serial.print("Sensor = ");
 Serial.println(sensorValue, DEC);
 }
 delay(10);
}

In listing 3.2, you set a threshold value of 200. In the loop part of the sketch, you’re
only going to print out sensor values that are greater than this threshold.

 Now let’s move on to testing it.

Listing 3.2 Threshold for a piezoelectric transducer

Figure 3.11 The serial
monitor showing the results
of squeezing or tapping the
piezoelectric transducer
Download from Wow! eBook <www.wowebook.com>

51A piezoelectric transducer
3.2.4 Upload and test

After entering the sketch shown in listing 3.2, verify that it compiles and then upload
it to the Arduino. Load the serial monitor and try hitting the transducer with varying
degrees of force. Note that the harder you hit it, the higher the sensor value that’s
returned. Figure 3.12 shows some example output.

 Now you have a sketch that checks the value at analog input A0 and prints the
value if it exceeds a certain threshold. Next, you want to make it do something more
useful than just report a value. If you added a speaker to your circuit, you could get
the Arduino to play a note or tone when the piezoelectric transducer is hit, and that’s
what you’re now going to do.

3.2.5 Circuit with added speaker

For this section, you need to add two components:

■ A small speaker, 8 ohm
■ One 1k ohm resistor

Figure 3.13 shows the circuit from figure 3.9 with the speaker and resistor added.
 Now it’s time to assemble the circuit onto a breadboard.

3.2.6 Connecting the hardware

Connect the hardware with the speaker connected to digital pin 8 through a 1k ohm
resistor. The completed circuit is shown in figure 3.14.

 We had to solder a couple of jumper wires to the speaker because the original
speaker wire was too soft to plug directly into the breadboard. If you don’t have sol-
dering equipment, you can either use some insulating tape to tape the wires onto the
wire jumpers or use alligator clips.

 Once all the components have been connected, you can move on to writing
your sketch.

Figure 3.12 Output from
hitting the piezoelectric
transducer with varying
degrees of force
Download from Wow! eBook <www.wowebook.com>

52 CHAPTER 3 Simple projects: input and output
Arduino1

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t
D

ig
it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

Zener 5V

Piezoelectric

1MΩ

±5%

1K

Speaker

Figure 3.13 A speaker has been added to the circuit, with which you’ll output a tone.

Figure 3.14 Connections with the addition of the speaker
Download from Wow! eBook <www.wowebook.com>

53A piezoelectric transducer
3.2.7 Sketch to generate a tone

Listing 3.3 shows the code for your new sketch, in which you set three new variables:

■ toneDuration denotes how long a tone is played in milliseconds.
■ toneFrequency sets the frequency of the tone being played in Hertz (262 Hz is

middle C).
■ speakerPin defines the pin to which the speaker is connected.

int sensorPin = 0;
int sensorValue = 0;
int threshold = 200;
int toneDuration = 40;
int toneFrequency = 262;
int speakerPin = 8;

void setup(){

}

void loop(){
 sensorValue = analogRead(sensorPin);
 if (sensorValue > threshold) {
 tone(speakerPin,toneFrequency,toneDuration);
 }
}

In this sketch, you’re using one of the Arduino’s built-in libraries, tone, which can
take three arguments:

tone (pin, frequency, duration)

pin is the pin to which the tone is output; frequency is the frequency of the output
tone; and duration is the time in milliseconds to play the tone. If the duration
parameter isn’t provided, the tone will play until a noTone command is issued to it:

noTone(pin)

In this sketch, the tone is only played if the sensorValue is greater than the thresh-
old. Now let’s try it out.

3.2.8 Upload and test

After verifying that the sketch compiles with no errors, connect the Arduino to your
computer and upload the sketch to it. Try hitting the piezoelectric transducer and
check that a tone is produced in the speaker. If no sound is produced, try checking all
your connections.

TIP If your speaker is very quiet or you’ve checked all the connections and
you still hear no sound, try increasing the toneDuration from 40 to 1000 or
changing the value of toneFrequency.

Listing 3.3 Generating a tone in the speaker
Download from Wow! eBook <www.wowebook.com>

54 CHAPTER 3 Simple projects: input and output
Once everything is working, you can change the value of the toneFrequency variable
to alter the note that the speaker plays. The higher the frequency, the higher the
pitch; the lower the frequency, the lower the pitch. You can also try altering the value
of the threshold variable. The lower the value, the softer you can hit the transducer
to play a note from the speaker.

 In the next section, you’re going to add more piezoelectric transducers to your cir-
cuit so you can make a keyboard, with the transducers acting as keys.

3.3 Making a pentatonic or five-tone keyboard
The word pentatonic comes from penta, meaning five, and tonic, meaning tones. A pen-
tatonic scale has five notes per octave, compared to the heptatonic scale, which has
seven notes per octave. Pentatonic scales are popular the world over and are featured
in a variety of musical types and styles including blues, Celtic, jazz, and ancient Greek
music. The pentatonic scale is ideal for introducing children to music. Its simplicity
and ease of use make it easy to quickly produce recognizable tunes, and many nursery
rhymes are based on a pentatonic scale.

 You’re now going to build the final project in this chapter by adding another four
piezoelectric transducers to your existing circuit, for a total of five piezoelectric trans-
ducers, which you’ll use as keys. When each key is hit, it will produce a different note,
or tone, from the speaker—hence, a pentatonic keyboard.

3.3.1 Circuit diagram

Each additional piezoelectric transducer requires a 1M ohm resistor and a zener diode
in parallel, exactly the same as the first one you used. Figure 3.15 shows the complete
circuit diagram. It looks complex with the additional components, but you’re only
repeating the circuit used in figure 3.9.

 The circuit diagram shows the five piezoelectric transducers, each with a parallel
resistor and diode. You use the analog inputs A0 through A4 as inputs to the Arduino.

 Now it’s time to connect the hardware together.

3.3.2 Connecting the hardware

Add the additional piezoelectric transducers, resistors, and diodes to the breadboard.
Pay careful attention to the orientation of the piezoelectric transducers and the zener
diodes. As you can see in figure 3.16, I’ve made a common ground using one of the
horizontal strips on the breadboard.

 Having completed the assembly of the keyboard, it’s a good idea to check that
each transducer is connected correctly. You can do this by uploading the sketch from
listing 3.3 to the Arduino and testing that the transducer connected to analog input
A0 produces a sound from the speaker when hit. If no sound is produced, check that
all connections are properly made; it’s easy to plug a component into the wrong hole
on the breadboard, because the board is now getting crowded. Also check the orienta-
tion of the zener diode and the polarity of the piezoelectric transducer.
Download from Wow! eBook <www.wowebook.com>

55Making a pentatonic or five-tone keyboard
Once everything is working, you can test the other transducers one at a time by mak-
ing a small change to the sketch. Change the value of the sensor pin in the topmost
line from int sensorPin = 0 to int sensorPin = 1. Upload the revised sketch to the
Arduino and test the transducer connected to analog input A1. When the transducer
is hit, a sound should be produced from the loudspeaker.

 Repeat this procedure for the other three transducers by changing the value of the
sensorPin each time. Once all the piezoelectric transducers have been tested and are
working, you can move on to the code for the pentatonic keyboard sketch.

1M

1M

1M

1M

1M

Arduino1

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

Zener 5V1

Zener 5V1

Zener 5V1

Zener 5V1

Zener 5V1

Piezo

Piezo

Piezo

Piezo

Piezo

1K

Speaker

Figure 3.15 Circuit diagram for pentatonic keyboard
Download from Wow! eBook <www.wowebook.com>

56 CHAPTER 3 Simple projects: input and output
3.3.3 Sketch to create a pentatonic keyboard

The code for the pentatonic keyboard is shown in the following listing. You can either
adapt your existing sketch or create a new one and type in the listing.

int sensorValue = 0;
int threshold = 50;
int toneDuration = 10;
int speakerPin = 8;

int tones[]={262,294,330,392,440};

void setup(){

}

void loop(){
 for (int sensorPin = 0; sensorPin < 5; sensorPin++) {
 sensorValue = analogRead(sensorPin);
 if (sensorValue > threshold) {
 tone(speakerPin,tones[sensorPin],toneDuration);
 }
 }
}

This sketch loads the frequencies of the notes into the tones array; the tones used are
based on the major pentatonic scale and middle C:

Listing 3.4 Pentatonic keyboard sketch

Figure 3.16 The pentatonic keyboard fully assembled
Download from Wow! eBook <www.wowebook.com>

57Making a pentatonic or five-tone keyboard
■ C = 262 Hz
■ D = 294 Hz
■ E = 330 Hz
■ G = 392 Hz
■ A = 440 Hz

The loop routine tests the value of each analog input in turn. When a tap on a piezo-
electric transducer is detected, and the value returned is above the threshold value,
the corresponding tone is played through the speaker for 10 milliseconds.

NOTE In this sketch, the threshold is set at 50. You previously used a value of
200, but we found during testing that one of the transducers needed to be hit
much harder than the others, so we reduced the threshold to 50, thus making
the keys more sensitive.

Once all the code has been typed into the sketch, save it with a memorable name. You
can then move on to uploading and testing your pentatonic keyboard. You might even
want to try playing a couple of tunes.

3.3.4 Upload and test

Verify that the sketch compiles. When it does, connect the Arduino to your computer
and upload the sketch to it. Now you can test that everything is working by tapping the
transducers and making sure each produces a tone. Try playing some simple tunes. It
might sound a little tinny because you’re only using a small speaker, but you’ve built
your own working keyboard.

 You can alter the notes by changing the frequencies loaded into the tones array.
You might try the C minor pentatonic scale with the following values:

■ C = 262 Hz
■ E = 311 Hz
■ F = 349 Hz
■ G = 392 Hz
■ B = 466 Hz

By loading different frequencies into the tones array, you can produce very different
sounds and tunes.

 The main thing is to have fun and show off your new creation. Using the major
pentatonic scale, try the following note progressions. See if you can recognize the
tunes, or better yet, see if someone else can recognize them.

1 GGAGCB GGAGDC—Hint: everybody has one of these each year.
2 CDECCDEC EFG EFG—French brother.
3 CCGGAAG FFEEDC—Heavenly.

Now try making some of your own note progressions. One of the beauties of using the
pentatonic scale is that it’s relatively easy to produce pleasant-sounding melodies.
Download from Wow! eBook <www.wowebook.com>

58 CHAPTER 3 Simple projects: input and output
3.4 Summary
In this chapter you looked at the analog-input side of the Arduino using analogRead.
You experimented by reading values from two separate analog devices, a potentiom-
eter and a piezoelectric transducer. You saw how the analog signal is converted to a
digital format using an analog-to-digital converter (ADC) that can be interpreted by
the Arduino. This approach allows you to confidently read data from many other
analog devices.

 Your final project in this chapter made extensive use of analogRead, and you built
a pentatonic keyboard with five piezoelectric transducers that each produced a differ-
ent note when hit. Hopefully you had some fun showing off your musical prowess to
anyone who would listen, even if the sound was a little tinny.

 In the next chapter, you’ll look at the two main ways of extending the Arduino: the
first using software libraries that enable the Arduino to communicate with other sen-
sors, such as two-wire devices and SPI communication, and the second using hardware
shields that plug directly into the headers of the Arduino. You’ll also look at a couple
of the most common shields.
Download from Wow! eBook <www.wowebook.com>

Part 2

Putting Arduino to work

Part 2 of this book (chapters 4 to 13) looks at the Arduino in more depth, and
this is where you’ll really start to put the Arduino to work, learning a number of
advanced techniques that you can use in your own projects. This part of the
book includes chapters on using libraries, controlling various motors, using sen-
sors and LCD displays, communicating with other devices, connecting to game
controllers and iOS devices, creating wearables, building your own Arduino
shields, and integrating with other software packages.
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Extending Arduino
In previous chapters, you looked at the digital input and output and analog input
functionality of the Arduino, and you constructed a few projects based on this func-
tionality, including a reactometer and a pentatonic keyboard. But the Arduino is
capable of much more, and you can also extend its functionality by using software
libraries or hardware shields. In this chapter you’re going to learn different ways of
connecting the Arduino to other devices or equipment.

 For example, if you were building an obstacle-avoidance robot that could detect
objects in its path and maneuver around them, the Arduino would be an obvious
choice. There are software libraries and hardware shields readily available that can
enable the Arduino to drive motors, connect to infrared or ultrasonic sensors that
detect objects, and communicate over Wi-Fi.

 Let’s get started by learning about software libraries.

This chapter covers
■ Software libraries
■ The Arduino core and standard libraries
■ Contributed libraries
■ Hardware shields
■ Some common shields
61

Download from Wow! eBook <www.wowebook.com>

62 CHAPTER 4 Extending Arduino
4.1 Extending the Arduino with libraries
In the software world, a library is a piece of software that provides some sort of func-
tionality, such as writing text to an LCD screen or calculating your position from a GPS
navigation system. Software libraries work in the same way as conventional reference
libraries: you request information and then use it within your project. Imagine you’re
working on a research project: you take a reference book out of a library and use the
parts you need in your project. It’s exactly the same with a software library.

 In the Arduino world, a library is a piece of software that you include in your
sketch and that provides some form of functionality. For example, there’s a Liquid-
Crystal library that, when included in your sketch, will give you the ability to com-
municate simply with some LCD displays. A library is often used many times across
many projects.

 Some libraries can be used on their own, whereas others need to be used with
additional electronic components, often in the form of shields. We’ll cover the use of
shields later in this chapter.

 There are three different types of Arduino libraries: core, standard, and contrib-
uted. We’ll start with the built-in core library.

4.2 Core library
The core library is built into the main Arduino IDE and is central to what makes the
Arduino such a great device for both beginners and more experienced users. The
core library hides much of the complexity traditionally involved when working with a
microcontroller. Members of the Arduino development team, who were involved with
teaching students how to use microcontrollers in their projects, recognized that the
downfall of many traditional microcontrollers was the difficulty of programming
them. They looked at what actions many of their students wanted to perform with a
microcontroller and, based on this, designed a core library that makes these actions
easy to perform.

 Most projects read data in (input) or write data out (output), and the core library
makes these common tasks simple to execute. For example, to read the value of a dig-
ital pin, you just need to use the easily remembered digitalRead. Other common
functions you’ve already used include digitalWrite and analogRead.

 In your last project, the pentatonic keyboard, you used another core function,
Tone, to output sound to a loudspeaker, and you used the Serial functions to send
code output to the serial monitor:

■ Serial.begin(9600)

■ Serial.print("Hello World")

In later chapters, you’ll come across other core functions, but for now we’re going to
look at the standard libraries that are included as part of the Arduino IDE.
Download from Wow! eBook <www.wowebook.com>

63Standard libraries
4.3 Standard libraries
When you downloaded and installed the Arduino IDE, some standard libraries were
included with the installation. The standard libraries are ones that the Arduino devel-
opment team thinks will be needed by many people in their own projects. They aren’t
included by default in your projects like the core library, because the Arduino has lim-
ited resources; automatically including the libraries would be a waste of these resources,
leaving little room for code in your own sketches.

 To use the standard libraries, you have to explicitly include them in your sketches.
To do so, you need to add an include statement at the top of your sketch. For exam-
ple, if you wanted to include the LiquidCrystal library, which is used to display data on
an LCD screen, you would place the following at the top of your sketch:

#include <LiquidCrystal.h>

NOTE The name of the library is bounded by angle brackets: < and >. Also,
the line doesn’t end with a semicolon (;) as is usual.

The standard libraries are described in the following sections:

■ ArduinoTestSuite library
■ EEPROM library
■ SD library
■ Ethernet library
■ Firmata library
■ LiquidCrystal library
■ Servo library
■ Stepper library
■ SPI library
■ Wire library
■ SoftwareSerial library

We’ll also revisit some of these libraries in later chapters, where we’ll go into much
more detail about them.

4.3.1 Test-driven development with ArduinoTestSuite

The ways that code and sketches are written and developed are always evolving, and
hopefully improving. One of the more recent innovations is a software process called
test-driven development (TDD).

 In TDD, a software project is split into small pieces, and before you write any of the
pieces of code, you first write tests, with each test checking a particular function.
When you write the code, it’s run against the tests and must pass for that piece to work
correctly; if it doesn’t pass, you correct any errors and test the code again. When the
piece of code passes its tests, you repeat the process for the next piece of code. This
continues until the project is finished. If a change is made to a piece of code at a later
Download from Wow! eBook <www.wowebook.com>

64 CHAPTER 4 Extending Arduino
date, you can run the tests to make sure everything still functions correctly and that
the change has not caused other areas of the program to malfunction.

 The ArduinoTestSuite library is the first step in bringing this methodology to Ardu-
ino development. It’s a relatively new library, but it’s seen as being essential to future
development on Arduino. The ArduinoTestSuite library provides standard methods and
functions that can be used to test your sketches before uploading them to the Arduino.
This ensures that your code sketch works as intended before using it with expensive real-
world devices that may be harmed if used incorrectly.

 The library is still in active development, but it currently has tests for the processes
listed in table 4.1.

The idea of incorporating software testing as part of Arduino development is new, but
it will likely become more important as development of the IDE continues and func-
tionality increases.

4.3.2 Storing values using EEPROM
Electrically Erasable Programmable Read-Only Memory (EEPROM) is a type of mem-
ory that retains its values even when a microcontroller is turned off. The amount of
EEPROM on an Arduino board is dependent on the microcontroller at its core.
Table 4.2 lists the amount of EEPROM memory available on the microcontrollers
used on different Arduino boards.

Table 4.1 The tests available in the ArduinoTestSuite library

Test Description

ATS_begin Initiates the beginning of the test process

ATS_end Completes the test process

ATS_Test_DigitalPin Tests the given digital pin

ATS_Test_PWM Tests PWM output

ATS_Test_AnalogInput Tests analog input

ATS_Test_EEPROM Tests the EEPROM

ATS_TestSerialLoopBack Tests the RX and TX of serial ports

ATS_GetFreeMemory Returns the amount of free memory available on the Arduino

Table 4.2 EEPROM memory on microcontrollers used on Arduino boards

Microcontroller EEPROM memory (bytes)

ATMega8 and ATMega168 512

ATMega328 1,024

ATMega1280 and ATMega2560 4,096
Download from Wow! eBook <www.wowebook.com>

65Standard libraries
NOTE The Arduino Uno is based on an ATMega328; it has 1,024 bytes of
EEPROM memory.

The EEPROM library gives sketches access to the Arduino’s EEPROM and provides two
functions, read and write, as shown in table 4.3.

NOTE Any data written to the EEPROM remains there even when the Arduino
is switched off.

A good use of the EEPROM library would be to store settings in between Arduino
restarts—for example, constants that might be used by an LCD interface, data in a
counting application, or the highest score in a game. If you want to store more data
than this, it might be time to think about using SD cards.

4.3.3 Storing more data with SD

The Arduino doesn’t have a convenient way of storing data, apart from the onboard
EEPROM, which is only suitable for storing configuration settings and tiny amounts of
data. To store the data logged from that GPS guided rocket project you’ve been work-
ing on, you’re going to need to look elsewhere. Luckily, others have already paved the
way, and there are a number of shields available that can use SD or SDHC memory
cards, which are commonly used in digital cameras for storing pictures.

 One of the advantages of using SD or SDHC cards is that they’re readily available in
a variety of memory sizes, and they’re relatively cheap, with prices starting at just a few
dollars. Table 4.4 shows the typical differences between SD and the higher-capacity
SDHC cards.

William Greiman wrote an Arduino library called SdFat that supports the FAT16
and FAT32 filesystems on SD cards. The SdFat library provides a comprehensive
range of functions: creating and deleting files and directories, and performing
basic formatting.

Table 4.3 The functions available in the EEPROM library

Function Description

read Reads the value of a byte stored at a location in EEPROM

write Writes a value to a location in EEPROM

Table 4.4 Key differences between SD and SDHC memory cards

SD SDHC

Capacity 0–2 GB 4 GB–32 GB

File storage system FAT16 or FAT32 FAT32
Download from Wow! eBook <www.wowebook.com>

66 CHAPTER 4 Extending Arduino
 The Arduino team realized that many users would find it difficult to use the SdFat
library, so they built a wrapper around it, making it friendlier to use by exposing only
a subset of its functions.

NOTE The SdFat library uses a lot of program memory, which limits the size
of your sketches, so it’s recommended that you use it with an Arduino that
has at least an ATMega328P processor.

When included in your sketch, the SD library provides a range of basic functions, as
listed in table 4.5, enabling the Arduino to interact with SD cards.

NOTE The SD library can only use the 8.3 filesystem—an eight-character file-
name and a three-character extension, separated by a period. You can’t use
long descriptive filenames or names with spaces in them.

Arduino uses a serial peripheral interface bus (SPI; more about this in section 4.3.9)
to communicate with the SD card, which uses digital pins 11, 12, and 13 on a standard
Arduino and 50, 51, and 52 on a Mega. In addition, pin 10 is commonly used to select
the card device on a standard Arduino and pin 53 on the Mega; an alternative pin can
be used by specifying it in the call to SD.begin.

Table 4.5 The functions provided by the SD library

Class Function Description

SD begin Initializes the SD library and card

exists Tests existence of file or directory on the card

mkdir Creates directory on the card

rmdir Deletes directory on the card

remove Deletes file from the card

open Opens file on the card

File available Checks if any bytes are available to read from a file

close Closes file and makes sure data written to it is saved on the card.

seek Seeks a position in the file

position Returns current position within the file

size Returns size of the file

print Prints data to already open file

println Prints data to file and appends newline

write Writes data to the file

read Reads a byte from the file
Download from Wow! eBook <www.wowebook.com>

67Standard libraries
NOTE Before an SD card can be used by the
Arduino, it must first be properly formatted
as either FAT16 or FAT32 using your com-
puter and a card reader.

A microSD shield is available from SparkFun
Electronics, as shown in figure 4.1.

 A range of shields is also available with
onboard microSD card connectors, including
the latest official Ethernet shield and data log-
ging shields available from SparkFun Electron-
ics and Adafruit Industries.

4.3.4 Get connected with Ethernet

An increasing number of people want their projects to be remotely accessible so that
they can share their data or results over a home network, or so that the project can be
controlled over an internet connection. Sending status messages via Twitter is a favor-
ite goal in many projects, which requires the Arduino to tweet the results of some
form of input. An early example came from a baker whose oven was connected to an
Arduino: it tweeted a message to his customers whenever a fresh batch of bread was
ready for sale.

 The Ethernet library simplifies the TCP/IP stack, making it easier to get an Ardu-
ino to communicate over the internet or home network. The library is designed to
work with WIZnet W5100-based boards. The latest official Arduino Ethernet board
also has an onboard microSD card connector that’s great for data-logging applica-
tions. You could use the Arduino to take readings in a remote location and display the
readings on a basic web page as well as log them to a microSD card that could be
retrieved and further analyzed at a later date.

 The Ethernet library is very extensive and allows the Arduino to be set up as either
a server, which receives connections from clients, or as a client, which connects to
servers. Table 4.6 shows some of these functions.

Table 4.6 Some of the functions provided by the Ethernet library

Class Function Description

Ethernet begin Initializes library and network settings

localIP Returns local IP address

dnsServerIP Returns DNS server address

Server Server Creates server

begin Starts to listen for connections

available Retrieves a client that has data available to read

Figure 4.1 The microSD shield from
SparkFun Electronics
Download from Wow! eBook <www.wowebook.com>

68 CHAPTER 4 Extending Arduino
As you can see in table 4.6, the Ethernet library is rich in functionality and is under
active development as we head to a more connected world.

4.3.5 Serial communication with Firmata

Firmata is a communication protocol that allows a host computer to use software to
control a microcontroller. The Firmata library provides the serial communication pro-
tocols for communicating with the software on a host computer.

 Using Firmata, a host computer can control devices attached to the Arduino, such
as servos, motors, and LEDs. You can have your own glorious Technicolor light-and-
sound show controlled by a host PC that sends commands to one or more Arduinos.

 Table 4.7 shows some typical Firmata functions.

write Writes data to clients; data is byte or char

print Writes data to clients; data can be byte, char, int,
long, or string

println Writes data to clients, followed by a newline

Client Client Creates client

connected Returns true if client is connected to server

Connect Connects to IP address and port specified

write Writes data to a connected server

print Writes data to server; data can be byte, char, int,
long, or string

println Writes data to server, followed by a newline

available Returns number of bytes to be read from server

read Reads next byte from server

flush Discards bytes waiting to be read by client

stop Disconnects from the server

Table 4.7 Typical Firmata functions

Method Description

Common begin Initializes Firmata library

printVersion Sends protocol version to host computer

setFirmwareVersion Sets firmware version

Table 4.6 Some of the functions provided by the Ethernet library (continued)

Class Function Description
Download from Wow! eBook <www.wowebook.com>

69Standard libraries
The Firmata protocol is evolving all the time; visit http://firmata.org/wiki/ to get the
latest updates and information. We’ll take a more detailed look at Firmata in chapter 13.

4.3.6 Displaying data using the LiquidCrystal library

You’ve seen in previous chapters how the Arduino can display information on the
Arduino IDE’s built-in serial monitor, but what about when the Arduino isn’t con-
nected to a host computer? It can be handy to use a small 16-character-by-2-row (16 x 2)
LCD to display information to your project users. Most of these small LCDs are based
on a Hitachi HD44780 or compatible chip.

 This requirement is so common that we’ve devoted a whole chapter—chapter 7—
to just dealing with LCD displays. You’ll learn how to show your project users GPS data,
status messages, and other cool and useful stuff.

 Central to all this is the LiquidCrystal library that’s used to drive the display.
Table 4.8 lists some of the functions available in the library.

 You’ll learn more about LCD displays in chapter 7.

Sending messages sendAnalog Sends an analog message

sendDigitalPortPair Sends digital pin value

sendsysex Sends a command with an array of bytes

sendString Sends a string to the host PC

Receiving messages available Checks buffer for incoming messages

processInput Processes incoming messages

attach Attaches a function to an incoming
message type

detach Detaches a function from an incoming
message type

Table 4.8 Some LiquidCrystal library functions

Function Description

begin Sets the dimensions of the LCD screen in rows and columns

LiquidCrystal Initializes the library and sets up the pins used to communicate with the LCD

print Prints data to the LCD

clear Clears the LCD screen

setCursor Positions the cursor on the LCD screen

Table 4.7 Typical Firmata functions (continued)

Method Description
Download from Wow! eBook <www.wowebook.com>

http://firmata.org/wiki/

70 CHAPTER 4 Extending Arduino
4.3.7 Controlling a servo motor

Servo motors are commonly used in the radio-control world to accurately control
movement in models, such as the flaps on a model airplane or the rudder on a
model boat. They’re ideal for projects needing accurate movement, such as obstacle-
avoidance robots that scan an ultrasonic sensor from side to side looking for objects
to avoid.

 You’ll be looking at servo motors in much greater detail in the next chapter; for now
let’s look at some of the main features of the Servo library. The Servo library allows the
Arduino to control up to 12 servo motors on a standard Arduino, and a whopping 48 on
the Mega. Table 4.9 shows the main functions provided by the Servo library.

NOTE Using the Servo library disables analogWrite on the PWM pins 9 and
10 for a standard Arduino. On the Mega, using more than 12 servos will dis-
able analogWrite on pins 11 and 12.

Another type of motor is a stepper motor, and there’s another library for driving them.

4.3.8 Turning a stepper motor

A stepper motor rotates its motor shaft in steps; the specification of a stepper motor is
often given in steps, so a motor with a specification of 200 steps would take 200 steps
to rotate one revolution.

 Sometimes the specification is given in degrees; this can easily be converted to
steps by dividing one revolution, which is 360 degrees, by the number of degrees given
in the specification. For a stepper motor with a specification of 1.5 degrees, you would
calculate the number of steps per revolution as follows:

360 degrees / 1.5 degrees per step = 240 steps

Stepper motors are therefore a great way of controlling devices precisely.
 The Stepper library gives the Arduino control over both unipolar and bipolar

types of stepper motors. Using the library, you can set the speed of rotation of the

Table 4.9 The main functions provided by the Servo library

Function Description

attach Attaches servo to a pin.

attached Checks servo attached to pin.

detach Detaches servo from pin.

read Reads angle of servo.

write Writes shaft angle to servo—between 0 and 180 on a normal servo. On
a continuous rotation servo, sets the speed of rotation.

writeMicroseconds Writes value to the servo in microseconds, to set the angle of the shaft.
Download from Wow! eBook <www.wowebook.com>

71Standard libraries
motor, the number of steps to take, and the motor direction. Table 4.10 lists the main
functions provided by the Stepper library.

We’ll cover the Stepper library in much greater detail in chapter 5, where we’ll also
look at the different types of stepper motors available.

4.3.9 Communicating with SPI peripherals
Serial peripheral interface bus (SPI), sometimes called four-wire bus, is a synchronous
serial communications protocol used for communicating over short distances with
external peripherals. SPI can be used to communicate with a variety of peripherals or
sensors, including temperature sensors, pressure sensors, analog-to-digital converters,
touch screens, videogame controllers, and onscreen displays. You’ve already seen that
the Arduino uses SPI to communicate with SD cards.

 The protocol has a single master, the Arduino, and one or more slave devices.
Because of the lack of a formal standard, there’s some variation in how individual
manufacturers apply SPI to their own devices, so you’ll probably need to resort to a
data sheet if you want to connect to a particular peripheral.

 The protocol uses four wires, three of which are common to each device, and one
that’s a slave select. Their designations are shown in table 4.11.

Each slave has a slave select wire but shares the other three wires. Digital pin 10 (53 on
the Mega) is normally used as the slave select line, but others can be set during setup.
The Arduino Ethernet shield uses pin 4 to connect to the onboard SD connector and
pin 10 to connect to the Ethernet controller.

 The SPI library provides functions to interact with SPI peripherals, as shown in
table 4.12.

Table 4.10 Main functions provided by the Stepper library

Function Description

Stepper Initializes Stepper library and sets the number of steps per revolution

setSpeed Sets speed at which motor should turn, in rotations per minute (RPM)

step Steps the motor the number of steps specified; positive numbers rotate one way,
negative numbers the other

Table 4.11 Four wire designations for SPI on the Arduino

Designation Description Arduino pin Mega pin

MISO Master In Slave Out, sending data to master 12 50

MOSI Master Out Slave In, sending data to slave 11 51

SCK Serial clock 13 52

SS Slave select Normally 10 53
Download from Wow! eBook <www.wowebook.com>

72 CHAPTER 4 Extending Arduino
Let’s have a closer look at a couple of those functions:

■ setBitOrder—This sets the order in which data is sent to the bus. The choices
are either Most Significant Bit (MSB) or Least Significant Bit (LSB). The periph-
eral data sheet should give you this information.

■ setClockDivider—This governs the speed that the SPI bus runs at, as a divisor of
the system clock. The default divider setting is 4, which reduces the speed of the
SPI bus to a quarter of the system clock; other divisors are 2, 8, 16, 32, 64, and 128.

■ setDataMode—This controls the mode of transmission of data between the
slave peripheral and the master. There are three main transmission modes, and
these depend on whether data is shifted in or out on the rising or falling edge
of the clock pulse, which is called clock phase. The other consideration is whether
the clock is idle when set high or low; this is the clock polarity.

Table 4.13 summarizes the setDataMode modes.

Although this looks complicated, by making good use of the data sheet and carefully
following each step for setting up the SPI bus, you should be able to communicate
with SPI peripherals with confidence.

4.3.10 Communicating with the two-wire interface

I2C, commonly known as two-wire interface (TWI), is used to communicate with a wide
range of low-speed devices and components, including real-time clocks. It’s perfect

Table 4.12 SPI functions

Function Description

begin Initializes the SPI bus and sets the MOSI and SCK pins low and the SS pin high

end Disables SPI bus

setBitOrder Sets the order in which bits are loaded into the bus

setClockDivider Sets the SPI clock divider as a division of the system clock

setDataMode Sets SPI data mode

transfer Transfers one byte over the bus

Table 4.13 The setDataMode modes dependent on clock phase and clock polarity.

Mode Clock polarity (CPOL) Clock phase (CPHA)

0 0 0

1 0 1

2 1 0

3 1 1
Download from Wow! eBook <www.wowebook.com>

73Standard libraries
for logging applications, LCD displays, ultrasonic rangers for distance measurements,
and digital potentiometers whose resistance can be read or set remotely. Interestingly,
I2C is also used in Nintendo game controllers, the Wii Motion Plus, and Wii Nunchuks.
We’ll look at interfacing with those in chapter 9.

 Only two pins are needed for the I2C bus interface. Table 4.14 identifies these for
the standard Arduino and Mega.

With the Wire library, the Arduino can act as either a master or slave device. In most
cases, the Arduino will be the master device and will interact with one or more slave
devices on the I2C bus; each slave device has a unique address to distinguish it on the
bus network. It’s possible to string devices together, up to a maximum of 112.

 The Arduino can also be set up as a slave device, and when in this mode, it inter-
acts with a master device.

 Table 4.15 lists the main functions of the Wire library.
 We’ll take a more detailed look at using the Wire library in chapter 9.

Table 4.14 Pin designations on the standard Arduino and the Mega for I2C

Standard Arduino Mega

SDA data line Analog input pin 4 Digital pin 20

SCL clock line Analog input pin 5 Digital pin 21

Table 4.15 List of main Wire library functions

Function Description

begin Initializes the Wire library and joins I2C bus either as master or slave.

requestFrom Requests data from slave to master.

beginTransmission Prepares to start transmission of data.

send Sends data from slave to master or queues bytes for transmission
from master to slave.

endTransmission Ends transmission (begun by beginTransmission) of data to a
slave, and sends the bytes queued by send.

available Returns number of bytes available for retrieval with receive.
Should be called on the master device after a call to requestFrom
or on a slave inside the onReceive handler.

receive Retrieves byte transmitted by slave device after a call to
requestFrom or from a master to a slave.

onReceive Registers function to call when the slave receives a transmission
from the master.

onRequest Registers function to be called when the master requests data from
the slave device.
Download from Wow! eBook <www.wowebook.com>

74 CHAPTER 4 Extending Arduino
4.3.11 Get more serial ports with SoftwareSerial

Many projects require at least one serial port. GPS devices send position and status
messages serially, and some LCDs can be interfaced to a serial controller. A serial port
is made up of just two connections: one RX for receiving messages, and one TX for
transmitting or sending messages.

 The beauty of a serial port is its simplicity. At one time every computer had a serial
port; in fact, the original Arduino used a serial port for connecting to the computer,
and even through the connection is now made by USB, it still emulates a serial port
and appears to the host computer as a serial port.

 The Arduino Uno and Duemilanove have one hardware serial port connected to dig-
ital pins 0 and 1, but if your project needs to connect to more serial devices than this—
for example, to both a GPS and a serial LCD controller—you have a choice. You can
either purchase the more powerful Arduino Mega, which has four dedicated hardware
serial ports, or use the SoftwareSerial library that’s distributed with the Arduino IDE.

 The original SoftwareSerial library could only provide one software serial port in
addition to the hardware port, and it was limited to a speed of 9600 baud. These limi-
tations were addressed by Mikal Hart with his NewSoftSerial library. Realizing the
advantages this library had, the Arduino development team renamed it and incorpo-
rated it as a replacement for the existing SoftwareSerial library in mid-2011. Table 4.16
shows the functions provided by the new library.

The updated library can create multiple instances of software serial ports, which can
communicate at up to speeds of 115,000 baud. But all this additional functionality
comes at a price, because the Arduino can only listen or receive data on one software
serial port at a time, although it can transmit data on any port. When using the library
with more than one software port, you’ll need to think carefully about your sketch
structure and the order in which data will be received.

 Let’s consider an example: You want to connect to both a GPS and a serially con-
nected thermometer using software serial ports. GPS devices tend to send their data in

Table 4.16 The functions of the SoftwareSerial library

Function Description

begin Activates port and sets baud rate

available Switches to that port

isListening Returns current active port

listen Listens to port and makes active

end Terminates port

read Reads data from port

write Writes data to port
Download from Wow! eBook <www.wowebook.com>

75Contributed libraries
bursts at intervals of a second, so your sketch could start by listening to the software
serial port connected to the GPS, and after it has received the burst of data, switch to
listening to the other port and process its data before switching back to the port con-
nected to the GPS. Here’s a sketch demonstrating how this would work in practice.

#include <SoftwareSerial.h>
SoftwareSerial gpsPort(2, 3);
SoftwareSerial thermPort(4, 5);

void setup()
{
 gpsPort.begin(9600);
 thermPort.begin(9600);
}

void loop()
{
 gpsPort.listen();
 while (gpsPort.available() > 0) {
 char inByte = gpsPort.read();
 }
 thermPort.listen();
 while (thermPort.available() > 0) {
 char inByte = thermPort.read();
 }
}

As you can see, the SoftwareSerial library is a great addition to your toolbox, but you
must be careful when using it with more than one software serial port.

 This concludes our roundup of the standard libraries. But what if you want to work
with other devices or peripherals that aren’t covered by the standard libraries? There’s
a good chance that someone has written a library that you can use in your project. In
the next section, we’re going to look at how to use these user-contributed libraries.

4.4 Contributed libraries
Contributed libraries are libraries that are contributed by users of the Arduino but
that aren’t distributed as standard with the Arduino IDE. You’ll find many of these
libraries listed on the main Arduino website.

 Some of these libraries are extensions to the standard libraries, offering a few
more functions, and over time, if these additions are deemed suitable, the develop-
ment team may add them to the standard libraries or even to the core library. Other
contributed libraries are designed to work with particular devices, such as game con-
trollers—you’ll see one of these used in chapter 9.

 So how do you add a contributed library to your project? Because these libraries
aren’t distributed with the IDE, you need to perform a couple of additional steps
before you can use one of them.

Listing 4.1 Using the SoftwareSerial library with two ports

Includes
SoftwareSerial
library

Sets up
two ports

Listens to the
two devices
Download from Wow! eBook <www.wowebook.com>

76 CHAPTER 4 Extending Arduino
4.4.1 Installing a new library

Adding a contributed library to the Arduino IDE requires a few simple steps:

1 Download the library, usually a zip file.
2 Install it into the Arduino IDE by copying the unzipped files to your default

sketch directory libraries folder. If the libraries folder doesn’t exist, you’ll need
to create it.

3 If the IDE is already started, you’ll need to restart it. The library should now be
available to your code.

4 Add the library to your sketch by selecting Sketch > Import Library from the menu,
as shown in figure 4.2, where a couple of contributed libraries are displayed.

NOTE Once a library is added to the IDE, it
will be available for use with future projects,
just like the standard libraries are.

Once a library has been imported to a sketch,
all its functions are available to the sketch.

 This concludes our look at Arduino soft-
ware libraries for now. In the chapters ahead,
we’ll come back to some of them, and we’ll
also introduce more contributed libraries to
help you get even more functionality out of the
Arduino. In this section, you’ve seen how the
use of software libraries can extend the func-
tionality of the Arduino, allowing it to inter-
face with many devices and peripherals, thus
allowing you to quickly produce complex proj-
ects. In the next section we’re going to look at
another common way to extend the Arduino:
using hardware shields.

4.5 Expanding the Arduino with shields
Shields are another great way to add functionality to the Arduino. Want to control
that robot by Wi-Fi? Get a Wi-Fi shield! Want to use your television as a display? Get
the TellyMate shield! Want to program games like pong? Buy a game shield! These and
a host of other shields are available and let you connect the Arduino to a wide range
of hardware and peripherals.

 Arduino shields are pluggable hardware boards that connect to the headers on an
Arduino. Many of the shields have their own headers, so they can be stacked on top of
each other. To get the most out of a shield, you’ll often need additional libraries, and
these are usually downloadable from the manufacturer of the shield, ensuring that
you have the latest version.

Figure 4.2 The contributed libraries
available to a sketch after installation
Download from Wow! eBook <www.wowebook.com>

77Expanding the Arduino with shields
 Shields are a great way of expanding the Arduino, and they can come fully assem-
bled or as a kit. If you’re unsure of your soldering skills, it might be a good time to
learn. Check to see if there’s a local electronics hobby group or hacker space where
someone can teach you. Alternatively, you can often purchase shields fully assembled
and tested, although this will be more expensive.

 You can even make your own shields from scratch. Many shield manufacturers
have fully embraced the open hardware movement and provide the necessary files
and drawings to make your own printed circuit boards (PCBs).

 In later chapters, you’ll make extensive use of shields in your projects because
they’re such a quick and neat way of extending the Arduino. But first, let’s learn about
some of the common shields that are available.

4.5.1 Common shields

These are some common shields that are generally available:

■ Motor shields
■ Ethernet shields
■ Wi-Fi shields
■ Prototyping shields

Let’s start with motor shields.

MOTOR SHIELDS

Motor shields are usually suitable for controlling small DC motors. They’re sufficiently
powerful to power small robots or vehicles, and they can also be used with stepper and
servo motors.

 There are a variety of versions available. Adafruit Industries produces a motor
shield, shown in figure 4.3, capable of driving two servo motors, two stepper motors,
and up to four DC motors. We’ll be making extensive use of this shield in chapter 5,
where Arduino goes mobile.

ETHERNET

Looking to get your project connected to the internet, tweeting status messages, or
responding to remote commands? We’ve already looked at the standard Ethernet
library, and this is the hardware to go with it.

 The official Arduino Ethernet shield, shown in figure 4.4, is based on the WIZnet
W500 with its full TCP/IP stack. If you plan to purchase the official Arduino version
new, make sure you purchase the latest version, which has an onboard microSD
socket. Adafruit Industries produces an alternative version that’s also compatible with
the library. A cheaper option is to purchase a shield based on the ENC28J60 SPI Ether-
net controller version, but this isn’t directly supported by the Arduino team and has
less functionality, though it may be enough for your project.
Download from Wow! eBook <www.wowebook.com>

78 CHAPTER 4 Extending Arduino
WI-FI

Everything seems to be going wireless nowadays, and the Arduino is no exception.
Wi-Fi gives you wireless control, which is ideal for remote-operated robots, as well as
connecting to the internet.

Figure 4.3 A motor shield from adafruit.com

Figure 4.4 The official
Arduino Ethernet shield
Download from Wow! eBook <www.wowebook.com>

79Expanding the Arduino with shields
There are a couple of different shields available that provide Wi-Fi functionality. The
WiFly shield from SparkFun is shown in figure 4.5.

PROTOTYPING SHIELDS

Bare or prototyping shields are excellent for use with your own projects. There are a
few different versions available; some have an onboard breadboard, and others have a
prototyping area you can solder components to. Figure 4.6 shows an example of a pro-
totyping shield available from adafruit.com.

Figure 4.5 The WiFly shield
from SparkFun

Figure 4.6 A prototyping shield from
adafruit.com
Download from Wow! eBook <www.wowebook.com>

80 CHAPTER 4 Extending Arduino
NOTE Shields that are available as kits aren’t always provided with headers, so
you may need to purchase these separately.

4.5.2 Gotchas: will it work with my Arduino?

When using shields on a project—particularly if using more than one—care must be
taken as to which pins are used by an individual shield. There’s a great website,
www.shieldlist.org, that has a comprehensive list of shields and which pins they use.
It’s worth checking the site for compatibility between shields that you want to use in
your project.

 A further consideration is the components on a shield. Some components are very
tall and may interfere with any shields stacked on them.

 You must also determine whether a shield is compatible with your Arduino. Some
don’t work with the Arduino Mega or require modifications to work with it. Others
require a minimum of a 328 processor and won’t work with the older 168 processor
found in Diecimila and an early version of the Duemilanove Arduino.

4.6 Summary
In this chapter, we’ve looked at ways of expanding the functionality of the basic Ardu-
ino by using software libraries and hardware shields to interface the Arduino with a
wide range of hardware and peripherals.

 We started off by looking at software libraries, including the core library and those
provided as standard with the Arduino IDE. We then looked at the vast range of con-
tributed libraries and how they can be used in your projects.

 In the second part of the chapter we looked at hardware shields, which are
another excellent way of expanding the Arduino. We looked at some of the common
shields and discussed some considerations you need to be aware of, mainly when
using more than one shield or using the Arduino Mega.

 In the next chapter, we’ll use both libraries and shields to add motor functionality
to your Arduino projects.
Download from Wow! eBook <www.wowebook.com>

www.shieldlist.org

Arduino in motion
Earlier chapters provided you with a strong foundation for using the Arduino to
communicate in the digital and analog worlds. You’ve built and developed a small
number of projects from start to finish that have demonstrated these principles.
You’ve also explored how to use libraries and shields to extend the basic functional-
ity of the Arduino and enable it to work with an increasingly wide range of devices.

 It’s now time to consider the ways that the Arduino can be used in your own
projects, whether it’s a tweeting bread oven, an internet remote-controlled robot,
or an automatic cat door. This and successive chapters will give you the tools and
techniques to achieve these goals.

 Starting with this chapter, you’re going to look at ways of adding mobility to a
project. You’ll examine different ways of controlling a variety of off-the-shelf motors

This chapter covers
■ Connecting to small DC motors
■ Reverse and speed control of DC motors
■ Stepper motors
■ Servomotors
■ Brushless motors
■ Using a purpose-designed motor shield
81

Download from Wow! eBook <www.wowebook.com>

82 CHAPTER 5 Arduino in motion
or motors you may already have. Perhaps you have an old junk printer that can be
stripped for its stepper motors, or old toys powered by small DC motors; these are all
motors you can use!

 If you want to use the Arduino to control small DC motors to power a robot, to
adjust the control on an unmanned aerial vehicle with a servomotor, to step a stepper
motor on a 3D printer, or to control a quadrocopter powered by brushless motors, this
chapter will show you how.

 Let’s get started with a look at DC motors, which are typically used to power small
robots or vehicles.

5.1 Getting up to speed with DC motors
Small direct current (DC) electric motors can be found in a wide range of devices,
including radio-controlled cars and boats, electric car windows, DVD players, and hand-
held electric fans. Many of these can be repurposed for use with an Arduino. Alterna-
tively, new motors can be purchased from Arduino suppliers, model shops, or eBay.

 Voltages for small DC motors normally range from 1.5 to 30 volts, delivered
through two wires; each motor manufacturer provides a recommended voltage.
Exceeding the recommended voltage by too much will cause the motor to burn out;
delivering too little voltage will result in the motor not turning at all.

 To make a motor reverse, you normally just need to reverse the two wires con-
nected to it. If you’re using a motor to power a small robot, it’s often connected to a
gearbox. Why a gearbox? A small DC motor normally produces high speed and low
torque. A gearbox converts this to low speed, high torque, making it more suitable for
powering a small robot.

 A gearbox can normally be purchased with the motor. Figure 5.1 shows a typical
motor with a gearbox.

 The Arduino can only provide a small amount of current—not enough to power a
motor—so you’ll need to use an external power supply. You’ll use the Arduino to
switch the motor on and off, as well as to provide speed control. Initially, we’ll look at
switching a motor on and off, and then we’ll move on to controlling its speed.

 For this section you’ll need the following items:

■ A small DC motor
■ An external power supply suitable for the motor
■ An external power supply for the Arduino (9 volts recommended)
■ A miniature relay DPDT 5 volt coil rated 2 amps or more
■ A 2N2222 NPN transistor
■ A 1N4003 diode
■ A small breadboard
Download from Wow! eBook <www.wowebook.com>

83Getting up to speed with DC motors
5.1.1 Stopping and starting

You start a DC motor by applying an appropriate
voltage to it, and you stop it by removing that
voltage. One of the simplest ways to do this is by
using a switch that when switched one way starts
the motor and when switched the other stops it.

 You’re going to use an Arduino to turn the
motor on and off, and one way to do that is to use
a relay as an electrical switch. Relays are available
in a number of types and packages. To switch the
motor on and off, you need a type of relay called
single pole double throw (SPDT), rated for a current
of 2 amps or more and with a 5 volt coil.

 Figure 5.2 shows the layout of an SPDT relay.
A relay has a coil that, when energized by apply-
ing a voltage to it, moves the contact one way (contact 1 in figure 5.2), and when de-
energized moves it the other way (contact 2 in the figure).

NOTE A double pole double throw (DPDT)
relay is basically two SPDT’s together on the
same device. It’s easier to connect a DPDT relay
on a breadboard, so that’s what you’re going to
use in the following circuit.

You can’t use the Arduino to supply the 5 volts to
the coil of the relay because it can’t provide enough
current, so you’ll need to use a transistor to power
the coil and switch the relay. The transistor you’re
going to use is a general-purpose type 2N2222 NPN
transistor. The transistor will be configured as a
switch to turn the relay’s coil on and off.

 The 2N2222 transistor is available in either a
plastic or metal package and has three wires:
collector, base, and emitter. Figure 5.3 shows a

Figure 5.1 A DC motor complete
with gearbox from solarbotics.com

Coil Pivot

Contacts

1 2

Figure 5.2 The elements of an SPDT relay

Figure 5.3 A NPN 2N2222 transistor in
a TO-92 plastic package
Download from Wow! eBook <www.wowebook.com>

84 CHAPTER 5 Arduino in motion
2N2222 transistor in a plastic package. The transistor works as a switch by applying a
small voltage to the base wire, which causes current to freely flow between the collec-
tor and the emitter.

 We’ll discuss the circuit in more detail when we come to connecting the hardware.
Next we’re going to look at the sketch.

5.1.2 Sketch to turn a small DC motor on and off

In your sketch, you’re going to repeatedly switch a motor on for five seconds and then
off for five seconds. The next listing shows the sketch you’ll use to stop and start your
motor. Enter it into the Arduino IDE.

int transistorBasePin = 13;

void setup()
{
 pinMode(transistorBasePin, OUTPUT);
}

void loop()
{
 digitalWrite(transistorBasePin, LOW);
 delay(5000);
 digitalWrite(transistorBasePin, HIGH);
 delay(5000);
}

The sketch works by switching on a transistor whose base is connected to digital pin 13
on the Arduino. In the next section, you’ll learn more about the hardware and how
the circuit works, starting with the electronic switch.

5.1.3 Connecting the hardware

You’re going to use a transistor to operate a relay to switch a motor on and off. The
transistor is a bipolar NPN 2N2222, which is a general-purpose transistor. The transistor
has three legs: a base, a collector, and an emitter. Figure 5.4 shows the typical connec-
tions for a 2N2222 NPN transistor in plastic and metal packages.

Listing 5.1 Sketch to turn a small DC motor on or off

Emitter

Base

Collector Emitter
Base

Collector

Figure 5.4 A 2N2222 NPN
transistor with legs connected to
a TO-92 plastic package on the
left and a TO-18 metal package on
the right
Download from Wow! eBook <www.wowebook.com>

85Getting up to speed with DC motors
NOTE There’s no guarantee that the leg arrangement will be
exactly as shown in figure 5.4. If in doubt, consult the manu-
facturer’s data sheet.

You’re using the transistor so that it acts as a switch; figure 5.5
shows the schematic symbol for an NPN transistor.

NOTE There are two types of standard transistors: NPN and
PNP. The letters in the acronyms refer to the layers of semi-
conductor materials used to make them. The majority of
transistors used today are NPN, because they’re the easiest
type to make.

When no voltage is applied to the base of the transistor, the switch is off. When a volt-
age greater than 0.6 volts above the emitter is applied to the base, the transistor
switches on and current flows from the collector to the emitter. Turn off the voltage to
the base, and the transistor switches off again.

NOTE The transistor is never fully switched off because a small amount of
leakage current is passed.

Figure 5.6 shows the complete circuit diagram for your circuit.

Collector

Base

Emitter

Figure 5.5
Schematic symbol
for an NPN
transistor showing
the base, collector,
and emitter

Arduino

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u

t

D
ig

it
a
l
In

p
u
t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

M

Motor

K1

5V SPDT VCC

Q1

2N2222

D1

1N4003

R1

1kΩ

±0.1%

Figure 5.6 Schematic diagram for switching a motor on and off with a transistor and a relay
Download from Wow! eBook <www.wowebook.com>

86 CHAPTER 5 Arduino in motion
The relay you’re going to use is a DPDT; you could
use an SPDT relay, but its pinouts are difficult to fit
onto a breadboard. Figure 5.7 shows the pinouts for
a typical DPDT relay.

 You’ll need to check the datasheet for the relay
you use to identify its pinouts, but as a general rule,
the coil is at one end and is spaced differently from
the other pins. The common (COM) pins are closest to
the coil, with the normally closed (NC) pins next and
the normally open (NO) connection at the far end. Fig-
ure 5.7 shows the pinouts of the relay we used.

 In the circuit diagram in figure 5.6, the D1 diode
is a protection diode. When a relay coil is switched off, it can generate high voltage
spikes that could potentially damage transistors and integrated circuits. The diode
deals with these spikes safely, protecting the other components in the circuit.

 When the Arduino sends a HIGH signal to the base of the transistor, it switches the
transistor on; this in turn energizes the relay coil, which moves the contacts and com-
pletes the circuit to the motor, causing it to turn. When the Arduino sends a low signal
to the transistor base, it turns it off, causing the relay coil to de-energize and move the
contacts to the NC position, which breaks the motor circuit and turns it off.

 Using the circuit diagram in figure 5.6 as a guide, assemble the circuit on a bread-
board. Figure 5.8 shows the completed circuit.

 Having completed the circuit, you can now move on to testing it.

5.1.4 Upload and test
Once you’ve made your connections, upload your sketch to the Arduino. You should
notice the motor switching on for five seconds and then switching off for five seconds
in a continuous loop.

Coil

Com

NO

NC

Connects to negative

side of motor

Connects to negative

side of battery

Figure 5.7 Pinouts of DPDT relay

Figure 5.8 Completed
circuit controlling a motor
with a relay
Download from Wow! eBook <www.wowebook.com>

87Speed control and reverse
Using a transistor and relay like this is a great way to switch a motor on and off, but
there are times you’ll want to be able to control the motor’s speed and direction.
That’s what you’re going to do next.

5.2 Speed control and reverse
Reversing a DC motor just involves swapping the wires from the power supply to the
motor. But if your motor is installed in a remote place or on a mobile robot zipping
across a room, switching wires becomes more difficult.

 Controlling the speed of a motor is even trickier. The speed of a motor can be var-
ied by altering the voltage applied to it. The less voltage, the slower the motor will
turn, and the more voltage, the faster the motor will turn.

NOTE Running a motor at too high a voltage is likely to cause it to overheat,
resulting in permanent damage.

One way to vary the voltage is to use a potenti-
ometer to produce variable resistance. This is
shown in figure 5.9.

 This is a very simple way to control a
motor, but it’s very inefficient because the
potentiometer can quickly become very hot.
A much more efficient way is to use a method
called pulse width modulation (PWM), which
we’ll discuss next.

5.2.1 PWM to the rescue

A motor is at its most efficient when its
design voltage is supplied to it. PWM is the
most efficient way to power a motor, and it
works by applying a series of voltage pulses
to the motor.

 We like to use the analogy of a playground carousel: if you start a carousel spin-
ning, it will continue to spin and gradually slow down. To keep it turning, you need to
give it another spin. To make the carousel turn faster at a constant speed, you need
to give it lots of small spins; fewer spins will lower the speed. In the same way, you can
control a motor’s speed by switching the voltage on and off quickly.

 You previously met the analogRead function, which measures an analog volt-
age and converts it to a digital number using the Arduino analog-to-digital con-
verter (ADC). You would be forgiven for thinking that the Arduino analogWrite
function does the opposite and outputs a voltage relative to a digital value given to
it, but, in fact, the analogWrite function produces a PWM output. Figure 5.10
shows a graphical representation of the output from an Arduino using the analog-
Write function.

M

Potentiometer

Battery

Motor

Figure 5.9 Using a potentiometer to control
the speed of a motor
Download from Wow! eBook <www.wowebook.com>

88 CHAPTER 5 Arduino in motion
The Arduino produces the output as a series of pulses, which, when coupled with the
correct components, make it ideal for controlling motor speed.

NOTE The Arduino’s software automatically configures all of an Arduino
CPU’s available timers for hardware PWM duty at the beginning of every
sketch. The Arduino’s programming language makes PWM easy to use: call
analogWrite(pin, duty cycle), where duty cycle is a value from 0 to 255,
and pin is one of the PWM pins (3, 5, 6, 9, 10, or 11 on a standard board, or
pins 2 through 13 on an Arduino Mega).

0V

5V

0V

5V

0V

5V

0V

5V

Pulse width modulation (PWM)

Time ->

Time ->

Time ->

Time ->

0% duty cycle analogWrite(0)

25% duty cycle analogWrite(64)

75% duty cycle analogWrite(191)

100% duty cycle analogWrite(255)

Figure 5.10 Output from an Arduino using the analogWrite function
Download from Wow! eBook <www.wowebook.com>

89Speed control and reverse
As we’ve said before, the Arduino can’t itself provide enough current to drive a
motor, but you can use the Arduino to control the speed and direction of rotation.
In the next section, you’re going to learn about a special circuit called an H-bridge.
The H-bridge allows you to power a small DC motor and will give you more control
over it than the transistor relay combination used previously.

5.2.2 The H-bridge for motor control

An H-bridge is a common way of control-
ling the speed and direction of a DC
motor. Initially we’ll use an H-bridge to
turn a motor on and off and control its
direction of rotation, and then we’ll return
to what we learned in the last section and
use PWM to control its speed.

 Figure 5.11 shows a typical circuit
diagram of an H-bridge made up of four
switches.

 A good way to visualize how the circuit
in figure 5.11 works is to use a table. Table 5.1 shows the motor’s action based on the
position of the four switches.

In two of the rows, the motor brakes, which is caused by the motor terminals being
short-circuited. If the motor is turning, it will free-run (coast to a stop) if all the
switches are open.

 We could duplicate the H-bridge in figure 5.11 using transistors to replace the
switches, but for ease of use and speed of assembly, you’re going to use an excellent,
readily available, purpose-designed integrated circuit that has two H-bridges on it.
The L293D dual H driver provides a ready means of controlling both the direction and
speed of a small DC motor. It’s suitable for use in small robots or vehicles.

NOTE Make sure you get the L293D, not just an L293; the L293D comes
equipped with built-in protection diodes.

Table 5.1 Motor action based on position of switches in the H-bridge shown in figure 5.11

S1 S2 S3 S4 Motor action

Closed Open Closed Open Turns clockwise

Open Closed Open Closed Turns counterclockwise

Open Open Open Open Free runs

Closed Open Open Closed Brakes

Open Closed Closed Open Brakes

M

S1

S2 S3

S4

Figure 5.11 An H-bridge made up of four
switches to control the direction of a motor
Download from Wow! eBook <www.wowebook.com>

90 CHAPTER 5 Arduino in motion
You’ll need the following items:

■ A small DC motor
■ An external power supply
■ A breadboard
■ An L293D dual H driver

5.2.3 The L293D dual H driver

The L293D comes in a 16-pin package with pinouts as
shown in figure 5.12.

 Table 5.2 provides descriptions of each of the L293D
pinouts.

The L293D has the following characteristics:

■ Peak output current of 1.2 amps
■ Continuous output current of 600 milliamps
■ Voltage range of 4.5–36 volts
■ Drivers enabled in pairs
■ Can drive two DC motors or one stepper motor

You’re now going to look at how you can use the L293D to drive your small DC motor.

Table 5.2 Pinouts of L293D dual H driver

Pin Label Description

1 1,2 EN Enables half-H driver 1 and 2

2 1A Half-H driver 1 input

3 1Y Half-H driver 1 output

4, 5, 12, 13 GND Ground

6 2Y Half-H driver 2 output

7 2A Half-H driver 2 input

8 Vcc2 Motor supply 4.5–36V

9 3,4 EN Enables half-H driver 3 and 4

10 3A Half-H driver 3 input

11 3Y Half-H driver 3 output

14 4Y Half-H driver 4 output

15 4A Half-H driver 4 input

16 Vcc1 5V logic voltage

L
2
9
3
D

h
-b

rid
g
e

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

1,2 EN

1Y

1A

2Y

2A

GND

GND

GND

GND

Vcc2 3.4 EN

3A

3Y

4A

4Y

Vcc1

Figure 5.12 Pinouts of the
L293D dual H driver
Download from Wow! eBook <www.wowebook.com>

91Speed control and reverse
5.2.4 Connecting the hardware

Although the L293D is capable of driving two DC motors, we’re only going to show
how to drive one. The same techniques are used to drive two motors, so you can easily
expand this if your own project requires you to use two.

 Figure 5.13 shows the circuit diagram for the connections between the motor, the
H-bridge and the Arduino; figure 5.14 shows the assembled project on its breadboard.

NOTE Make sure you connect the grounds of the two power supplies together.

Once you’ve completed assembling the circuit, you can move on to constructing
your sketch.

9

10

11

12

13

14

15

16
VCC11-2EN

4A1A

4Y1Y

GND3GND1

GND4GND2

3Y2Y

3A2A

3-4ENVCC2
8

7

6

5

4

3

2

1

IC1

DOUT11

DOUT4

L293D

DOUT7

4.5-36V

VCC

GND

GND

MOTOR

Figure 5.13 Circuit diagram
showing connections between the
motor, the L293D, and the Arduino

Figure 5.14 DC motor control
using an L293D integrated circuit
Download from Wow! eBook <www.wowebook.com>

92 CHAPTER 5 Arduino in motion
5.2.5 Sketch to control a motor with an L293D

Looking at the circuit diagram shown in figure 5.13, you can see that the motor is con-
nected to pins 3 and 6 with pins 1, 2, and 7 connected respectively to pins D11, D4, and
D7 on the Arduino. You can draw up a truth table (table 5.3) based on these connec-
tions, and use this information to write your sketch.

Looking at the table, you can see that for the motor to operate, the enable pin (1,2
EN) must be HIGH with the 1A and 2A pins controlling the direction. Armed with this
information, you can now write your sketch, as shown in the next listing.

int enablePin = 11;
int in1A = 4;
int in2A = 7;

void setup()
{
 pinMode(enablePin, OUTPUT);
 pinMode(in1A, OUTPUT);
 pinMode(in2A, OUTPUT);
 digitalWrite(enablePin, LOW);

}

void loop()
{
 digitalWrite(in1A, HIGH);
 digitalWrite(in2A, LOW);
 digitalWrite(enablePin, HIGH);
 delay(5000);
 digitalWrite(enablePin, LOW);
 delay(2000);
 digitalWrite(in1A, LOW);
 digitalWrite(in2A, HIGH);
 digitalWrite(enablePin, HIGH);
 delay(5000);
 digitalWrite(enablePin, LOW);
 delay(2000);
}

Table 5.3 Truth table for L293D connected to a DC motor

1,2 EN 1A 2A Motor

HIGH LOW HIGH Turns clockwise

HIGH HIGH LOW Turns counterclockwise

HIGH LOW LOW Brakes

HIGH HIGH HIGH Brakes

LOW (doesn’t matter) (doesn’t matter) Brakes

Listing 5.2 Using an L293D to control a small DC motor

Drives motor
counterclockwise

Brakes

Drives motor
clockwise
Download from Wow! eBook <www.wowebook.com>

93Speed control and reverse
Listing 5.2 shows a sketch that you can use to switch your motor on and off with the
L293D H-bridge. You first set the enable pin to LOW, thereby disabling the H-bridge.
During the loop, you enable the H-bridge by setting the enable pin to HIGH. The in1A
and in2A pins, which are connected to pins 2 (1A) and 7 (2A) on the L293D, are
changed in the loop so that the motor turns in one direction for five seconds and then
the other direction for five seconds with a two-second gap in between. Let’s move on
and test your sketch.

5.2.6 Upload and test

Check your connections, and then upload the sketch to the Arduino. If everything is
working correctly you should observe the motor rotating one way and then the other
way with a pause in between. The sequence then repeats.

 We’ve just shown you how to use a circuit to control one motor; controlling
another is just a matter of duplicating the circuit. By changing your code and using
the same circuit, you can also alter the speed of the motor, which you’ll do next.

5.2.7 Changing motor speed

We previously talked about how PWM can be used to control the speed of a motor, and
you can do the same with this circuit. You’ll use PWM on the enablePin to enable
and disable the H-bridge. Here’s the new sketch.

int enablePin = 11;
int in1 = 4;
int in2 = 7;

void setup()
{
 pinMode(enablePin, OUTPUT);
 pinMode(in1, OUTPUT);
 pinMode(in2, OUTPUT);
 digitalWrite(enablePin, LOW);

}

void loop()
{
 digitalWrite(in1, HIGH);
 digitalWrite(in2, LOW);
 digitalWrite(enablePin, HIGH);
 for(int i = 0 ; i <= 255; i++) {
 analogWrite(enablePin, i);
 delay(50);
 }

 digitalWrite(in1, LOW);
 digitalWrite(in2, HIGH);
 for(int i = 0 ; i <= 255; i++) {

Listing 5.3 Controlling motor speed with an L293D

Counterclockwise

Clockwise
Download from Wow! eBook <www.wowebook.com>

94 CHAPTER 5 Arduino in motion
 analogWrite(enablePin, i);
 delay(50);
 }

}

This sketch is similar to the previous one; you’re using a for loop that varies the PWM
output on the enablePin from 0 to 255, first rotating the motor in one direction and
then the other. After either changing your existing sketch or creating a new one, you
can move on to testing it.

5.2.8 Upload and test

Check over your connections, and then upload the sketch to the Arduino. If every-
thing is working correctly, you should see the motor rotating in one direction and
then the other, with the motor gradually increasing in speed from stationary to full.
The sequence then repeats.

NOTE You may notice a delay between each start of the motor because it may
need a minimum PWM value to start turning. This depends on an individual
motor’s characteristics, but is perfectly normal.

We’ve shown you how to use this circuit to control one motor, but as before, control-
ling another is just a matter of duplicating the circuit.

 The circuit you’ve built in this example is only suitable for driving small motors.
Large DC motors can be similarly controlled with PWM, but they require suitably
rated components; unfortunately, these components tend to be more specialized
and expensive.

 This concludes our look at controlling small DC motors. Next, we’ll look at stepper
motors, which can be precisely controlled

5.3 Stepper motors: one step at a time
A stepper motor is a special type of motor that can move in a series of discrete steps.
Stepper motors are a good choice for projects requiring controlled and accurate
movement. Typical projects include 3D printers, telescope positioning systems, and
computer numerical control (CNC) lathes and mills.

 Good sources for obtaining stepper motors are old inkjet or laser printers, where
they’re used to move the print heads and to control paper feed. You can also purchase
new ones from electronics suppliers or from eBay.

 Figure 5.15 shows a typical stepper motor purchased from eBay.
 Stepper motors are classified according to their frame size, which corresponds to the

diameter of the body: a size 11 has a body diameter of 1.1 inches, and a size 23 has a
body diameter of 2.3 inches. Stepper motors are also often rated in terms of the torque
they can provide, with the torque being proportional to body length: the longer the
body, the greater the torque. The step angle is also normally provided; a stepper motor
with an angle of 9 degrees will require 40 steps to complete a full revolution.
Download from Wow! eBook <www.wowebook.com>

95Stepper motors: one step at a time
NOTE Torque is a measure of the rotational force a motor can provide, often
given in ounce-inches.

There are two main types of stepper motors—bipolar and unipolar—each with its own
advantages and disadvantages. Let’s take a look at the differences between them.

5.3.1 Unipolar or bipolar

Bipolar and unipolar describe the internal method of construction of a stepper
motor. The two types are also controlled in slightly different ways. Table 5.4 shows the
main differences.

NOTE A unipolar stepper motor can be electronically controlled in the same
manner as a bipolar motor if it’s connected in a particular way.

Choosing a stepper motor can be quite involved, depending on your intended usage.
For projects requiring extremely accurate high torque, choose the bipolar variant; for
simpler projects, the cheaper unipolar type is a good choice, although bipolar motors
are now becoming more readily available because of the reduction in cost of the inte-
grated circuits needed to control them.

Table 5.4 Main differences between unipolar and bipolar stepper motors

Unipolar Bipolar

Simpler to control More efficient

Generally lower cost Greater torque per unit of power

Five or six wire connections (can be more) Four wire connections

Greater speed of rotation

Simpler construction

Figure 5.15 A stepper motor
purchased from eBay
Download from Wow! eBook <www.wowebook.com>

96 CHAPTER 5 Arduino in motion
If you’re scavenging a motor from existing equipment or purchasing a motor from
eBay, you’ll need to identify the type of stepper motor and which wires connect to
which coil.

 Let’s take a look at the steps required to identify the motor type and connections
of a stepper motor we purchased from eBay.

 A visual inspection revealed a label on the back, as shown in figure 5.16. This
indicated that the motor has a step angle of 1.8 degrees and that it draws 0.5 amps
of current. The description provided by the seller also indicated the motor was rated
at 6.5 volts.

 The stepper motor has a step angle of 1.8 degrees, so we calculated the number of
steps to complete one revolution by dividing 360 degrees by the step angle:

360 / 1.8 = 200

Based on our calculation, the stepper motor takes 200 steps to complete one revolution.
 The motor has six wires connected to it, and based on what we already know, this

identifies it as a unipolar motor. We can work out the motor connections by using a
multimeter to measure the resistance between individual wires and recording the
results in a table. Figure 5.17 demonstrates taking a measurement between two wires
using a multimeter.

 Draw a truth table and record the resistance between each wire, with X denoting
no connection. Our truth table for our motor is shown in table 5.5.

Figure 5.16 Label on the back of a
stepper motor

Figure 5.17 Measuring the resistance
between two stepper motor wires
Download from Wow! eBook <www.wowebook.com>

97Stepper motors: one step at a time
What we’re measuring is the resistance in the coils of the stepper motor. The unipolar
stepper motor has two coils, each with a wire connected halfway along the coil. Notice
how some measured values are half the values of others—13 ohms instead of 26 ohms.
Figure 5.18 shows this more clearly.

 Using the preceding method, we identified the coil wires of our unipolar step-
per motor.

 We should also take a quick look at bipolar stepper motors, because these are read-
ily available in surplus equipment such as old printers. Figure 5.19 shows a bipolar
stepper motor from an old surplus Epson printer.

 The only identification is a label on the back of the stepper motor, as shown in fig-
ure 5.20.

 The label identifies the stepper motor as an Astrosyn P/N EM-257. A search on the
internet turns up some information for its specification, which is summarized in
table 5.6.

 Like the unipolar motor, the bipolar motor has two coils. We can identify the coils
using a multimeter to measure their resistance. Because there are only four wires and
no center taps, we just need to find out which two wires connect together.

 One of the wires has a red stripe on it. We call this wire number one, and then num-
ber the other wires sequentially. Using the multimeter we discovered that wire number
one was connected to wire three, and that wire two was connected to wire four.

Table 5.5 Record of resistance between stepper motor wires

Red Blue Green Yellow Black White

Red X 26 X X X 13

Blue 26 X X X X 13

Green X X X 13 26 X

Yellow X X 13 X 13 X

Black X X 26 13 X X

White 13 13 X X X X

26

Red

White

Blue

Green

Yellow

Black

26

13

13 13

13

Figure 5.18 Resistance
measured from coils of a
unipolar stepper motor
Download from Wow! eBook <www.wowebook.com>

98 CHAPTER 5 Arduino in motion
You’ve now seen how to identify the wires for both unipolar and bipolar stepper motors.
 You now need to work out how to connect a stepper motor to the Arduino, and for

this you’re going to use the L293D chip that you previously used to power your DC motor.

5.3.2 Connecting the hardware

You’ll need the following items:

■ A stepper motor
■ An external power supply
■ A breadboard
■ An L293D dual H driver
■ A selection of jumper wires
■ Two 2-pin screw connectors

The L293D can drive either a bipolar or a unipolar stepper motor. Figure 5.21 shows
the schematic for your circuit to drive a bipolar stepper motor.

Table 5.6 Specification of surplus bipolar stepper motor

Specification Value

Voltage 7 volts

Current 0.7 amps

Wires 4

Steps/revolution 200

Step angle 1.8 degrees

Frame size 17 (1.7 inches)

Figure 5.19 A surplus bipolar stepper motor
pulled from an old printer

Figure 5.20 Label on reverse of
bipolar stepper motor
Download from Wow! eBook <www.wowebook.com>

99Stepper motors: one step at a time
You use the Arduino digital pins 8 through 11 to provide the control inputs for the
L293D chip. Pins 1 and 9 of the L293D are tied to the 5 volt supply so that the H-bridges
are always enabled (when you controlled the DC motor, you used these pins to provide
the PWM control by switching them to either HIGH or LOW).

 Pin 8 on the L293D provides the power for the motor; make sure you tie the
grounds for the 5 volt supply and the stepper motor supply together. One coil con-
nects to pins 3 and 6, and the other to pins 11 and 14 of the L293D chip.

NOTE The circuit diagram shown in figure 5.21 is for a bipolar stepper motor;
when using a unipolar stepper motor with an L293D, connect the center tap of
the coils to ground.

Now that you’ve studied the schematic, you can move on to assembling the circuit on
a breadboard. Figure 5.22 shows the completed circuit.

5.3.3 Stepper motor library functions

The Arduino IDE has excellent support for stepper motors and provides a library
appropriately called Stepper that can be used with either bipolar or unipolar step-
per motors. We took a brief look at the Stepper library in chapter 4 and saw that the
library has three main functions that together control the speed and direction of
rotation of the stepper motor. Let’s look at each of these in turn, starting with the
Stepper function.

VCC 5V

9

10

11

12

13

14

15

16

S
T

E
P

P
E

R

43

VCC11-2EN

4A1A

4Y1Y

GND3GND1

GND4GND2

3Y2Y

3A2A

3-4ENVCC2
8

7

6

5

4

3

2

1

IC12

21

DOUT11DOUT8

L293D

VCC STEPPER

GNDGND

DOUT10DOUT9

Figure 5.21 A schematic
diagram using an L293D to
drive a bipolar stepper motor
Download from Wow! eBook <www.wowebook.com>

100 CHAPTER 5 Arduino in motion
STEPPER

The Stepper function has two forms depending on the circuitry used to drive your
stepper motor, because it’s possible to control a stepper motor using only two pins of
the Arduino by adding additional components. These are the functions:

Stepper(number_steps, pin1, pin2)
Stepper(number_steps, pin1, pin2, pin3, pin4)

The number_steps variable is the number of steps your stepper motor takes to com-
plete one revolution, which, if you’ll recall, you can calculate by dividing 360 by the
step angle. For example, if you have a motor with a step angle of 1.5 degrees, the cal-
culation is as follows:

360 / 1.5 = 240 steps

The remaining variables—pin1, pin2, and the optional pin3 and pin4—are the Ardu-
ino digital pins that are used to control the stepper motor.

NOTE In our example, we used all four pins.

SETSPEED

This optional function sets the motor’s speed of rotation in revolutions per minute
(RPM). This function doesn’t actually cause the stepper motor to turn, but it sets the
speed at which it will turn when it’s commanded to by the steps function.

setSpeed(rpm)

STEPS

This function moves the motor the number of steps specified: a negative number causes
the stepper motor to turn one way, and a positive number causes it to turn the other way.

steps(num_steps)

Figure 5.22 Circuit
connections between the
L293D and the unipolar
stepper motor
Download from Wow! eBook <www.wowebook.com>

101Stepper motors: one step at a time
The rate at which the stepper motor moves between steps is set by the setSpeed func-
tion; if this function isn’t called in your sketch, the stepper motor will move as quickly
as it’s able to between steps.

 Now that you’ve seen the functions available to you, let’s look at the sketch you’re
going to use to step your motor.

5.3.4 Sketch to control a stepper motor

This sketch is shipped with the Arduino IDE, and it’s a great way to ensure that you
have your stepper motor wired correctly. Because it moves the motor one step at a
time, the sketch is called stepper_oneStepAtATime, and it can be found in the Files >
Examples > Stepper menu. We’ve provided a copy of it in the following listing.

#include <Stepper.h>

const int stepsPerRevolution = 200;
Stepper myStepper(stepsPerRevolution, 8,9,10,11);

int stepCount = 0;
void setup() {
 Serial.begin(9600);
}

void loop() {
 myStepper.step(1);
 Serial.print("steps:");
 Serial.println(stepCount);
 stepCount++;
 delay(500);
}

The first line of the sketch loads the Stepper library; you need to do this because even
though the library is provided as part of the Arduino IDE, it isn’t part of the core
libraries B. You next set the number of steps for your stepper motor; this listing is set
for a 200-step motor, but yours may be different c. You next make a call to set up
your Stepper object and set the pin numbers to use.

 During the setup function, you set up the serial port so that you can see the num-
ber of steps taken.

 In the loop function, the stepper motor is moved one step at a time, and the num-
ber of steps is sent as output to the serial port. The stepCount is incremented by 1,
and then a delay of 500 milliseconds occurs before you go through the loop and step
the motor again.

 Take some time to make sure you understand the code in the sketch before mov-
ing on to test it.

5.3.5 Upload and test

Check over your connections and upload the sketch to the Arduino. Make sure every-
thing is powered correctly, and hopefully the stepper motor turns one step at a time.

Listing 5.4 Sketch to drive a stepper motor

Loads Stepper libraryb

Sets motor steps
and pin numbersc
Download from Wow! eBook <www.wowebook.com>

102 CHAPTER 5 Arduino in motion
 If it doesn’t turn, you may need to switch the wires going to the coils—these must
be configured correctly for the sketch to work. Remove the power to the Arduino,
swap the wires, and try again. You might need to make a couple of wire swaps to get
everything connected correctly and get the stepper motor turning one step at a time.

 In this section on stepper motors, we’ve covered both unipolar and bipolar stepper
motors and how to connect them correctly to your L293D chip. You now have a work-
ing stepper motor that you can use in any future projects. Next, we’re going to take a
look at another type of motor, called a servomotor.

5.4 Try not to get in a flap with servomotors
Servomotors are very common in the model-control world and are excellent for mov-
ing flaps on model airplanes or rudders on model boats, and for steering model cars
or robots. They’re also widely available from a number of suppliers.

 A servomotor is a geared motor that can be set to turn to an angle, usually
between 0 and 180 degrees, and is normally powered by a voltage of approximately
4.8 volts. Because of their low cost and their simplicity of control, they’re ideal for
use in a wide variety of projects that require accurate movement. We’ve previously
used a servomotor to scan an ultrasonic module from side to side to locate objects in
a small robot’s path.

 A typical servomotor is shown in figure 5.23.
 Let’s take a look at how a servomotor is controlled.

5.4.1 Controlling a servomotor

A servomotor has three connections to it: ground, power, and a control or signal con-
nection. The majority of modern servo connectors have the center connector as the
power line.

 The control or signal connection controls
the angle the servomotor turns to by sending a
pulse. The pulse width tells the motor to turn to
an angle somewhere between 0 and 180 degrees.
The pulse has to be repeated every 20 millisec-
onds or the motor will return to an arbitrary
position. Figure 5.24 shows the relationship
between pulse width and servo angle.

 As you can see in figure 5.24, the neutral
position for a servo is 90 degrees, which is
obtained with a pulse width of 1.5 milliseconds.
The pulse width ranges roughly between 1.0 mil-
liseconds and 2.0 milliseconds, with the servo-
motor angle being 0 degrees for the former and
180 degrees for the latter. Figure 5.23 A typical small servomotor
Download from Wow! eBook <www.wowebook.com>

103Try not to get in a flap with servomotors
Now that you’ve seen what is required to power and set the angle for a servomotor,
let’s look at what the Arduino IDE provides.

5.4.2 Servomotor functions and methods

Just as it does for the stepper motor, the Arduino IDE ships with a Servo library to
help you control a servomotor. In fact, the library gives you the ability to control up
to 12 servomotors on a standard Arduino and a whopping 48 on the Arduino Mega.

 The functions and methods provided by the Servo library are listed in table 5.7.

NOTE Using the Servo library disables analogWrite on pins 9 and 10 for a
standard Arduino. On the Mega, using more than 12 servos will disable
analogWrite on pins 11 and 12.

Let’s look at a sketch you can use with a servomotor.

20ms

1.5ms

1.0ms

2.0ms

Figure 5.24 Relationship between pulse width and servo angle
Download from Wow! eBook <www.wowebook.com>

104 CHAPTER 5 Arduino in motion
5.4.3 Sketch to control a servomotor

The sketch you’re going to use is one that’s shipped with the Arduino IDE and shows
the range of motion of a servomotor. The sketch is called sweep, and it can be located
in the IDE under Files > Examples > Servo.

#include <Servo.h>

Servo myservo;
int pos = 0;

void setup()
{
 myservo.attach(9);
}

void loop()
{
 for(pos = 0; pos < 180; pos += 1)
 {
 myservo.write(pos); delay(15); }
 for(pos = 180; pos>=1; pos-=1)
 {
 myservo.write(pos); delay(15); }
}

Table 5.7 Servo library functions

Function name Usage Description

Servo Servo myServo Creates a servo object to control
a servomotor.

attach() attach(pin)
attach(pin,
min, max)

pin is the Arduino pin that the servomotor
is attached to; min and max are values in
microseconds for the maximum and mini-
mum values of the pulse width. The defaults
are minimum 544 and maximum 2400.

write() write(angle) Sets the angle of rotation for the servo-
motor to turn to in degrees.

writeMicroseconds() writeMicroseconds
(pulse_width)

Sets the servomotor’s pulse width in
microseconds.

read() read() Returns the last written pulse width angle
as degrees, from 0 to 180.

readMicroseconds() readMicroseconds() Returns the last written pulse width angle in
microseconds.

attached() attached() Returns true if servo is attached.

detach() detach() Stops attached servomotor from pulsing pin.

Listing 5.5 Sketch to rotate a servomotor between 0 and 180 degrees
Download from Wow! eBook <www.wowebook.com>

105Try not to get in a flap with servomotors
You first need to include the Servo library because although the library ships with the
Arduino IDE, it isn’t included in the core functions. You next create a servo object.

 In setup you attach the servo to digital pin 9 on the Arduino.
 In the main loop, the code sweeps the servomotor from 0 to 180 degrees with a

15-millisecond delay between each new position to give the servomotor time to
move to the new angle. The servomotor is then swept the other way from 180 to 0
degrees, again with a 15-millisecond delay between each move. The loop then
repeats the process.

 Let’s now move on and connect the Arduino to a servomotor so you can see the
sketch in action.

5.4.4 Connecting the hardware

You’ll need the following items:

■ A servomotor
■ An external power supply
■ A breadboard
■ A selection of jumper wires
■ A section of 0.1-inch header

A servomotor usually has three connections, with the center connector typically
being the power connector. The other two connections are the ground and signal
connections. The ground is normally black or brown, although this can vary among
manufacturers.

 Because you’re just using one servomotor, you can use the 5 volt supply on the
Arduino to provide power, although we recommend powering the Arduino with
an external power supply and not just using the USB connection.

 Figure 5.25 shows the section of single-row header
0.1-inch pitch we used on the breadboard to make it eas-
ier to connect to a servomotor. Figure 5.26 shows the
connected circuit.

 Having connected the servomotor to the Arduino, it’s
time to try out your sketch.

5.4.5 Upload and test

Check your connections and upload the sketch from list-
ing 5.5 to the Arduino. You should observe the servomo-
tor turning smoothly from 0 to 180 degrees and from 180
back to 0 degrees. If the motor doesn’t turn, check the
ground and signal connections and try again.

 We’re now going to look at another type of DC motor
called a brushless motor.

Figure 5.25 Section of
single-row header 0.1-inch
pitch to connect servomotor
to breadboard
Download from Wow! eBook <www.wowebook.com>

106 CHAPTER 5 Arduino in motion
5.5 Mighty power comes in small packages with
brushless DC motors
The humble DC motor has been around for more than a century, and the brushless
motor is the new kid on the block. Mass production has rapidly brought the price
down on these highly efficient motors, but what advantages and disadvantages do they
have over their older cousins?

5.5.1 Why go brushless

Brushless motors provide more torque per weight, are more efficient, offer increased
reliability, and have reduced electrical noise compared to standard DC motors. A dis-
advantage is that they require a more specialized controller than a standard motor
does, although you’ll soon see how, with the correct electronics package, they’re easy
to control and even allow you to use some existing code.

 Brushless motors are often labeled with a value of Kv, which is the theoretical RPM
per volt that a motor can rotate at. Consider a motor labeled 2400 Kv as an example. If
you’re supplying 6 volts, the maximum speed the motor could turn at would be 6 x
2400 = 14,400 RPM.

 Brushless motors come in two types: inrunner and outrunner. With an inrunner
motor, only the inner shaft rotates; with an outrunner motor, the outer shell, or
can, rotates as well. Inrunners tend to have a higher Kv and less torque, whereas
outrunners tend to be lower Kv and higher torque. Figure 5.27 shows examples of
both types.

 Inrunner motors tend to be used in model cars and boats, so they’re probably a
good choice for any land-based vehicles or projects. Outrunner motors are normally
found in model airplanes and helicopters. They’re a good choice if you want to build

Figure 5.26 Connections
between servomotor and
Arduino
Download from Wow! eBook <www.wowebook.com>

107Mighty power comes in small packages with brushless DC motors
a quadrocopter. We’ve used outrunner motors previously in an underwater robot
because of their better torque.

 This completes our overview of these small and powerful motors. Let’s take a look
at how you control them.

5.5.2 Gaining control

Brushless motors require specialized controllers because they’re really three-phase
motors. Luckily, electronic speed controllers (ESCs) are readily available in the model
radio-control world at reasonable prices and have a range of functions that you can
take advantage of.

 When choosing a brushless ESC, make sure that it will work with your chosen
motor, because current load and voltage requirements can vary significantly from one
motor to another. ESCs designed for use in model aircraft and some boats are nor-
mally only able to control the speed of rotation of a motor but can’t reverse a motor’s
direction of rotation.

CAUTION It’s possible to reverse the direction of a brushless motor by switch-
ing any two of the three connecting wires with each other. Don’t reverse the
connections from the battery to the controller, because you’ll destroy the ESC
and may also cause damage to the motor or battery pack.

ESCs designed for use in model cars and some boats are usually able to control
both a motor’s speed and its direction of rotation, but make sure you check this
before purchasing.

 To power a brushless motor, you need to use batteries designed to take the high
current required by these motors. These can be NiCd, NiMH, or the newer lithium
polymore (LiPo) battery packs.

NOTE Specialized chargers are needed to charge these batteries; using incor-
rect equipment, particularly with LiPos, can cause them to explode.

Figure 5.27 An outrunner (top) and
an inrunner (bottom) brushless motor
Download from Wow! eBook <www.wowebook.com>

108 CHAPTER 5 Arduino in motion
One of the great things about ESCs is that they can be controlled in exactly the same
way as servomotors; this means you can use the Servo library and the things you
learned in the last section to control them. Just like servomotors, they expect a pulse
every 20 milliseconds with a width of between 1.0 and 2.0 milliseconds, with 1.0 milli-
second being the slowest speed and 2.0 milliseconds being the highest. With ESCs that
can reverse direction, the pulse range will be different: a width of 1.5 milliseconds will
cause the motor to stop, a 2.0-millisecond pulse width will be the fastest forward
speed, and a 1.0 millisecond pulse width will be the fastest reverse speed.

 When a motor and its controller are first powered on, the motor won’t instantly
start—this is a safety feature—but it will wait a period of time and may expect a partic-
ular pulse width before starting. You’ll need to consult the ESC’s manual to see if this
is the case. The first brushless motor we used expected a 1.0-millisecond pulse width
for a period of one second before it would function correctly.

NOTE You’ll often hear a series of tones when an ESC and its motor are first
powered up; this is all part of the normal startup process and can even sound
quite musical.

Now that you have a basic understanding of how to control a brushless motor, let’s
move on and look at some code in a sketch.

5.5.3 Sketch to control a brushless motor
Take a look at the next listing. You should recognize the code because it’s almost the
same as the code in listing 5.5, with the addition of a start pulse during setup to allow
the ESC and motor to stabilize.

#include <Servo.h>

Servo myservo;
int pos = 0;

void setup()
{
 myservo.attach(9);
 myservo.write(pos);
 delay(1000);

}

void loop()
{
 for(pos = 0; pos < 180; pos += 1)
 {
 myservo.write(pos);
 delay(15);
}
 for(pos = 180; pos>=1; pos-=1)
 {
 myservo.write(pos); delay(15); }
}

Listing 5.6 Sketch to control a brushless motor in one direction
Download from Wow! eBook <www.wowebook.com>

109Mighty power comes in small packages with brushless DC motors
The code shown in listing 5.6 is for use with an ESC that only controls speed, not direc-
tion. The next listing shows a sketch you can use with an ESC that can control a
motor’s speed as well as its direction of rotation.

#include <Servo.h>

Servo myservo;
int pos = 90;

void setup()
{
 myservo.attach(9);
 myservo.write(pos);
 delay(1000);

}

void loop()
{
 for(pos = 90; pos < 180; pos += 1)
 {
 myservo.write(pos);
 delay(15);
}
 for(pos = 180; pos>=90; pos-=1)
 {
 myservo.write(pos);
 delay(15); }
}

Once you’ve typed in the sketch that’s applicable to your type of ESC and motor, you
can build your circuit.

5.5.4 Connecting the hardware

You’ll need the following items:

■ A brushless motor
■ A brushless ESC
■ An external power supply for the motor
■ A selection of jumper wires

For this example, we used an inrunner brushless motor with an ESC that can con-
trol both speed and direction. We also used a NiCd battery pack to supply power to
the ESC.

TIP You’ll need to connect the motor to something quite solid because these
motors are very powerful when rotating.

There’s a servo-type connector connected to the ESC, and this can be connected to
your breadboard in the same manner as in the previous section on servomotors. Fig-
ure 5.28 shows the completed setup.

Listing 5.7 Sketch to use with ESC that can control speed and direction
Download from Wow! eBook <www.wowebook.com>

110 CHAPTER 5 Arduino in motion
When you’ve completed your connections, you can move on and test your circuit.

5.5.5 Upload and test

Upload your sketch to the Arduino before connecting the power pack to the ESC. Once
the sketch has uploaded, connect the power pack to the ESC and reset the Arduino.
After a short delay, you should observe the motor speeding up and then slowing down.

 Once you’ve completed this part, it’s time to control the direction of rotation as
well as speed.

5.5.6 Reverse

To control the direction as well as the speed of a brushless motor requires an ESC
that’s normally found in radio-control model cars and some boats. Controlling them
still involves treating the control as a type of servo, but instead of the 1.5-millisecond
pulse width being the midrange speed, it’s the motor’s off position. The 2.0-millisecond
pulse width is now the full forward direction, and the 1.0-millisecond pulse width is
the full reverse position. You need to change your sketch to reflect this.

5.5.7 Sketch to reverse a brushless motor

The new sketch is shown in the following listing. It’s similar to listing 5.7, with a
few additions.

#include <Servo.h>

Servo myservo;
int pos = 90;

Listing 5.8 Sketch to control a brushless motor in both forward and reverse

Figure 5.28 Brushless
motor controlled by an
Arduino
Download from Wow! eBook <www.wowebook.com>

111Mighty power comes in small packages with brushless DC motors
void setup()
{
 myservo.attach(9);
 myservo.write(pos);
 delay(1000);

}

void loop()
{
 for(pos = 90; pos < 180; pos += 1)
 {
 myservo.write(pos);
 delay(15);
 }
 for(pos = 180; pos>=90; pos-=1)
 {
 myservo.write(pos);
 delay(15);
 }
 for(pos = 90; pos > 0; pos -= 1)
 {
 myservo.write(pos);
 delay(15);
 }
 for(pos = 0; pos<=90; pos+=1)
 {
 myservo.write(pos);
 delay(15);
 }

}

The sketch has a delay in setup to allow the ESC to stabilize.
 During the loop, you use a for loop to increment the servo position up to a maxi-

mum of 180 and then another for loop to decrement it to 90. Another for loop decre-
ments the servo position from 90 to 0 before a final for loop increments the servo
position from 0 to 90. The delays allow the motor to stabilize between commands.

 Let’s move on now and construct the circuit.

5.5.8 Connecting the hardware

We’re going to use the inrunner motor and controller from before, so you quickly test
your new sketch.

5.5.9 Upload and test

Upload your sketch to the Arduino before connecting the power pack to the ESC.
Once the sketch has uploaded, connect the power pack to the ESC and reset the Ardu-
ino. After a short delay, you should observe the motor speeding up and then slowing
down, then doing the same in the reverse direction.

 We’ll finish this chapter off by discussing a motor control shield that can be used
when you want to control more than one motor.

Reverse
motor

Code added
to listing 5.7
Download from Wow! eBook <www.wowebook.com>

112 CHAPTER 5 Arduino in motion
5.6 The motor control shield for more motors
There are a few different motor control shields available; we’re going to look at one
from Adafruit Industries. The shield is reasonably priced and is supplied as a kit that
you assemble yourself. Figure 5.29 shows the components supplied in the kit.

 The shield is ideal if you want to control more than one stepper motor or a couple
of DC motors. The shield is based on the L293D integrated circuit that you’ve been
using in this chapter, but instead of one, it uses two of them. The shield can drive up
to four DC motors or two stepper motors or servomotors, making it very versatile.

 The assembled shield is shown in figure 5.30.
 This kit is available from a number of suppliers, and it’s a great addition to your

toolbox if you want to control more than a couple of motors at a time. It would be
ideal for obstacle-avoidance robots where DC motors provide the motion and a servo-
motor controls an ultrasonic module that looks out for obstacles.

Figure 5.29 Components supplied in the Adafruit Industries motor control shield kit

Figure 5.30 The fully-assembled
motor controller shield
Download from Wow! eBook <www.wowebook.com>

113Summary
5.7 Summary
In this chapter you’ve looked at a variety of different motors and have seen which
types of projects they would be suitable for and how you can control them using an
Arduino and a handful of components.

 You started with a small DC motor that can be used to power a wide range of
robotic vehicles, and you learned how to control both its speed and direction using an
L293D integrated circuit.

 You then investigated stepper motors that can be accurately and precisely con-
trolled and are used in CNC mills, lathes, and 3D printers. You learned how to identify
the different types of commonly available stepper motors and then learned how to
control them using the Stepper library shipped with the Arduino IDE.

 Next, you learned about servomotors, which are commonly used in radio-controlled
models. These small, powerful, geared motors are great in projects requiring accurate
movement, like moving an ultrasonic transducer on an obstacle-avoidance robot. You
used the Servo library that lets you control up to 12 servomotors on a standard Ardu-
ino, and for those more ambitious projects, up to 48 on an Arduino Mega.

 You then applied what you learned about servomotors to control brushless motors.
These highly efficient powerhouses are suitable for a wide range of projects, including
quadrocopters and remote-piloted drones.

 We ended the chapter with a brief look at a motor controller shield kit from Adafruit
that’s capable of controlling up to four DC motors or two stepper motors or servomotors.

 In chapter 6, you’re going to look at using ultrasonic and infrared sensors with an
Arduino and see how they can be used for object detection.
Download from Wow! eBook <www.wowebook.com>

Object detection
In this chapter we’re going to begin exploring how to get meaningful data
from the objects and environments around your Arduino controller and use it
in your Arduino programs. Of course, meaningful data could mean any number
of things: temperature, sound, light, color, and so on. To start, we’ll focus on
detecting objects.

 There are a number of fields where this is important, including robotics, moni-
toring, interactive applications, security, and home automation, to name a few.
There are three simple technologies that this chapter will explore: ultrasonic sen-
sors, active infrared sensors, and passive infrared sensors. All are relatively low-power
and easy to configure and control, but each has distinct advantages and disadvan-
tages that you’ll want to understand before creating sensing applications.

 We’ll start with ultrasound.

This chapter covers
■ Detecting objects with ultrasound
■ Range finding with active infrared
■ Detecting motion with passive infrared
114

Download from Wow! eBook <www.wowebook.com>

115Object detection with ultrasound
6.1 Object detection with ultrasound
Ultrasound is an excellent way of figuring out
what’s in the immediate vicinity of your Ardu-
ino. The basics of using ultrasound are like
this: you shoot out a sound, wait to hear it
echo back, and if you have your timing right,
you’ll know if anything is out there and how
far away it is. This is called echolocation and it’s
how bats and dolphins find objects in the dark
and underwater, though they use lower fre-
quencies than you can use with your Arduino.

 An ultrasonic sensor consists of two sepa-
rate components: one that sends out the sound,
and one that listens for it to bounce back. The
sensor will also contain additional components, including a small microcontroller,
that are responsible for determining the time between sending and receiving a sound.
The time value is encoded in a voltage; the longer the delay, the higher the voltage.
Because ultrasonic sensors communicate at 5V, the value is between a maximum 5V
and a minimum 0V.

 The trick of echolocation is in knowing what to do with the length of time between
sending the signal and receiving it back. The meaning of that time will always be
dependent on the particular component that you’re using, be it a Parallax Ping (also
known as the PING)))), the Devantech SRF05, or another ultrasonic range sensor. This
information can always be found in the product’s data sheet in one format or another.
For instance, the datasheet for the Parallax Ping contains the following: “The PING)))
returns a pulse width of 29.033 uS per centimeter.”

 That’s helpful and points you in the right direction, but there’s one catch: you get
the time for every centimeter travelled, when what you really want is the centimeters
travelled to the object, not to and back. So you divide by two and you’re good to go.

 Let’s examine two specific sensors.

6.1.1 Choosing an ultrasonic sensor

We’re going to focus on two different ultra-
sonic sensors: the Devantech SRF05, shown in
figure 6.2, and the Parallax Ping, shown in fig-
ure 6.3.

 Both of these sensors work the same way:
you signal the sensor that you want it to send
out a signal, and then you read the response.
The response comes back using what the
Arduino calls a pulse, or simply a HIGH signal
with microsecond fidelity, which means that

Figure 6.1 How ultrasonic waves are
transmitted and received by a distance
sensor

Figure 6.2 The Devantech SRF05, an
ultrasonic sensor
Download from Wow! eBook <www.wowebook.com>

116 CHAPTER 6 Object detection
the difference between an object that’s 30 cm away and
2 m away is approximately 40 millionths of a second.

 You need a special method to read values that quickly,
and the Arduino provides one:

pulseIn(pin, value)

The first value is an integer that indicates which pin
you’re going to read the pulse on, and the second spec-
ifies whether you’re expecting a pulse that’s LOW or
HIGH. Some components communicate by pulling the
pin LOW to 0V, and others communicate by setting
the pin HIGH to 5V (or 3.3V if you’re using a 3.3V pow-
ered Arduino), so it’s important to know which one you should be expecting.

 The differences are slight but significant. The Parallax Ping operates in a single
mode, which is to say there’s only one way to do it. It can read ranges from 3 cm to 3 m.
The Devantech SRF05 has two modes, a three-wire mode and a four-wire mode, and it
can read ranges from 3 cm to 4 m.

 Because there’s only one way to operate the Ping, we’ll return to it later; the
Devantech’s three-wire versus four-wire modes are worth exploration.

6.1.2 Three wires or four

The fourth and fifth extra pins on the Devantech SRF05 might seem strange at first,
because the Ping needs only three, but there’s a good reason for it. The SRF05 had a
predecessor called the SRF04, and when Devantech updated their ultrasonic range
finder, they made the SRF05 compatible with wiring for the SRF04. This meant that
older designs that couldn’t be changed could still easily update to a newer controller.

 The slight disadvantage is that the SRF05 is a little more complex than the Ping: it
has two modes. It can either use one pin to send the signal and another to listen to the
result, or it can use a single wire to both send the signal and get the resulting data.
Connecting the mode pin to ground means that you’re going to use the SRF05 in
three-wire mode, just like the Ping. Connecting the mode pin to 5V indicates that the
SRF05 will be used in four-wire mode.

6.1.3 Sketches for ultrasonic object finding

First we’ll cover working with the Parallax Ping and then the Devantech SRF05.

SKETCH FOR THE PARALLAX PING

To begin, you need to configure the Arduino pin to whichever signal pin of the Ping
will be connected as an input. To trigger the sensor, you set the connection pin LOW
briefly and then HIGH for 5 microseconds. After that you can read the distance to any
object as a length of time using pulseIn(). Note the microseconds, which are millionths
of a second and can be set using delayMicroseconds(); they’re not milliseconds, which
are thousandths of a second and can be set using delay().

Figure 6.3 The Parallax Ping,
an ultrasonic sensor
Download from Wow! eBook <www.wowebook.com>

117Object detection with ultrasound
 Something else important to note is that you don’t want to send a pulse more fre-
quently than every 30–50 milliseconds or so, because, depending on the distance of
objects from the sensor, you might end up with ultrasound waves interfering with one
another travelling to and from an object. After you send a pulse, calling delay(50)
will ensure that your readings are free from interference.

 To build this example, you’ll need the following components:

■ 1 Arduino Uno (or similar)
■ 1 Parallax Ping

This sketch will let you read ranges from the Ping.

const int signalPin = 9;

void setup()
{
 Serial.begin(9600);
}

unsigned long ping()
{
 pinMode(signalPin, OUTPUT);
 digitalWrite(signalPin, LOW);
 delayMicroseconds(2);

 digitalWrite(signalPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(signalPin, LOW);

 pinMode(signalPin, INPUT);
 digitalWrite(signalPin, HIGH);

 return pulseIn(signalPin, HIGH);
}

void loop()
{
 int range = ping() * 29;
 delay(50);
}

SKETCH FOR THE DEVANTECH SRF05
Now we’ll look at the SRF05 configured in classic or four-wire mode. The three-wire
mode code for the SRF05 (using 5V, ground, and input/output pin) is very similar to
the Ping, so for the sake of brevity we’ll omit that listing.

 The four-wire mode requires that you set the output pin HIGH for 10 milliseconds
to signal to the sensor that you’d like it to fire an ultrasonic signal, and then you can
read it back in. Because the input pin is a separate pin, you pass that pin number to
the pulseIn() method to read the echo distance from the SRF05.

 For the example in the next listing you’ll need the following:

Listing 6.1 Reading ranges with the Parallax Ping

Any PWM-enabled
pin can be used.
Download from Wow! eBook <www.wowebook.com>

118 CHAPTER 6 Object detection
■ 1 Arduino Uno (or similar)
■ 1 Devantech SRF05

const int inputPin = 9;
const int outputPin = 8;

void setup()
{
 pinMode(inputPin,INPUT);
 pinMode(outputPin, OUTPUT);
}
unsigned long ping()
{
 digitalWrite(outputPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(outputPin, LOW);

 return pulseIn(inputPin, HIGH);
}

void loop()
{
 int range = ping() / 74 / 2;
 delay(50);
}

The 10-microsecond pause is necessary to signal to the SRF05 that you want it to send a
signal B. If the pause is any shorter, it won’t send out an ultrasonic wave. If it’s any
longer, you might miss the wave coming back.

 Now that you’ve seen the code, we can look at connecting the two controllers.

6.1.4 Connecting the hardware
To use the Ping, connect the signal pin to a digital pin on the Arduino, the 5V pin to
either the power out on the Arduino or on a breadboard rail, and the ground to either
the ground or a ground rail. This is shown in figure 6.4.

 To use the SRF05, you’ll connect differently depending on the mode that you
decide to use. Figure 6.5 shows how to use the four-wire mode because that setup is
different from the Ping.

 Connecting the pin marked MODE to 5V tells the SRF05 that you’ll be using it in
four-pin mode, whereas connecting the MODE pin to ground indicates that you’ll be
using three-pin mode.

6.1.5 Upload and test
When you upload your code, you should see the LED stay lit for a period of time pro-
portional to the distance that the ultrasonic sensor is detecting. If you want to con-
tinue exploring, you might consider building one of the classic tropes of physical
computing: the electronic theremin, which we’ll explore in the next section with a dif-
ferent technique: infrared (IR).

Listing 6.2 Reading distances with the SRF05

Set 10-microsecond
pause

b

Convert
range to cm
Download from Wow! eBook <www.wowebook.com>

119Infrared for range finding
6.2 Infrared for range finding
You might choose to use infrared because it has a few advantages over ultrasound. It
works much more quickly than ultrasonic sensors because, as your intuition might tell
you, light travels more quickly than sound. That means the danger of interference is
much lower. It also uses a much narrower beam, meaning that you can pinpoint the
location you want to monitor more easily. This also avoids the problem of ghost echoes,
where the width of a beam hitting a corner and echoing back creates a ghost reading
for an object that isn’t there.

 Infrared has disadvantages as well, though. It relies on light, so in bright direct sun-
light, infrared sensors often won’t work well, if at all—sunlight will saturate the sensor,
creating a false reading. Furthermore, infrared is often not able to read at the same
distances as ultrasonic. For instance, the SRF05 ultrasonic sensor can clearly detect

Fritzing.orgMade with

SRF04

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

G
N

D

E
c
h

o

T
rig

V
C

C

Figure 6.4 Connecting the Parallax Ping to the Arduino
Download from Wow! eBook <www.wowebook.com>

120 CHAPTER 6 Object detection
objects up to 4 m away, whereas the Sharp GP2D12 infrared sensor that we’ll use in this
chapter has a maximum range of 80 cm.

6.2.1 Infrared and ultrasound together

Certain objects don’t respond well to infrared beams, and other objects don’t
respond well to ultrasound. For instance, an ultrasound sensor doesn’t do particu-
larly well with window curtains or very soft fabrics. An infrared sensor, as you might
imagine, doesn’t do well with fog, smoke, particulate matter, or focused sunlight.
Because the two types of sensors use very different ways of detecting objects, you
can easily pair them—set them side by side or on top of one another—without risk-
ing interference.

 There are many infrared distance sensors. In this chapter we’re going to focus on
one in particular: the Sharp GP2D12.

Fritzing.orgMade with

Vin

Power

3V3 5V

RST

AREF

Arduino

Arduino1

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/

O
u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

Devantech SRF05 Ultrasonic

Rangefinder

Part1

0
V

 G
ro

u
n

d

M
o

d
e

 (n
o

t u
s
e

d
)

T
rig

g
e

rIn
p

u
t

E
c
h

o
 O

u
tp

u
t

5
V

 S
u

p
p

ly

Figure 6.5 Connecting the Devantech SRF05 to the Arduino
Download from Wow! eBook <www.wowebook.com>

121Infrared for range finding
6.2.2 The Sharp GP2D12 range finder

The GP2D12 has been around for a long time
and consists of two components: an infrared
LED that projects a focused beam, and an infra-
red receiver that detects the variance in the
angle of the returned beam. The sensor is dura-
ble and reads from 10 cm to 80 cm without the
delay that the ultrasonic sensor requires to
avoid signal interference. The Sharp GP2D12 is
shown in figure 6.6.

6.2.3 Nonlinear algorithm for calculating distance

One of the interesting aspects of working with infrared distance sensors is that the
results are nonlinear, which means that getting the results from the distance sensor
involves a bit more math than simply dividing or multiplying. To understand why, take
a look at figure 6.7.

 As you can see, the voltage returned from the GP2D12 isn’t a straight line; it’s a
curve, so to interpret that correctly you need a way of dealing with the tail of that
curve. Luckily, there’s a way. The following bit of code will correctly convert the volt-
age to centimeters:

float ratio = 5.0/1024;
float volts = analogRead(PIN);
float distance = 65*pow((volts*ratio), -1.10);

This accounts for the nonlinear slope that you can see in the diagram.
 Now that you know how to convert the data, let’s look at some more full-featured

code that will show you how to set up and use the GP2D12.

Figure 6.6 The Sharp GP2D12 IR Ranger

90

80

70

60

50

40

30

20

10

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Volts

C
e
n
ti
m

e
te

rs

Figure 6.7 Distance to voltage
output from the GP2D12
Download from Wow! eBook <www.wowebook.com>

122 CHAPTER 6 Object detection
6.2.4 Sketch for range finding

It’s time to do something interesting with the values that the infrared ranger is return-
ing. As we mentioned earlier, you’re going to build one of the classic tropes in physi-
cal computing: the theremin.

 For this example you’ll need:

■ One Arduino
■ One speaker
■ One Sharp GP2D12

Positioning the GP2D12 facing upwards allows you to hold your hand out over the
beam, and by moving your hand up and down, you can change the notes that are
played. The Arduino is never going to make particularly great sounds, but it can
accurately reproduce notes by using the delayMicroseconds() method to modulate
the note.

 The sketch in listing 6.3 maps the distance from the infrared sensor to the 12
notes. You can create a specific tone by powering a speaker for very short periods of
time. You’ll see in the following sketch that different notes are defined as lengths
of time—microseconds—between powering and then stopping power to the speaker.
This will create an approximation of the note.

#include <math.h>
const int FREQOUT_PIN = 4;

const int RANGER_PIN = 9;

const float A = 14080;
const float AS = 14917.2;
const float B = 15804.3;
const float C = 16744;
const float CS = 17739.7;
const float D = 18794.5;
const float DS = 19912.1;
const float E = 21096.2;
const float F = 22350.6;
const float FS = 23679.6;
const float G = 25087.7;
const float GS = 26579.5;

float lastDistance;
float notes[12] = { A, AS, B, C, CS, D, DS, E, F, G, GS };

float read_gp2d12_range(byte pin)
{
 int distance = analogRead(pin);
 if (distance < 3)
 return -1; // invalid value

 return (6787.0 /((float) distance - 3.0)) - 4.0;
}

Listing 6.3 Creating a theremin with the GP2D12
Download from Wow! eBook <www.wowebook.com>

123Infrared for range finding
void freqout(int frequency, int time)
{
 int hperiod;
 long cycles, i;
 pinMode(FREQOUT_PIN, OUTPUT);
 hperiod = (500000 / frequency) - 7;
 cycles = ((long) frequency * (long) time) / 1000;

 for (i=0; i<= cycles; i++)
 {
 digitalWrite(FREQOUT_PIN, HIGH);
 delayMicroseconds(hperiod);
 digitalWrite(FREQOUT_PIN, LOW);
 delayMicroseconds(hperiod - 1);
 }
 pinMode(FREQOUT_PIN, INPUT);

}

void setup()
{
 pinMode(RANGER_PIN, INPUT);
 Serial.begin(57600);
 lastDistance = 0;
}

void loop()
{
 float distance = read_gp2d12_range(RANGER_PIN);
 Serial.print(distance);

 freqout(notes[map(distance, 10, 80, 0, 11)],
 lastDistance - distance * 50);

 lastDistance = distance;
}

The freqout() method in listing 6.3 uses the distance to create a note that’s appropri-
ate for the distance that the infrared ranger is returning and reacts to the amount of
change the ranger detects: the larger the movement, the shorter the note. This has
the effect of making the notes feel as if they’re being more precisely controlled by the
user. You might want to play around with different techniques for creating this sensa-
tion of control by parameterizing the sounds even further.

6.2.5 Connecting the hardware

Connecting the GP2D12 is simple, as shown in figure 6.8. Select the pin that you would
like to receive the signal on, and then connect the other two pins of the GP2D12 to 5V
power and ground. The speaker should be connected to digital pin 4, with the resistor
between the PWM pin that will power the speaker and the speaker itself.

6.2.6 Upload and test

When you run the code, you should hear the frequency of the note that’s played
changing as you move your hand closer and further from the infrared sensor. You can

Specify hertz
and length in
milliseconds

Shut off pin to
avoid getting noise
Download from Wow! eBook <www.wowebook.com>

124 CHAPTER 6 Object detection
position the sensor so that it points upwards or outwards, depending on which motion
you think makes the most sense.

6.3 Passive infrared to detect movement
While an infrared ranger shoots a beam of light out and waits for it to come back,
there are times when you might want to monitor a larger area and you don’t need
such specific data. You simply want to know if something moved. You’re in luck,
because that’s exactly the purpose of passive infrared (PIR) sensors. It’s quite likely
that at some point you’ve turned a light on or off by triggering a PIR sensor either in a
large room or in a yard.

 A PIR sensor is essentially an infrared camera that measures infrared light radiat-
ing from objects in its field of view. Typically it calibrates for a short period of time to
create a map of the infrared energy in front of it, and once the calibration is done, it
triggers a signal when the amount of infrared changes suddenly. Everything emits
some low-level radiation, and the hotter something is, the more radiation it emits.

Fritzing.orgMade with

Vin

Power

3V3 5V

RST

AREF

Arduino

Arduino1

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t
D

ig
it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

R1

SPKR1

IR Ranger

Figure 6.8 Connecting the GP2D12 to the Arduino
Download from Wow! eBook <www.wowebook.com>

125Passive infrared to detect movement
 The sensor in a motion detector is split in two halves because we’re trying to detect
motion (change), not average infrared levels. The two halves are wired up so that they
cancel each other out. If someone walks through an area that’s monitored by a PIR
sensor, the hot spot on the surface of the chip will move as the person does. If one half
sees more or less infrared radiation than the other, the output will swing HIGH or LOW.

 As mentioned at the beginning of this section, PIR sensors are simply triggers.
They typically only report movement, not information on the amount of movement,
the location of that movement, or any other information beyond the amount of time
that the movement lasted. But there are plenty of times when that’s all you need.

6.3.1 Using the Parallax PIR sensor

One of the more venerable and commonly used PIR sensors is the one made by Paral-
lax. The PIR sensor has a range of approximately 20 feet, though this can vary with
environmental conditions.

 The sensor requires a warm-up time in order to function properly—the settling
time required to learn its environment—which can be anywhere from 10 to 60 sec-
onds. During this time, there should be as little motion as possible in the sensor’s field
of view. The sensor is designed to adjust to the slowly changing conditions that would
happen normally as the day progresses and as environmental conditions change. But
when sudden changes occur, like someone passing in front of the sensor or something
quickly changing the infrared field in front of the sensor, it will detect the motion.

 The sensor’s output pin goes to HIGH if motion is present and to LOW when the
infrared detected is the same as the background. But even if motion is present, it goes
to LOW from time to time, which might give the impression that no motion is present.
The program in listing 6.4 deals with this issue by ignoring LOW phases shorter than a
given time, assuming continuous motion is present during these phases.

 The sensor itself is small, light, and easy to connect. It’s shown in figure 6.9.
 Notice the three connector pins, which are power, ground, and the signal pin.

6.3.2 Sketch for infrared motion detection

The first thing you may notice about the
following PIR sensor code is how the cali-
bration time is used to essentially stall the
loop() from reading the PIR sensor until
30 seconds have passed. This is because
the PIR sensor needs time to create an
accurate map of the environment to com-
pare against.

 The next thing to note is how the
loop() method contains a conditional
statement to detect whether the sensor is
returning HIGH or LOW and how long it’s Figure 6.9 The Parallax PIR sensor
Download from Wow! eBook <www.wowebook.com>

126 CHAPTER 6 Object detection
been pulled HIGH, if it has been. The Parallax PIR sensor returns HIGH until the motion
ceases, so by keeping track of the amount of time since the sensor was pulled HIGH,
you can determine how long the object or entity moved in the field of vision of the PIR
sensor (see the following listing).

const int calibrationTime = 30;
const unsigned long pause = 5000;

unsigned long lowIn;
boolean waitForLow = true;
int pirPin = 3;

void setup()
{
 Serial.begin(57600);
 pinMode(pirPin, INPUT);
 digitalWrite(pirPin, LOW);
}

void loop()
{
 if(calibrationTime > 1) {
 calibrationTime--;
 delay(1000);
 return;
 }

 if(digitalRead(pirPin) == HIGH) {
 if(!waitForLow && millis() - lowIn > pause) {
 waitForLow = true;
 delay(50);
 }
 }

 if(digitalRead(pirPin) == LOW) {
 if(waitForLow) {
 lowIn = millis();
 waitForLow = false;
 }
 if(!waitForLow && millis() - lowIn > pause) {
 waitForLow = true;
 Serial.print("length of motion ");
 Serial.print((millis() - pause)/1000);
 }
 }
}

When the motion ends, the program writes the duration of the motion in front of the
PIR sensor to the serial monitor.

Listing 6.4 Detecting motion with the Parallax PIR sensor

Ensures adequate
time to calibrate

Checks for end
of movement
Download from Wow! eBook <www.wowebook.com>

127Passive infrared to detect movement
6.3.3 Connecting the hardware
For this example you’ll need the following components:

■ A Parallax PIR sensor
■ An Arduino
■ A 10k resistor

To connect the PIR sensor, you simply connect the power pin to 5V, ground to GND,
and the data pin to D3, as shown in figure 6.10. A pull-up resistor is used to ensure that

Vin

Power

3V3 5V

RST

AREF

Arduino

Arduino1

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

Fritzing.orgMade with

1 32
IC

IC1

R1

Figure 6.10 Connecting the Parallax
PIR sensor to the Arduino
Download from Wow! eBook <www.wowebook.com>

128 CHAPTER 6 Object detection
the pin stays HIGH until it’s actually pulled low by the PIR sensor. Without this, the
readings from the sensor might float after the initial HIGH reading.

6.3.4 Upload and test

An easy way to test that the sensor is detecting motion is to point it at the ceiling,
count to 30, and then wave your hand a meter or so above the sensor. You should see
the length of time that your hand moves in front of the sensor returned in the Ardu-
ino IDE serial monitor. This will also give you a sense of the width of the field of vision
of the sensor.

6.4 Summary
In this chapter, you’ve learned a few different techniques to make the Arduino con-
textually aware, enabling it to perform simple object detection, range finding, and
motion detection. This sort of capability goes a long way toward making interactive
systems that can react to their users and respond to the location of their users or
objects in their environments. These are the first steps toward creating autonomous
vehicles, detection systems, security systems, simple presence-activated systems, and of
course, fun musical instruments.

 In the next chapter, you’ll learn about using LCD screens with your Arduino.
Download from Wow! eBook <www.wowebook.com>

LCD displays
By now you’ve begun to master the art of interacting with your Arduino in both the
analog and digital domains. You’ve made LEDs blink, you’ve transformed piezos
into pentatonic musical keyboards, and in chapter 6 you graduated from interfac-
ing with everyday components such as potentiometers to working with ultrasonic
and infrared distance sensors.

 Aside from blinking your first LEDs in chapter 1, most of your interaction with
the Arduino thus far has been concerned with obtaining real-world input and out-
put from your Arduino. Most of the work you do with the Arduino will be con-
cerned with doing exactly that. But you’ll also encounter scenarios where your
project will need to receive information back from the Arduino, so in this chapter
we’ll revisit the realm of visual feedback by exploring various liquid crystal displays,
more commonly called LCDs.

This chapter covers
■ Communicating with the common Hitachi

HD44780 parallel LCD
■ Building a serial LCD weather station
■ Displaying text and images on the KS0108

graphic LCD
129

Download from Wow! eBook <www.wowebook.com>

130 CHAPTER 7 LCD displays
LCDs are embeddable screens found in all sorts of consumer electronics. There are
many different types of LCDs, however, so in section 7.1 you’ll learn about the com-
mon LCDs you’ll use in your future Arduino endeavors.

7.1 Introduction to LCDs
Liquid crystal displays (LCDs) have become ubiquitous: from the moment you wake
up to the moment you go to bed, your day is guided by many interactions with
LCD screens.

 You wake up in the morning and, upon seeing the LCD on your alarm clock, you
realize you’re running an hour late. You use the LCD on your mp3 player to navigate
to the song you absolutely must listen to next. You look at the number on your
phone’s LCD and decide to answer or ignore the call. And before bed, you look at the
alarm clock again to make sure it’s set for tomorrow.

 Viewing LCD displays is one of the primary ways we experience electronic data, and
in this chapter we’ll look at the common types of LCDs you can add to your future
Arduino projects.

 The first two types of LCD displays are parallel and serial LCDs, and they’re nor-
mally character displays. Character displays are ideal for displaying some sort of text
to the user, and even small shapes or icons (usually 5 x 7 pixels). The other type of
LCD we’ll cover in this chapter is basic graphic LCDs, which as you may have guessed
are great for drawing graphics and images.

 But before we explore character displays, let’s take a look at String variables,
which are how we deal with text in Arduino.

7.1.1 String variables: String type vs. char type

Pairing an Arduino with an LCD is a great way to display text feedback and add
menu-browsing capabilities to your project. So how exactly does one send text to
an LCD?

 In the Arduino and other computer programming languages, text is thought of as
a sequence of characters. For example, if you were to put together the four characters
T, e, x, t, you would make the word Text. In this way, all text is represented in code as
an array of characters.

 There are two main ways to create your text in code (or, more generally, to create
any sequence of characters). One way is to use the String data type, and the other is
to use a null-terminated array of type char. If that makes complete sense to you, great!
If not, don’t worry; it’s much simpler than it sounds. Let’s take a look and see what the
fuss is all about.

 As previously mentioned, all text in your code will actually be an array of charac-
ters. For more control, a container class called the String class was created, which
enables you to manipulate this array of characters in many complex ways. You can
compare two Strings against each other to see if they’re the same, search a String of
text for a substring, and append characters to the end of a String or even concatenate
Download from Wow! eBook <www.wowebook.com>

http://www.sparkfun.com/tutorials/219
http://www.sparkfun.com/tutorials/219

131Introduction to LCDs
multiple Strings. Table 7.1 provides an overview of the various functions that can be
performed on a String variable. As you can see, the String class is extremely power-
ful and can be useful for preparing text on your character display.

Table 7.1 The functions of the Arduino String class

Function Description

charAt() Accesses a particular character of a String

compareTo(String two) Tests if two Strings are equal, or if one comes before
or after the other

concat(String two) Combines two Strings into one new String

endsWith(String two) Tests whether a String ends with the chars
of another

equals(String two) Performs case-sensitive comparison of two
Strings’ equality

equalsIgnoreCase(String two) Performs non-case-sensitive comparison of two
Strings’ equality

getBytes(char [], int length) Copies a String’s characters to the supplied buffer

indexOf(val)
indexOf(val, int index)

Locates a character or String within another String,
starting from the front (val can be a char or String)

lastIndexOf(val)
lastIndexOf(val, int index)

Locates a character of String within another String,
starting from the end (val can be a char or String)

length() Returns the length of the String in characters

replace(String one, String two) Replaces all instances of a character or substring
with another

setCharAt(int index, char c) Sets or changes a particular character of a String

startsWith(String s) Returns a Boolean (true/false) indicating whether a
String starts with the characters of another String

substring(int start)
substring(int start, int end)

Returns a substring of a String

toCharArray(char [], int
length)

Copies a String’s characters to the supplied array

toLowerCase() Returns a copy of the original String with all
characters lowercase

toUpperCase() Returns a copy of the original String with all
characters uppercase

Trim() Returns a copy of the original String with all
whitespace before and after the String removed
Download from Wow! eBook <www.wowebook.com>

132 CHAPTER 7 LCD displays
Declaring a String is easy. Here are a couple of examples:

String s = "Arduino in Action Rocks!";
String s = String(13);

Both of these lines will create a String called s, the first from a constant string of
characters, and the second from an integer number (defaults to base 10).

 The String functions outlined in table 7.1 provide many utilities. For example, to
combine these two lines,

String first = "Hello";
String second = " World";

into a new String third, simply call this function:

String third = first.concat(second);

String third would now be “Hello World”. But as is often the case, this added func-
tionality of the String class comes at the price of memory, and because memory can
be precious on the Arduino, you may want to bypass the String type and use the more
lightweight array of type char directly.

NOTE You may have noticed that up until now we’ve been referring to
Strings with a capital S; for char strings, we’ll use a lowercase s.

There are many ways to represent a string as a char array, as you can see in table 7.2.
Character strings normally end with a null character (ASCII code 0), which ensures
that Arduino functions such as Serial.print() know exactly where the end of the
string is. This is why the arrays two[5] and three[5] in table 7.2 are five characters
long, even though text is technically only four characters long; the Arduino compiler
automatically inserts the extra null character at the end. One last important reminder:
constant strings are always declared inside double-quotes, whereas single chars are
declared in single-quotes. See table 7.2 for examples.

Table 7.2 Possible char type string array initializations

Declaration Description

char one[10]; Declares a non-initialized char array

char two[5] = { 't', 'e', 'x', 't'
};

Declares an array with an extra char so the compiler
can automatically add the null char

char three[5] = { 't', 'e', 'x',
't', '\0' };

Same as the previous example with the null char
added explicitly

char four[] = "text"; Compiler automatically sizes to the string constant
plus the null character

char five[5] = "text"; Initializes to explicit size and string constant

char six[10] = "text"; Initializes the array with extra space for a larger string
Download from Wow! eBook <www.wowebook.com>

133Parallel character LCDs: the Hitachi HD44780
At this point, we’ve hopefully demystified the differences between the String type
and the array of char type strings that you’ll encounter when working with the Ardu-
ino and LCDs. Next we’ll look at wiring up your first LCD, so without further ado,
please welcome the Hitachi HD44780.

7.2 Parallel character LCDs: the Hitachi HD44780
The Hitachi HD44780 is one of the most common LCD controller chips designed for
embedded systems and microcontrollers. The chip supports many shapes and sizes
of displays, and in this example, we’ll use one to drive a 16 x 2 LCD (2 rows, 16 char-
acters long).

 The pervasiveness of the Hitachi HD44780 controller (and other similar LCD chips)
is great news for you, because they can usually be purchased cheaply or salvaged from
your old machines. Some are even pretty fancy, offering single and multicolor (RGB)
backlighting.

 Backlit LCDs have lights (LEDs) embedded in the screen, which can be turned on
to make the screen glow. This isn’t only great for low-lit situations, but also for visual
feedback. For example, an LCD such as the Hitachi HD44780 that has an RGB backlight
can light the screen with different colors, reporting the status of your Arduino. You
might turn the screen red to let the user know something is wrong, or green to signal
that things are OK.

7.2.1 4-bit or 8-bit?

Hitachi HD44780-based LCDs come in many different configurations, but there are two
ways in which you can interface with the Hitachi HD44780 LCD: 4-bit and 8-bit. The
main tradeoff between the 4-bit and 8-bit configurations is the number of pins needed
on the Arduino versus speed of execution.

 Because it’s a parallel LCD, the simplest means of communication would be to
send the full byte (8-bits) of data all at once (in a 1-byte message). To do this would
require at least 10 I/O pins on the Arduino. In contrast, the 4-bit mode requires just 6
I/O pins and splits the byte into two 4-bit nibbles. This saves pins but takes a little
more time (two messages versus one message). The 4-bit mode is still “parallel” in the
sense that you receive 4 bits at a time, but it’s split into two messages that are sent one
after another.

7.2.2 Library and functions

Luckily for us, working with LCDs based on the Hitachi HD44780 chipset (or other sim-
ilar chipsets) is a breeze. As was mentioned in chapter 4, one of the standard libraries
preinstalled in the Arduino IDE is the LiquidCrystal LCD library. It’s compatible with
both 4-bit and 8-bit configurations and provides you with many useful functions for
controlling your LCD.

 Table 7.3 details the functions available in the LiquidCrystal library.
Download from Wow! eBook <www.wowebook.com>

134 CHAPTER 7 LCD displays
7.2.3 Circuit diagram

Now that we have a good understanding of how the Hitachi HD44780 communicates
on both the hardware and software level, we’re ready to start connecting everything.
For this, you’re going to need the following components:

■ An Arduino (such as Arduino Uno or Mega).
■ A Hitachi HD44780-based LCD screen.
■ A 10k ohm potentiometer or trimpot (R1).
■ A resistor. (R2. This is only needed if your LCD has a backlight, and the value of the

resistor will depend on the backlight of your LCD; see additional notes that follow.)

Table 7.3 The functions available in the LiquidCrystal LCD library

Function Description

begin(int column, int row) Sets the dimensions of the screen

clear() Resets and clears everything on the display

home() Sets the cursor to the upper left of the LCD

setCursor(int column, int row) Sets the cursor to the position passed in

write(byte value) Writes a character to the current cursor position

print(data) Prints text to the string; can be a char, byte, int,
long, or string/String

cursor() Displays an underscore at the current position

noCursor() Hides the cursor character

blink() Blinks the cursor character

noBlink() Disables the cursor character from blinking

display() Turns the display on and restores text if turned off by
noDisplay()

noDisplay() Turns off the display, saving current text

scrollDisplayLeft() Scrolls text one space to the left

scrollDisplayRight() Scrolls text one space to the right

autoscroll() Automatically scrolls text, pushing previous character one
position to the left or right

noAutoscroll() Disables autoscrolling

leftToRight() Sets the direction of text being displayed

rightToLeft() Sets the direction of text being displayed

createChar(int num, byte[]
charData)

Defines a custom 5 x 8 character
Download from Wow! eBook <www.wowebook.com>

135Parallel character LCDs: the Hitachi HD44780
Figure 7.1 shows the connections required to hook up your LCD to your Arduino.

NOTE In figure 7.1, the backlight LED+ (if present) is connected to 5V on the
Arduino via a 68-ohm current-limiting resistor. This value may differ and
should be calculated based on the specification of your screen backlight.
There are many tutorials and online calculators to help you determine the
optimal value for your screen; a good place to start is the “LED Current Limit-
ing Resistors” tutorial on the SparkFun Electronics site: http://www.sparkfun
.com/tutorials/219.

7.2.4 Connecting everything up in 4-bit mode

To save your precious I/O pins for other sensors and devices, you can connect
everything in 4-bit mode. The LiquidCrystal library automatically takes care of the

Figure 7.1 The connections between a Hitachi HD44780-based LCD display and the Arduino
Download from Wow! eBook <www.wowebook.com>

http://www.sparkfun.com/tutorials/219
http://www.sparkfun.com/tutorials/219

136 CHAPTER 7 LCD displays
logic required to communicate in 4-bit mode, so there’s no difference in terms
of coding. Your completed wiring will look similar to figure 7.2.

 If possible, the first thing you should do is look up the data sheet for your particu-
lar LCD. This is useful for identifying the pin layout of your LCD if the layout isn’t
already silk-screened onto the LCD circuit board itself. If there isn’t a printed label on
your board, or a sticker with the model number, and you purchased the LCD from an
online hobby store, check the retailer’s website because they often provide links to the
data sheets. If you salvaged your LCD from an old printer or other machine, and you
can’t find any information about the pin layout, be careful. Most 16-pin Hitachi
77480-compatible LCDs will follow a similar pin layout, but incorrectly wiring up the
LCD can damage both the LCD and your Arduino.

 As per the circuit diagram in figure 7.1, first connect the Vss pin to GND. The next
pin, Vcc, supplies power to the LCD and should be connected to +5V on the Arduino
(or 3.3V depending on your LCD). Next, you’ll want to connect the V0 pin on the LCD
to the wiper (middle leg) of a 10k linear potentiometer. Connect the left leg to +5V
and the right to GND. This is used to set the contrast of your LCD, and you may prefer
to use a trimpot if the contrast is something you want to set and forget.

NOTE Ground and power rails have been created using the vertical columns
labeled “+” and “-”.

Now that power and contrast are all set, you can move on to your communication
lines. Connect the Register Select (RS) pin on the LCD to Arduino digital pin 12.
This RS pin is used to control where in the LCD’s internal memory the Arduino will

Figure 7.2 Power and contrast wiring for the Hitachi HD44780 parallel LCD
Download from Wow! eBook <www.wowebook.com>

137Parallel character LCDs: the Hitachi HD44780
write the current character. Next, wire the Enable (E) pin to Arduino digital pin 11.
Enable is what actually allows writing to those registers. Read/Write (RW) can be
connected directly to GND or to Arduino digital pin 10 (optional). Tying RW to digi-
tal pin 10 instead of ground gives you the added functionality of being able to send
information back from the LCD if you so choose. If you don’t wish to read from the
LCD (which you won’t in most cases), save yourself the digital pin and connect RW
directly to ground.

 Since you’re running in 4-bit mode, the next four pins on the LCD (DB0–DB3)
don’t need to be connected. That brings you to LCD bits DB4–DB7: DB4 should be con-
nected to Arduino digital pin 5, DB5 to digital pin 4, DB6 to digital pin 3, and DB7 to
digital pin 2. If your LCD has a backlight, now would be the time to connect the back-
light LED+ to +5V on the Arduino through a series resistor (see the earlier note in sec-
tion 7.2.3), and the LED- to GND on your Arduino.

 Voilà! You’re now ready to test your first sketch and communicate with your LCD. If
you want to triple-check your connections, please refer to table 7.4.

7.2.5 Sketch for writing to the Hitachi HD44780

Now that everything is wired up, let’s print something to the screen. Open up the
Arduino IDE and carefully copy the code from the following listing into your empty
sketch (or simply run the provided sketch).

 .

Table 7.4 The required circuit connections between the Hitachi HD44780 LCD and the Arduino

Arduino pin LCD pin

GND Vss

+5V Vcc

Pin 2 (wiper) of 10k linear potentiometer V0

D12 Register Select (RS)

D11 Enable (E)

GND or D10 (optional) Read/Write (RW)

D5 DB4 (bit 4)

D4 DB5 (bit 5)

D3 DB6 (bit 6)

D2 DB6 (bit 7)

+5V through a series resistor (for example, 68 ohm) LED+

GND LED-
Download from Wow! eBook <www.wowebook.com>

138 CHAPTER 7 LCD displays
#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 lcd.begin(16, 2);
 lcd.print("Arduino in");
 lcd.setCursor(0,1);
 lcd.print("Action Rocks!");
}

void loop() {
}

First, you must include the LiquidCrystal library header file to tell Arduino that you
wish to use the LiquidCrystal library. Next, you create an instance of the Liquid-
Crystal class, lcd, and pass in the Arduino pins to which your LCD is connected B.
The number of arguments you pass in to the constructor automatically configures the
lcd object to run in 4-bit or 8-bit mode.

 In your setup routine, configure the size of your screen c, and then print some
text to the LCD d. Because the text you want to print is longer than one row, you
print the first half, then go to the second line using the setCursor e method and
then print the second half of the text f.

7.2.6 Upload and test
Connect the USB cable to your Arduino and verify that the sketch compiles. Make sure
your board and serial port are selected in the Tools menu, and click the Upload icon.
Shortly after the sketch completes, your LCD should display the words “Arduino in
Action Rocks!” (It should look similar to the image in figure 7.3.) Exciting! If you

Listing 7.1 Writing text onto your LCD

Creates LCD class instanceb

Configures size
of the screen

c

Prints textd

Moves to
second linee

Prints textf

Figure 7.3 Completing the wiring for the Hitachi HD44780 parallel LCD
Download from Wow! eBook <www.wowebook.com>

139Serial LCD weather station
don’t see anything displayed on the screen, or if the text is too dim, turn the potenti-
ometer wired to V0 to adjust the contrast of the screen.

 Seeing text on your LCD for the first time is always very exciting, especially when
the display is giving you useful information. Now that you’ve tackled displaying static
text in your first LCD project, let’s build a weather station to monitor temperature in
real time. And while we’re at it, let’s also learn about another type of character display,
the serial LCD.

7.3 Serial LCD weather station
Want to save even more pins on your Arduino, or perhaps you’d just prefer fewer dan-
gling wires? Serial LCDs are another affordable option, and they require only three
pins to operate. They work a little differently than parallel LCDs, interpreting serial
commands (TTL or transistor-transistor logic, to be exact) over your Arduino’s TX pin
into special commands or output to the LCD (more on this later). The catch is that
they’re a little more expensive than their parallel brethren, although prices have
come down significantly in recent years. Additionally, you can purchase a serial LCD
backpack, turning your Hitachi HD44780 parallel LCD into a serial LCD.

 In this section, we’re going to look at connecting and communicating with a serial
LCD and build a real-time weather station to monitor the temperature of your home.

7.3.1 Serial vs. parallel LCDs
The way in which serial LCDs communicate with the Arduino is fundamentally dif-
ferent than the parallel LCDs we saw in section 7.2, although operationally they’re
very similar.

 If you remember our study of parallel LCDs, we sent either 4- or 8-bit messages
from the Arduino to the LCD, instructing it to move the cursor or print a character to
the screen. The main difference is that serial LCDs send messages one bit at a time
(serially), requiring only one communication line. Once wired up, communicating
with the serial LCD is as easy as sending the appropriate single-byte command flag
using Serial.print(command) to perform various tasks (move the cursor, turn the
display off, and so on) or you can send plain old characters to print text to the screen:
Serial.print("text").

 There are a number of commands you can send to the screen, so it would be help-
ful to create helper functions that automatically set the appropriate command before
passing the message you want. Luckily, the Arduino community has already done this
for various serial LCD models, and it has created Serial LCD libraries based on the offi-
cial LiquidCrystal library, but with a few added features.

7.3.2 SerLCD library and functions
The library you’ll be using to communicate with your serial LCD in this section is
called SerLCD. The library is written to be used with the 16 x 2 SparkFun (or compati-
ble) serial LCDs and backpacks, but with a simple modification the library can be used
with most serial LCDs on the market.
Download from Wow! eBook <www.wowebook.com>

140 CHAPTER 7 LCD displays
 Unlike the LiquidCrystal library that comes installed within the Arduino IDE, Ser-
LCD is a contributed library, which means it has been written by a member of the
Arduino community and isn’t currently rolled into the official release. There are a few
things you need to do in order to get SerLCD up and running, so please read the fol-
lowing instructions carefully.

 First, you’ll need to download the SerLCD library source from http://arduino.cc/
playground/Code/SerLCD. Download and extract the folder called serLCD and put
that folder in your sketchbook/libraries folder, as described in chapter 4 (section 4.4
on contributed libraries).

 The SerLCD library uses the built-in SoftwareSerial library (discussed in sec-
tion 4.3.11), allowing the LCD to work over the serial communication lines while
leaving the hardware serial port open on the Arduino. This is great news, because
it will allow the simultaneous use of multiple serial peripherals alongside the LCD,
albeit with a few important considerations. Please refer back to section 4.3.11 for
more information on using multiple serial devices simultaneously with the Software-
Serial library.

 The SerLCD library has implemented most of the functions available in the Liquid-
Crystal library (table 7.3), so sharing your code between the parallel and serial LCDs
will only require a few minor changes. Table 7.5 details the functions available in the
SerLCD library, which even include the ability to adjust the contrast of the screen
using pulse-width modulation (on SparkFun SerLCD and compatible displays).

Table 7.5 The functions available in the SerLCD library

Function Description

serLCD(int pin) Constructor that specifies the TX pin to the LCD

clear() Resets and clears everything on the display

clearLine(int num) Resets and clears a specific line

selectLine(int num) Moves the cursor to the beginning of a specific
line

setBrightness(int num) Sets the contrast of the LCD (only on some
LCDs)

home() Sets the cursor to the upper left of the LCD

print(data) Prints text to the LCD

setSplash() Saves the first two lines displayed as the
startup “splash” screen

toggleSplash() Enables or disables a startup “splash” screen

leftToRight() Sets the direction of text being displayed

rightToLeft() Sets the direction of text being displayed
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/playground/Code/SerLCD
http://arduino.cc/playground/Code/SerLCD

141Serial LCD weather station
NOTE If you’re using a serial LCD that isn’t compatible with the SparkFun
serial LCD, there are a few changes you must make to the SerLCD library. If
you open up SerLCD.h, you’ll find a list of commands and flags set in hexa-
decimal notation. Refer to your LCD’s datasheet and update these accord-
ingly, and you should be all set.

With the SerLCD library installed, you’re ready to start wiring up your LCD, but first
let’s take a look at the temperature sensor that you’ll be using.

7.3.3 The Maxim IC DS18B20 temperature sensor

The DS18B20 temperature sensor by Maxim uses the Maxim one-wire protocol and is
becoming one of the most popular temperature sensors on the market. The one-wire
protocol allows one or more one-wire slave devices to communicate with a master
device over a single data line, which means that you can easily connect many of these
sensors to your Arduino without taking up many inputs on the Arduino. They’re inex-
pensive, reliable, calibrated, and robust enough to communicate over long wires for
remote applications.

 Easy to wire up, the contributed OneWire and DallasTemperature libraries also
make communicating with the sensor simple.

7.3.4 OneWire and DallasTemperature libraries

In order to communicate with your DS18B20 temperature sensor, you need the One-
Wire Arduino library; using the DallasTemperature library is optional. The OneWire
library will allow you to begin communicating with your temperature sensor; the Dallas-
Temperature library has some useful features such as Celsius to Fahrenheit conversion,

blink() Blinks the cursor character

noBlink() Disables the cursor character from blinking

cursor() Displays an underscore character at the
current position

noCursor() Hides the cursor character

display() Turns the display on and restores text if turned
off by noDisplay()

noDisplay() Turns off the display, saving current text

setCursor(int row, int column) Sets the cursor to the position passed in

createChar(int num, byte[] charData) Defines a custom 5 x 8 character

printCustomChar(int num) Prints a custom character

Table 7.5 The functions available in the SerLCD library (continued)

Function Description
Download from Wow! eBook <www.wowebook.com>

142 CHAPTER 7 LCD displays
and the ability to easily code and read more than one temperature sensor on the same
bus. As such, we’re going to be using the DallasTemperature library in this example,
and recommend you do too.

NOTE If you don’t use the DallasTemperature library, you’ll need to execute
the less readable OneWire library commands, which can be referenced online
at http://www.pjrc.com/teensy/td_libs_OneWire.html.

Download the latest version of the OneWire library from www.arduino.cc/playground/
Learning/OneWire and the DallasTemperature library from http://milesburton.com/
Dallas_Temperature_Control_Library (you’ll want version 3.7.2 or greater). Place the
two library folders into your Arduino sketchbook libraries directory.

 You’re now ready to wire everything up and upload the code.

7.3.5 Circuit diagram

Figure 7.4 is an overview of the circuit you’ll wire up for the serial LCD–powered
weather station.

Figure 7.4 Circuit diagram for a weather station using the SparkFun (or compatible) serial LCD, and
the DS18B20 one-wire digital temperature sensor
Download from Wow! eBook <www.wowebook.com>

http://www.pjrc.com/teensy/td_libs_OneWire.html
www.arduino.cc/playground/Learning/OneWire
www.arduino.cc/playground/Learning/OneWire
http://milesburton.com/Dallas_Temperature_Control_Library
http://milesburton.com/Dallas_Temperature_Control_Library

143Serial LCD weather station
7.3.6 Connecting everything up

Before connecting everything up, you should prepare all the parts needed for the project:

■ An Arduino
■ A serial LCD (SparkFun-compatible 16 x 2 serial LCD or backup recommended)
■ A DS18B20 temperature sensor
■ A 4.7k ohm resistor (R1)

Once you have the required parts, making your weather station couldn’t be any simpler.
As described in table 7.6, simply connect the Vdd pin on the LCD to 5V on your Arduino
to get power going to the LCD. Next, wire the GND pin on the LCD to your Arduino’s
GND pin. Finally, the RX (receive) pin on your LCD should connect to any of the digi-
tal pins on your Arduino—table 7.6 and the schematic in figure 7.4 show it connected
to pin 12.

If you aren’t using the serLCD library (which uses the SoftwareSerial library for communi-
cation), you can also directly connect the LCD’s RX pin to the TX (D1) pin on the Ardu-
ino, although you’ll lose the benefits of using a software serial port, as discussed earlier.

 Wiring up the DS18B20 one-wire temperature sensor is also
a breeze. As described in table 7.7, connect pin 1 on the sen-
sor to GND, connect pin 2 to a digital input (such as digital
pin D8 on the Arduino), and pin 3 on the sensor to 5V on the
Arduino. Lastly, you need to wire a 4.7k ohm pull-up resistor
between pin 2 on the DS18B20 and 5V—one simple way is to
put the resistor directly between pins 2 and 3 on the sensor
itself. For the DS18B20’s pin layout, see figure 7.5. Your com-
pleted wiring should look similar to that in figure 7.6.

Table 7.6 Required circuit connections between the serial LCD and the Arduino

Arduino pin LCD pin

GND GND

5V Vdd

D12 (or any digital pin) RX

Table 7.7 Required circuit connections between the DS18B20 one-wire temperature sensor
and the Arduino

Arduino pin DS18B20 one-wire temperature sensor

GND Pin 1

5V Pin 3 and pin 2 through a 4.7k ohm resistor

Pin 8 (or any digital pin) Pin 2

Figure 7.5
Pin layout for
the DS18B20
temperature
sensor
Download from Wow! eBook <www.wowebook.com>

144 CHAPTER 7 LCD displays
7.3.7 Sketch for an LCD weather station

Now that everything is wired up, you can get information from the temperature sen-
sor and display it on the screen. Open up the Arduino IDE and carefully copy the fol-
lowing code into your empty sketch (or simply run the provided sketch).

#include <SoftwareSerial.h>
#include <serLCD.h>
#include <OneWire.h>
#include <DallasTemperature.h>

#define ONE_WIRE_BUS 8

serLCD myLcd(12);
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

void setup(void)
{
 Serial.begin(9600);
 sensors.begin();
 myLcd.clear();
}

void displayTemperature(int sensorIndex)
{
 myLcd.clear();
 float tempInCel = sensors.getTempCByIndex(sensorIndex);

Listing 7.2 Weather station

Figure 7.6 Completed wiring for a DS18B20-based LCD weather station

Import
librariesb

Set sensor
port number

c Create
serLCD
object

d

Create OneWire and
DallasTemperature objectse

Start serial
connection

Initialize sensor
and LCD libraries
Download from Wow! eBook <www.wowebook.com>

145Serial LCD weather station
 myLcd.setCursor(0,0);
 myLcd.print("C: ");
 myLcd.print(tempInCel, 1);
 myLcd.setCursor(0,1);
 myLcd.print(" F: ");
 float tempInFar = DallasTemperature::toFahrenheit(tempInCel);
 myLcd.print(tempInFar, 1);
}

void loop(void)
{
 sensors.requestTemperatures();
 displayTemperature(0);
 delay(2000);
}

First you must import the three libraries we want to use B. Next, set up the tempera-
ture sensors by defining the port the temperature sensor is connected to c.

 You can then create a new OneWire object and DallasTemperature object e. You
configure the LCD by creating a new serLCD object with the SoftwareSerial port
number (digital pin) the LCD is using d.

NOTE When printing the temperature value, you can change the decimal
precision (how many decimal places are printed) by modifying the print func-
tion arguments. For example, myLcd.print(tempInCel, 4); prints tempera-
tures with four decimal places.

Once you’ve copied the code into the Arduino IDE, you’re ready to see the code
in action.

7.3.8 Upload and test

If you haven’t done so already, make sure you’ve properly installed the three required
libraries (SerLCD, OneWire, and DallasTemperature). You’re now ready to connect
the USB cable to your Arduino and verify that the sketch compiles. Make sure your
board and serial port are selected in the Tools menu, and click the Upload icon.
Shortly after the sketch completes uploading, your LCD should display the tempera-
ture in both Celsius and Fahrenheit, updating its reading every two seconds.

 Congratulations! Your Arduino will now monitor the temperature of your room.
Want to take this one step further? You can purchase a tri-color (RGB) backlight paral-
lel display and use the color of the screen to indicate from a distance whether you
should turn on the heat or air conditioning. Perhaps when the temperature crosses a
certain threshold, the screen turns red, letting you know you should cool the place
off, or vice versa.

 This leads us to a good question: how can LCDs be used to display things other
than text? Well, pairing an LCD with LEDs is one way, but for many more possibilities,
you can turn to graphic LCDs.

Update temperature
readings

Update display with
new temperatures
Download from Wow! eBook <www.wowebook.com>

146 CHAPTER 7 LCD displays
7.4 Graphic LCDs: the Samsung KS0108 GLCD
If you need feedback other than text displayed on a screen, look no further. Graphic
LCDs (GLCDs) are one of the most common peripherals you’ll come into contact with
on a daily basis, from the cellphone in your pocket to the laptop on your desk.

 Whereas parallel and serial character displays allocate a very small number of pix-
els for each character (typically 5 x 8 pixels), graphic LCDs use the entire screen as
your canvas. That means you have complete control to draw whatever you like, pixel
by pixel. Imagine the possibilities: you could use a graphic LCD to build a fully func-
tional Arduino-powered video game, or perhaps to draw custom knobs and sliders to
visualize your sensors’ data stream. Graphic LCDs are extremely useful displays,
unleashing the power of the pixel to create anything from homemade calculators to
audio-responsive level meters.

 So how many pixels do you get? Graphic displays come in many different sizes, but
we’re going to use the common KS0108-based GLCD, which typically comes in a mono-
chrome 128 x 64 pixel configuration. Like the character displays discussed earlier in
this chapter, the KS0108 GLCD has an extensive library that allows you to easily draw to
your screen.

7.4.1 Library and functions
To communicate with the KS0108 GLCD, you’ll be using the KS0108 Graphics LCD
Library available at www.arduino.cc/playground/Code/GLCDks0108. Download the
official release, or for the latest optimizations, download the bleeding-edge release
candidate hosted at http://code.google.com/p/glcd-arduino/downloads/list.

 Table 7.8 lists the various functions in the library that you’ll use to move around on
and draw to your display.

Table 7.8 The functions available in the GLCDks0108 library

Function Description

Init(bool inverted) Initializes the library

ClearScreen() Resets and clears everything on
the display

DrawBitmap(bitmap, int x, int y, color) Draws the provided bitmap image at
the x,y location

SelectFont(font) Switches to the fixed-width font
provided

PutChar(char c) Prints a char at the current position

GotoXY(int x, int y) Moves position to x,y (top left is 0,0)

CursorTo(int x, int y) Locates cursor for printing text

PrintNumber(long n) Prints a number to the screen at the
current position
Download from Wow! eBook <www.wowebook.com>

www.arduino.cc/playground/Code/GLCDks0108
www.arduino.cc/playground/Code/GLCDks0108
http://code.google.com/p/glcd-arduino/downloads/list

147Graphic LCDs: the Samsung KS0108 GLCD
NOTE For the functions in table 7.8 with a color parameter, WHITE clears a
pixel and BLACK fills a pixel.

While communicating with the KS0108 GLCD is intuitive using the GLCDks0108 library,
wiring up the GLCD is a little more involved than the character displays we discussed
earlier. Let’s take a look at how exactly you can wire up your screen and what you
should watch out for.

7.4.2 Circuit diagram

To connect up your KS0108 graphic LCD, you’ll need the following:

■ An Arduino Mega
■ A KS0108 GLCD
■ A 10k ohm potentiometer (R1)
■ A 220 ohm resistor (R2)

Figure 7.7 is a circuit diagram showing how to wire a KS0108 (model with pinout A) to
the Arduino Mega. There are four common versions of the KS0108 display, and the cir-
cuit diagram in this section only applies to the common LCD pinout A when con-
nected to the Mega. If you’re using a KS0108 with any of the other pinouts or Arduino

Puts(string t) Prints a text string at the current cursor
position

DrawLine(int x1, int y1, int x2,
int y2, color)

Draws a line

DrawVertLine(int x, int y, int length, color) Draws a vertical line

DrawHoriLine(int x, int y, int length, color) Draws a horizontal line

DrawRect(int x, int y, int width,
int height)

Draws a rectangle

InvertRect(int x, int y, int width,
int height)

Inverts pixels within given rectangle

DrawRoundedRect(int x, int y, int width,
int height, int radius, int color)

Draws a rectangle with rounded
corners

FillRect(int x, int y, int width,
int height, int color)

Draws a filled rectangle

DrawCircle(int x, int y, int radius, color) Draws a circle with the center at x,y

SetDot(int x, int y, color) Fills a pixel at the specified location

Table 7.8 The functions available in the GLCDks0108 library (continued)

Function Description
Download from Wow! eBook <www.wowebook.com>

148 CHAPTER 7 LCD displays
models, please skip this diagram and go straight to section 7.4.3. There you’ll find a
table with all the appropriate connections you need to make. More information on
determining which pinout your LCD has can also be found in section 7.4.3.

7.4.3 Connecting everything up

Wiring up the KS0108 isn’t particularly difficult, although there are a lot of connec-
tions to make—20 to be exact.

 The first thing you’ll need to figure out is the pinout of the KS0108 version you
have. Verify the labeling on your KS0108 screen (if labeled) or refer to the screen’s
data sheet. Additionally, a list of models and their pinout versions has been compiled

Figure 7.7 Circuit diagram for the KS0108 GLCD with pinout A connected to the Arduino Mega
Download from Wow! eBook <www.wowebook.com>

www.arduino.cc/playground/Code/GLCDks0108
www.arduino.cc/playground/Code/GLCDks0108

149Graphic LCDs: the Samsung KS0108 GLCD
for most of the common screens you’ll come across at www.arduino.cc/playground/
Code/GLCDks0108. In this example, we used the standard SparkFun GLCD 128 x 64,
which uses pinout A.

 Table 7.9 provides an extensive overview of the pin assignments for each type of
KS0108. Additionally, you’ll notice in table 7.9 that depending on the Arduino you’re
using, the pin assignments between the GLCD and the Arduino change. This is very impor-
tant and must be correct in order for the library to properly communicate with the screen.

Table 7.9 KS0108 GLCD pinouts and connections to the Arduino

Uno/168/328 Mega Function Pinout A Pinout B Pinout C Pinout D Description

5V 5V 5V 1 2 2 4

Gnd Gnd Gnd 2 1 1 3

n/a n/a V0 3 3 3 5 Wiper of 10k
contrast pot

8 22 D0 4 7 7 9

9 23 D1 5 8 8 10

10 24 D2 6 9 9 11

11 25 D3 7 10 10 12

4 26 D4 8 11 11 13

5 27 D5 9 12 12 14

6 28 D6 10 13 13 15

7 29 D7 11 14 14 16

14 (analog 0) 33 CSEL1 12 15 16 1 Chip 1 select

15 (analog 1) 34 CSEL2 13 16 15 2 Chip 2 select

Reset Rest Reset 14 17 17 Connect to
reset pin

16 (analog 2) 35 R_W 15 5 5 7 R/W

17 (analog 3) 36 D_I 16 4 4 6 RS

18 (analog 4) 37 EN 17 6 6 6 Enable

External External Vee
(Contrast
out)

18 18 18 Connect to
one leg of
10k pot

External External Backlight
+5V

19 19 119 100–330
ohm resistor
to +5V

Gnd Gnd Backlight
Gnd

20 20 20 Connect to
other leg of
10k pot
Download from Wow! eBook <www.wowebook.com>

www.arduino.cc/playground/Code/GLCDks0108
www.arduino.cc/playground/Code/GLCDks0108

150 CHAPTER 7 LCD displays
7.4.4 Sketch for drawing to a GLCD

Now that it’s wired up, let’s get some graphics drawing. Carefully copy the following
code into the Arduino IDE (or run the provided sketch), and you should be able to
upload and see your screen animated.

#include <ks0108.h>

int xc, yc = 0;
int d=1000;

void setup()
{
 GLCD.Init(NON_INVERTED);
 GLCD.ClearScreen();
}

void loop()
{
 for (int a=1; a<20; a++)
 {
 GLCD.DrawCircle(63,31,a,BLACK);
 delay(200);
 GLCD.DrawCircle(63,31,a,WHITE);
 }

 delay(d);
 GLCD.ClearScreen();

 for (int a=0; a<128; a++)
 {
 GLCD.DrawVertLine(a, 0, 63, BLACK);
 delay(d-950);
 }

 delay(d-800);

 for (int a=0; a<128; a++)
 {
 GLCD.DrawVertLine(a, 0, 63, WHITE);
 delay(d-950);
 }

 GLCD.ClearScreen();

 for (int a=0; a<64; a++)
 {
 GLCD.DrawHoriLine(0, a, 127, BLACK);
 delay(d-950);
 }

 for (int a=0; a<64; a++)
 {
 GLCD.DrawHoriLine(0, a, 127, WHITE);
 delay(d-950);
 }

Listing 7.3 Drawing to the KS0108 GLCD

Import KS0108
library

Delay between drawing
examples (milliseconds)

Initialize and
reset screen

Draw circles

Delay and
reset screen

Draw vertical
lines

Delay and white-
out each line

Reset screen and
draw horizontal lines

White-out
each line
Download from Wow! eBook <www.wowebook.com>

151Summary
 GLCD.ClearScreen();
 GLCD.DrawRoundRect(30, 30, 20, 20, 5,BLACK);
 GLCD.DrawRoundRect(60, 30, 20, 20, 5,BLACK);
 delay(d);
 GLCD.ClearScreen();
 delay(d);
 GLCD.FillRect(30, 30, 30, 10, BLACK);
 delay(d);
 GLCD.ClearScreen();

 for (int a=0; a<1000; a++)
 {
 xc=random(0,127);
 yc=random(0, 63);
 GLCD.SetDot(xc, yc, BLACK);
 delay(2);
 }

 GLCD.ClearScreen();
}

7.4.5 Upload and test

If you haven’t already installed the GLCDks0108 library, please follow the instructions
to do so in section 7.4.1. Once the library has been installed, you’re ready to connect
the USB cable to your Arduino and verify that the sketch compiles. Make sure your
board and serial port are selected in the Tools menu and click the Upload icon.

 Immediately after the sketch has been uploaded, you’ll begin to see your LCD
come to life! You now have all the tools necessary to draw complex images and text to
your KS0108 GLCD. You can create rich visual feedback in future applications.

7.5 Summary
In this chapter you learned how to connect three different kinds of LCD screens to
your Arduino. These included parallel and serial LCDs—embeddable character dis-
plays that prove themselves useful time and time again when it’s important to provide
feedback about the state of your Arduino, data from sensors, or other information.
You also learned about the nifty one-wire protocol while making a homebrewed LCD-
powered weather station to monitor the temperature of your home. Lastly, you
learned about GLCDs—powerful displays that give you the freedom to draw and visual-
ize images and text on screen with great precision and control.

 By themselves, LCDs don’t do very much, but as you can imagine, the way you code
your LCD to interact with your Arduino can enable many possibilities. Whether they’re
visualizing the state of your sensors, enabling you to change and interact with different
modes on your Arduino-powered project, creating the world of your video game, or dis-
playing information from the internet (discussed further in chapter 8), LCDs will afford
you great control and provide feedback in many of your projects. In a general sense, LCDs
can be thought of as one of the great communicators between you and your Arduino.

 But LCDs aren’t the only way for your Arduino to communicate to the outside
world. It’s now time to turn to chapter 8, on communications.

Reset screen and draw
rounded rectangles

Draw filled
rectangle

Fill random
pixels

Reset screen
Download from Wow! eBook <www.wowebook.com>

Communications
In the previous chapter, we investigated how you can receive visual feedback from
the Arduino by communicating with LCD screens. Imagine if you could display
information from the Arduino on an external screen, and also send it out over the
internet for the world to see! What if you could control your Arduino remotely?

 Getting your Arduino on the internet and remotely talking to your computer
are two of the many communication channels possible with the Arduino. We’ll look
at communicating with your Arduino via Ethernet, Wi-Fi, Bluetooth, and SPI.

 As many of your projects will involve communicating over the internet, let’s dive
right in and look at how to communicate with the Arduino over a computer network.

This chapter covers
■ Creating an Ethernet web server to query data

from your Arduino
■ Tweeting messages from your Arduino to Twitter
■ Wi-Fi network and Bluetooth communication

with the Arduino
■ Data logging onto an SD card and to the

internet using the Cosm service
■ Communicating with other devices over the

Serial Peripheral Interface (SPI) protocol
152

Download from Wow! eBook <www.wowebook.com>

153Ethernet
8.1 Ethernet
One of the most powerful communication channels available on the Arduino is Ether-
net. Ethernet is a standardized networking facility that allows all kinds of devices to
communicate with each other by sending and receiving streams of data (called packets
or frames).

 Ethernet is extremely fast and robust, transmitting the data back and forth across the
network without error. Each device on the network gets a unique identifier called an IP
address, which allows the devices to communicate via different internet protocols.

 The Arduino makes setting up internet communication easy using the Ethernet
Shield and the Ethernet library, but before we discuss the library and shield, let’s
take a look at a few key networking concepts. If you’re already familiar with network-
ing concepts, it still may be worth reviewing the terminology and technologies in
table 8.1.

Although networking and Ethernet are complex topics that can take many years to
fully understand, table 8.1 presents the fundamental terms you’ll need to know in
order to understand the rest of the chapter.

Table 8.1 Key Ethernet terms and concepts

Term Description

Ethernet Ethernet is a standardized networking technology that describes a way for computers
and other devices to send information back and forth over a wired network.

Protocol Protocols are established communication languages that allow devices to talk to one
another. In order for two devices to communicate, they both must be speaking the
same language, or protocol. For example, the Hypertext Transfer Protocol (HTTP) is a
common protocol that you’ll use to set up your Arduino as a web server. Using HTTP,
you’ll establish a language that allows the Arduino web server to understand messages
and requests from web clients such as a computer’s web browser.

MAC address A Media Access Control (MAC) address is a unique identifier assigned to Ethernet and
other networking devices. The MAC address allows the devices to be uniquely identified
in order to communicate with other devices. Your Arduino shield will come with a sticker
giving it a unique MAC address.

TCP/IP Transmission Control Protocol (TCP) and Internet Protocol (IP) are internet protocols
that pass messages over the global internet (the home of the “world wide web” we all
know and love).

IP address An IP address is a unique address that devices and servers use to identify themselves
over the global internet. For example, when you go to a website, such as manning.com,
the internet uses the Directory Name Service (DNS) to translate http://google.com/ to
a numeric IP address, such as 209.85.148.139.

Local IP
address

Local IP addresses are similar to regular IP addresses, but they’re used specifically to
communicate between computers and devices on a local network. For example, when
you set up a network at home, each computer on the network is assigned a local IP
address to communicate with the router and other computers on the network.
Download from Wow! eBook <www.wowebook.com>

http://google.com/

154 CHAPTER 8 Communications
 Now that you’ve reviewed the table, let’s move on to the Ethernet library and see
what it does.

8.1.1 The Ethernet library

The Ethernet library comes bundled with the Arduino IDE and allows you to config-
ure your Arduino and Ethernet Shield to communicate with the outside world. You
can configure up to four concurrent servers and clients (total). You set up the server
such that it first accepts incoming connections from clients and then sends and receives
data. In contrast, a client makes outgoing connections to the server first and then can
send data to and receive it from the server.

 More on this soon, but for now take a look at table 8.2, which provides an overview
of the functions available in the Ethernet library.

Table 8.2 Overview of the Ethernet, Server, and Client class functions in the
Ethernet library

Function Description

Ethernet.begin(mac)
Ethernet.begin(mac, ip)
Ethernet.begin(mac, ip, gateway)
Ethernet.begin(mac, ip, gateway,
subnet)

Initializes the library, supplying the MAC address of the
shield, and automatically configures your IP using
DHCP. Optionally, supplies a manual IP address, gate-
way (typically your router’s IP address), and subnet
mask (default is 255.255.255.0, which tells the shield
how to interpret IP addresses).

Server(port) Creates a server to listen on a specific port.

Server.begin() Starts the server listening for messages.

Server.available() Returns a client if a client has data ready.

Server.write() Sends data to all connected clients.

Server.print() Prints data to all clients. Numbers print as a sequence
of ASCII digits; for example, 123 becomes three char-
acters, ‘1’, ‘2’, and ‘3’.

Server.println() Same as Server.print() but with a newline char-
acter at the end of each message.

Client(ip, port) Creates a client that can connect to the specified IP
address and port.

Client.connected() Returns whether or not the client is connected. If the
connection is closed and some data is still unread,
this will still return true.

Client.connect() Starts the connection.

Client.write() Writes data to the server.

Client.print() Prints data to the server. Numbers print as a sequence
of ASCII digits; for example, 123 becomes three char-
acters, ‘1’, ‘2’, and ‘3’.
Download from Wow! eBook <www.wowebook.com>

155Ethernet
In addition to the Ethernet, Server, and Client classes, the Ethernet library also
includes useful general-purpose User Datagram Protocol (UDP) networking classes to
broadcast information over a network. When a server or client isn’t required, the UDP
class is what you’ll use to broadcast data to or receive it from the Arduino. Table 8.3
details the functions in the UDP class.

Now that we’ve covered the functions and classes in the Ethernet library, let’s take a
look at the Ethernet Shield. You’ll use the shield to extend the hardware functionality
of your Arduino so you can plug into a wired Ethernet network.

8.1.2 Ethernet Shield with SD data card

The original Ethernet Shield was a milestone for the Arduino platform, enabling proj-
ects to communicate over networks and over the internet. Powered by the WIZnet

Client.println() Same as Client.print() but with a newline char-
acter at the end of each message.

Client.available() Returns the number of bytes available to be read (the
number of bytes sent from the server).

Client.read() Reads the next byte received from the server.

Client.flush() Flushes any bytes that have been written to the client
but have not yet been read.

Client.stop() Disconnects from the server.

Table 8.3 Overview of main UDP class functions in the Ethernet library

Function Description

EthernetUDP.begin(port) Initializes UDP object and specifies listening port.

EthernetUDP.read(packetBuffer,
MaxSize)

Reads UDP packets from a buffer.

EthernetUDP.write(message) Sends a message to the remote connection.

EthernetUDP.beginPacket(ip, port) Must be called before sending a message, specify-
ing the destination IP and port.

EthernetUDP.endPacket() Must be called after the message is sent to end
the message.

EthernetUDP.parsePacket() Checks to see if there’s a message to be read.

EthernetUDP.available() Returns how much data has been received and is
available to be read.

Table 8.2 Overview of the Ethernet, Server, and Client class functions in the
Ethernet library (continued)

Function Description
Download from Wow! eBook <www.wowebook.com>

156 CHAPTER 8 Communications
W5100 Ethernet chip, it provides a network (IP) stack with both TCP and UDP, over a
10/100 Mb Ethernet connection. The shield has a standard RJ45 Ethernet jack allow-
ing it to plug and play with your modem, router, or other standard devices.

 The newer, widely-available Ethernet Shield improves upon the original by add-
ing a microSD card slot on the shield itself. This means you can read and store files
on your shield (by plugging in an SD card and using the SD library). But it’s impor-
tant to note that the W5100 chip and the SD card both communicate with the Ardu-
ino using the SPI bus (more information on SPI can be found in section 8.6). On
most Arduino boards, this is on pins 11, 12, and 13, and on the Mega it’s pins 50, 51,
and 52. On both boards, pin 10 is used to select the W5100 and pin 4 to select the SD
card. This is important because it means you can’t use these pins as general-purpose
I/O pins.

NOTE Because the W5100 chip and the SD card both use SPI, only one can be
active at a time. To use the SD card, you only need to set pin 4 as an output
and set it HIGH; for the W5100, set digital pin 10 as an output and set it HIGH.
Also, the hardware SS pin (pin 10 on most Arduino boards and 53 on the
Mega) might not be used, but it must be left as an output (default) for the SD
and Ethernet libraries and SPI interface to work.

8.2 Arduino web server
With the basics of Ethernet, the Ethernet library, and the Ethernet Shield under your
belt, you’re ready to start your first Ethernet-powered project. For this project you’re
going to build an Arduino web server, a call-and-response system that can accept
requests from clients and in turn send back data (as illustrated in figure 8.1). To do
this, you’ll use the Server and Client classes included in the Ethernet library.

8.2.1 Setting up the server

To set up the server, you’ll need a few pieces of information.
 First, you’ll need to know the MAC address of the Arduino Ethernet Shield, which

should be printed on a sticker on the shield. In the code you’ll use for the server,
you’ll store the MAC address in a byte array, like so:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

Remember, this is the unique hardware address that’s used to talk directly to your
shield over Ethernet.

Figure 8.1 Overview of Arduino
web server communication
Download from Wow! eBook <www.wowebook.com>

157Arduino web server
If you have an older Ethernet Shield without the sticker, or you’ve lost your sticker,
you can use the MAC address from the preceding example. The important thing is
that if you have more than one device on the network, they all must have unique
MAC addresses.

 Next, you’ll need your IP address. Since Arduino 1.0, the built-in Ethernet library
supports Dynamic Host Configuration Protocol (DHCP), enabling Arduino to auto-
matically discover your IP address. This will automatically configure your IP address
whether you’re connected directly to your modem or to a networked router, as long as
they have DHCP enabled (which is typically the case).

 You’ll only need to find out the IP of your router and manually specify an IP
address for your Arduino Ethernet Shield if your network isn’t using DHCP, or if
you’re using a version of Arduino prior to 1.0. There are different techniques for
doing so, depending on your setup.

 If your Arduino is connected directly to your modem, the IP address will be sup-
plied by your internet service provider (ISP). To find your IP address in this case, it
may be easiest to connect a computer to your modem—there are many websites that
can report your IP address. (A quick internet search for the term IP lookup should get
you an address, or you can try www.whatismyip.com/.) Note that your IP address is
automatically assigned by your ISP and may change from time to time.

 If your Arduino is connected to your network via a router, you’ll have to assign an
unused local network IP address to your Ethernet Shield instead. To manually assign your
Arduino an unused local IP, you’ll need to know a bit more about your network’s config-
uration. You can discover your router’s IP address by using a web service via a computer
connected to the network as described previously. Alternatively, you can go into your
router’s administration control panel. Normally, you can do this by opening your web
browser and going to the default router IP, typically http://192.168.1.1 for Linksys and
many other brands, or http://10.0.0.1. If your router’s IP address is 192.168.1.1, you’ll
want to give your Arduino an IP address of 192.168.1.x, where x is any number from 1 to
255. Each computer or network device on your network will have a unique 192.168.1.x
address, where the final number identifies the device on the network, so make sure your
Arduino Ethernet Shield doesn’t conflict with other devices. The same rules apply if
your router is using another addressing pattern, such as the 10.0.0.x address.

 If you do have to manually supply your IP address, you’ll do so in an IPAddress
object, like this:

IPAddress manualIP(192, 168, 1, 2);

The numbers in the preceding code line should be the IP address you want to set.
 Finally, if you’re on a network and using the router to connect to the internet, you

may also need to specify your router as the gateway. Create a byte array and store the
router’s IP address to be used as the gateway. Here’s an example:

byte gateway[] = { 192, 168, 1, 1};

Now that you know the IP configuration for your network, let’s move on to the code.
Download from Wow! eBook <www.wowebook.com>

www.whatismyip.com/
http://192.168.1.1
http://10.0.0.1

158 CHAPTER 8 Communications

E

8.2.2 Sketch for creating a web server

The following listing puts everything we’ve discussed into practice by creating a web
server on the Arduino. The server will be given the task of getting online (or onto a
local network), accepting incoming client connections (sent via a web browser), and
responding with a custom message. This listing is a great template for starting almost
any server-based application.

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress manualIP(192,168,1,120);

EthernetServer server(80);

boolean dhcpConnected = false;

void setup()
{
 if (!Ethernet.begin(mac)){
 Ethernet.begin(mac, manualIP);
 }

 server.begin();
}

void loop()
{
 EthernetClient client = server.available();
 if (client) {
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

 if (c == '\n' && currentLineIsBlank) {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println();
 client.println("Hi! I am your Arduino web server in Action!");

 break;
 }
 if (c == '\n') {
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 currentLineIsBlank = false;
 }
 }
 }
 delay(1);

Listing 8.1 Arduino web server

Assign unique
MAC address

Manually set
IP if DHCP
isn’t enabled

Initialize
serverb

Connect
using DHCP

c

Make manual
connection if
DHCP failsd

Start
servere

Listen for client
connections

Connect and read
data from client

nd request
by sending

response
to client

f

Allow client time
to receive data
Download from Wow! eBook <www.wowebook.com>

159Tweet tweet: talking to Twitter
 client.stop();
 }
}

First, you initialize the server on HTTP port 80 B. Once it’s initialized, you can try
to connect the Arduino to the Ethernet network using DHCP c, or using a manual
IP address if DHCP fails d. Then you start the server and start polling in the main
loop e.

 Once you’ve connected to a client and the data is received, a newline character
delineates the end of a message, and you send a response back to the client f.

8.2.3 Upload and test

Carefully copy the code from listing 8.1 into the Arduino IDE, and you’re ready to
upload the sketch to your Arduino.

 Once you’ve uploaded the code and it’s running, you can connect to the Ardu-
ino server remotely by opening up any web browser and going to http://your_arduinos
_network_ip_address. Your web browser (the client) will send a connection request out
to your Arduino web server, which will respond by sending back the message, “Hi! I am
your Arduino web server in Action!” That’s it.

 Want to see real-time data? Try connecting a potentiometer or sensor up to analog
input 0, and change the line

client.println("Hi! I am your Arduino web server in Action!");

to this:

client.println(analogRead(0));

We hope this has worked without a hitch, but if you aren’t getting a response, please
read the following brief troubleshooting section.

8.2.4 Troubleshooting

If you can’t establish a connection, the first thing to double-check is your IP settings.
 If you’re positive that your settings are correct and you’re on a home network, it’s

possible that you need to set up port forwarding on your router. Setting up port for-
warding will tell your router to forward incoming messages specifically to your Ardu-
ino. Setting up port forwarding isn’t difficult, but you’ll have to do it through your
router’s configuration. See your router’s documentation for more information on
how to set up forwarding to your Arduino’s IP address, and you should be good to go.

8.3 Tweet tweet: talking to Twitter
Creating a web server to communicate with the outside world is great, but another
powerful option is to hook into other online services. One service that’s great to tap
into is Twitter.

 The way Twitter works is simple. Once you have a Twitter account, you can broad-
cast tweets (messages) up to 140 characters long to the entire Twitter network. People

Close
connection
Download from Wow! eBook <www.wowebook.com>

http://your_arduinos_network_ip_address
http://your_arduinos_network_ip_address

160 CHAPTER 8 Communications
can subscribe to your feed and automatically receive your tweet updates. Not only
that, Twitter plays nicely with other services, meaning that you can automatically have
your tweets post to your Facebook account as well.

 Wouldn’t it be great if you could set up a Twitter feed to automatically update
when various things happen on your Arduino? You can. In this section, you’ll learn
how to set up your Arduino and Ethernet Shield to automatically send tweets to a Twit-
ter feed when you press a button connected to your Arduino.

8.3.1 Of Twitter and tokens
If you don’t already have a Twitter account, or you want to set up a new one for this
project, go to www.twitter.com and create one now.

 Next, you need to get a special “token” that will authorize the Arduino to send
messages to your Twitter account. This token enables a middleware web service to
mediate between your Arduino and Twitter. It’s possible to communicate directly with
Twitter, but going through a middleware service is useful because it’ll prevent your
code from breaking if or when Twitter updates its protocol and authorization. It also
helps make the Twitter library more lightweight and saves memory space, which can
be precious on the Arduino.

 To get the token, go to http://arduino-tweet.appspot.com/ and click on the “Step 1:
Get a token to post a message using OAuth” link.

 Once your account is set up, it’s time to take a closer look at the libraries you’ll
be using.

8.3.2 Libraries and functions
To communicate with Twitter, you’ll need to install the Twitter library from www.arduino.
cc/playground/Code/TwitterLibrary. Once you’ve downloaded it, place the library in
your sketchbook or libraries folder.

 Table 8.4 describes the Twitter library’s functions.

Table 8.4 Overview of the Twitter library’s functions

Function Description

Twitter(string token) Constructor takes in the authorization token.

bool post(const char *message) Begins posting a message. Returns true if connection
to Twitter is established, false if there’s an error.

bool checkStatus(Print *debug) Checks if the posting request is still running (can omit
passing in the debug argument if no output is required).

int status() Returns the HTTP status code response from Twitter,
such as 200–OK. The status is only available after post-
ing the message has completed and checkStatus()
returns false.

int wait(Print *debug) Waits until posting the message is done. Returns the
HTTP status code response from Twitter.
Download from Wow! eBook <www.wowebook.com>

www.twitter.com
www.arduino.cc/playground/Code/TwitterLibrary
http://arduino-tweet.appspot.com/
www.arduino.cc/playground/Code/TwitterLibrary

161Tweet tweet: talking to Twitter
8.3.3 Circuit diagram and connecting the hardware

Now that your Twitter and Arduino IDE are set up, let’s build a simple circuit to send
tweets whenever a user presses a button. Solder together the following simple button
circuit, or assemble it on a breadboard.

 Connect one leg of a push button to 5V and the other to GND through a 10k ohm
pull-down resistor. Also connect that same leg (the one connected to ground) to digi-
tal input 2, as shown in figure 8.2.

8.3.4 Sketch for the Twitter button-press tweeter

Once you have the button wired up and the Ethernet Shield plugged in to your Ardu-
ino, copy the following code into the Arduino IDE and you’re ready to go. Be sure to
read the comments in the code carefully to make sure it’s configured correctly for
your network settings. If you need clarification on any of the networking concepts or
terms, refer to section 8.1.

Figure 8.2 Simple button-
tweeting circuit
Download from Wow! eBook <www.wowebook.com>

162 CHAPTER 8 Communications
#include <SPI.h>
#include <Ethernet.h>
#include <Twitter.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress manualIP(192,168,1,120);

int b1Pin = 2;
int pressCount = 0;

Twitter twitter("YOUR-TOKEN-HERE");

void setup()
{
 delay(1000);
 if(!Ethernet.begin(mac)){
 Ethernet.begin(mac, manualIP);
 }
 Serial.begin(9600);
}

void sendTweet(const char msgToSend[])
{
 Serial.println("connecting ...");
 if (twitter.post(msgToSend)) {
 int status = twitter.wait(&Serial);
 if (status == 200) {
 Serial.println("OK.");
 }
 else {
 Serial.print("failed : code ");
 Serial.println(status);
 }
 }
 else {
 Serial.println("connection failed.");
 }
}

void loop()
{
 if(digitalRead(b1Pin) == HIGH)
 {
 pressCount++;
 sendTweet("Times button pressed: " + pressCount);
 delay(2000);
 }
}

First, try to connect the Arduino to the Ethernet network using DHCP B, or with a
manual IP address if DHCP fails c. Once it’s connected, start your serial connection
so you can print debug messages to the console d.

 With everything connected, use the sendTweet function to format and send Tweets
properly e. Then check for button presses and send tweets f.

Listing 8.2 Twitter button-press tweeter

Assign unique
MAC address

Set IP address
manually if DHCP
isn’t enabledSpecify the

button pin

Initialize
Twitter token

Connect
using DHCP

b
Connect manually
if DHCP fails

c

Start serial
connectiond

Format and
send tweetse

Check and
send button
press tweets

f

Download from Wow! eBook <www.wowebook.com>

163Wi-Fi
8.3.5 Upload and test

Once you’re sure everything is correct, compile and upload the code to your Arduino.
You’re now ready to broadcast your button presses to Twitter. Check that you have the
code running on your Arduino and that your Arduino is connected to the internet via
an Ethernet cable, and you should be all set.

 Press the button on your Arduino and log in to Twitter.com. You should see your
last tweet, which says “Times button pressed: 1,” as shown in figure 8.3. Each time you
press the button, you’ll see a new tweet pop up, incrementing the number of times the
button has been pressed. Nice job.

NOTE Twitter blocks the same post from being sent consecutively within a
short amount of time. In listing 8.2, the message changes each time the but-
ton is pressed (the number of times increments), so this isn’t a problem. In
most cases where messages are sent periodically or where they vary, this won’t
be a problem, but it’s something to keep in mind.

As you can imagine, you can broadcast many other useful things besides a simple but-
ton press. Perhaps a sensor is triggered when the front door opens or closes at your
house. Perhaps you tweet real-time data and visualize the information in your gallery
installation—we’re only scratching the surface here.

8.4 Wi-Fi
The Ethernet Shield will get your Arduino online in no time, but surely there will be
times when being wireless would be useful. Perhaps you need to retrieve real-time data
from a roaming rover-bot you’ve made, or your project needs to get online but isn’t
near a wired router or connection. Enter the official Arduino Wifi Shield, an elegant
solution that will get your Arduino up and running on Wi-Fi networks.

NOTE If you own the SparkFun WiFly (a popular alternative to the official
Arduino Wifi Shield), or need to use it in your project for other reasons, we
adapted this section to work with the WiFly module. A web link to the adapted
section can be found in appendix E.

Figure 8.3 Screenshot
of a Twitter button tweet
Download from Wow! eBook <www.wowebook.com>

164 CHAPTER 8 Communications
8.4.1 Arduino Wifi Shield

The Arduino Wifi Shield will enable your Arduino to connect to any 802.11b/g wire-
less network. It uses the HDG104 wireless LAN system in package (SiP) from H&D
Wireless, which provides an optimized, low-power wireless connection. This Wifi
Shield is capable of communicating with both UDP and TCP, and using it is as easy as
mounting it on top of your Arduino and writing a few lines of code using the WiFi
library. The Wifi Shield’s header pins also provide female connection points along the
top, which makes it easy to retain access to your Arduino’s pins, or to stack on addi-
tional shields.

 In addition to supporting the 802.11b/g specification, the Wifi Shield supports
both WEP and WPA2 personal encrypted networks. Once your sketch is uploaded and
the Arduino is configured, your Arduino can be disconnected from the computer,
powered externally, and serve two-way communications from anywhere within range
of a wireless router.

 Not only that, the Wifi Shield also provides an onboard microSD slot that can be
used with both the Arduino Uno and Mega via the easy-to-use SD library. This is great
if you want to store information and then send it out over the network, and in sec-
tion 8.7 of this chapter you’ll see exactly how to use the SD library.

The Wifi Shield has been well thought out and provides several useful features beyond
the Wi-Fi connection. It’s completely open source and has a Micro-USB port to sup-
port firmware updates in the future. It also has a series of status LEDs that report
useful information, such as connection status (LINK/green), whether there are com-
munication errors (ERROR/red), and whether data is being transmitted or received
(DATA/blue).

Important information about I/O pins
The Arduino Wifi Shield and SD card reader communicate using the SPI bus (which is
discussed further in section 8.6), which has a few important details regarding the use
of your general I/O pins.

On the Arduino Uno, SPI communication is supported on digital pins 11, 12, and 13,
and on the Mega, pins 50, 51, and 52. On both boards, pin 10 is used to select the
HDG104 and pin 4 is used for the SD card reader. The hardware SS pin on the Mega
(digital pin 53) isn’t used by either the SD card reader or the HDG104, although it
must be configured as an output for the SPI interface to work properly. Digital pin 7
is used as a handshake pin between the Wifi Shield and the Arduino, and it’s vital
that none of the mentioned pins be used for any I/O.

Lastly, because the shield’s Wi-Fi chip (HDG104) and SD card reader both use the
SPI bus, only one can be active at any given time. If both are being used, the SD and
WiFi libraries automatically handle this for you, but if you’re using just one, you must
explicitly deselect the other (if you aren’t using an SD card reader, you must manually
deselect it), as you’ll see in the example code.
Download from Wow! eBook <www.wowebook.com>

165Wi-Fi
USING YOUR WIFI SHIELD WITH OLDER ARDUINO BOARDS?
The Arduino Wifi Shield uses the IOREF pin available on newer Arduinos to sense the
reference voltage for the I/O pins of the board it’s connected to. This means that if
you’re using an Arduino Uno or Mega2560 earlier than REV3, you must connect a
jumper wire between IOREF and 3.3V (as detailed in figure 8.4).

8.4.2 WiFi library and functions

To begin using your Wifi Shield, you’ll use the WiFi library. Arduino plans to include
the library with a future release of the IDE, but currently (version 1.0.1 or earlier) the
library must be downloaded and installed from the Arduino website.

 The WiFi library handles all of the low-level networking communication for you
and also provides support for many of the commands and functionality provided by
the Wifi Shield.

 At this point, it would be good to familiarize yourself with table 8.5, which provides
an overview of the main functions you’ll use from the WiFi library.

 Once you’ve reviewed table 8.5, you’re ready to move on to the example project,
where you’ll be sending out gestural sensor data over a wireless network.

Figure 8.4 Overview of pins used by Wifi Shield.
Download from Wow! eBook <www.wowebook.com>

166 CHAPTER 8 Communications
Table 8.5 Overview of the WiFi, WiFiServer, and WiFiClient library functions

Function Description

WiFi.begin()
WiFi.begin(char[] ssid)
WiFi.begin(char[] ssid, char[] pass)
WiFi.begin(char[] ssid, int keyIndex,
char[]key)

Initializes the WiFi library and begins communi-
cation with the device. You can join any open net-
work, or provide the network’s SSID, password
for WPA encrypted networks, or keyIndex and
key for WEP encrypted networks (WEP encryption
can store up to four different keys, so a
keyIndex must be supplied). This function
returns the Wi-Fi status.

WiFi.disconnect() Disconnects from the current network.

WiFi.SSID() Gets the SSID of the current network and
returns a String.

WiFi.BSSID(bssid) Gets the MAC address of the router connected
to and stores it in the 6-byte array passed in as
an argument (for example, byte bssid[6])

WiFi.RSSI() Returns the signal strength of the connection
as a Long.

WiFi.encryptionType()
WiFi.encryptionType(wifiAccessPoint)

Returns the type of encryption of the current (or
specified) access point. Returns as a byte
value, where TKIP (WPA) = 2, WEP = 5, CCMP
(WPA) = 4, NONE = 7, AUTO = 8.

WiFi.scanNetworks() Returns the number of discovered networks as
a byte.

WiFi.getSocket() Returns the first socket available.

WiFi.macAddress() Returns a 6-byte array representing the Wifi
Shield’s MAC address.

WiFi.localIP() Returns the IP address of the shield (as an
IPAddress).

WiFi.subnetMask() Returns the subnet mask of the shield (as an
IPAddress).

WiFi.gatewayIP() Returns the gateway IP address (as an
IPAddress).

WiFiServer(int port) Creates a server to listen on a specific port.

WiFiServer.begin() Starts the server listening for messages.

WiFiServer.available() Returns a client if a client has data ready.

WiFiServer.write(data) Sends data to all connected clients (either
byte or char).

WiFiServer.print() Prints data to all clients. Numbers print as a
sequence of ASCII digits; for example, 123
becomes three characters, ‘1’, ‘2’, and ‘3’.
Download from Wow! eBook <www.wowebook.com>

167Wi-Fi
8.4.3 Gestures: wireless accelerometers

In this example, you’re going to use a Wi-Fi-powered Arduino to send sensor data from
an accelerometer wirelessly over a network. Accelerometers are fantastic sensors allow-
ing all kinds of exciting gestural interactions. Perhaps you’re interested in investigating
new game-playing scenarios (as made popular by the Nintendo Wii), or putting acceler-
ometers on a dancer’s body to use their motion to control live visuals and sound, or
using accelerometers in assistive aids for the physically impaired. As you can see, practi-
cal uses for wireless accelerometers abound, and we’re sure you can think of more.

 In this example, you’ll need the following:

■ An Arduino
■ The Arduino Wifi Shield
■ At least one accelerometer (such as the ADXL335)

You’ll use the Processing language to create a server via which you can stream and
parse the data from your wireless accelerometers.

WiFiServer.println() Same as WiFiServer.print() but with a
newline character at the end of each message.

WiFiClient() Creates a client that can connect to the speci-
fied IP address and port defined in
connect().

WiFiClient.connected() Returns whether or not the client is connected.
If the connection is closed and some data is
still unread, this will still return true.

WiFiClient.connect(ip, port)
WiFiClient.connect(URL, port)

Starts the connection using the IP address and
port specified. Will resolve the IP address from
a URL.

WiFiClient.write(data) Writes data to the server (byte or char).

WiFiClient.print() Prints data to the client. Numbers print as a
sequence of ASCII digits; for example, 123
becomes three characters, ‘1’, ‘2’, and ‘3’.

WiFiClient.println() Same as WiFiClient.print() but with a
newline character at the end of each message.

WiFiClient.available() Returns the number of bytes available to be read
(the number of bytes sent from the server).

WiFiClient.read() Reads the next byte received from the server.

WiFiClient.flush() Flushes any bytes that have been written to the
client but have not yet been read.

WiFiClient.stop() Disconnects from the server.

Table 8.5 Overview of the WiFi, WiFiServer, and WiFiClient library functions (continued)

Function Description
Download from Wow! eBook <www.wowebook.com>

168 CHAPTER 8 Communications
8.4.4 Connecting the hardware

Connecting the Wifi Shield should be as simple as plugging it in directly on top of
your Arduino. The steps for wiring up the accelerometer to your Arduino will differ
depending on the particular model you’re using.

 If you’re using the ADXL335 tri-axis accelerometer, which provides an independent
analog output for each of its axes (x,y,z), please refer to figure 8.5 when making your con-
nections. If you’re using another accelerometer model, the connections may be similar or
may use PWM pins instead of the analog inputs. Refer to your model’s datasheet and doc-
umentation for the proper connections if you’re using another type of accelerometer.

 With the Wifi Shield and accelerometer connected, you’re ready to rock and roll.

8.4.5 Sketch for Bluetooth communication

Let’s use the WiFi library to get your Arduino to send the accelerometer data wire-
lessly to a server running on your computer. Wait—server on your computer? How do
you do that?

Figure 8.5 Connecting the ADXL335 analog accelerometer to the Arduino
Download from Wow! eBook <www.wowebook.com>

169Wi-Fi
You’re going to use a programming environment called “Processing,” so if you don’t
already have it on your computer, now would be a good time to go to processing.org
and download the latest version. If you haven’t used Processing before, don’t worry;
the code in listing 8.4 will look familiar to the code you’ve written before.

 But first, let’s get the Arduino side of things moving along with the following code.

#include <WiFi.h>

char ssid[] = "network_name";
char pass[] = "network_key";
IPAddress server_address(192,168,0,1);
int server_port = 10000;
int status = WL_IDLE_STATUS;

WiFiClient client;

void setup() {
 Serial.begin(9600);
 connectToNetwork();
}

void connectToNetwork(){
 while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);

 status = WiFi.begin(ssid, pass);
 delay(10000);
 }

 printWifiStatus();
}

void loop() {
 if(status == WL_CONNECTED){
 if(!client.connected())
 {
 client.connect(server_address, server_port);
 delay(1000);
 }
 else
 {
 Serial.print("Connected and sending data to ");
 Serial.println(server_address);
 client.print("x: ");
 client.print(analogRead(0));
 client.print(" y: ");
 client.print(analogRead(1));
 client.print(" z: ");
 client.println(analogRead(2));
 }

 delay(20);
 }

Listing 8.3 Arduino accelerometer client

Set network
name (SSID) Set network

passphrase (key)

Set server
IP addressSet server port

Wi-Fi client objectb
Start serial
connection

c

Try to connect
to networkd

Join networke

Wait for
network to joinf

Test if network
is connected

g

Connect to
server

h

Read and send
current
accelerometer
data

i

Wait 20 ms
before retry
Download from Wow! eBook <www.wowebook.com>

170 CHAPTER 8 Communications
 else{
 Serial.println("wifi not up");
 connectToNetwork();
 }
}

void printWifiStatus() {
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI): ");
 Serial.print(rssi);
 Serial.println(" dBm");
}

After importing the necessary libraries and supplying a few network and server
details, you must create a WiFiClient object B. Then, in the setup routine you ini-
tialize the serial library for debugging c, before attempting to open a network con-
nection using a method you create called connectToNetwork d. You attempt to join
the Wi-Fi network using WiFi.begin e, and wait ten seconds to connect f. Next
you enter the main loop, and if you successfully connected to the network g, but
are not yet connected to the server h, you attempt to connect to the server. If
you’re already connected to the server, you read and send the current accelerome-
ter values i.

 In the next listing we jump into Processing and create a server that will accept
incoming connections from clients (the Arduino) and display the messages it’s receiv-
ing on the screen. For a bit more information on Processing, you can take a quick
peek at section 13.2 in chapter 13.

import processing.net.*;

int direction = 1;
boolean serverRunning = false;
String currentData = "";

Server myServer;

void setup()
{
 size(400, 400);
 textFont(createFont("SansSerif", 16));
 myServer = new Server(this, 10000);
 serverRunning = true;
 printData();
}

Listing 8.4 Processing sketch to request accelerometer data from Arduino server

Import Processing
network library

Set text direction

Create string to store
accelerometer dataCreate

server
object Set window

size

Instantiate
serverb
Download from Wow! eBook <www.wowebook.com>

171Bluetooth wireless
void printData() {
 background(0);
 text("wireless accelerometer data: ", 15, 25);
 text(currentData, 15, 60);
}

void draw()
{
 Client thisClient = myServer.available();
 if (thisClient != null) {
 if (thisClient.available() > 0) {
 currentData = "message from: " + thisClient.ip() + " : " +
 thisClient.readString();
 printData();
 }
 }
}

After you set up the window and font for displaying your data in the setup function,
you instantiate the server to start listening for incoming clients B. The draw func-
tion is similar to the main loop in Arduino, and it continuously checks for incoming
clients c. If a client connects, you unpack the message (thisClient.readString()),
append it with additional information such as the client’s IP address, and display it in
your window d.

8.4.6 Upload and test

That’s it. Click the play button on the Processing sketch, and Processing will open a
window on your computer screen and the server will start. Upload the Arduino code
to your Arduino, and as long as your network is properly configured (your Arduino
and computer are on the same Wi-Fi network, and you’ve configured your Arduino with
your computer’s IP as the server), you should begin to see the accelerometer values
displaying on your Processing program’s window.

 If you hunger for more, perhaps a good place to start would be to unpack the indi-
vidual accelerometer data from the String you received, and visualize the three (x,y,z)
axes on your display.

8.5 Bluetooth wireless
Wi-Fi isn’t the only type of wireless communication you can have between the com-
puter and your Arduino. Another viable option is Bluetooth, the wireless technology
made popular by cellphone headsets and peripherals.

 Bluetooth technology was developed by Ericsson as an open wireless technology
that provides an alternative to traditional wired serial communication. Bluetooth is
intended for near-field communication, meaning its range and speed are both lim-
ited. Nonetheless, it provides enough proximity, speed, resolution, and security for
many scenarios and use cases. And because a Bluetooth device manifests itself as a vir-
tual serial port (figure 8.6 shows a MacBook Pro’s internal Bluetooth device as a regu-
lar serial device in the Arduino IDE’s device list), sending data from your Arduino

Check for
incoming
clients

c

Unpack and
display data

d

Download from Wow! eBook <www.wowebook.com>

172 CHAPTER 8 Communications
over Bluetooth couldn’t be any easier, utilizing the same commands as normal serial
communication. This means that whether your sketch sends to the computer via stan-
dard serial over USB or via Bluetooth, the code remains the same—and we love this
kind of portable code.

8.5.1 ArduinoBT
The ArduinoBT (pictured in figure 8.7) is an Arduino board with an embedded Blue-
tooth module for wireless communication. It can run on a minimum of 1.2 volts, mak-
ing it battery-friendly in wireless scenarios. Compared to other models with similar
ATmega chips, the ArduinoBT has two additional analog inputs (8 total), but they
don’t have header pins soldered in. In order to use the extra inputs, you can either
solder directly to the pads, or solder on two additional header pins (recommended).

NOTE Don’t use pin 7; it’s connected to the reset pin and should only be
used for resetting the module.

8.5.2 Adding Bluetooth
If you don’t have the ArduinoBT or your project requires one of the other models in
the Arduino line, you’re in good company. There are many Bluetooth add-ons, such
as the BlueSMiRF line (recommended) available at SparkFun.

Figure 8.6 Screenshot showing how your computer’s Bluetooth chip acts as a
serial device
Download from Wow! eBook <www.wowebook.com>

173Bluetooth wireless
The BlueSMiRF line connects to your Arduino’s RX/TX serial lines, so wiring it up
couldn’t be easier. As described in figure 8.8, simply connect the VCC pin on the
BlueSMiRF to 5V on your Arduino. Next, wire GND on the BlueSMiRF module to GND
on your Arduino. Lastly, wire the communication lines by connecting RX on the
BlueSMiRF module to TX on the Arduino, and TX on the BlueSMiRF module to RX on
the Arduino.

NOTE As the Bluetooth module takes control of the Arduino RX/TX lines,
it must be disconnected when you’re uploading sketches to the Arduino
over USB.

8.5.3 Establishing a Bluetooth connection

The first step in Bluetooth communication is pairing your Bluetooth-enabled Arduino
to your computer. During this step, your computer will create a virtual serial port
between your computer and your Arduino over the Bluetooth connection. Many lap-
tops today come with Bluetooth built in, but if your computer doesn’t, you can easily
buy a Bluetooth USB module for under $50—a great gift for any hobbyist or part-time
Arduino hacker.

 The process of pairing your ArduinoBT and computer varies depending on your
operating system but the settings are the same. You’re going to look for a device
called ARDUINOBT if you’re using an ArduinoBT or another self-describing name if
you’re using a third-party Bluetooth module, and connect using the passphrase 1234.
That’s it.

 You should see your computer and Bluetooth-powered Arduino connected, and
now you can return to the Arduino IDE as normal.

Figure 8.7 ArduinoBT, a Bluetooth-
enabled Arduino board
Download from Wow! eBook <www.wowebook.com>

174 CHAPTER 8 Communications
8.5.4 Sketch for Bluetooth communication

Writing code for our Bluetooth-powered Arduino is no different than for commu-
nicating over USB. Remember, the Bluetooth module shows up as a virtual serial
port, so you can utilize the exact same Serial.print commands you’re already
familiar with.

 The one catch to keep in mind is that the communication between the Arduino
sketch and your Bluetooth module needs to be at the same baud rate—for the
ArduinoBT, this will be 115,200 baud. In your setup function you need to make sure
you set the correct baud rate when opening up the serial connection, such as
Serial.begin(115200).

 The code in listing 8.5 doesn’t do anything fancy, but it shows what a simple Blue-
tooth sketch looks like. It properly configures the baud rate and then wirelessly broad-
casts a random number every second over Bluetooth serial. The exciting thing is that
getting this code going with your current project is as simple as modifying the print
commands in the sketch to send out the readings from whatever sensor your project
calls for.

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

VCC

CTS_5V TX_5V

RX_5V

RTS_5V

GND

Bluetooth

Mate

Silver

Figure 8.8 Connecting the SparkFun BlueSMiRF Silver to an Arduino
Download from Wow! eBook <www.wowebook.com>

175Serial peripheral interface (SPI)
void setup(){
 Serial.begin(115200);
}

void loop(){
 Serial.print(random(1024));
 delay(1000);
}

NOTE If your messages don’t seem to be sending correctly, double-check
your baud rate. Some Bluetooth modules may communicate at 9,600 or
other speeds.

Congratulations, you’ve now covered the most common ways to communicate with
your Arduino over a network and wirelessly. The topic of communications, however, is
broad, and remotely talking to your Arduino isn’t the only type of communication
possible. In the following section you’ll learn about a nifty communication channel
called serial peripheral interface; it’s a powerful way to have your Arduino communi-
cate with other devices.

8.6 Serial peripheral interface (SPI)
Serial peripheral interface (SPI) is a synchronous data protocol that enables multiple
microcontrollers and peripheral devices to quickly communicate with one another
over short distances. It follows a master-slave metaphor, where one device (usually a
microcontroller) becomes the master, controlling all connected slave peripherals.

 Normally SPI communicates over three channels:

■ MISO—Master input, slave output
■ MOSI—Master output, slave input
■ SCK—Serial clock

The three lines’ functions are relatively simple: MISO is the line for sending data
from a slave to the master, MOSI is the line for sending data from the master to slave
devices, and SCK (sometimes written SCLK or Clock) is a clock pulse that synchronizes
the data transmission.

 There’s also a fourth slave select (SS) pin on each peripheral
that you can use to select which device you wish to talk to. Set-
ting the SS pin LOW tells the device to communicate with the
master, while setting it HIGH tells it to ignore the master. By
using the SS pin, you can have multiple devices utilizing the
same three communication lines, and you can switch between
devices one at a time by setting their pins LOW and HIGH respec-
tively. A visual overview of the SPI communication channels is
provided in figure 8.9.

Listing 8.5 Bluetooth test sketch

Figure 8.9 SPI
communication
channels
Download from Wow! eBook <www.wowebook.com>

176 CHAPTER 8 Communications
 The other great thing about SPI is that because the MISO and MOSI lines are inde-
pendent, you can use both at the same time (whereas other protocols, such as I2C, use
one line for both directions of communication).

 Please refer to table 8.6 when making SPI connections to the Arduino.

8.6.1 SPI library

To make things easier, the lovely people at Arduino have created an SPI library so you
can get up and running quickly. Table 8.7 lists the library functions you’ll use to get
your devices talking over SPI.

Once you familiarize yourself with these functions, you can move on to wiring up a
peripheral to your Arduino and communicating between the two over SPI.

8.6.2 SPI devices and digital potentiometers

There are many devices that communicate over SPI, ranging from color LCD screens
to magnetometers to controllable RGB LED grids. In fact, the Ethernet Shield and SD

Table 8.6 Arduino SPI connection overview

SPI line Arduino pin (non-Mega) Arduino Mega

Slave select or chip select (SS/CS) 10 53

Master out, slave in or serial data in (MOSI/SDI) 11 51

Master in, slave out or serial data out (MISO/SDO) 12 50

Clock pulse (SCK/SCLK) 13 52

Table 8.7 Arduino SPI library functions

Function Description

begin() Initializes the SPI bus setting SCK, MOSI, and SS to outputs (SCK and
MOSI LOW, and SS HIGH)

end() Disables SPI

setBitOrder(order) Sets the order in which bits are shifted into or out of the SPI bus; will
either be LSBFIRST (least-significant bit first) or MSBFIRST (most-
significant bit first)

setClockDivider(amt) Sets the SPI clock divider relative to the system clock; default is 4
(one quarter the system clock frequency) but can be 2, 4, 8, 16, 32,
64, or 128

byte transfer(val) Transfers one byte over the SPI bus in both directions; val is the byte
to send over the bus, and the function returns the byte read by the bus

setDataMode(mode) Sets the clock mode (polarity and phase): SPI_MODE0, SPI_MODE1,
SPI_MODE2, SPI_MODE3
Download from Wow! eBook <www.wowebook.com>

177Serial peripheral interface (SPI)
card readers discussed earlier all use SPI to communicate with the Arduino. The basic
principles of communicating with them are all the same, so to demonstrate basic use of
SPI we’re going to use the SPI-based AD5206 digital potentiometer by Analog Devices.

 Digital potentiometers are very similar to their analog counterparts we use every day,
except that they’re adjusted electronically rather than by hand. The AD5206 digital
potentiometer by Analog Devices has six independent pots built into it that you can
access, and you can find digital potentiometers in many other configurations as well.

 In this example, we’re going to use four of the built-in potentiometers to control
the brightness of four LEDs independently, but as you can imagine, the digital potenti-
ometer can be used to control anything that requires a varying voltage.

 Let’s get right into it and look at connecting everything up.

8.6.3 Circuit diagram and connecting the hardware
The first thing you’re going to do is look up the data sheet for the digital potentiome-
ter you’re using. SPI communication requires four communication pins (MOSI/SDI,
MISO/SDO, SS/CS, and SCK), so you’re going to locate them on the digital potentiom-
eter using the data sheet.

 The schematic in figure 8.10 shows the pin layout for the AD5206 digital potenti-
ometer and how it connects to your Arduino and LEDs.

 First you need to make your main power connections. On the AD5206, connect
VDD to 5V on the Arduino and GND to GND. Next, connect VSS on the AD5206 to GND
on the Arduino.

Figure 8.10 Four LEDs controlled by the AD5206 digital potentiometer
Download from Wow! eBook <www.wowebook.com>

178 CHAPTER 8 Communications
With the main power connections made, you can move on to the SPI connections.
First, connect the CS pin (chip/slave select) to digital pin 10 on the Arduino. Next
you’ll connect the SDI (MOSI) pin to digital pin 11 on the Arduino. Since you’ll be
using MOSI, you won’t have a MISO (SDO) pin to connect.

 All that remains for SPI communication is the SCK pin, so go ahead and connect
SCK to digital pin 13 on the Arduino.

 That’s it in terms of chip power and SPI communications. All that’s left are the
potentiometers. In figure 8.10, for each of the six potentiometers you’ll see three
pins, such as A1, B1, and W1. You can think of these as you do the legs on a regular
potentiometer—connect all the A legs to 5V, all the B legs to GND, and all the W legs
are your wipers. The W pins are where the varying voltage will come from, so you’ll
connect these to the Anode (positive) legs of your LEDs through a resistor (220 ohm
should work, but you can calculate this specifically for the LEDs you’re using for
optimal brightness). Connect the cathode (negative) legs of the LEDs to GND and
you’re done!

 Next we’ll look at a simple sketch to dim the LEDs down and brighten them up,
and we’ll see the digital potentiometers in action.

8.6.4 Sketch for a digital LED dimmer

With everything connected, it’s time to put the digital potentiometer to work. In the
following sketch you’ll loop through the LEDs and adjust their brightness. In doing so,
you’ll address the individual LEDs over SPI.

 Carefully copy the following listing into the Arduino IDE.

#include <SPI.h>
const int slaveSelectPin = 10;
int numLeds = 4;

void setup()
{
 pinMode(slaveSelectPin, OUTPUT);
 SPI.begin();
}

void setLed(int reg, int level)
{
 digitalWrite(slaveSelectPin, LOW);
 SPI.transfer(reg);
 SPI.transfer(level);
 digitalWrite(slaveSelectPin, HIGH);
}

void loop()
{
 for(int i=0; i<numLeds; i++)
 {
 for (int j=50; j<=255; j++)

Listing 8.6 SPI digital potentiometer LED dimmer

Import SPI
library

Set slave
select pin

Set slave select
as OUTPUT

b

Start SPIc

Set slave
select LOW

d Choose
register

e

Set dataf

Set slave
select HIGHg
Download from Wow! eBook <www.wowebook.com>

179Data logging
 {
 setLed(i,j);
 delay(20);
 }
 delay(500);

 for (int j=255; j>=50; j--)
 {
 setLed(i,j);
 delay(20);
 }
 }
}

After importing the SPI library and declaring your variables, you set your slave select
pin as an output B. Next, you start SPI communication by calling begin c.

 Setting an LED over SPI is a four-step process, so you create a subroutine called
setLed() to perform the four steps each time:

1 You set SS LOW to choose the SPI slave to communicate with d. SPI will then
expect two messages: one telling it which register to address, followed by a mes-
sage setting a value.

2 The AD5206 has six registers, and your LEDs are connected to registers 0–3, so you
can say SPI.transfer() and pass in the LED number (0–3) you wish to set e.

3 Call SPI.transfer() again and pass in a number (0–255) to set the brightness f.
The AD5206 is an 8-bit digital potentiometer, which is why our maximum value
for brightness is 255.

4 Now that the data is set, you can set SS HIGH and you’re done g.

In the simple loop() function, you iterate through each LED and ramp the brightness
up every 20 milliseconds, and then down every 20 milliseconds. Feel free to play
around here and come up with other interesting ways to blink your LEDs.

 That’s it. Upload your sketch to your Arduino and you should see your LEDs ani-
mate by varying the voltage to the LEDs without you having to move your hands, and
without using pulse width modulation.

 Congratulations, you’ve just tackled one of the intermediate uses of the Arduino.
Next we’re going to take a look at another important area where you’ll often use SPI
to communicate: data logging.

8.7 Data logging
Sensors are a great way to get readings about something’s current state. But how does
that sensor reading change over time, and is that information useful?

 Let’s think about music for a moment. Music is a phenomenon that can be
thought of as a sequence of events unfolding over a period of time. Each of these
musical events can have many different properties such as pitch (how high or low a
note is), amplitude (how loud), and timbre (quality), each giving a particular note or
sound its “sound.”
Download from Wow! eBook <www.wowebook.com>

180 CHAPTER 8 Communications
 In isolation, these notes or events have no musical context. Once played in succes-
sion, however, in the context of the composition, different relationships form between
the events. Melodies and rhythmic patterns emerge; higher-level structures build from
thin air. Even non-musicians with “untrained” ears are great at recognizing these rela-
tionships. Even if we can’t express these relationships in musical terms, we possess the
ability to embody and feel them. This is because the human brain has long- and short-
term memory that’s able to store the relationships of the sounds as they’re played, and
even to compare the relationships to the library of sounds and tunes you’ve heard in
the past. Our brains can recall and connect the dots for us!

 Similarly, if you want to begin to understand the patterns and high-level relation-
ships and information within your sensor data, you must collect the data over a period
of time and look for these patterns. In this section, we’re going to look at how you can
start logging your data on your Arduino.

8.7.1 Types of memory

In order to log data locally on the Arduino, you need to store it somewhere. Usually
this is done with some sort of external memory, like the memory in your computer,
cellphone, or thumb drive. The great thing about external memory is that once the
memory is stored, it remains even after the device is powered off. This is also true of
the EEPROM, Arduino’s built-in memory.

 While the EEPROM can retain its memory even when the Arduino is turned off,
its space is severely limited. Depending on your Arduino model, you’ll only have
between 512 and 4096 bytes of EEPROM memory. This makes the EEPROM good for
storing variables and small amounts of data that need to persist between uses of the
Arduino, but not very usable in most data-logging scenarios. Because of this, you’ll
often turn to other external memory solutions, such as Secure Digital (SD) cards
and memory sticks.

8.7.2 SD cards and SD library

SD cards are one of the best ways to store data externally. You can get high-capacity SD
cards that should have plenty of space not only for data logging but also hosting other
resource files (such as sound files to play or pictures to display), and Arduino comes
with an SD library, making reading from and writing to SD cards easy.

 Table 8.8 provides an overview of the main SD class functions available in the SD
library, but there are many more File class functions enabling you to read from and
write to files. Table 8.9 provides a list of the main File class functions, but please refer
to the online documentation for a full list of available functions at www.arduino.cc/
en/Reference/SD.

 Whether you’re using one of the SD card shields or the SD card reader built into
your Arduino Ethernet Shield, communicating with the SD libraries is always the
same. If you’re comfortable with the functions we covered previously, you’re more
than ready to write a sketch to log some real data.
Download from Wow! eBook <www.wowebook.com>

www.arduino.cc/en/Reference/SD
www.arduino.cc/en/Reference/SD

181Data logging
8.7.3 Sketch for an SD card sensor logger

In this section you’re going to write a simple sketch to log sensor readings from one of
your analog inputs (analog input 0) to a file on a SD card.

#include <SD.h>

const int chipSelect = 4;

void setup()
{
 Serial.begin(9600);
 Serial.print("Initializing SD card...");
 pinMode(10, OUTPUT);

 if (!SD.begin(chipSelect)) {
 Serial.println("Card failed, or not present");
 return;
 }
 Serial.println("card initialized.");
}

Table 8.8 SD library SD class functions

Function Description

begin(chipSelect) Initializes the SD library and card, optionally passing in the
chip select pin.

exists() Tests if a file or directory is present on the SD card.

mkdir("/directory/to/create")
rmdir("/directory/to/remove")

Creates or removes a directory on the card.

open("file/to/open", mode)
remove("file/to/remove")

Opens or removes a file at the specified path. When open-
ing, you can specify a mode (FILE_READ or
FILE_WRITE) if you want to limit access to only reading,
or to read and write to the file.

Table 8.9 SD library File class functions

Function Description

available() Checks for bytes available to be read from the file

close() Closes a file, ensuring all data is written to the SD card

flush() Ensures data is physically saved to the SD card; used by close()

print()
println()
write()

Prints or writes data to the file

read() Reads a byte from the file

Listing 8.7 SD card data logger

Include SD
library

Initialize serial
for debugging Set default

chip select
to OUTPUT

Check for
SD card

b

Download from Wow! eBook <www.wowebook.com>

182 CHAPTER 8 Communications
void loop()
{
 String dataString = "";

 int data = analogRead(0);
 dataString += String(sensor);

 File dataFile = SD.open("datalog.txt", FILE_WRITE);

 if (dataFile) {
 dataFile.println(dataString);
 dataFile.close();
 Serial.println(dataString);
 }
 else {
 Serial.println("error opening datalog.txt");
 }
}

Logging your data couldn’t be any easier. First you must check to make sure your SD
card is present B. If it is, everything should open up properly; if not, you must return.

 Once it’s all set up, you can start your main loop, create a String to store your
data c, and then read and store the current sensor reading into a String d. Next,
you open the data file and print the data to the file before calling close e. You can
also print the data to the console for debugging f.

 You can connect any sensor you want to the analog input, whether it’s a potentiom-
eter, a temperature sensor, or an ultrasonic rangefinder. Once you have all your data,
plug the SD card into your computer and open the file in your favorite text editor or
programming environment. From there you can start graphing and visualizing your
data and hopefully get a better understanding of its trends.

 If you want to share your data logging with the outside, passing around your SD
card isn’t the best option. For that, you might want to use Cosm, an online resource
for sharing live data feeds with others around the world.

8.8 Cosm
Cosm, formerly Pachube (pronounced “patch-bay”), is an exciting open source com-
munity for sharing live data feeds online. You can create both public and private feeds
that servers and clients connect to in order to send and receive data from anywhere in
the world. Data is sent in a human-readable format (XML), and Cosm provides inter-
esting data visualizations of the feed that you can monitor via the web.

 In this section, you’re going to use an Ethernet-powered Arduino to send the val-
ues of a sensor to a Cosm feed, and also receive sensor data from another online feed.
Let’s get started.

8.8.1 Sign up for an account and get an API key

The first step is creating a Cosm account at www.cosm.com and getting an API key.
The API key is what gives you access to create, delete, retrieve, edit, and update your
Cosm feeds.

Create a string to
store data reading

c

Read sensor data and
store in dataString

d

Open file,
print data,
and close

e

Print to serial
for debuggingf
Download from Wow! eBook <www.wowebook.com>

www.cosm.com

183Cosm
If you’re sharing your project with others, you should keep your master API key private
and instead use the Cosm user control panel to create a new secure sharing key for
others to use. With sharing keys, you have full control over who has access and what
functionality they have.

 Once you’ve created an account, log in and go to the Keys page by navigating the
main user menu (pictured in figure 8.11). There you’ll see your Master API Key; write
this down and keep it handy, as you’ll need it later.

8.8.2 Creating a new data feed

You’re going to create a new Cosm data feed that you’ll send your sensor readings to.
 If you’re logged into your account, click the big blue + icon if this is the first

Cosm feed you’re creating, or the button that says +Device/Feed if you have already
created other feeds. When prompted with the question, “What type of device/feed
would you like to add?” select Arduino. You’ll then be prompted with a display simi-
lar to figure 8.12. Give the feed a title and a few descriptive tags (you can, of course,
change this later). Click Create, write down your Feed ID, and then click Finish— your
new feed is all set.

NOTE By selecting Arduino as the device type, the feed is automatically set up
to listen—this means the Arduino will be responsible for “pushing” data to
your Cosm feed. You’ll notice this option in the feeds control panel under
General, or when creating a new feed and selecting the Something Else type.

Figure 8.11 Main Cosm user interface
Download from Wow! eBook <www.wowebook.com>

184 CHAPTER 8 Communications
Your feed is now set up and it’s ready to receive information. With your account, API
key, and feed ID ready to go, you’re set to get logging in section 8.8.3. If you forgot to
write down your feed ID, you can retrieve it by browsing to your feed (simply click your
feed name from the Cosm console).

8.8.3 Sketch for Cosm sensor logging

Talking to Cosm is easy. In this example, you’ll log the readings from a potentiometer
to a Cosm feed every ten seconds.

NOTE In order to understand the workings of communicating with Cosm,
you’ll connect and send everything by hand in this example. Once you’re
familiar with how things work, you can save on a few lines of code—check out
the wonderful Cosm Arduino library downloadable at https://cosm.com/
support/libraries.

Enter the following code in the Arduino IDE.

#include <SPI.h>
#include <Ethernet.h>

#define APIKEY "YOUR API KEY GOES HERE"
#define FEEDID 12345
#define PROJECTNAME "Arduino In Action"

Listing 8.8 Cosm sensor logging code

Figure 8.12 Creating a new Cosm feed to log sensor data

Configure Cosm
feed settings

b

Download from Wow! eBook <www.wowebook.com>

https://cosm.com/support/libraries
https://cosm.com/support/libraries

185Cosm
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
IPAddress ip(192,168,0,120);
EthernetClient client;

long lastConnectionTime = 0;
boolean lastConnected = false;
const int postingInterval = 10000;

void setup() {
 if (!Ethernet.begin(mac)) {
 Ethernet.begin(mac, ip);
 }
 Serial.begin(9600);
}

void loop() {
 int sensorReading = analogRead(A0);

 if (client.available()) {
 char c = client.read();
 Serial.print(c);
 }

 if (!client.connected() && lastConnected) {
 Serial.println();
 Serial.println("disconnecting.");
 client.stop();
 }

 if(!client.connected() && (millis() - lastConnectionTime >
postingInterval)) {

 sendData(sensorReading);
 }

 lastConnected = client.connected();
}

void sendData(int thisData) {
 if (client.connect("api.cosm.com", 80)) {
 Serial.println("connecting...");
 client.print("PUT /v2/feeds/");
 client.print(FEEDID);
 client.println(".csv HTTP/1.1");
 client.println("Host: api.cosm.com ");
 client.print("X-ApiKey: ");
 client.println(APIKEY);
 client.print("User-Agent: ");
 client.println(PROJECTNAME);
 client.print("Content-Length: ");

 int thisLength = 8 + getLength(thisData);
 client.println(thisLength);

 client.println("Content-Type: text/csv");
 client.println("Connection: close");
 client.println();

 client.print("sensor1, ");
 client.println(thisData);
 }

Configure network
settings

c

Instantiate
web client Specify Cosm

update interval

Open network
connection

d

Open serial
for debugging

Store current
sensor data

e

Print incoming
data for debugging

f

Stop client if no
longer connected

g

Call sendData
if it’s time

h

Set Boolean to connected
for interval timer

Connect to
Cosm feed

i

Initiate PUT
command and
communicationj

Send API
key1)

Send data
to Cosm

1!
Download from Wow! eBook <www.wowebook.com>

186 CHAPTER 8 Communications
 else {
 Serial.println("connection failed");
 Serial.println("disconnecting.");
 client.stop();
 }

 lastConnectionTime = millis();
}

int getLength(int someValue) {
 int digits = 1;
 int dividend = someValue /10;
 while (dividend > 0) {
 dividend = dividend /10;
 digits++;
 }
 return digits;
}

First, you’ll change the arguments for your Cosm feed settings B. Make sure your API
key is in quotes, because it’s supplied as a String. Next, configure your network set-
tings by supplying the MAC address and manual IP address c, in case DHCP fails when
connecting in setup d.

 Next you enter the main loop() where you’ll read the current sensor data e. You
check to see if there is any incoming data, and print it to the console for debugging f.
If you were previously connected but are no longer connected, you must stop the cli-
ent g. Finally, if you’re not connected and the interval time between sending mes-
sages has been met, you must connect and send the current data out h.

 You actually call a subroutine called sendData(). This is a convenience function to
establish a connection with the Cosm feed i and send over your data. First, you must
initiate the PUT command to talk to your feed j, and then supply your API key 1).
Then the function takes care of formatting the message (data) and passes along the
data to Cosm 1!. Finally, you store the time the message was sent 1@ so you can calcu-
late when to send the next message.

8.8.4 Upload and test

You can now connect your Arduino Ethernet Shield and USB cable and upload the
code to your Arduino. You should be all set! Check your feed’s page on Cosm, and you
should see your sensor being logged online. If you don’t see your sensor data, open
up the Arduino IDE and click the Serial Monitor button to open up a serial connec-
tion for debugging.

8.9 Summary
In this chapter, you began to explore the broad spectrum of communications made
possible with the Arduino. You started by getting your Arduino networked and on the
internet. Using the Ethernet Shield, you turned your Arduino into a server ready to
dish up information whenever a client has an appetite. Then you went a step further
and patched your Arduino into Twitter, broadcasting button presses for the world to

Store current
time1@
Download from Wow! eBook <www.wowebook.com>

187Summary
see. Because communicating with the Arduino wirelessly is useful in so many applica-
tions, we also explored communication with your Arduino both over Wi-Fi and Blue-
tooth technology.

 The communication channels possible with your Arduino are far-reaching, and
there are many ways you can communicate with other devices and peripherals. One
such channel is called SPI, and in this chapter you learned how other devices and
shields (such as the SD card and Ethernet Shields) use SPI to communicate with the
Arduino. You even used SPI yourself to control digital potentiometers.

 With all of these powerful means of communication at your disposal, we looked at
data logging, an essential aspect of communication and interaction. Not only did we
investigate storing information on local memory, but also storing it online using the
powerful data logging service called Cosm.

 How and what you choose to share is up to you; perhaps you want to have remote
sensors in various environments that send their data to your feed, and are later soni-
fied in a gallery installation. Perhaps you want to tap into other public feeds that are
logging everything from seismic data to the temperature, humidity, dew point, and
soil moisture of a garden in the UK, and use that to influence a virtual space. Whatever
the scenario, there are virtually unlimited possibilities when it comes to the types of
information your data feed can communicate, and the way you choose to interpret
the information.

 The applications discussed in this chapter are the tip of the iceberg. You can use
the communication topics covered here in many ways, and it’s this open-endedness
that makes the Arduino such a powerful communication tool. Think about your proj-
ect’s goals and ask yourself whether putting your project online for the world to see or
interact with would be useful. Could it tap into online resources? Does it need to com-
municate with other peripherals? Would it be useful to log certain data over time?
With Arduino, the tools are in your hands.

 But let’s not stop there. Next, in chapter 9, we’re going to look at how to inter-
face the Arduino with game peripherals such as the Nintendo Wii Nunchuk and
Xbox controller.
Download from Wow! eBook <www.wowebook.com>

Game on
It’s time to dig out that old game controller that’s lying unused in the cupboard, or
alternatively, borrow one from your kids. Game controllers are a great way to con-
trol things on the Arduino. From robots to flying vehicles, they tend to be relatively
low-cost because so many were mass-produced, and eBay and junk sales also offer a
steady second-hand supply.

 We’ll start by looking at one of the controllers made for the Nintendo Wii
games console—the versatile Nunchuk. Then we’ll look at one of its main rivals,
the Microsoft Xbox 360 and its USB controller. You’ll learn how to get the control-
lers set up and running so you can use them in your own projects.

9.1 Nintendo Wii salutes you
Nintendo launched the Wii console to great acclaim late in 2006, although its
graphics felt inferior to some of the existing games consoles, such as Microsoft’s

This chapter covers
■ Connecting an Arduino to a Wii Nunchuk
■ Arduino port manipulation
■ Connecting an Arduino to an Xbox controller
■ Using the USB Host Shield
188

Download from Wow! eBook <www.wowebook.com>

189Nintendo Wii salutes you
Xbox and Sony’s PlayStation. The Wii had a unique games interface controller that
was incredibly easy to use and communicated wirelessly with the main console. This
controller, coupled with its family-themed games, made it a runaway success, with sales
of over 90 million units. You’ll find plenty of available games controllers.

 The Wii is supplied with two main controllers, the Nunchuk, shown in figure 9.1,
and the Wii remote. Let’s look at the Wii Nunchuk and see how you can use it with
the Arduino.

9.1.1 Wii Nunchuk

The Wii Nunchuk, shown in figure 9.1, is available from a wide range of suppliers,
with prices from around $15 for an official version to $10 for one of the many compat-
ible copies.

 The Nunchuk packs in quite a few features: a built-in two-axis proportional analog
joystick, two on-off buttons, and a three-axis accelerometer (more on this in a moment).
Community projects have included controlling a motorized self-balancing skateboard
(shown in figure 9.2), manipulating robot arms and servomotors, and designing small
robots. The Nunchuk is also useful if you’ve built your own arcade games based on the
Arduino. The video game shield kit designed by Wayne and Layne can use one or two

Figure 9.1 Wii Nunchuk

Figure 9.2 A self-balancing
motorized skateboard built by
John Dingley, UK
Download from Wow! eBook <www.wowebook.com>

190 CHAPTER 9 Game on
Nunchuks and is brilliant for anyone wanting to recreate the original Atari Pong or
the classic Space Invaders.

 Let’s take a closer look at the individual components of the Nunchuk, starting with
the three-axis accelerometer.

THREE-AXIS ACCELEROMETER

An accelerometer, as its name suggests, measures changes in acceleration.
 The technical definition of acceleration is rate of change of velocity with respect to

time. Or more plainly, it’s how quickly something speeds up. For example, a car that
reaches 60 mph in 5 seconds has greater acceleration than a car that reaches 60 mph
in 10 seconds.

 Accelerometers are used in all sorts of devices, including tablets and smartphones,
where they’re used to detect the angle at which you’re holding or turning the screen,
and air bags in cars, which are deployed when a car rapidly stops due to a collision.

 The accelerometer contained in the
Nunchuk and many other games controllers
measures acceleration as the change in angu-
lar movement of the controller, and it can
detect very small changes in angle. Many
games controllers use one or more three-axis
accelerometers and can detect small changes
in the x, y, and z directions. Figure 9.3 shows
this a little more clearly.

 Accelerometers are used in Arduino-
based projects in a multitude of ways: flying
a remote-controlled plane or quadrocopter,
playing digital musical instruments with ges-
tural user input, and detecting if something
is tilted or gets knocked.

 In chapter 8 we looked at manually communicating the values from an accelerom-
eter to the computer using Wi-Fi; now, we’ll tap into the ultra-low-cost Wii Nunchuk
controller, which not only gives us an accelerometer in an easy-to-grip form, but some
extra modes of input that make it a versatile input controller for your projects.

JOYSTICK

The joystick on the Nunchuk is easily controlled with your thumb and is fully propor-
tional, so it reports both the direction and how far you’ve moved the joystick. The
Nunchuk fits nicely into your hand and the joystick is easily manipulated with your thumb.

 The joystick returns numbers for the x and y axes, as shown in figure 9.4. As you
can see, the joystick position can be anywhere within the circle.

BUTTONS

In addition to the joystick, the Nunchuk has two buttons at the front of the controller:
a large one labeled Z and a smaller one labeled C. The buttons are simple momentary
on-off switches, which means they report whether they’re pressed or not.

X

Y

Z

Figure 9.3 Angular rotation of three-axis
accelerometer
Download from Wow! eBook <www.wowebook.com>

191Nintendo Wii salutes you
NOTE By keeping track of button presses
on the Arduino itself, it’s easy to turn
momentary buttons into toggle buttons if
you so desire. If you get stuck, look at one
of the many examples of doing this on the
Arduino user forums, or download the tog-
gle library called TButton, which also packs
a few extra features.

You’ve seen what a Nunchuk controller can
offer, but how do you get access to all this
functionality so you can use it with your Ardu-
ino projects?

9.1.2 Nunchuk connections

How do you connect your Arduino to a Nunchuk? Luckily Nintendo uses a well-
known communication protocol called two-wire interface (TWI or I2C), which we
looked at in chapter 4. To recap, the two-wire interface is used to communicate with
low-speed devices and only requires two pins, as shown in table 9.1.

You’re going to use your Arduino as a master device and the Nunchuk as its slave.
We’ll look in detail at the code required to communicate between the Arduino and
Nunchuk shortly, but first we’re going to look at how the Arduino can physically con-
nect to a Nunchuk.

 If you cut the end of the plug off your Nunchuk you would find four colored wires
designated as in table 9.2.

NOTE You don’t actually have to cut off the end of your Nunchuk—an alterna-
tive solution is shown here: www.flickr.com/photos/spyderella/6019588705.

Table 9.1 Pin designations for the standard Arduino and the Mega for I2C

Standard Arduino Mega

SDA data line Analog input pin 4 Digital pin 20

SCL clock line Analog input pin 5 Digital pin 21

Table 9.2 Color designations for wires in the Wii Nunchuk

Wire color Designation

White Ground

Red 3.3 Volts

Green Data line

Yellow Clock line

X

Y
Range of motion

of joystick

Figure 9.4 Range of motion of Nunchuk
joystick
Download from Wow! eBook <www.wowebook.com>

www.flickr.com/photos/spyderella/6019588705

192 CHAPTER 9 Game on
NOTE The red 3.3 volt wire can be connected to 5 volts without apparent
harm, although it may shorten the life of the Nunchuk.

You don’t need to cut off the end of your Nunchuk to use it, as the end connector is
female with six holes, only four of which are used. Figure 9.5 shows an end view of the
connector. You can use jumper wires to connect from the connector to your Arduino.

 An alternative that I like, as it gives a very good connection and is easy to use, is an
adaptor or breakout board that can connect directly to the header on the Arduino (or
to a breadboard) on one end, and to the Nunchuk plug on the other. Two low-cost
breakout boards, available from a number of sellers, are the WiiChuck designed by
Tod E. Kurt, shown in figure 9.6, and the NunChucky by Solarbotics, shown in figure 9.7.
Both breakout boards are sold as small kits, so basic soldering skills are required.

 So you have a couple of choices: you can either cut the plug off your Nunchuk cable
and connect it directly to your Arduino using table 9.2 as a guide, or you can use a

GroundClock

3.3 Volts Data Figure 9.5 Nunchuk end connector

Figure 9.6 WiiChuck designed by
Tod E. Kurt

Figure 9.7 NunChucky breakout board
from Solarbotics
Download from Wow! eBook <www.wowebook.com>

193Nintendo Wii salutes you
breakout board like the NunChucky or WiiChuck. The breakout board can be plugged
directly into the header on your Arduino as shown in figure 9.6 or to a breadboard.

 That covers the main ways you can connect the Nunchuk to your Arduino. Let’s
move on to the code we’re going to use to talk to it.

9.1.3 Wii will talk

The easiest way to get up and running with the Wii Nunchuk controller is to use
one of the available libraries, such as Gabrial Bianconi’s ArduinoNunchuk
(www.gabrielbianconi.com/projects/arduinonunchuk/). Using this library, commu-
nicating with your Nunchuk can be done with ten lines of code or less. In this section,
though, we’re going to take a look at what goes on under the hood, in case you wish to
dig a bit deeper into Arduino territory. As such, in this section we’ll communicate with
the Nunchuk from scratch and cover more advanced Arduino techniques such as port
manipulation (more on this soon).

 Techniques for communicating with a Nunchuk have evolved over a number of
years, with contributions from Tod E. Kurt, who was responsible for some sections of the
following code. We’re going to break the code down into small chunks, explaining
what each piece does before viewing the complete sketch. You can skip to listing 9.1 if
you’re desperate for a look now, but do come back to get an understanding of what
each piece does.

CODE TO COMMUNICATE WITH THE NUNCHUK

You’re going to communicate with the Nunchuk using TWI (I2C), so the first thing
you must do is include the Wire library. Then you set up an outbuf array of six bytes to
store the output from the Nunchuk. Finally, you set a cnt counter and set its value to 0.
This will be used to keep track of the number of bytes read from the Nunchuk:

#include <Wire.h>

byte outbuf[6];
int cnt = 0;

The Nunchuk device sends a packet of data that’s six bytes long, and this contains all
the data from the accelerometer, the two-axis joystick, and the two buttons. The data is
further summarized in table 9.3.

Table 9.3 Byte data returned from Nunchuk

Byte Description Typical values

1 X-axis joystick 35 (joystick fully left) to 228 (joystick fully right)

2 Y-axis joystick 27 (joystick fully back) to 230 (joystick fully forward)

3 X-axis acceleration Roughly 300 (Nunchuk fully tilted left) to 740
(Nunchuk tilted right)

4 Y-axis acceleration Roughly 320 (Nunchuk tilted backwards) to 810
(Nunchuk tilted forwards)

Array to store
Arduino output
Download from Wow! eBook <www.wowebook.com>

www.gabrielbianconi.com/projects/arduinonunchuk/

194 CHAPTER 9 Game on
CODE TO SET UP AND POWER THE NUNCHUK

You’ve set your initial variables and allocated a buffer for the received data, so you can
now move on to the setup function where you’ll prepare the Arduino to work with
the Nunchuk:

void setup ()
{
 nunchuk_setpowerpins();
 Serial.begin (19200);
 Wire.begin();
 nunchuk_init ();
}

In the first part of this code, you call the nunchuk_setpowerpins() function. You then
initialize the serial port with Serial.begin(19200), setting the baud rate to 19,200.
You’ll use the serial port to monitor the data sent from the Nunchuk.

 Next it’s time to initialize the Wire library with Wire.begin(). Finally, you call a
function called nunchuk_init() to set up the Nunchuk so it will send back data
when requested.

NOTE You only need to call the nunchuk_setpowerpins() function if you’re
using a breakout board like the NunChucky or WiiChuck that’s plugged
directly into your Arduino’s headers, or if analog pins A2 and A3 are being used
for ground and power respectively. The nunchuk_setpowerpins() function
isn’t suitable and would need to be modified for use with an Arduino Mega, or
if you’re using the Arduino onboard 5 volts and ground to supply power.

Let’s look at that first function called nunchuk_setpowerpins():

static void nunchuk_setpowerpins()
{
#define pwrpin PORTC3
#define gndpin PORTC2
 DDRC |= _BV(pwrpin) | _BV(gndpin);
 PORTC &=~ _BV(gndpin);
 PORTC |= _BV(pwrpin);
 delay(100);
}

5 Z-axis acceleration Roughly 300 (Nunchuk upside down) to 720
(Nunchuk upright)

6 Button states (bits 0/1)
Least significant bits (LSBs) of each
accelerometer (bits 2–7)

Bit 0: Z-button (0 = pressed)
Bit 1: C-button (0 = pressed)
Bits 2–3: x acceleration LSBs
Bits 4–5: y acceleration LSBs
Bits 6–7: z acceleration LSBs

Table 9.3 Byte data returned from Nunchuk (continued)

Byte Description Typical values

Join I2C bus with
address 0x52

Send initialization
handshake

Wait for things
to stabilize
Download from Wow! eBook <www.wowebook.com>

195Nintendo Wii salutes you
At first glance this function looks fairly complicated, but we’ll break it down to see
what’s going on. The function uses port manipulation to set analog pin 3 to power
(5 volts), and analog pin 2 to ground.

In the nunchuk_setpowerpins() function, the #define pwrpin PORTC3 and #define
gndpin PORTC2 lines assign bit offsets, so PORTC2 is bit 2 of the PORTC register.

 In the next line, you have this:

DDRC |= _BV(pwrpin) | _BV(gndpin);

DDRC is the direction register for port C, so this line sets the pwrpin and gndpin bits as
outputs using the _BV macro.

Port manipulation
Arduinos based on the ATMega328 chip, such as the Uno, have three ports that pro-
vide fast low-level manipulation of the Arduino input/output pins. Each port gives
access to a discrete set of pins:

■ Port B gives access to digital pins 8–13
■ Port C gives access to analog pins A0–A5
■ Port D gives access to digital pins 0–7

Additionally, three registers control each port; the three registers are DDR, PORT
and PIN:

■ DDR register—This register sets individual pins as either input or output. The
register state can be written to and read from.

■ PORT register—This register sets the state of a pin’s output: HIGH or LOW. The
register state can be written to and read from.

■ PIN register—This register can only be read from and provides the state of
the inputs.

Each bit of each port controls a single pin. For example, the PORTC register controls port
C. Port C consists of analog pins A0–A5 (A6 and A7 are only available on the Mini).

The bits in the DDRC register (the DDR register for port C) control whether a pin is an
input or an output in PORTC. For example, the following command sets pins 1 and 3
as inputs and the rest as outputs:

DDRC = B11111010;

PORTC is the register for the state of the outputs. The following command sets pins
1 and 3–7 HIGH; these pins will only be set at 5 volts if they have previously been set
as outputs by the DDR register:

PORTC = B11111010;

Reading the PINC register would allow you to read the state of all the PORTC pins
simultaneously.
Download from Wow! eBook <www.wowebook.com>

196 CHAPTER 9 Game on
Having set pwrpin and gndpin as outputs, the next line clears and sets the gndpin to LOW:

PORTC &=~ _BV(gndpin);

The following line sets the pwrpin to HIGH, 5 volts:

PORTC |= _BV(pwrpin);

The last line, delay(100);, is a 100-millisecond delay to allow the supply to stabilize.
 Let’s now have a look at the last function in the setup routine, nunchuk_init(),

which sends a series of bytes commanding that the Nunchuk return its data, when
asked, in an unencrypted format:

void nunchuk_init()
{
 Wire.beginTransmission (0x52);
 Wire.write ((byte)0xF0);
 Wire.write ((byte)0x55);

 Wire.write ((byte)0xFB);
 Wire.write ((byte)0x00);
 Wire.endTransmission ();
}

The _BV macro
A macro is a method of performing a series of instructions with a single command,
and the BV (bit value) macro is used to perform bitwise manipulation using bitmasks.
Bitwise manipulation is the manipulation of the individual bits of a byte; a byte is
made up of 8 bits numbered 0–7 with 0 being the least significant bit (LSB).

Operators can be used with the macro to operate on individual bits. These are some
of the operators:

Operator Description
|= Sets bit
| Logical or
&= ~ Clears bit

Here are a couple of examples. The following line sets bit 0 only:

PORTC |= _BV(0);

The next line clears bit 1 only:

PORTC &=~ _BV(1);

Using bit operators you can manipulate multiple bits at a time. The following line sets
bits 0, 2, and 4:

PORTC |= _BV(0) | _BV(2) | _BV(4);

The next line clears bits 1 and 3:

PORTC &=~ _BV(1) | _BV(3);

Transmit to
device 0x52 Send memory

address
Initialization
value 0x55

Send memory
addressSend

initialization
value 0

Stop
transmitting
Download from Wow! eBook <www.wowebook.com>

197Nintendo Wii salutes you
In this function, you set up the Nunchuk so that it’s ready to send data. Each device
on an I2C network has an ID or address. The Nunchuk has a device address of 0x52, so
to send information to it, you start each transmission with Wire.beginTransmission
(0x52). You then prepare to send one or more commands or data packets to the
address on the device. The data packets to be sent are queued in a buffer and are sent
when the command Wire.endTransmission() is issued.

 Having looked at the functions in the startup part of the sketch, we can now move
on to the main loop function.

CODE FOR THE MAIN LOOP

You’ve set the initial variables and set up the Nunchuk and provided it with power. The
main loop comes next, where you obtain the data from the Nunchuk and then process it:

void loop ()
{
 Wire.requestFrom (0x52, 6);
 while (Wire.available ())
 {
 outbuf[cnt] = (Wire.read ());
 cnt++;
 }

 if (cnt >= 5)
 {
 print();
 }

 cnt = 0;
 send_zero();
 delay(100);
}

In the loop, your first call is to request the data from the Nunchuk with Wire.request-
From(0x52, 6). This command has two parts: the address of the device, 0x52, and the
number of bytes requested, 6. You next read in the 6 bytes with a while loop:

while (Wire.available ())
{
outbuf[cnt] = (Wire.read ());
cnt++;
}

The bytes read using Wire.read are stored in the outbuf array, with cnt being used to
increment the index of the array. You check that you’ve received your 6 bytes and then
print them with a print() function (more on that soon). In the loop, you call the
send_zero() function, which requests the next set of bytes. Finally, you call a small
100-millisecond delay, delay(100), before starting the loop again.

CODE TO PRINT THE OUTPUT

Let’s investigate the main parts of the print function. Here’s how it begins:

int joy_x_axis = outbuf[0];
int joy_y_axis = outbuf[1];

Request data
from Nunchuk

Receive byte
as integer

If 6 bytes received,
go print

Send request
for next bytes
Download from Wow! eBook <www.wowebook.com>

198 CHAPTER 9 Game on
int accel_x_axis = outbuf[2] * 2 * 2;
int accel_y_axis = outbuf[3] * 2 * 2;
int accel_z_axis = outbuf[4] * 2 * 2;

int z_button = 0;
int c_button = 0;

Variables are initialized for the joystick’s x and y axes and they’re assigned values from
the outbuf byte array. The accelerometer’s x-, y-, and z-axis variables are similarly ini-
tialized and assigned values from the outbuf array. You multiply the last three vari-
ables by 2 * 2, because the acceleration data is 10 bits and you’ve only provided the
most significant bits so far.

 The remaining two bits for each acceleration value are obtained from the remain-
ing byte, which also has the button state information for buttons C and Z:

if ((outbuf[5] >> 0) & 1)
 {
 z_button = 1;
 }
 if ((outbuf[5] >> 1) & 1)
 {
 c_button = 1;
 }

 if ((outbuf[5] >> 2) & 1)
 {
 accel_x_axis += 2;
 }
 if ((outbuf[5] >> 3) & 1)
 {
 accel_x_axis += 1;
 }

 if ((outbuf[5] >> 4) & 1)
 {
 accel_y_axis += 2;
 }
 if ((outbuf[5] >> 5) & 1)
 {
 accel_y_axis += 1;
 }

 if ((outbuf[5] >> 6) & 1)
 {
 accel_z_axis += 2;
 }
 if ((outbuf[5] >> 7) & 1)
 {
 accel_z_axis += 1;
 }

Each bit of the byte needs to be checked and its value added to the appropriate variable.
 Finally the value of each variable is output to the serial port:

Serial.print (joy_x_axis, DEC);
Serial.print ("\t");
Download from Wow! eBook <www.wowebook.com>

199Nintendo Wii salutes you
The Serial.print("\t") call adds a tab between each variable printed.
 The last function we’re going to look at is send_zero().

CODE FOR SEND-REQUEST FUNCTION

The nunchuck_send_request() function is the final part of the puzzle. Having initial-
ized the Nunchuk, powered it up, and printed the data received from it, you can now
request more data with this function:

void nunchuck_send_request ()
{
 Wire.beginTransmission(0x52);
 Wire.write((byte)0x00);
 Wire.endTransmission();
}

This function transmits a value of 0 to the Nunchuk at address location 0x52; this is a
“request to read” command that’s sent to the Nunchuk.

THE COMPLETE SKETCH

That covers all the code we need for our sketch, so without further ado, here’s the
complete code listing.

#include <Wire.h>

byte outbuf[6];
int cnt = 0;

void setup ()
{
 nunchuk_setpowerpins();
 Serial.begin (19200);
 Serial.print ("Finished setup\n");
 Wire.begin();
 nunchuk_init ();
}

static void nunchuk_setpowerpins()
{
#define pwrpin PORTC3
#define gndpin PORTC2
 DDRC |= _BV(pwrpin) | _BV(gndpin);
 PORTC &=~ _BV(gndpin);
 PORTC |= _BV(pwrpin);
 delay(100);
}

void nunchuk_init ()
{
 Wire.beginTransmission (0x52);
 Wire.write ((byte)0xF0);
 Wire.write ((byte)0x55);

 Wire.write ((byte)0xFB);
 Wire.write ((byte)0x00);

Listing 9.1 Sketch to communicate with Nunchuk using I2C

Creates buffer
for data

Powers
Nunchuk

Initializes
Nunchuk

Powers
Nunchuk

Initializes
Nunchuk
Download from Wow! eBook <www.wowebook.com>

200 CHAPTER 9 Game on
 Wire.endTransmission ();
}

void loop ()
{
 Wire.requestFrom (0x52, 6);
 while (Wire.available ())
 {
 outbuf[cnt] = (Wire.read ());
 cnt++;
 }

 if (cnt >= 5)
 {
 print ();
 }

 cnt = 0;
 send_zero ();
 delay (100);
}

void print ()
{
 int joy_x_axis = outbuf[0];
 int joy_y_axis = outbuf[1];
 int accel_x_axis = outbuf[2] * 2 * 2;
 int accel_y_axis = outbuf[3] * 2 * 2;
 int accel_z_axis = outbuf[4] * 2 * 2;

 int z_button = 0;
 int c_button = 0;

 if ((outbuf[5] >> 0) & 1)
 {
 z_button = 1;
 }
 if ((outbuf[5] >> 1) & 1)
 {
 c_button = 1;
 }

 if ((outbuf[5] >> 2) & 1)
 {
 accel_x_axis += 2;
 }
 if ((outbuf[5] >> 3) & 1)
 {
 accel_x_axis += 1;
 }

 if ((outbuf[5] >> 4) & 1)
 {
 accel_y_axis += 2;
 }
 if ((outbuf[5] >> 5) & 1)
 {
 accel_y_axis += 1;
 }

Gets data from
Nunchuk

Prints
data

Requests
more data
Download from Wow! eBook <www.wowebook.com>

201Nintendo Wii salutes you
 if ((outbuf[5] >> 6) & 1)
 {
 accel_z_axis += 2;
 }
 if ((outbuf[5] >> 7) & 1)
 {
 accel_z_axis += 1;
 }

 Serial.print (joy_x_axis, DEC);
 Serial.print ("\t");

 Serial.print (joy_y_axis, DEC);
 Serial.print ("\t");

 Serial.print (accel_x_axis, DEC);
 Serial.print ("\t");

 Serial.print (accel_y_axis, DEC);
 Serial.print ("\t");

 Serial.print (accel_z_axis, DEC);
 Serial.print ("\t");

 Serial.print (z_button, DEC);
 Serial.print ("\t");

 Serial.print (c_button, DEC);
 Serial.print ("\t");

 Serial.println();
}

void nunchuck_send_request()
{
 Wire.beginTransmission(0x52);
 Wire.write((byte)0x00);
 Wire.endTransmission();
}

You’ve now seen a couple of ways to connect a Nunchuk to the Arduino, and you’ve
got the sketch to enter into the Arduino IDE. It’s time to move on to testing.

9.1.4 Wii will test
Connect the Nunchuk to the Arduino using your preferred method, and then upload
the sketch from listing 9.1. Open the serial monitor to observe the effects of mov-
ing the Nunchuk.

 Try moving the Nunchuk about in various directions—tilt to the left and then to
the right and observe how the x-axis acceleration alters. Move the Nunchuk forward
and backward to observe the y-axis acceleration varying. Turn it upside down to see
how the z-axis acceleration varies. Try moving the joystick and pressing the buttons.
Some typical output to the serial monitor is shown in figure 9.8.

 You’ve learned how to connect a Nunchuk to an Arduino and you’ve looked at the
code involved in a typical sketch. You should now feel confident about using a Nunchuk
in your own projects. Whether you want to use the joystick or accelerometers to control

Requests
more data
Download from Wow! eBook <www.wowebook.com>

202 CHAPTER 9 Game on
the position and tilt of a webcam using a servomotor, or you want to send the data into
Processing to control a retro video game you’ve been working on, there are many
unique applications for the affordable Nunchuk.

 But although the Nunchuk is a fantastic game controller, it’s by no means your
only option when thinking about readily available controllers for your projects. Con-
trollers come in many different shapes and sizes, and in the next section we’re going
to look at a controller from one of the Nintendo Wii’s main competitors: Microsoft’s
Xbox 360.

9.2 Release the Xbox
Microsoft released the Xbox 360 game console in 2005 and at the time of this writing
has sold over 57.6 million units. Figure 9.9 shows a typical controller.

 The Xbox controller has the following buttons:

■ 2 analog sticks
■ 2 analog triggers
■ 11 digital buttons
■ 1 digital D-pad

Figure 9.8 Typical
output from Nunchuk
to serial monitor

Figure 9.9 Xbox 360 game
controller
Download from Wow! eBook <www.wowebook.com>

203Release the Xbox
The wide range of buttons and joysticks on the controller make it ideal for controlling
complex projects requiring multiple inputs, such as powered robots, complex light or
sound displays, MIDI music instruments, or animatronics.

 There are two versions of the Xbox controller, a wired and a wireless version. Both
have the same functionality. We’re going to concentrate on the wired controller in
this chapter because it has a USB plug on it that, with the addition of a USB shield, can
plug directly into an Arduino.

NOTE The Xbox wireless controller also comes with a USB plug, but it can
only be used to charge the controller’s onboard batteries. It’s possible to pur-
chase an adaptor that has a USB connection and can also connect to a wireless
controller. You can use techniques similar to the ones we’ll discuss to connect
to that version of the controller instead.

Having chosen the wired controller, let’s take a look at what you need to connect it to
your Arduino.

9.2.1 Getting connected
The Xbox controller communicates using a USB connection. A standard Arduino
doesn’t have an onboard USB connection suitable for plugging the games controller
into, so you’ll need to add a USB Host Shield.

 In this example we’re using version 2.0 of the USB Host Shield designed by Oleg
Mazurov, available from Circuits@Home (www.circuitsathome.com/products-page/
arduino-shields). The shield is shown in figure 9.10.

 The USB Host Shield will allow you to connect to a range of USB devices, including
mice, keyboards, and game controllers. In addition to the Host Shield, you’ll need to
download and install a software library.

9.2.2 USB Host library
To use the USB Host Shield, you’ll need to download and install the USB Host Shield
library from https://github.com/felis/USB_Host_Shield_2.0. Find the Downloads link

Figure 9.10 Version 2.0 of the USB Host
Shield from circuitsathome.com
Download from Wow! eBook <www.wowebook.com>

www.circuitsathome.com/products-page/arduino-shields
www.circuitsathome.com/products-page/arduino-shields
www.circuitsathome.com/products-page/arduino-shields
https://github.com/felis/USB_Host_Shield_2.0

204 CHAPTER 9 Game on
on the right, and click the “Download as zip” or “Download as tar.gz” button. Extract
the contents to your Arduino/libraries folder.

 Once the library is installed into the Arduino IDE, it will include some sample
sketches. You’ll use one of the sketches to discover information about the Xbox con-
troller so that you can interface with it. The same techniques can be used with other
USB devices to learn how to connect to them.

THE USB PROTOCOL

A thorough description of the USB protocol is beyond the scope of this book, as the
protocol is complex and contains many parts. Full information and downloadable
documents describing the protocol are available from the USB site (http://usb.org).

 For an excellent overview and description of the main elements of the protocol, we
highly recommend visiting the “USB in a Nutshell” explanation on the Beyond Logic
website: http://www.beyondlogic.org/usbnutshell/. One of the main takeaways is that
a USB device, when requested by a host device, should describe how it works and what
is required to translate the information it provides. Unfortunately, as you’ll see, this is
not always the case in practice.

9.2.3 Learning about the Xbox controller using the USB Host Shield
The sample sketch you’re going to use to connect to your controller in this section is
called USB_desc, which can be found in the File menu, as shown in figure 9.11.

 Connect the USB Host Shield to your Arduino, plug in the Xbox controller, load
and run the example sketch, and open the serial monitor (setting the baud rate to
115,000 baud). The sketch issues a series of commands to the connected USB device—
in this case your Xbox controller—and outputs the results to the serial monitor. The

Figure 9.11 Select the
USB_desc example sketch
Download from Wow! eBook <www.wowebook.com>

http://usb.org
http://www.beyondlogic.org/usbnutshell/

205Release the Xbox
sketch outputs a lot of data, but we’ll look at the output a piece at a time to see what it
tells you.

NOTE All values returned are hexadecimal values.

Take a look at the first piece of data as shown in figure 9.12.
 The first piece of data shown in figure 9.12 provides

the “device descriptor” and “configuration descriptor.” A
USB device can only have one device descriptor—it pro-
vides important information about the device, including
the vendor ID, product ID, and the number of configura-
tions available on the device. The majority of devices only
have one configuration. In figure 9.12 you can see that the
vendor ID is 045E (which corresponds to Microsoft), the
product ID is 028E, and the number of configurations is 1.

 The configuration descriptor provides information
about the configuration of the device, such as the number
of interfaces the device has and its maximum power con-
sumption. All USB devices must have at least one interface,
designated interface 0. An interface groups together infor-
mation about endpoints; endpoints are addresses where
data is transferred, and they can be either data providers or
data consumers. Looking at the configuration descriptor in
figure 9.12 for the Xbox controller, you can see “Num.intf:
04”, meaning that the controller has 4 interfaces.

 The interface descriptors make up the
rest of the data output to the serial monitor
by the USB_desc sketch. Each interface con-
tains some common information, including
the number of endpoints in that interface
and the interface class, subclass, and proto-
col. It then goes on to describe each end-
point, including the endpoint address, its
attributes, the maximum packet size for
data, and the polling interval. We’re going
to concentrate on interface descriptor 00,
as this is the main control and report inter-
face for the Xbox controller.

 Take a look at interface descriptor 00,
as shown in figure 9.13.

 You can see that figure 9.13 shows the
description for interface number 00, and
the interface has 2 endpoints at addresses

Figure 9.12 Device
descriptor and configuration
descriptor

Figure 9.13 Description of interface 00 for
the Xbox controller
Download from Wow! eBook <www.wowebook.com>

206 CHAPTER 9 Game on
81 and 01 (note that these are hex values, not decimal). Bit 7 of the address deter-
mines the direction of data for the endpoint, with 1 being “in” and 0 being “out.” You
can see that you have one endpoint in and one out, where hex 81 equals 10000001
binary. The maximum packet size is 0x20 bytes; packet sizes tend to be given in multi-
ples of 8.

 The endpoint attribute (attr.) indicates the type of endpoint. Endpoints with an
attribute of 03 are classified as interrupt endpoints. The polling interval is the period
of time between interrupt transfers in milliseconds.

NOTE An endpoint interrupt isn’t the same as the type of interrupt we
learned about back in chapter 2, where an immediate response occurred in
program execution. An endpoint interrupt is an indicator that informs the
host device that it has data waiting when it’s polled by the host.

Also in figure 9.13, the values for intf. class, intf. subclass, and intf. protocol are given
by usb.org and can be used to specify supported classes. This allows many devices to
be supported by a few class drivers instead of requiring individual drivers for each
device. For example, a value of 03 for intf. class, according to the USB protocol, would
represent a class interface for a human interface device (HID), like a mouse, key-
board, or joystick. For the Xbox controller, the value of FF means the class is vendor-
specific, which potentially makes your job a little more complicated.

 You’ve now learned about the Xbox controller’s device and configuration descrip-
tors, interface 00 and its associated data endpoints, how often the endpoints should
be polled, and the maximum sizes for the packets of data. Next we’ll look at the for-
mat of the data packets or reports.

9.2.4 Xbox reporting for duty

In a conventional USB device, we could delve to a deeper level and look at the data-
packet report formats for each endpoint. But as we’ve seen, the Xbox controller
masks that information and describes its interface classes as vendor specific. We need
to look to other sources to get information about the report formats.

 An excellent online source in this case is the Free60 GamePad page, at http://
free60.org/GamePad. The input report format for interface 00 is summarized in
table 9.4.

Table 9.4 Xbox input report for interface 00

Offset Length (bits) Description

0x00.0 8 Message type

0x01.0 8 Packet size

0x02.0 1 D-pad up

0x02.1 1 D-pad down
Download from Wow! eBook <www.wowebook.com>

http://free60.org/GamePad
http://free60.org/GamePad

207Release the Xbox
Message types with a value of 0x00 are normal input report messages. Those with a
value of 0x01 are LED status messages. Eight-bit values are unsigned, and 16-bit values
are signed little-endian. There are also other reports—messages that control the Xbox
controller’s LEDs and rumble motors—but we’re going to concentrate on input
reports with a message type of 0x00.

 You’ve now gathered quite a lot of information about the Xbox controller, but
what’s the best way to use this information? You could write a driver from scratch, or
you could build upon an existing sketch or library. A good place to start is by looking
at the examples provided with the USB Host Shield; these are all very comprehensive
and cover a variety of USB devices.

0x02.2 1 D-pad left

0x02.3 1 D-pad right

0x02.4 1 Start button

0x02.5 1 Back button

0x02.6 1 Left stick press

0x02.7 1 Right stick press

0x03.0 1 Left buffer (LB) button

0x03.1 1 Right buffer (RB) button

0x03.2 1 Xbox logo button

0x03.3 1 Unused

0x03.4 1 Button A

0x03.5 1 Button B

0x03.6 1 Button X

0x03.7 1 Button Y

0x04.0 8 Left trigger

0x05.0 8 Right trigger

0x06.0 16 Left stick, x axis

0x08.0 16 Left stick, y axis

0x0a.0 16 Right stick, x axis

0x0c.0 16 Right stick, y axis

0x0e.0 48 Unused

Table 9.4 Xbox input report for interface 00 (continued)

Offset Length (bits) Description
Download from Wow! eBook <www.wowebook.com>

208 CHAPTER 9 Game on
You know that the Xbox controller is really a HID device. You also know that it doesn’t
provide a comprehensive description of its report format, but from research you do
know what the format is. The closest examples provided with the USB Host Shield
library are the boot keyboard and mouse examples. These use a known report format
to parse the report messages sent by these USB devices.

9.2.5 Let’s boot it

Mice and keyboards have a default or boot configuration that can be read. For example,
all mice have a boot protocol of six bytes that provides information about which but-
ton has been pressed and the x and y coordinates of the mouse position. Similarly, key-
boards have a default boot protocol, with the data returned providing information
about which key has been pressed.

 A default boot configuration enables the device to be easily read by a variety of host
devices. Devices using a given configuration will all return at least this type of informa-
tion, even though they may have more advanced capabilities, such as the sound con-
trols on some keyboards or the scroll wheel on some mice.

 You know the format of the reports and details for the interface produced by the
Xbox controller, so you can do the same thing for the Xbox controller as for mice and
keyboards—you can treat an Xbox controller as a boot device.

 Let’s now look at the steps involved in interfacing the Arduino with the Xbox
controller.

9.2.6 Interfacing with code

The HID boot examples use a number of libraries. The library we’re interested in is
the hidboot library; this is made up of two files, hidboot.h and hidboot.cpp.

NOTE On Windows, the files are normally found in the My Documents/
Arduino/libraries/usbhost folder; on Mac OS X they’re in the Documents/
Arduino/libraries/usbhost folder.

To dig deeper, carefully study these files, as the code you’re going to use is closely based
on them, with a few tweaks here and there. To keep the code listings shorter in the

Big-endian and little-endian
Big-endian and little-endian describe the order in which a sequence of bytes repre-
senting a value is stored. Big-endian is where the “big end” (most significant value)
is stored first. Little-endian is where the “little end” (least significant value) is stored
first. In a big-endian computer, the two bytes required for the hexadecimal number
FC62 would be stored as FC62. In a little-endian system, it would be stored as 62FC.

The big-endian and little-endian names derive from Jonathan Swift’s Gulliver’s Travels,
in which the Big-endians were a political faction that broke their eggs at the large end
and rebelled against the Lilliputian emperor who required his subjects, the Little-
endians, to break their eggs at the small end.
Download from Wow! eBook <www.wowebook.com>

209Release the Xbox
book, the code provided doesn’t include error-checking, but it has been heavily com-
mented to walk you through the important parts. To see good examples that include
error checking, please examine the code library installed with the USB Host Shield.

 The files you’ll be using in this example are included in the source code for this book:
the Xboxhidboot library (listing 9.2) and the Arduino sketch (listing 9.3). The Xboxhid-
boot library will handle lower-level communication, and we’ll use it in conjunction with
an Arduino sketch we’ll look at shortly. Rather than write the Xboxhidboot library from
scratch, we’ll highlight the main functionality of the individual files in this section.

 Let’s start with Xboxhidboot.h, which will be the main communicator between the
USB and the Xbox controller.

CODE FOR XBOXHIDBOOT.H
Xboxhidboot.h performs a number of tasks including setting the structure of the
report, listing the functions for the individual Xbox controller controls, and initializ-
ing the Xbox controller when it’s plugged into the USB Host Shield. It establishes
communication with the controller and polls for reports, which are then parsed to
establish which controls have been pressed.

CODE FOR XBOXHIDBOOT.CPP

Xboxhidboot.cpp, shown in the following listing, is the complementary file to Xbox-
hidboot.h and is the code that actually parses the returned report. In this section,
we’ll quickly look at how the data is parsed.

#include "xboxhidboot.h"

void XboxReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t

➥ len, uint8_t *buf)
{
 XBOXINFO *pmi = (XBOXINFO*)buf;

 if (buf[2] != 0)
 {
 if ((buf[2] >> 0) & 1)
 onDPadUp(pmi);

 if ((buf[2] >> 1) & 1)
 onDPadDown(pmi);

 if ((buf[2] >> 2) & 1)
 onDPadLeft(pmi);

 if ((buf[2] >> 3) & 1)
 onDPadRight(pmi);

 if ((buf[2] >> 4) & 1)
 onStartButton(pmi);

 if ((buf[2] >> 5) & 1)
 onBackButton(pmi);

 if ((buf[2] >> 6) & 1)
 onLeftStickPress(pmi);

Listing 9.2 Xboxhidboot.cpp

Check byte for
button data
Download from Wow! eBook <www.wowebook.com>

210 CHAPTER 9 Game on

k for
ick
s

 if ((buf[2] >> 7) & 1)
 onRightStickPress(pmi);
 }
 if (buf[3] != 0)
 {
 if ((buf[3] >> 0) & 1)
 onButtonLB(pmi);

 if ((buf[3] >> 1) & 1)
 onButtonRB(pmi);

 if ((buf[3] >> 2) & 1)
 onButtonLogo(pmi);

 if ((buf[3] >> 4) & 1)
 onButtonA(pmi);

 if ((buf[3] >> 5) & 1)
 onButtonB(pmi);

 if ((buf[3] >> 6) & 1)
 onButtonX(pmi);

 if ((buf[3] >> 7) & 1)
 onButtonY(pmi);
 }

 if (pmi->bmLeftTrigger != 0)
 onLeftTrigger(pmi);

 if (pmi->bmRightTrigger != 0)
 onRightTrigger(pmi);

 if (prevState.xboxInfo.bmLeftStickXAxis != pmi->bmLeftStickXAxis

➥ || prevState.xboxInfo.bmLeftStickYAxis != pmi->bmLeftStickYAxis)
 onLeftStickMove(pmi);

 if (prevState.xboxInfo.bmRightStickXAxis != pmi->bmRightStickXAxis

➥ || prevState.xboxInfo.bmRightStickYAxis != pmi->bmRightStickYAxis)
 onRightStickMove(pmi);

 for (uint8_t i=0; i<14; i++)
 prevState.bInfo[i] = buf[i];

};

The code checks bytes two and three for button data. If data is present, it checks the
byte bit by bit. Next it checks the values of the Xbox controller triggers, and then it
checks the controller joysticks. Finally, the buf buffer is copied to the prevState buffer.

 Now let’s look at the sketch that brings this all together.

9.2.7 Xboxhid.ino

This is the sketch that brings everything together.

#include <avr/pgmspace.h>

#include <avrpins.h>
#include <max3421e.h>

Listing 9.3 Xboxhid.ino complete listing

Check byte for
button data

Check trigger
values

Chec
joyst
move

Copy buffer to
previous state
Download from Wow! eBook <www.wowebook.com>

211Release the Xbox
#include <usbhost.h>
#include <usb_ch9.h>
#include <Usb.h>
#include <usbhub.h>
#include <avr/pgmspace.h>
#include <address.h>
#include <Xboxhidboot.h>

#include <printhex.h>
#include <message.h>
#include <hexdump.h>
#include <parsetools.h>

class XboxRptParser : public XboxReportParser
{
protected:
 virtual void onDPadUp (XBOXINFO *mi);
 virtual void onDPadDown (XBOXINFO *mi);
 virtual void onDPadLeft (XBOXINFO *mi);
 virtual void onDPadRight (XBOXINFO *mi);
 virtual void onStartButton (XBOXINFO *mi);
 virtual void onBackButton (XBOXINFO *mi);
 virtual void onLeftStickPress (XBOXINFO *mi);
 virtual void onRightStickPress (XBOXINFO *mi);
 virtual void onButtonLB (XBOXINFO *mi);
 virtual void onButtonRB (XBOXINFO *mi);
 virtual void onButtonLogo (XBOXINFO *mi);
 virtual void onButtonA (XBOXINFO *mi);
 virtual void onButtonB (XBOXINFO *mi);
 virtual void onButtonX (XBOXINFO *mi);
 virtual void onButtonY (XBOXINFO *mi);
 virtual void onLeftTrigger (XBOXINFO *mi);
 virtual void onRightTrigger (XBOXINFO *mi);
 virtual void onLeftStickMove (XBOXINFO *mi);
 virtual void onRightStickMove (XBOXINFO *mi);
};

void XboxRptParser::onDPadUp (XBOXINFO *mi)
{
 Serial.println("D Pad Up");
};
void XboxRptParser::onDPadDown (XBOXINFO *mi)
{
 Serial.println("D Pad Down");
};
void XboxRptParser::onDPadLeft (XBOXINFO *mi)
{
 Serial.println("D Pad Left");
};
void XboxRptParser::onDPadRight (XBOXINFO *mi)
{
 Serial.println("D Pad Right");
};
void XboxRptParser::onStartButton (XBOXINFO *mi)
{
 Serial.println("Start Button");

Include Xbox
library

b

Declare
parser class

c

Declare
functionsd

Button
functions

e

Download from Wow! eBook <www.wowebook.com>

212 CHAPTER 9 Game on
};
void XboxRptParser::onBackButton (XBOXINFO *mi)
{
 Serial.println("Back Button");
};
void XboxRptParser::onLeftStickPress (XBOXINFO *mi)
{
 Serial.println("Left Stick Press");
};
void XboxRptParser::onRightStickPress (XBOXINFO *mi)
{
 Serial.println("Right Stick Press");
};
void XboxRptParser::onButtonLB (XBOXINFO *mi)
{
 Serial.println("Button LB Press");
};
void XboxRptParser::onButtonRB (XBOXINFO *mi)
{
 Serial.println("Button RB Press");
};
void XboxRptParser::onButtonLogo (XBOXINFO *mi)
{
 Serial.println("Button Logo Press");
};
void XboxRptParser::onButtonA (XBOXINFO *mi)
{
 Serial.println("Button A Press");
};
void XboxRptParser::onButtonB (XBOXINFO *mi)
{
 Serial.println("Button B Press");
};
void XboxRptParser::onButtonX (XBOXINFO *mi)
{
 Serial.println("Button X Press");
};
void XboxRptParser::onButtonY (XBOXINFO *mi)
{
 Serial.println("Button Y Press");
};
void XboxRptParser::onLeftTrigger (XBOXINFO *mi)
{
 Serial.print("Left Trigger: ");
 Serial.println(mi->bmLeftTrigger, DEC);
};
void XboxRptParser::onRightTrigger (XBOXINFO *mi)
{
 Serial.print("Right Trigger: ");
 Serial.println(mi->bmRightTrigger, DEC);
};

void XboxRptParser::onLeftStickMove (XBOXINFO *mi)
{

Button
functions

e

Download from Wow! eBook <www.wowebook.com>

213Release the Xbox
 Serial.print("Left stick X Axis = ");
 Serial.print(mi->bmLeftStickXAxis, DEC);
 Serial.print(" Y Axis = ");
 Serial.println(mi->bmLeftStickYAxis, DEC);
};
void XboxRptParser::onRightStickMove (XBOXINFO *mi)
{
 Serial.print("Right stick X Axis = ");
 Serial.print(mi->bmRightStickXAxis, DEC);
 Serial.print(" Y Axis = ");
 Serial.println(mi->bmRightStickYAxis, DEC);
};

USB Usb;

HIDBoot<HID_PROTOCOL_KEYBOARD> Xbox(&Usb);

uint32_t next_time;

XboxRptParser Prs;

void setup()
{
 Serial.begin(115200);
 Serial.println("Start Xbox");

 if (Usb.Init() == -1)
 Serial.println("OSC did not start.");

 delay(200);

 next_time = millis() + 5000;

 Xbox.SetReportParser(0, (HIDReportParser*)&Prs);
}

void loop()
{
 Usb.Task();
}

You first include the Xbox library you created in your sketch to get access to all the func-
tions in that library B. The report parser class is created c, and the functions for the
individual buttons and controls are declared d. The functions are created e, and in
each function you print the status for the relevant button to the serial console monitor.

 In the sketch’s setup routine, the USB device, Xbox controller, is initialized and
the report parser is set f. In the sketch’s loop routine, the USB device is called peri-
odically by Usb.Task to check its state and return any report data.

 That completes the software side of controlling an Xbox controller; let’s now move
on to testing it with the Arduino hardware.

9.2.8 Hardware connections and testing

Plug the USB Host Shield onto the Arduino and then plug in your Xbox controller, as
shown in figure 9.14.

Button
functions

e

Create USB
instance

Initialize
USB device

f

Set Xbox
parser

Task loop
Download from Wow! eBook <www.wowebook.com>

214 CHAPTER 9 Game on
With everything plugged in, upload the Xbox-
hid.ino sketch to the Arduino and open the serial
monitor. Try pressing different buttons and mov-
ing the joysticks and D-pad, and observe the out-
put in the serial monitor. Note that the monitor
baud rate should be set to 115,200. Figure 9.15
shows some typical output.

 You’ve now learned how to connect an Arduino
to an Xbox controller using a USB Host Shield, and
in the process you gained a basic grounding in
working with USB peripherals. The software listings
could be much improved by adding error-checking
code, and maybe that could be your next step.

9.3 Summary
In this chapter, you’ve seen how to connect an
Arduino to two types of game devices: a Wii
Nunchuk and an Xbox controller.

 The connection to the Wii Nunchuk was rela-
tively straightforward, and in the process you saw
a practical application of the Wire library.

 The connection to the Xbox controller was
much more complex, both from a hardware and a
software point of view. You needed to use a USB
Host Shield because the controller is a USB device.
The host shield can be used to connect to a variety
of other devices including mice, keyboards, USB-
controlled cameras, and other peripherals.

Figure 9.14 Xbox controller
connected to USB Host Shield
and Arduino

Figure 9.15 Typical output from the
Xbox controller
Download from Wow! eBook <www.wowebook.com>

215Summary
 This is just the beginning! The real benefit of these controllers is that they’re afford-
able devices offering a number of easily manipulated controls at your fingertips. There’s
nothing stopping you from connecting a graphical LCD as discussed in chapter 7, and
using the joysticks on the Xbox controller to make your own Etch-A-Sketch-type of
device. In fact, using an accelerometer, you can even shake the devices to clear the
screen, just like the real thing. Hopefully you see the potential.

 Next, in chapter 10, we’re going to look at how to connect the Arduino to iOS
devices like the iPad, iPhone, and iPod Touch.
Download from Wow! eBook <www.wowebook.com>

Integrating the Arduino
with iOS
The focus of this chapter isn’t iOS programming but instead the fundamentals of
how to connect the Arduino to your iOS device. In this chapter, which is for those
programming on a Mac only, we’re going to look at using the Arduino with an
iPhone or iPad.

 We recommend several other Manning books for learning iOS programming. If
you’re new to coding, we suggest reading iOS in Practice by Bear Cahill. For more
experienced programmers, we suggest either iPhone and iPad in Action by Brandon

This chapter covers
■ Connecting your iOS device to the Arduino
■ Using the Redpark serial cable
■ Switching an Arduino LED from your iOS device
■ Using a Slider control to vary the brightness of

an LED connected to an Arduino
■ Displaying output from an infrared distance

sensor on your iOS device
216

Download from Wow! eBook <www.wowebook.com>

217Integrating the Arduino with iOS
Trebitowski, Christopher Allen, and Shannon Appelcline, or Hello iOS Development by
Lou Franco and Eitan Mendelowitz.

 Apple has sold over 400 million iOS devices since they first launched the iPhone in
2007. You may have an iPhone or iPod touch in your pocket right now, and you might
be wondering if you can use it with an Arduino. Well, you’re in luck! Previously if you
wanted to connect an iOS device directly to an Arduino, the iOS device would need to
be what is called “jail broken.” This invalidates the warranty and can cause other prob-
lems. Fortunately, in 2011 Redpark Product Development released a serial cable
approved for use by Apple. The Redpark serial cable can be used to connect directly
to a range of iOS devices including the iPhone 3GS, iPhone 4, iPad 1, iPad 2, and
iPod touch version 4 and above. For devices that use the Apple Lightning connector,
adapters are available to connect them to the Redpark serial cable. At time of writ-
ing, Redpark was developing a serial cable that would directly connect to Lightning
connector devices.

 The Redpark serial cable has opened up many opportunities to use an Arduino
with an iOS device. As of yet, few examples are available, but we expect to see many
exciting projects appear as more people get the cable.

 This chapter will discuss the basic tools you’ll need and show you how to connect
the Arduino to an iOS device. First, we’ll see how to connect the cable to an Arduino
and how to send commands from your iOS device to control devices connected to the
Arduino. Then we’ll demonstrate how data from a sensor connected to an Arduino
can be sent to an iOS device and displayed on its screen.

To complete this chapter, you’ll need the following:

■ A Mac computer capable of running Xcode 4.0 or above
■ An iOS device
■ An Arduino
■ A Redpark serial cable
■ A Lightning adapter, if required
■ The Redpark SDK
■ A RS232 to TTL adapter
■ Xcode 4.0 or above
■ A breadboard
■ A selection of jumper wires
■ A colored LED

iOS Developer Program
To complete and run the example code in this chapter you’ll need to become a mem-
ber of the iOS Developer Program for an annual fee of $99. Details can be obtained
from http://developer.apple.com/programs/ios/.
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/programs/ios/

218 CHAPTER 10 Integrating the Arduino with iOS
■ A 200 ohm resistor
■ A Sharp GP2D12 IR distance sensor

Let’s get started by taking a detailed look at the most important part: the connection
between an Arduino and your iOS device.

10.1 Connecting your device to the Arduino
In this section, we’ll look mainly at the hardware and software needed to connect an
Arduino to an iOS device. We’ll start with the Redpark serial cable, which at one end
plugs directly into an iOS device and at the other plugs into the RS232 to TTL adapter,
which in turn connects to the Arduino. Once we’ve looked at what’s required to phys-
ically connect an Arduino to an iOS device, we can have a more detailed look at the
software side.

10.1.1 The Redpark serial cable

The Redpark serial cable, shown in figure 10.1, is available either directly from Red-
park Product Development (http://redpark.com/) or from one of the suppliers listed
on their website. After purchasing the Redpark serial cable you’ll need to download
the Redpark SDK from http://redpark.com/c2db9_Downloads.html.

 The Redpark SDK download includes a readme file that tells you how to install
the SDK. There’s also a brief instruction manual giving details about the software
library and its use. You can try out the example program that’s included to test the
cable’s functionality with your device. The 1-meter-long cable can be used with
devices running iOS 4.3.x or later and communicates serially at a maximum rate of
57.6 Kbps.

 One end of the cable plugs into your iOS device, and the other is terminated with a
DB-9 male connector, all pins connected. The pinout is shown in figure 10.2.

 Table 10.1 gives a listing of all the pins for the DB-9 male connector. For this chap-
ter, we only need to worry about the RX and TX pins.

Figure 10.1 The Redpark Product
Development serial cable for use with
older iOS devices
Download from Wow! eBook <www.wowebook.com>

http://redpark.com/
http://redpark.com/c2db9_Downloads.html

219Connecting your device to the Arduino
The RS232 standard uses voltages of +12 volts and –12 volts, whereas the Arduino
requires TTL-level voltages, 0 and 5, so you’ll need to use a TTL to RS232 adapter. One
example is the P4B, available from www.wulfden.org/TheShoppe/pa/index.shtml#P4
and pictured in figure 10.3. The P4B TTL to RS232 adapter is supplied as a kit requir-
ing soldering, but it’s very simple to assemble.

 The female DB-9 connector plugs into the DB-9 male connector of the Redpark
serial cable.

 To complete the hardware setup, the TTL to RS232 adapter needs to be connected
to the Arduino.

Table 10.1 Pinouts of RS232 DB-9 male connector

Pin Name Description

1 DCD Data carrier detect

2 RX Receive data

3 TX Transmit data

4 DTR Data terminal ready

5 GND Ground

6 DSR Data set ready

7 RTS Request to send

8 CTS Clear to send

9 RI Ring indicator

1 3 52 4

6 7 8 9

Figure 10.2 Pinout of male RS232
DB-9 connector

Figure 10.3 P4B TTL to RS232
adapter
Download from Wow! eBook <www.wowebook.com>

www.wulfden.org/TheShoppe/pa/index.shtml#P4

220 CHAPTER 10 Integrating the Arduino with iOS
10.1.2 The final connection

You need to make the final connection between the TTL to RS232 adapter and the
Arduino. This just requires four connections: 5 volts, ground, RX, and TX.

NOTE The RX of the adapter connects to the TX of the Arduino, and the TX
of the adapter connects to the Arduino RX.

Figure 10.4 shows the Arduino connected to the TTL to RS232 adapter.
 We’ve covered the hardware connections. Now it’s time to have a look at the code

and see how you can use the Redpark SDK to create your first iOS app.

10.2 iOS code
You’ve seen how an Arduino can be connected to your iOS device, and you’ve fol-
lowed the readme to install the Redpark serial cable SDK. Now it’s time to build your
first app.

 To program your iOS device, you’ll need a copy of Xcode 4.0 or above. Xcode is
the IDE provided by Apple to enable users to develop programs and applications for
Apple products. To develop and deploy applications for iOS devices and to download
the latest version of Xcode, you’ll need to be a member of the iOS developer program,
as mentioned in the introduction to the chapter.

 Once you’ve got Xcode downloaded and installed, you can get started by opening
up Xcode.

Figure 10.4 P4B TTL to
RS232 adapter connected
to the Arduino
Download from Wow! eBook <www.wowebook.com>

221iOS code
10.2.1 Creating a single-view application in Xcode

You’re now going to create a single-view application, which is the simplest type of app
you can create. For this example, you’re going to create a universal project that can be
deployed to either an iPhone or an iPad running iOS 5.0 or greater. The project will
initially include a Switch object that can be used to turn an LED on and off.

 In Xcode, select iOS Application and then Single View Application as shown in fig-
ure 10.5, and click Next.

NOTE For more information on creating and building apps, check out Bear
Cahill’s iOS in Practice (Manning, 2012).

Complete the project details, as shown in figure 10.6, and click Next. We’ve called the
project IOSArduino.

 Select Create in the next dialog box. The basic project will now be generated, and
you’ll be shown the Xcode IDE.

 Select MainStoryboard_iPhone.storyboard to get the initial view shown in figure 10.7.
 Drag a Switch object from the object library onto the viewer, in the center, and set

its state to Off, as shown in figure 10.8.
 You next need to connect the Switch control to an outlet. From the menu, select

View > Assistant > Show Assistant Editor. The editor should open ViewController.h.
Ctrl-click on the Switch, select New Referencing Outlet from the context menu, drag

Figure 10.5 Select Single View Application
Download from Wow! eBook <www.wowebook.com>

222 CHAPTER 10 Integrating the Arduino with iOS
Figure 10.6 Complete the project details.

Figure 10.7 MainStoryboard_iPhone.storyboard view
Download from Wow! eBook <www.wowebook.com>

223iOS code
to just above the @end in the editor window, and release. Name the outlet toggle-
Switch, as shown in figure 10.9. Click Connect to complete adding the outlet.

 You next need to add a new action by repeating the Ctrl-click on the Switch, select-
ing Value Changed from the context menu, and dragging it to @end. Name the action
toggleLED, as shown in figure 10.10, and click Connect to complete the action.

 The next step is to import the Redpark serial cable library. Select File > Add Files
to IOSArduino, and navigate to the Redpark serial SDK folder. Ours was in the home
folder, but it can be in root. Select the inc and lib folders, make sure the Copy Items
into Destination Group’s Folder (if Needed) option is selected (see figure 10.11), and
click Add.

 Next, you need to import the external accessory framework. Click the project in
the left pane, select the Build Phases tab, and then open the “Link Binary With” sec-
tion. Click + (as shown in figure 10.12), locate the external accessory framework, and
add it.

 That’s the framework of the project set-up. Now you need to add some code to
your view controller.

Figure 10.8 Switch object dragged onto the viewer with its state set to Off
Download from Wow! eBook <www.wowebook.com>

224 CHAPTER 10 Integrating the Arduino with iOS
Figure 10.9 Name the outlet toggleSwitch.

Figure 10.10 Create an action and name it toggleLED.
Download from Wow! eBook <www.wowebook.com>

225iOS code
10.2.2 Writing the code

The code for the view controller, ViewController.h, is shown in the following listing.

#import <UIKit/UIKit.h>
#import "RscMgr.h"

#define BUFFER_LEN 1024

Listing 10.1 ViewController.h

Figure 10.11 Import the
Redpark serial SDK files.

Figure 10.12 Add the external accessory framework to the project.

Import cable library
and set buffer length

b

Download from Wow! eBook <www.wowebook.com>

226 CHAPTER 10 Integrating the Arduino with iOS
@interface ViewController : UIViewController

➥ <RscMgrDelegate> {

 RscMgr *rscMgr;
 UInt8 rxBuffer[BUFFER_LEN];
 UInt8 txBuffer[BUFFER_LEN];

 UISwitch *toggleSwitch;
}
@property (retain, nonatomic) IBOutlet

➥ UISwitch *toggleSwitch;
- (IBAction)toggleLED:(id)sender;

@end

You import the Redpark serial cable library and set the buffer length to 1024 bytes B,
add a delegate to the interface c, set the serial cable variables d, add the switch
variable e, and change weak to retain f.

 The next step is to make some changes to the app delegate, ViewController.m, as
shown in the next listing.

#import "ViewController.h"

@implementation ViewController
@synthesize toggleSwitch;

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 rscMgr = [[RscMgr alloc] init];
 [rscMgr setDelegate:self];
}

- (void)viewDidUnload
{
 [self setToggleSwitch:nil];
 [super viewDidUnload];
 }

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

Listing 10.2 ViewController.m

Add
delegatec

Set variables
for cable

d

Add variable
for switche

Change “weak”
to “retain”f

Cable set-upb
Download from Wow! eBook <www.wowebook.com>

227iOS code
- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}
 (BOOL)shouldAutorotateToInterfaceOrientation:

➥ (UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 if ([[UIDevice currentDevice] userInterfaceIdiom]

➥ == UIUserInterfaceIdiomPhone) {
 return (interfaceOrientation !=

➥ UIInterfaceOrientationPortraitUpsideDown);
 } else {
 return YES;
 }
}

- (IBAction)toggleLED:(id)sender {
 if (toggleSwitch.on) {
 txBuffer[0] = (int) '1';
 } else {
 txBuffer[0] = (int) '0';
 }

 [rscMgr write:txBuffer Length:1];
}

#pragma mark – RSC Interface

- (void) cableConnected:(NSString *)protocol {
 [rscMgr setBaud:9600];
 [rscMgr open];
}

- (void) cableDisconnected {

}

- (void) portStatusChanged {

}

- (void) readBytesAvailable:(UInt32)numBytes {
}

- (BOOL) rscMessageReceived:(UInt8 *)msg TotalLength:(int)len {
 return NO;
}

- (void) didReceivePortConfig {
}
@end

When the app loads, the cable is set up B. The toggleLED method c checks the position
of the switch and sends a 1 to the Arduino if ON and a 0 if OFF. The subsequent methods

Toggle LED
method

c

Cable delegate
methods

d

Download from Wow! eBook <www.wowebook.com>

228 CHAPTER 10 Integrating the Arduino with iOS
are required by the Redpark serial cable delegate d. Notice the cableConnected
method, where the baud rate is set and the cable is prepared for communication.

 The final step of the Xcode application, from a tip by Brian Jepson, is to declare
support for the Redpark serial cable. In the project navigator, expand the Supporting
Files group and click IOSArduino-Info.plist to open it. Right-click the bottom row, and
from the context menu select Add Row. Select Supported External Accessory Proto-
cols from the list. Click the triangle to the left of the key name to open up the list. In
the value field for item 0, type com.redpark.hobdb9 (see figure 10.13). Select File >
Save from the menu to save the file.

 Now you need to deploy the app to your iOS device. Connect your device to your
development machine, and select iOS Device and Run. The Xcode IDE will run and
build and then deploy the project to the iOS device.

 So far in this chapter, you’ve learned how to connect an Arduino to an iOS device
with the Redpark serial cable and an RS232 to TTL converter, and you’ve created a
single-view application, IOSArduino, with a switch. Having completed the iOS device
side of the project, you now need to develop a basic Arduino sketch that will respond
to the switch in your app on the iOS device and physically switch an LED on or off on
the Arduino.

10.3 The Arduino gets involved
It almost feels like we’re back at chapter 1 where we switched an LED on and off, but
you’ve come a long way since then. You’ve produced your first iOS program, but that’s
only half of the picture. Now you need to involve the Arduino. Let’s start by looking at
the Arduino sketch.

Figure 10.13 Declaring support for the Redpark serial cable
Download from Wow! eBook <www.wowebook.com>

229The Arduino gets involved
10.3.1 Sketch to switch LED from iOS device

To make things easier, this project won’t introduce any new circuitry and will use the
LED built into the Arduino that’s connected to pin 13. Let’s get started.

 Open the Arduino IDE and type in the following sketch.

void setup() {
 Serial.begin(9600);
 pinMode(13, OUTPUT);
}

void loop() {
 if (Serial.available()) {
 byte inByte = Serial.read();
 if (inByte == '1') {
 digitalWrite(13, HIGH);
 }
 else {
 digitalWrite(13, LOW);
 }
 }
}

The sketch opens the serial port with a baud rate of 9,600, which matches the rate set
by the iOS device B, and sets digital pin 13 as an output. In the main loop, the Ardu-
ino waits for a byte to be received at the serial port. If a byte is detected, the byte is
read into the variable inByte. If the value of inByte is equivalent to 1, then the LED is
switched on.

NOTE The maximum baud rate supported by the Redpark serial cable is 57,600.

We can now move on to testing the sketch.

10.3.2 Testing the sketch

Upload the sketch to the Arduino and then make the connections between the RS232
to TTL adapter shown previously in figure 10.4.

NOTE You’ll need to upload the sketch when the RS232 to TTL adapter isn’t
connected to pins 0 and 1 of the Arduino, as this could prevent the upload
occurring.

The final piece is to connect the iOS device, the Redpark serial cable, and the RS232 to
TTL adapter together. It’s probably best to power the Arduino from an external power
supply, as shown in figure 10.14.

 Start the IOSArduino app on your device and turn the switch on and off. If every-
thing is connected correctly, the LED connected to pin 13 on the Arduino should turn
on and off.

Listing 10.3 Switching LED from iOS device

Set baud
rateb
Download from Wow! eBook <www.wowebook.com>

230 CHAPTER 10 Integrating the Arduino with iOS
Now let’s develop the iOS app further by adding a slider to control the brightness of
an LED connected to the Arduino.

10.4 Doing more with Xcode
It’s time to develop the IOSArduino app a little further by adding a Slider object to
control the brightness of an LED connected to the Arduino. You’re going to keep the
Switch control, so you need a method of distinguishing whether it’s the Switch or
the Slider control that’s sending a command from the iOS device to the Arduino.

 You can start by adding a Slider control to the project.

10.4.1 Adding a Slider control

Open your IOSArduino project in the Xcode IDE, open the storyboard file, and drag a
Slider control onto it, as shown in figure 10.15. In the Slider, set Minimum to 0, Maxi-
mum to 255, and Current to 0. In the View section, set Tag to 9. The tag will identify
which Arduino pin you want to use.

 You need to give a value to the tag for the existing switch as well, so select the
Switch control and give Tag a value of 13, as shown in figure 10.16. The 13 indicates
the pin that the Arduino LED is connected to.

 You next need to connect the Slider control to an outlet. From the menus, select
View > Assistant > Show Assistant Editor. The editor should open to display View-
Controller.h. Ctrl-click on the Slider, select New Referencing Outlet from the context
menu, drag to just above the @end in the editor window, and release. Name the outlet
moveSlider, as shown in figure 10.17. Click Connect to complete adding the outlet.

 Next you need to add a new action by repeating the Ctrl-click on the Slider and
dragging it to @end. Name the action brightnessLED as shown in figure 10.18, and then
click Connect to complete the action.

Figure 10.14 iPhone
connected to Arduino,
switching LED on and off
Download from Wow! eBook <www.wowebook.com>

231Doing more with Xcode
Figure 10.15 Adding a Slider control to the iPhone storyboard

Figure 10.16 Add the Tag value 13 to the Switch.
Download from Wow! eBook <www.wowebook.com>

232 CHAPTER 10 Integrating the Arduino with iOS
You now need to add some code to your view controller, ViewController.h, so that it
matches the following listing.

#import <UIKit/UIKit.h>
#import "RscMgr.h"

#define BUFFER_LEN 1024

@interface ViewController : UIViewController <RscMgrDelegate> {

 RscMgr *rscMgr;
 UInt8 rxBuffer[BUFFER_LEN];
 UInt8 txBuffer[BUFFER_LEN];

Listing 10.4 ViewController.h

Figure 10.17 Add the moveSlider outlet.

Figure 10.18 Add the brightnessLED action.
Download from Wow! eBook <www.wowebook.com>

233Doing more with Xcode
 UISwitch *toggleSwitch;
 UISlider *moveSlider;
}
@property (retain, nonatomic) IBOutlet UISwitch *toggleSwitch;
@property (retain, nonatomic) IBOutlet UISlider *moveSlider;

- (IBAction)toggleLED:(id)sender;
- (IBAction)brightnessLED:(id)sender;

@end

You’ve added a new outlet and a new action to ViewController.h. The next step is to
make some changes to the app delegate, so that when you move the Slider control a
value is sent to the Arduino. Change ViewController.m so that it matches the follow-
ing listing.

#import "ViewController.h"

@implementation ViewController
@synthesize moveSlider;
@synthesize toggleSwitch;

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];

}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 rscMgr = [[RscMgr alloc] init];
 [rscMgr setDelegate:self];
}

- (void)viewDidUnload
{
 [self setToggleSwitch:nil];
 [self setMoveSlider:nil];
 [super viewDidUnload];
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}

Listing 10.5 ViewController.m

moveSlider
variable

“weak”
changed to
“retain”

brightnessLED
action
Download from Wow! eBook <www.wowebook.com>

234 CHAPTER 10 Integrating the Arduino with iOS
- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:

➥ (UIInterfaceOrientation)interfaceOrientation
{

 if ([[UIDevice currentDevice] userInterfaceIdiom]

➥ == UIUserInterfaceIdiomPhone) {
 return (interfaceOrientation !=

➥ UIInterfaceOrientationPortraitUpsideDown);
 } else {
 return YES;
 }
}

- (IBAction)toggleLED:(id)sender {
 txBuffer[0] = [sender tag];
 txBuffer[1] = [(UISwitch *)sender isOn];
 [rscMgr write:txBuffer Length:2];

}

- (IBAction) brightnessLED:(id)sender {

 int brightness = (int)[(UISlider *)sender value];
 txBuffer[0] = [sender tag];
 txBuffer[1] = brightness;
 [rscMgr write:txBuffer Length:2];
}

#pragma mark – RSC Interface

- (void) cableConnected:(NSString *)protocol {
 [rscMgr setBaud:9600];
 [rscMgr open];
}

- (void) cableDisconnected {

}

- (void) portStatusChanged {

}

- (void) readBytesAvailable:(UInt32)numBytes {
}

- (BOOL) rscMessageReceived:(UInt8 *)msg TotalLength:(int)len {
 return NO;
}

- (void) didReceivePortConfig {
}

@end

Tag added to
method

b

New method for
Slider control

c

Download from Wow! eBook <www.wowebook.com>

235Arduino sliding
In this listing, a new method is added to the original toggleLED method B, brightness-
LED c. You need to distinguish which method is sending data to the Arduino, so you
use the Switch’s and the Slider’s Tag properties to store the pin number. Each method
sends two bytes to the Arduino, the first identifying the pin and the second the value.

 Build the project to check for any errors. If everything builds okay, you can deploy
it to your iOS device.

 It’s now time to look at the Arduino side of things, beginning with a sketch, and
then building a circuit with an LED connected to pin 9.

 You can probably see a pattern here: we’re building a project and making changes
a little at a time. First we work on the Xcode side and then the Arduino, testing and
then returning to Xcode again. We find this helps when building more complex proj-
ects. Doing incremental development simplifies the debugging as you only need to
look at the last small piece of code you added.

10.5 Arduino sliding
In this section, you’re going to use the messages received from an iOS device to con-
trol switching the LED connected to pin 13 on or off and to control the brightness of
an LED connected to pin 9. Listing 10.6 shows the sketch you’re going to use.
Although you’re only adjusting the brightness of an LED in this example, a similar
technique could easily be used to control the speed of a motor, as shown in chapter 5,
or to control similar devices that respond to a PWM signal.

#define LENGTH 2
const int ledPin = 13;
const int brightnessPin = 9;

int rxBuffer[128];
int rxIndex = 0;

void setup() {
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(brightnessPin, OUTPUT);
}

void loop (){
 if (Serial.available() > 0) {

 rxBuffer[rxIndex++] = Serial.read();
 if (rxIndex == LENGTH) {

 byte pinNumber = (int)rxBuffer[0];
 byte pinValue = (int)rxBuffer[1];

 if (pinNumber == ledPin){
 if (pinValue == 1) {
 digitalWrite(ledPin, HIGH);
 }

Listing 10.6 Sketch for iOS Slider control
Download from Wow! eBook <www.wowebook.com>

236 CHAPTER 10 Integrating the Arduino with iOS
 else {
 digitalWrite(ledPin, LOW);
 }
 }
 else if (pinNumber == brightnessPin){
 analogWrite(brightnessPin, pinValue);
 }
 rxIndex = 0;
 }
 delay(10);
 }
}

The sketch reads two bytes of data sent from the iOS device. The first byte identifies
the pin number to be operated on. The second byte is the value to send to the identi-
fied pin. Either the ledPin is switched HIGH or LOW, or the brighnessPin’s value is set
to alter the brightness of the attached LED.

 Let’s move on and build the test circuit.

10.5.1 Arduino slider circuit

You’re now going to build a circuit using a colored LED and a 200 ohm resistor. The
LED will be connected to pin 9 of the Arduino, which will respond to commands from
the iOS device and be used to vary the brightness of the attached LED. Connect the
circuit together as shown in figure 10.19.

 Having constructed the circuit, the next task before linking the RS232 to TTL
adapter to the Arduino is to upload the sketch from listing 10.6.

10.5.2 Testing the circuit

With the sketch uploaded to the Arduino, you can go ahead and connect the RS232 to
TTL adapter to the Arduino. Plug in the Redpark serial cable to your iOS device and
the adapter.

Figure 10.19 LED
connected to pin 9
on the Arduino
Download from Wow! eBook <www.wowebook.com>

237Moving data to the iOS device
Start up the IOSArduino app and notice that when you move the slider from side to
side, the LED connected to pin 9 should alter its brightness. Likewise, moving the
switch between on and off should turn the onboard LED connected to pin 13 on and
off. The complete setup is shown in figure 10.20.

 So far, we’ve looked at sending data from an iOS device to an Arduino that responds
to commands by either altering the brightness of an LED or switching an LED on or off.
Next we’re going to look at communication going the other way, sending information
from the Arduino, via the serial port, and displaying it on the iOS device.

10.6 Moving data to the iOS device
So far we’ve explored how to control the Arduino from an iOS device, but how about
reading data from a sensor and using an iOS device to display it? In this section, we’re
going to add a GP2D12 IR distance sensor, which you first encountered in chapter 6.

 Let’s complete the iOS side of the project.

10.6.1 Xcode coding

Start up Xcode and load the IOSArduino project. You
want to add two labels to your project: one that dis-
plays the static text “Distance” and another that dis-
plays the distance value.

 Start by dragging a Label object onto the view,
and set its text value to Distance. Next, drag a sec-
ond Label next to the first and set its text value to
0.00. Your view should now look like figure 10.21.

Figure 10.20 Complete
setup: iPhone controlling
LED’s brightness

Figure 10.21 Labels added to
the view
Download from Wow! eBook <www.wowebook.com>

238 CHAPTER 10 Integrating the Arduino with iOS
You next need to connect the second label to an outlet. Select View > Assistant > Show
Assistant Editor from the menus. The editor should open in ViewController.h. Ctrl-click
on the label and drag to just above the @end in the editor window, and release. Name the
outlet distance as shown in figure 10.22. Click Connect to complete adding the outlet.

 You now need to add some code to your view controller, ViewController.h, so that
it matches the following listing.

#import <UIKit/UIKit.h>
#import "RscMgr.h"

#define BUFFER_LEN 1024

@interface ViewController : UIViewController <RscMgrDelegate> {

 RscMgr *rscMgr;
 UInt8 rxBuffer[BUFFER_LEN];
 UInt8 txBuffer[BUFFER_LEN];

 UISwitch *toggleSwitch;
 UISlider *moveSlider;
 UILabel *distance;
}
@property (retain, nonatomic) IBOutlet UISwitch *toggleSwitch;
@property (retain, nonatomic) IBOutlet UISlider *moveSlider;
@property (retain, nonatomic) IBOutlet UILabel *distance;

- (IBAction)toggleLED:(id)sender;
- (IBAction)brightnessLED:(id)sender;

@end

This version of ViewController.h adds a new label variable B so you can display the
distance, as well as a new outlet. Note the change from weak to retain.

 The next step is to make changes to ViewController.m by adding some code to the
readBytesAvailable method of the Redpark serial cable delegate. Make the changes
so that they match the following listing.

#import "ViewController.h"

@implementation ViewController
@synthesize distance;

Listing 10.7 ViewController.h

Listing 10.8 ViewController.m

Figure 10.22 Adding the
distance outlet

Label
variable

b

New outlet
Download from Wow! eBook <www.wowebook.com>

239Moving data to the iOS device
@synthesize moveSlider;
@synthesize toggleSwitch;

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 rscMgr = [[RscMgr alloc] init];
 [rscMgr setDelegate:self];
}

- (void)viewDidUnload
{
 [self setToggleSwitch:nil];
 [self setMoveSlider:nil];
 [self setDistance:nil];
 [super viewDidUnload];
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:

➥ (UIInterfaceOrientation)interfaceOrientation
{

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

➥ UIUserInterfaceIdiomPhone) {
 return (interfaceOrientation !=

➥ UIInterfaceOrientationPortraitUpsideDown);
 } else {
 return YES;
 }
}

- (IBAction)toggleLED:(id)sender {
 txBuffer[0] = [sender tag];
Download from Wow! eBook <www.wowebook.com>

240 CHAPTER 10 Integrating the Arduino with iOS
 txBuffer[1] = [(UISwitch *)sender isOn];
 [rscMgr write:txBuffer Length:2];

}

- (IBAction) brightnessLED:(id)sender {

 int brightness = (int)[(UISlider *)sender value];
 txBuffer[0] = [sender tag];
 txBuffer[1] = brightness;
 [rscMgr write:txBuffer Length:2];
}

#pragma mark – RSC Interface

- (void) cableConnected:(NSString *)protocol {
 [rscMgr setBaud:9600];
 [rscMgr open];
}

- (void) cableDisconnected {

}

- (void) portStatusChanged {

}

- (void) readBytesAvailable:(UInt32)numBytes {
 NSString *string = nil;
 [rscMgr read:rxBuffer Length:numBytes];
 for (int i=0; i < numBytes; ++i){
 if (string) {
 string = [NSString stringWithFormat:@"%@%c",

➥ string, rxBuffer[i]];
 } else {
 string = [NSString stringWithFormat:@"%c", rxBuffer[i]];
 }
 self.distance.text = string;
 }
}

- (BOOL) rscMessageReceived:(UInt8 *)msg TotalLength:(int)len {
 return NO;
}

- (void) didReceivePortConfig {
}

- (IBAction)switchOnOff:(id)sender {
}
- (IBAction)controlSlider:(id)sender {
}
@end

Notice the new code added to the readBytesAvailable method B. This is a callback
function that’s called when data is received by the iOS device. The method reads the
bytes as a string and outputs the result to the distance label.

readBytesAvailable
method

b

Download from Wow! eBook <www.wowebook.com>

241Moving data to the iOS device
That completes the iOS part of the code, and it can now be uploaded to your iOS
device. We’re next going to look at the Arduino side of things.

10.6.2 The GP2D12 IR distance sensor

Now you’re going to use the GP2D12 IR distance sensor that was discussed in chapter 6.
The sensor only requires three connections: ground, 5 volts, and signal, which is con-
nected to analog pin 0 on the Arduino (as was shown in circuit diagram 6.7 in chapter 6).

 Add the sensor to your existing circuit. The completed circuit is shown in figure 10.23.
 We now need to look at the Arduino sketch. You can use some of the code from

chapter 6. The complete sketch is shown in the following listing. Enter the sketch into
the Arduino IDE and upload it to the Arduino.

#define LENGTH 2
const int ledPin = 13;
const int brightnessPin = 9;
const int RANGER_PIN = A0;

int rxBuffer[128];
int rxIndex = 0;

float read_gp2d12_range(byte pin) {
 int dist = analogRead(pin);
 if (dist < 3)
 return -1;
 return (6787.0 /((float)dist - 3.0)) - 4.0;
}

Listing 10.9 Sketch to read distance from GP2D12 sensor

Figure 10.23 GP2D12 infrared sensor added to circuit

Function to
read distance

b

Download from Wow! eBook <www.wowebook.com>

242 CHAPTER 10 Integrating the Arduino with iOS
void setup() {
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(brightnessPin, OUTPUT);
}

void loop (){
 float distance = read_gp2d12_range(RANGER_PIN);
 delay(400);
 if (distance != -1) {
 Serial.println(distance);
 }

 if (Serial.available() > 0) {
 rxBuffer[rxIndex++] = Serial.read();

 if (rxIndex == LENGTH) {
 byte pinNumber = (int)rxBuffer[0];
 byte pinValue = (int)rxBuffer[1];

 if (pinNumber == ledPin){
 if (pinValue == 1) {
 digitalWrite(ledPin, HIGH);
 }
 else {
 digitalWrite(ledPin, LOW);
 }
 }
 else if (pinNumber == brightnessPin){
 analogWrite(brightnessPin, pinValue);
 }

 rxIndex = 0;
 }
 delay(10);
 }
}

The primary addition to the existing sketch is the read_gp2d12 function B, which
reads the input from the analog A0 pin and converts it to a distance. In chapter 6 you
learned that the distance isn’t linear, so you have to perform a fancy mathematical
conversion on it before returning the distance. The distance function is called from
within the main loop c. The returned distance value is printed to the serial port d,
and it’s then received by the iOS device connected to it.

NOTE We found that a delay of 400 milliseconds after reading in the distance
was required to display correct values on iOS. We found values as low as 250
milliseconds worked, but not consistently, so you may have to play around
with this figure a little.

Once you’ve uploaded the sketch, it’s time to put everything together.

Call read distance
function

c

Print
distanced
Download from Wow! eBook <www.wowebook.com>

243Summary
10.6.3 Testing

Connect your iOS device to the Redpark serial
cable and then to the Arduino. The completed
setup is shown in figure 10.24. Start the IOSArdu-
ino app and then power up the Arduino.

 Try steadily moving the sensor about and notice
the values for distance changing. Figure 10.25
shows the IOSArduino app running on an iPhone.

10.7 Summary
In this chapter, you learned how to use the Ardu-
ino with an iOS device both to control devices con-
nected to the Arduino and to receive information
from connected sensors. We concentrated on the
raw mechanics of sending data to and from an
Arduino using the Redpark serial cable and an
RS232 to TTL adapter. You can now use your own
Objective-C programming skills to present the sent
or received data in interesting and novel ways,
from complex tables to brightly colored graphics.

 In chapter 11 we’re going to look at ways of
making wearables and how you can carry an Arduino around with you.

Figure 10.25 The complete IOSArduino
app running on an iPhone

Figure 10.24 The completed circuit with GP2D12 sensor connected to Arduino
and iPhone
Download from Wow! eBook <www.wowebook.com>

Making wearables
The term “wearable” generally refers to clothing and accessories that incorporate
computer and advanced-electronic technologies. The designs often incorporate
practical functions and features as well as make a statement or establish a techno-
logical look.

 Another way of imagining a wearable is that it’s a dynamic surface around your
body that is capable of connecting you to devices around you, people, and places.
These days most people carry a mobile phone, always on them and always on, but
it’s not hard to imagine a near future in which most of our communication tools
will be even smaller, perhaps even integrated into clothing or accessories that we
carry with us. Wearables can be clothing like jackets or sweaters, accessories like
hats or scarves, or objects that are worn or carried like necklaces or headphones.

This chapter covers
■ Creating wearable projects with

the LilyPad Arduino
■ Working with conductive thread
■ Creating a turn-signal jacket
■ Creating a wearable piano
■ Making a wearable compass
244

Download from Wow! eBook <www.wowebook.com>

245Making wearables
All of these are rich areas to explore. Another mode of wearable computing that you
may consider is wearable technology that can be integrated with a mobile phone or
laptop using radio frequencies or Bluetooth.

 In this chapter we’ll examine two platforms for creating wearable applications: the
LilyPad and the Arduino Pro Mini. Each has different strengths and weaknesses, and
each requires a slightly different development mentality.

 The Arduino Pro Mini is a very stripped-down and simple board for more advanced
Arduino users. It comes in two different versions: a lower-power version that runs at
8 MHz and a higher-power version that runs at 16 MHz. It draws slightly less current than
the LilyPad and is cheaper, but it’s a little trickier when you’re just getting started.

 The LilyPad is more oriented toward the development of wearables. Its connec-
tions are slightly unorthodox loops drilled into the board that are perfect for holding
a thread, particularly conductive thread. It also has a large community that provides a
lot of ideas and help.

 We’ll start with the LilyPad.

11.1 Introducing the LilyPad
The LilyPad Arduino was designed and developed by Leah Buechley in tandem with
SparkFun Electronics. The LilyPad Arduino is a microcontroller board designed for
wearables and e-textiles. It can be sewn to fabric and similarly mounted power sup-
plies, sensors, and actuators with conductive thread.

 There are two versions of the LilyPad that you can choose from: one based on the
ATmega168, and a higher-powered version based on the ATmega328. The differences
between them are slight, but significant if you need higher power.

 The LilyPad Arduino is a circle, approximately 50 mm (2 inches) in diameter. It
can be powered via the USB connection or by an external power supply. If an external
power supply is used, it should provide between 2.7 and 5.5 volts. This can come
either from an AC-to-DC adapter (a wall-wart) or a battery. The pins of the LilyPad are
shown in figure 11.1.

Figure 11.1 The pins of the LilyPad
Download from Wow! eBook <www.wowebook.com>

246 CHAPTER 11 Making wearables
You can program the LilyPad using SparkFun’s FTDI breakout board, as shown in fig-
ure 11.2, or you can use an encapsulated FTDI cable. With a cable, the green wire
goes in the right pin of the LilyPad socket (note the G in the wiring diagram in fig-
ure 11.1), and the black wire goes in the left (at the B in the wiring diagram). It’s very
important to keep the FTDI cable attached correctly, or you run the risk of damaging
the LilyPad.

 As you can see, the LilyPad has 6 analog in pins, 14 digital in/out pins, and 2 pins
to provide power and ground for the board. It also has a reset button and a six-pin
header to attach a programmer, like the FTDI breakout board shown in figure 11.2.

 In addition to the main board just outlined, the LilyPad is also available in a Sim-
ple version, shown in figure 11.3. The LilyPad Simple has fewer input and output pins,
but it includes an on/off switch to make turning projects on and off easier. It’s also
slightly less expensive than the regular versions.

Figure 11.2 Connecting
the SparkFun FTDI
breakout board to the
LilyPad for programming

Figure 11.3 The LilyPad Simple
Download from Wow! eBook <www.wowebook.com>

247Introducing the LilyPad
11.1.1 LilyPad accessories

The LilyPad comes with lots of different kinds of accessories. Figure 11.4 shows the
Temperature Sensor and the Vibe Board, both of which are made by SparkFun.

 How you power your LilyPad project is a very important consideration. Because
LilyPad projects are almost always worn or carried on the body, they don’t have an
external power supply. You should give careful thought to the power requirements of
your application. Consider how long you want it to last, whether it can be turned on
and off, and how the power supply can be accessed and charged or changed.

 Figure 11.5 shows two easy ways of powering your LilyPad. On the left is the AAA
Battery Holder that holds a single AAA battery and provides an easy interface to con-
nect to the LilyPad. On the right is the LiPo Holder that allows you to connect a lith-
ium polymer battery with a two-pin adapter, which is the standard adapter for LiPo
batteries. Because these are a part of the LilyPad series, they are both available almost
anywhere that stocks LilyPad boards and components.

 The length of time that either of these will power a LilyPad project depends on the
application, which components you’re using, and how careful you are to prevent your
circuits and connections from leaking current. Conductive fabric and thread can be a
serious current drain if you’re not careful.

 Let’s look at conductive fabric and thread and see how to use them properly.

11.1.2 Conductive thread and fabric

Your LilyPad can be connected to its circuits using wires or conductive thread. The
advantage of thread is that it allows you to sew your components into the wearable
itself, making a stronger bond with the fabric and the surface of the garment. The

Figure 11.4 LilyPad Temperature Sensor and
LilyPad Vibe Board from SparkFun Electronics

Figure 11.5 Two different LilyPad power boards: the AAA Battery Holder, and
the LiPo Holder, which allows you to connect a lithium polymer battery
Download from Wow! eBook <www.wowebook.com>

248 CHAPTER 11 Making wearables
disadvantage is that conductive thread has a much higher resistance than wire, mean-
ing that your signals will be weaker, and precise communication like I2C or SPI can be
affected. Our general approach is to use insulated wires in combination with conduc-
tive thread when practical. Figure 11.6 shows some conductive ribbon and table 11.1
outlines some types of conductive thread.

Conductive fabrics are different from conductive threads but the theory is the same:
they provide a medium that you can attach to the fabric of your wearable and to which
you can connect components. Extremely flexible and nearly transparent circuits can
be made using conductive fabrics. Copper-based conductive fabrics can be painted or
drawn on with a resistant material like Vaseline and then etched like a standard circuit
board. Conductive glue or conductive thread is then used to attach the components
to the fabric circuit board.

 A few types of fabric, along with their resistivity, thickness, and a thoroughly unsci-
entific assessment of their comfort level as a fabric, are listed in table 11.2. The resis-
tance is measured as a ratio; it’s proportional to the length and inversely proportional
to the width. If you have a piece that is 1 x 1 inches, then you’ll have 1 ohm resistance
in either direction; a piece that is 3 x 1 inches will have 3 ohms resistance lengthwise
and 0.3 ohms resistance widthwise.

Table 11.1 Types of conductive thread

Name Resistance Notes

Shieldex sewing thread, size 33 40 ohms/meter Has to be hand-sewn

Shieldex sewing thread, size 92 300 ohms/meter Can be used in industrial sewing machines

Conductive ribbon 0.3 ohm/meter 1 mm thick
Can carry three signals

Table 11.2 Types of conductive fabric

Name Resistance Thickness Comfort

Shieldex 0.3 ohms/sq 0.1 mm Somewhat uncomfortable

MedTex 180 < 1 ohm/sq 0.55 mm Fairly comfortable against the skin

Nickel mesh 0.1 ohm/sq .08 mm Uncomfortable

Figure 11.6 Conductive ribbon
Download from Wow! eBook <www.wowebook.com>

249Creating a turn-signal jacket
You can solder to some fabrics, though you need to be very careful when doing so.
 There are also several types of conductive glues that are readily available if you

don’t want to sew a component or a circuit into place. These usually hover around 300
ohms of resistance and can hold a few grams, but nothing extremely heavy or any-
thing that will be stressed greatly. A quick search for wire glue or conductive adhesive
should help you locate some options.

 Adhesive or glue is good for attaching ends of components to conductive fabric or
small mounting brackets, but it’s permanent, so be sure about the placement and
arrangement before breaking out the glue.

 Now we’ll look at building with the Arduino.

11.2 Creating a turn-signal jacket
This section shows you how to make a simple turn-signal jacket that allows the wearer
to activate turn signals by pressing small flex sensors at the cuffs to turn the signals on
and off. For this example, you’ll need the following:

■ Two flex sensors
■ A LilyPad
■ Four LEDs
■ Three meters of conductive thread

This project is not terribly inventive—it was done by
Leah Buechley as one of the first demonstrations of
how to use the LilyPad. But it’s an excellent demon-
stration project. In her example, Buechley used push-
button switches, which we find slightly more difficult
to use while cycling than a flex sensor. A small flex
sensor, like the one pictured in figure 11.7, allows the
user to easily turn the signal on and off.

 The flex sensor is not easy to sew into fabric, so
our suggestion is to place a piece of fabric over the
top of the flex sensor and sew that into the cuff of the
jacket on the inside. Fabric in front of the sensor
won’t affect its operation or readings at all, so it’s perfectly safe.

 You can wire the jacket however you’d like, but figure 11.8 shows a wiring diagram
that we’ve tested out and that has been robust so far. Figure 11.9 shows how the sen-
sors can be attached to the jacket itself.

 The code for the application is quite simple (see listing 11.1). You read the analog
value from the flex sensor, and if the change in the value is above a certain amount,
the LEDs are lit for 10 seconds. This change in the value means that gradual pressure
can be applied to the sensor without triggering it—handy for bike riding when you
may brush or press against things.

Figure 11.7 Flex sensor
Download from Wow! eBook <www.wowebook.com>

250 CHAPTER 11 Making wearables
const int LFORCE = 0;
const int RFORCE = 1;

const int pressLength = 10000;

const int LTURNSIGNAL = 2;
const int RTURNSIGNAL = 3;

int lPrevious, rPrevious;

boolean leftOn, rightOn;

int pressTime;

Listing 11.1 TurnSignals.ino

A2/16

A1/15

A0/14

RST

SCK

MOSI

D10

D9

D6

D5

D3

GND

MISO

VCC

LilyPad

Arduino

Simple

Board

Fritzing.orgMade with

Part1

LED5

red

R4

R3

LED2

red

LED3

red

LED4

red

Figure 11.8 Connecting the LilyPad, LEDs, and flex sensors

Figure 11.9 Sewing the components into the jacket

Each “signal”
has two LEDs for
better visibility.
Download from Wow! eBook <www.wowebook.com>

251Creating a wearable piano
void setup()
{
 pinMode(LTURNSIGNAL, OUTPUT);
 pinMode(RTURNSIGNAL, OUTPUT);

 leftOn = false;
 rightOn = false;
}

void loop()
{
 int lCurr = analogRead(LFORCE);
 int rCurr = analogRead(RFORCE);
 if(lCurr - lPrevious > 200) {
 pressTime = millis();
 leftOn = true;
 }
 lPrevious = lCurr;

 if(rCurr - rPrevious > 200) {
 pressTime = millis();
 rightOn = true;
 }
 rPrevious = rCurr;

 if(leftOn) {
 digitalWrite(LTURNSIGNAL, HIGH);
 if(millis() - pressTime > pressLength) {
 leftOn = false;
 }
 }

 if(rightOn) {
 digitalWrite(RTURNSIGNAL, HIGH);
 if(millis() - pressTime > pressLength) {
 rightOn = false;
 }
 }

}

One thought for improving the jacket might be to add a sound from a speaker or a
buzz from a vibration motor to indicate to the user when the turn signals are on. Let’s
move on to another project to explore attaching a small speaker to a jacket.

11.3 Creating a wearable piano
Another classic example of garment-sized wearables is a musical instrument outfit. For
this example you’ll need the following:

■ A LilyPad Arduino
■ A 0.25 W speaker
■ 10 thin pieces of copper
■ 5 thin pieces of rubber foam
■ Thread

Only listen
for changes.

Turn off after
a while.
Download from Wow! eBook <www.wowebook.com>

252 CHAPTER 11 Making wearables
We’ll examine a simple synthesizer that uses
soft buttons to trigger different notes. These
buttons can be attached however you’d like, but
our preference is to attach them vertically at the
breast-pocket level using two layers of thin cop-
per separated by foam and encased in fabric
(see figure 11.10). These can then be sewn onto
the garment.

 The example in listing 11.2 requires five but-
tons. It can be modified to use more or less
depending on how you decide to configure
your synthesizer or whether you want more or fewer notes. In the loop() method
you’ll notice that some of the buttons are used in combination to trigger other notes.

#define CNOTE 3830 // 261 Hz
#define DNOTE 3400 // 294 Hz
#define ENOTE 3038 // 329 Hz
#define FNOTE 2864 // 349 Hz
#define GNOTE 2550 // 392 Hz
#define ANOTE 2272 // 440 Hz
#define BNOTE 2028 // 493 Hz
#define CNOTE2 1912 // 523 Hz

const int key1 = 2;
const int key2 = 3;
const int key3 = 4;
const int key4 = 5;
const int key5 = 6;

void setup()
{
 pinMode(key1, INPUT);
 pinMode(key2, INPUT);
 pinMode(key3, INPUT);
 pinMode(key4, INPUT);
 pinMode(key5, INPUT);
}

void loop()
{
 if(digitalRead(key2) && digitalRead(key1)) {
 tone(9, ANOTE);
 }else if(digitalRead(key2) && digitalRead(key3)) {
 tone(9, BNOTE);
 }else if(digitalRead(key3) && digitalRead(key4)) {
 tone(9, CNOTE2);
 } else if(digitalRead(key1)) {
 tone(9, CNOTE);
 } else if(digitalRead(key2)) {
 tone(9, DNOTE);

Listing 11.2 WearablePiano.ino

Figure 11.10 Creating a simple soft
button

Check the
keys for the
note to play.
Download from Wow! eBook <www.wowebook.com>

253Creating a wearable piano
 } else if(digitalRead(key3)) {
 tone(9, ENOTE);
 } else if(digitalRead(key4)) {
 tone(9, FNOTE);
 } else if(digitalRead(key5)) {
 tone(9, GNOTE);
 }

}

The series of if statements in the loop() method checks each button or pair of but-
ton combinations to play the eight notes. If you want to play more notes you can sim-
ply add more button combinations to check, though keep in mind that it might be
hard for users to remember which button combinations create which notes.

 The wiring diagram for this application is shown in figure 11.11.
 To develop this further you may want to add a flex sensor or other analog input

device to control how long the notes are played. You can also add a headphone jack
instead of a speaker to play back the sounds, which makes the wearable more private
but less enjoyable for the public.

 For the next project we’ll use something smaller—the Arduino Pro Mini—to make a
more-miniaturized wearable.

Check the
keys for the
note to play.

Power

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

Fritzing.orgMade with

LilyPad
J1

R1

220Ω

±5%

5V

Figure 11.11 Connecting the buttons and speaker to the LilyPad Arduino
Download from Wow! eBook <www.wowebook.com>

254 CHAPTER 11 Making wearables
11.4 The Arduino Pro Mini
There’s more than one way to create a wearable, and more than one controller you
can use to create one. The Arduino Pro Mini is a microcontroller board based on the
ATmega328. As mentioned earlier in the chapter, there are two different versions of
the Pro Mini: a lower voltage one that runs at 3.3V and 8 MHz, and a higher voltage
one that runs at 5V and 16 MHz. Both versions have 14 digital input/output pins (of
which 6 can be used as PWM outputs), 6 analog inputs, an onboard resonator, a reset
button, and holes for mounting pin headers. A six-pin header can be connected to an
FTDI cable or SparkFun breakout board to provide USB power and communication to
the board.

 The Arduino Pro Mini shown in figure 11.12 is intended for semi-permanent instal-
lation in objects or exhibitions, but it’s also excellent for wearables. The board comes
without premounted headers, allowing you to use various types of connectors or to sol-
der wires to it directly. The Arduino Pro Mini is designed and manufactured by Spark-
Fun Electronics, but it’s available from hobbyist electronics shops all over the world.

 The Pro Mini connects directly to the FTDI basic breakout board that you can see
in figure 11.2. When the Pro Mini is used with this breakout board it supports auto-
resetting after you load a new sketch to the board. It also works with the FTDI cable,
but note that the FTDI cable doesn’t allow you to use the auto-reset feature.

11.5 Creating a smart headphone
One of our favorite project ideas is making a pair of headphones
that pause the music on your computer when you take them off.
To detect when your headphones are off we’ll use the QRE1113,
which is a small IR-reflectance sensor (see figure 11.13).

 The sensor shines an IR LED out and allows you to deter-
mine how much of that light bounces back using a photo-
transistor. There are four pins on the QRE1113: two control the
IR-emitting LED, and the other two are the collector and emit-
ter of a phototransistor. In the application code, you watch for a
sudden change in the value returned from the QRE1113 and

Figure 11.12 The Arduino Pro Mini

Figure 11.13
The tiny QRE1113
IR-reflectance sensor
Download from Wow! eBook <www.wowebook.com>

255Creating a smart headphone
send a signal to the parent computer if one is received. The serial message is received
by a small program that monitors the serial communication and pauses the iTunes
player if any signal is received.

 At its simplest, this program requires that an FTDI cable is used to connect the Ardu-
ino Pro Mini to the parent computer. For this example you’ll need the following:

■ A pair of headphones
■ An Arduino Pro Mini
■ A QRE1113
■ A computer to connect to the Arduino

The .ino file to run on the Arduino Pro Mini is shown in the next listing.

const int QRE1113_Pin = 0; //connected to analog 0
boolean isConnected;

void setup(){
 Serial.begin(9600);
 isConnected = false;
}

void loop(){

 int QRE_Value = analogRead(QRE1113_Pin);

 if(isConnected) {
 if(QRE_Value > 900) {
 Serial.print("X");
 }
 } else {
 if(QRE_Value > 300) {
 isConnected = true;
 }
 }
}

Now it’s time to pause the music on the computer when receiving data from the Ardu-
ino. There are a great number of music players for computers and we can’t specify
how to pause all of them, so we’ll just demonstrate iTunes on Windows and OS X. Both
of these use Python, the language outlined in chapter 12.

 The code for the Windows Python program is shown in the following listing.

import win32com.client
import serial

itunes = win32com.client.Dispatch("iTunes.Application ")

arduino = serial.Serial(
 port='/dev/ttyUSB1',
 baudrate=9600,
)

Listing 11.3 headphones.ino

Listing 11.4 win.py

Start as
disconnected

Check QRE1113
for presence

Connection to
the Arduino
Download from Wow! eBook <www.wowebook.com>

256 CHAPTER 11 Making wearables
arduino.open()
arduino.isOpen()

out = ''
while arduino.inWaiting() > 0:
 out += arduino.read(1)

 if out != '':
 itunes.Pause()

The code for OS X looks a bit different because it uses AppleScript, a scripting lan-
guage for OS X that’s included with the operating system (see the next listing).

import subprocess
import serial

cmd = """osascript -e 'tell app "iTunes" to pause'"""

arduino = serial.Serial(
 port='/dev/ttyUSB1',
 baudrate=9600,
)

arduino.open()
arduino.isOpen()

out = ''
while arduino.inWaiting() > 0:
 out += arduino.read(1)

 if out != '':
 subprocess.call(cmd, shell=True)

If you’d like to make this into a more lightweight and less intrusive program you
could consider altering this project so that the Arduino communicates with the parent
computer over Bluetooth using a Bluetooth module such as the Bluetooth Mate Silver
shown in figure 11.14. None of the code needs to change, but you’ll need to configure
the connection to the Bluetooth channel on your headphones.

 In the next example we’re going to create a compass with a real-time readout that’s
sewn into a jacket. Although you can get this functionality from a smartphone, the

Listing 11.5 osx.py

The AppleScript
command

Connection to
the Arduino

Figure 11.14 A Bluetooth Mate
Silver transmitter
Download from Wow! eBook <www.wowebook.com>

257Creating a jacket with a compass
advantage of adding it to a garment is that it can be visible all the time without need-
ing to pull a phone out of a pocket and start an app.

11.6 Creating a jacket with a compass
In this section we’re going to look at connecting a user display directly to the wearable
and to a magnetometer. A magnetometer is an instrument used to measure the strength
or direction of a magnetic field, like Earth’s magnetic field. Magnetometers can iden-
tify your orientation with respect to the North Pole in one, two, or three axes, and
they’re usually precise enough for simple applications. You’ve probably used or seen
one of these in a smart phone.

 For this example we’ll use the HMC5883L created by Honeywell (see figure 11.15).
These are very small, and it’s recommended that you get a breakout board to simplify
connecting it to your Arduino.

 For the readout from the magnetometer we’ll use a 7-segment serial-enabled display
from SparkFun. Although a serial-enabled 7-segment display is an expensive way of cre-
ating a 7-segment display, it’s also easy to connect and simplifies construction and trou-
bleshooting. If you’d like to, you can create your own 7-segment display and connect the
controls for each segment directly to your Arduino.

 The SparkFun 7-segment display draws a good amount
of current and is more expensive than other options, which
is a definite downside. The upside is how simple it makes
the code. The SparkFun 7-segment display is shown in fig-
ure 11.16.

 To complete this project you’ll need the following:

■ An Arduino Pro Mini
■ An HMC5883L
■ A 7-segment serial display
■ Three meters of conductive thread

Figure 11.15 The HMC5883L
magnetic compass

Figure 11.16 The
SparkFun 7-segment
serial display
Download from Wow! eBook <www.wowebook.com>

258 CHAPTER 11 Making wearables
Now let’s move on to the code. The magnetometer is complex and requires a good
amount of setup to initialize correctly and correct for errors and drift. All of this is
done over I2C using the Wire library, which you were introduced to in chapter 9.
You’ll notice a lot of register addresses in the code that will be used to initialize the dif-
ferent settings in the HMC5883L that you’ll be using.

 Because the magnetometer communicates using I2C and the 7-segment display
uses serial communication you need to use wires or conductive ribbon to ensure that
the communication isn’t disturbed by the resistance of the conductive thread. Another
consideration is that the 7-segment display should be visible but needs to be protected
from moisture. Putting it behind a film of plastic might be advisable, though it’s not
absolutely necessary.

 The writemem() method in the following code listing is a simple way to send a
command to the magnetometer using the Wire library and to check the value of the
call to endTransmission(). This method is broken out to conserve space.

#include <Wire.h>

const int magnetometer_address = 0x1E;
int magVals[3];

float magx_scale, magy_scale, magz_scale, magx_max, magy_max, magz_max;

#define HMC_POS_BIAS 1
#define HMC_NEG_BIAS 2
#define HMC58X3_R_XM 3

#define HMC58X3_R_CONFA 0
#define HMC58X3_R_CONFB 1
#define HMC58X3_R_MODE 2
#define HMC58X3_R_XM 3
#define HMC58X3_R_XL 4

void writemem(uint8_t dev_address, uint8_t _addr, uint8_t _val) {
 Wire.beginTransmission(dev_address);
 Wire.write(_addr);
 Wire.write(_val);
 Serial.print(Wire.endTransmission());
}

void initMag()
{
 Serial.print(" init mag ");
 writemem(magnetometer_address, HMC58X3_R_CONFA, 0x70);
 writemem(magnetometer_address, HMC58X3_R_CONFB, 0xA0);
 writemem(magnetometer_address, HMC58X3_R_MODE, 0x00);
}

void calibrateMag(unsigned char gain) {
 magx_scale=1;
 magy_scale=1;
 magz_scale=1;

Listing 11.6 compass.ino

HMC5883L
address

HMC5883L
register map

Start transmission
to device

Send register
address

Send value to
HMC5883L

End
transmission
Download from Wow! eBook <www.wowebook.com>

259Creating a jacket with a compass

cal

 writemem(magnetometer_address, HMC58X3_R_CONFA, 0x010 + HMC_POS_BIAS);
 writemem(magnetometer_address, HMC58X3_R_CONFB, gain << 5);

 float x, y, z, mx=0, my=0, mz=0, t=10;

 for (int i=0; i<(int)t; i++) {
 writemem(magnetometer_address, HMC58X3_R_MODE, 1);
 delay(100);

 readFromMagnet();
 if (magVals[0] > mx) mx = magVals[0];
 if (magVals[2] > my) my = magVals[2];
 if (magVals[1] > mz) mz = magVals[1];
 }

 float max=0;
 if (mx>max) max=mx;
 if (my>max) max=my;
 if (mz>max) max=mz;

 magx_max = mx;
 magy_max = my;
 magz_max = mz;
 magx_scale = max/mx;
 magy_scale = max/my;
 magz_scale = max/mz;
 writemem(magnetometer_address, HMC58X3_R_CONFA, 0x010);
 delay(10);

 unsigned char mode = 0;
 writemem(magnetometer_address, HMC58X3_R_MODE, mode);
 delay(100);
}

void readFromMagnet()
{
 Wire.beginTransmission(magnetometer_address);
 Wire.write(HMC58X3_R_XM);
 Wire.endTransmission();

 Wire.beginTransmission(magnetometer_address);
 Wire.requestFrom(magnetometer_address, 6);
 if(6 == Wire.available()) {
 magVals[0] = (Wire.read() << 8) | Wire.read();
 magVals[2] = (Wire.read() << 8) | Wire.read();
 magVals[1] = (Wire.read() << 8) | Wire.read();

 magVals[0] /= magx_scale;
 magVals[2] /= magy_scale;
 magVals[1] /= magz_scale;
 }
 Wire.endTransmission();
}

void setup()
{
 //magnetometer startup
 initMag();
 calibrateMag(4);
}

Start
ibration

Get the
highest value

Calculate
scales

Set the mode

Start from
most-significant bit

Magnetometer
will automatically
wrap around
Download from Wow! eBook <www.wowebook.com>

260 CHAPTER 11 Making wearables
void loop()
{
 readFromMagnet();
 char str[3];
 itoa(magVals[2], str, 10);
 Serial.print('x'); // print a 0
 Serial.print(str[0]);
 Serial.print(str[1]);
 Serial.print(str[2]);
 delay(100);

}

The preceding application is complex but its functionality is fairly straightforward:
turn on the magnetometer, initialize it correctly, and compensate for the scale that it
returns. Once that’s completed, the loop() method simply reads the values from the
HMC5883L and writes them to the 7-segment display using the hardware serial connec-
tion on the Arduino Pro Mini. The calibration routine is necessary to ensure that the
compass isn’t overly influenced by noise in the environment or its default settings.

 If you’re interested in how the HMC5883L actually understands each command
you can check out the datasheet for it, which is available at the Honeywell website:
http://honeywell.com/.

11.7 Summary
In this chapter you learned how to use two new Arduino-compatible controllers, and
also learned about an entire new range of applications for your Arduino skills. The
possibilities of using microcontrollers to add computational capability to a small unob-
trusive object worn on the body is one of the most exciting ways of working with the
Arduino and of thinking about how to add intelligence and functionality to our lives.

 You’ve seen two different Arduino-compatible boards that are small, lightweight,
and easily powered by small batteries, all of which are important considerations when
making a wearable. The Arduino LilyPad is larger, but it’s built specifically for attach-
ing conductive thread and has a large community of users creating wearables. The
Arduino Pro Mini is a small board that’s very lightweight, but it’s slightly more difficult
to use with conductive thread, lacking the easy-to-sew eyelets of the Arduino LilyPad. It
is, however, significantly smaller and provides more pins for you to use in your projects.

 In the next chapter you’ll learn about connecting your Arduino to other applica-
tions written in a variety of programming languages, which will allow you to make
larger and more complex projects than you would be able to with just an Arduino.

Print ASCII
Download from Wow! eBook <www.wowebook.com>

http://honeywell.com/

Adding shields
Up to this point, you’ve used shields in several examples, but this chapter will focus
on what a shield is, how shields are made, what they’re supposed to do, and how
you can make your own. Shields are boards that can be plugged into the Arduino
board to extend its capabilities. Making a shield means collecting a discrete set of
components for a specific task, like playing back MP3 files or communicating with a
GPS device, and then fitting the components to the form factor of the Arduino
device and adding pins so that they can be easily snapped into place or removed
without soldering.

12.1 Shield basics
Almost of all of the Arduino shields follow the same philosophy as the original tool-
kit: they are easy to mount and friendly to work with. Figure 12.1 shows a motor
shield developed by Adafruit that allows you to easily control up to two servomo-
tors, four DC motors, or two stepper motors.

This chapter covers
■ What Arduino shields are
■ Using libraries with shields
■ Making your own shields
261

Download from Wow! eBook <www.wowebook.com>

262 CHAPTER 12 Adding shields
This shield, which we’ll examine in greater detail later in this chapter, provides several
very nice features in a convenient form factor, including pull-down resistors that keep
motors disabled during power-up, terminal block connectors to easily hook up con-
nections and power, and internal kickback protection diodes that allow you to use
larger voltages for larger motors. That’s just the start. The main advantage of using
this shield is that it puts all of the functionality for working with several different kinds
of motors into a single board that doesn’t need to be set up again each time your con-
figuration changes.

 Shields also often come with libraries and examples, which are great ways to learn
how to work with the components that the shield contains. For instance, the Adafruit
shield can be used with the AFMotor library, which is written for the Arduino. This
library contains a wealth of knowledge about how to control the different kinds of
motors for which the shield provides functionality and numerous examples of control-
ling motors.

 Shields can be bought assembled or you can assemble your own. Often self-assembly
is far cheaper than having them assembled for you, but self-assembly also introduces
the possibility of making mistakes. It is, however, far more fun and educational to put
things together than to have them put together for you.

12.2 The Adafruit motor shield
The motor shield from Adafruit, which was discussed in the previous section, is one of
the most popular Arduino shields because of what it enables you to do easily: connect
multiple motors and external power sources to the Arduino without worrying about
over-powering or over-drawing current from the Arduino.

Figure 12.1 The Adafruit motor shield—the first motor shield we will be
using in this chapter. Image from http://www.adafruit.com/products/81.
Download from Wow! eBook <www.wowebook.com>

http://www.adafruit.com/products/81

263The Adafruit motor shield
 The motor shield allows you to connect four bidirectional DC motors or two step-
per motors, and it also has two connections for 5V servos. Without some serious power
behind it the shield is probably not going to work if you connect all of them at the
same time, but it does allow you to work with multiple large motors at the same time
quickly and easily. Now let’s look at the library that works with the shield.

12.2.1 The AFMotor library
Like many shields, the motor shield comes with a library that allows you to easily control
the shield and, by extension, any motors attached to it. The library can be down-
loaded from https://github.com/adafruit/Adafruit-Motor-Shield-library. Let’s exam-
ine that library and see how to use it.

 To control a DC motor, you need to construct an instance of the AF_DCMotor
class, passing it the number of the motor being attached. If the motor is not going to
communicate with a 34.8 kHz PWM signal, you also need to pass in the frequency of
the motor.

 For example, if the motor is going to communicate with a 34.8 kHz PWM signal you
only need to specify the motor driver on the board that the motor is attached to:

AF_DCMotor motor(2);

How do you know the frequency of the motor that you have? Check the data sheet. So
many small DC motors are 34.8 kHz that the makers of the shield set that as the
default, but there are plenty of motors with different frequencies, so it’s best to check.
If you do have a motor with a different frequency you can set it like this:

AF_DCMotor motor(2, MOTOR12_19KHZ);

Once you’ve created the motor, you can start it, setting the speed in a range from 0 to
255. Then call run() and pass either FORWARD or BACKWARD to the method:

motor.setSpeed(100);
motor.run(FORWARD);

To stop the DC motor call run() and pass RELEASE to the method:

motor.run(RELEASE);

The Stepper library works a little differently. You first create the AF_Stepper instance
by passing the number of steps the motor takes for a complete circle and the connec-
tion number on which the stepper is connected. The number of degrees in a step can
usually be found in the datasheet. It may be listed as the number of degrees that the
stepper makes per step, in which case you can divide 360 by the number of degrees to
get the number of steps. If the stepper motor is connected to motor ports 1 and 2 the
connection number is 1. If the stepper motor is connected to motor ports 3 and 4
the connection number is 2:

const int STEPS = 360/1.8;
AF_Stepper stepperMotor(STEPS, 1);
Download from Wow! eBook <www.wowebook.com>

https://github.com/adafruit/Adafruit-Motor-Shield-library

264 CHAPTER 12 Adding shields
To advance the motor call step() with the number of steps and the direction that you
want to turn the stepper:

stepperMotor.step(1, FORWARD);

You can also set the type of step that you want the stepper motor to turn. These are
the available options:

■ SINGLE—Single-coil activation
■ DOUBLE—Two coils activated at once for slightly higher torque
■ INTERLEAVE—Alternates between single- and double-coil activation to get twice

the resolution but half the speed
■ MICROSTEP—Attempts to turn the stepper smoothly to its next position using a

PWM signal

Not all steppers can perform all of these actions, so you’ll want to check the data sheet
and perhaps the Adafruit forums for info on your particular motor.

12.2.2 Using the motor shield with a stepper motor

For this example you’ll need the following:

■ An Arduino
■ An Adafruit motor shield
■ A 5V stepper motor
■ Two AA batteries or a power source sufficient to drive the stepper motor
■ Two buttons
■ Two resistors (5k ohms or similar)

This application uses the two buttons to control the direction of the stepper. Each but-
ton acts as a toggle to turn the stepper on and off and determine in which direction it
will turn, if it turns at all.

 The connections are shown in figure 12.2. Note the battery pack attached to the
motor shield to power the stepper motor. The two buttons have pull-down resistors on
them to ensure that they only read HIGH when pressed.

 You’ll also need to install the AFMotor library, which you can download from
GitHub at www.github.com/adafruit/Adafruit-Motor-Shield-library. Here’s the code
that will drive the stepper motor.

#include <AFMotor.h>

AF_Stepper stepper(48, 1);

const int STEPPER_BWD_BUTTON = 2;
const int STEPPER_FWD_BUTTON = 13;

const int BACKWARDS = 2;
const int FORWARDS = 1;

Listing 12.1 MotorDriving.pde
Download from Wow! eBook <www.wowebook.com>

www.github.com/adafruit/Adafruit-Motor-Shield-library

265The Adafruit motor shield
const int STOPPED = 0;

int motorState;

void setup() {
 }

void loop() {

 int fwd = digitalRead(STEPPER_FWD_BUTTON);
 int bwd = digitalRead(STEPPER_BWD_BUTTON);

 if(fwd == HIGH) {
 if(motorState == FORWARDS) {
 motorState = STOPPED;
 } else {
 motorState = FORWARDS;
 }
 }

 if(bwd == HIGH) {
 if(motorState == BACKWARDS) {
 motorState = STOPPED;
 } else {
 motorState = BACKWARDS;
 }
 }

 if(motorState == FORWARDS) {
 stepper.step(1, FORWARD, INTERLEAVE);
 } else if(motorState == BACKWARDS) {
 stepper.step(1, BACKWARD, INTERLEAVE);
 }

}

12.2.3 Using the motor shield with a DC motor

Controlling a DC motor is equally simple: create an instance of the AF_DCMotor class
and set the controller block it’s attached to in its constructor. For instance, a DC motor
connected to the second motor block (marked with M2) would be declared like this:

AF_DCMotor motor(2);

For the next project we’ll control a motor’s speed with a potentiometer and control its
direction with a pair of buttons. For this project you’ll need the following:

■ An Arduino
■ An Adafruit motor shield
■ A small DC motor
■ Two buttons
■ Two resistors (5k ohms or similar)
■ A servomotor
■ Two AA batteries or a power source sufficient to drive the motor
■ One potentiometer

Toggles
directions
Download from Wow! eBook <www.wowebook.com>

266 CHAPTER 12 Adding shields
Sometimes you can get away with powering a stepper motor from the Arduino itself,
but with a DC motor you’ll definitely need a separate power source, as shown in fig-
ure 12.3.

 The code for this example requires the AFMotor library and the Servo library,
so make sure that you have them both installed on your computer (see the follow-
ing listing).

Figure 12.2 The connections for listing 12.1
Download from Wow! eBook <www.wowebook.com>

267The Adafruit motor shield
#include <AFMotor.h>
#include <Servo.h>

AF_DCMotor motor(1);
Servo servo;

Listing 12.2 PotToMotors.pde

Figure 12.3 Connecting a servomotor to the motor shield

Servo connection
1 is Arduino D9
Download from Wow! eBook <www.wowebook.com>

268 CHAPTER 12 Adding shields
const int MOTOR_FWD_BUTTON = 2;
const int MOTOR_BWD_BUTTON = 13;
const int POTENTIOMETER_PIN = 0;

int motorSpeed;
int motorState;

const int BACKWARDS = 2;
const int FORWARDS = 1;
const int STOPPED = 0;

void setup() {
 servo1.attach(9);

 pinMode(MOTOR_FWD_BUTTON, INPUT);
 pinMode(MOTOR_BWD_BUTTON, INPUT);

}

void loop() {

 int tmp = analogRead(POTENTIOMETER_PIN);

 int fwd = digitalRead(MOTOR_FWD_BUTTON);
 int bwd = digitalRead(MOTOR_BWD_BUTTON);

 if(fwd == HIGH) {
 if(motorState == BACKWARDS || motorState == STOPPED) {
 motorState = FORWARDS;
 motor.run(FORWARD);
 }
 }

 if(bwd == HIGH) {
 if(motorState == FORWARDS || motorState == STOPPED) {
 motorState = BACKWARDS;
 motor.run(BACKWARD);
 }
 }

 if(tmp != motorSpeed / 4) {
 motorSpeed = tmp;
 motor.setSpeed(motorSpeed / 4);
 }

 if(motorState == FORWARDS) {
 servo.write(motorSpeed / 1024. * 90 + 90);
 } else {
 servo.write(90 - (motorSpeed / 1024. * 90));
 }

}

This code listing is a bit lengthy, but what it does is quite simple: it controls motor
speed and direction using simple components and it gives some visual feedback using
a servomotor. Now you have a project with a controllable motor and a speedometer.

Only set speed if
it has changed
Download from Wow! eBook <www.wowebook.com>

269Creating your own shield
12.2.4 Getting a motor shield

There are two options for getting a motor shield: you can buy it assembled, or you can
assemble it yourself. Buying it assembled saves you some time and costs you some
money; buying it unassembled saves you some money and gives you a chance to hone
your soldering skills.

 If you go the latter route, the kit will arrive with all the pieces in a bag, and you’ll
have to take a look at the directions on the Adafruit site to put it together. To avoid
needless repetition, we won’t list the directions here, but they’re fairly self-explanatory.
The biggest things to watch out for are getting the right capacitor in the right place
and orienting the polarity of the capacitors correctly.

 We recommend putting it together yourself, but if you want to be absolutely sure
that the shield will be assembled correctly you can buy it preassembled.

12.3 Creating your own shield
At some point, you’ll make something that
works so well that you’ll want to use it over
and over again in different projects with-
out needing to set it all up again on a
breadboard. This is where the idea of mak-
ing a shield using a project board comes in
handy. Figure 12.4 shows a project board
(sometimes also called a perfboard).

 A project board is a little more perma-
nent than a breadboard because you solder
the components into place. This ensures
that no noise is conducted through the
board that might affect your circuit and
that components can’t be jostled out of
place. You can get many different kinds of
project board, some with rails on the side,
some with strips connecting all the perforations in a single line, and some with config-
urations for specific components.

12.3.1 Memory

Ah, memory. Compared to the microcontrollers of 10 years ago, or even regular com-
puters of 30 years ago, the Arduino has a remarkable amount of memory, but even
that fills up quickly when you’re trying to log GPS coordinates or keep track of envi-
ronmental indicators over days or weeks. That’s why computers have hard disks, and
it’s also why cameras have flash memory; it’s the latter of these that we’re going to
emulate. The SD card in the standard digital camera is a marvel: it’s small, light, and
easy to operate, it has no moving parts, and it has a robust storage system.

Figure 12.4 A project board, sometimes
called a perfboard (source: SparkFun)
Download from Wow! eBook <www.wowebook.com>

270 CHAPTER 12 Adding shields
 The most common type of memory card is the SD card, and these generally come
in two formats: microSD and SD. These two types differ not only in protocol and
capacity, but also in the physical size of the card: one is larger and the other is much
smaller. There’s another important difference between these two cards: microSD gen-
erally uses a format called FAT32, whereas SD cards use FAT16. The differences
between these formats are in how files are allocated and stored. This isn’t important
for you at the moment, but it’s good to know which variety you’re getting because the
storage system will affect how you read data from and write it to the card.

 In this example we’re going to focus on the regular SD card because it’s easier to
work with by hand. As we write this book, the capacity of SD cards ranges from 64 MB
all the way up to 32 GB, but by the time you read this they may be even larger.

 Connecting an SD card to an Arduino presents a few problems. As you may recall
from chapter 9 where you were introduced to I2C, the I2C protocol transmits data
between the component and the Arduino using short bursts of digital information
that represent the bits of each byte. SD cards operate at 3.3V, and that means that they
need to be powered with 3.3V and they also need to be communicated with at 3.3V.
This is a problem for the Arduino, because the digitalRead() method sometimes
won’t register a 3.3V signal as HIGH when performing a digital read. You might guess
where this is going: we need a way to turn the signals from the Arduino into 3.3V sig-
nals, and the signals from the SD card to 5V signals. Luckily, there’s a component that
does it for us.

12.3.2 Level shifters

A level shift does one thing well: it shifts any level received on one of the input pins
down to whatever voltage is received on the voltage-in pin. Applying 3.3V to the level
shifter means that any signal sent through it will come out at 3.3V, which is exactly
what you want to avoid damaging your SD card.

 There are a lot of level shifters available with varying precision and different num-
bers of inputs and outputs. For this example, you really only need two level shifters to
communicate safely with the SD card, but one of the most readily available and cheap-
est level shifters has six outputs. It’s the 74HC4050 from NXP Semiconductors, and the
pinout is shown in figure 12.5.

 The voltage level pin determines the voltage that all the output current will be
stepped down to, the ground grounds the current, and the rest of the pins are either
input, output, or don’t connect (marked here as DNC).

 That’s the first challenge of the SD card shield handled. Now how do you connect
the SD card to the shield so that it can be easily inserted and removed without trouble?
The answer is an SD card holder.

12.3.3 The SD card holder

You’ve probably used a card holder for an SD card before, but you may not have got-
ten a good look at it because they’re usually hidden inside a camera or a computer
Download from Wow! eBook <www.wowebook.com>

271Creating your own shield
case. The card holder allows you to connect the card to the shield without needing to
actually alter the card itself. This is important, because it ensures that you can have
the Arduino write data to the SD card, and then take the card out of the holder and
read it on a computer with a card reader.

 As you can see in figure 12.6, the card holder has pins that can be soldered into
a project board and a small latch at the top to hold the card in place when it’s
in use.

 Now that you know how to put the SD card onto the shield, let’s look at how to con-
nect the card to the Arduino.

12.3.4 Connecting the SD card to the Arduino

You can probably get an idea of how the SD card is connected to the Arduino by exam-
ining figure 12.7, but keep in mind that the card will be placed facedown into the

Figure 12.5 The pins for
the 74HC4050

Figure 12.6 An SD card holder that can be
soldered into a project board
Download from Wow! eBook <www.wowebook.com>

272 CHAPTER 12 Adding shields
holder. The I2C pins that send data from the Arduino are all run through the level
shifter and then to the SD card. The pin that sends data from the SD card to the Arduino
can connect directly to the Arduino without any problems. The VCC is connected to
3.3V and the ground is connected to, unsurprisingly, the ground of the Arduino.

 Let’s look at the wiring diagram to see how this will look on the board (figure 12.8).
As you can see, the level shifter sits between the SD card and the Arduino, ensuring that
no 5V signals are sent to the SD card.

 With the schematic out of the way it’s time to start making the board itself.

Figure 12.7 The various
connections for an SD card

Figure 12.8 Connecting the 74HC4050 to the Arduino and SD card holder
Download from Wow! eBook <www.wowebook.com>

273Creating your own shield
12.3.5 Preparing the perfboard

You’re ready to start making your board. You’ll need the following:

■ A perfboard (preferably double-sided)
■ An Arduino
■ Four female header strips (long pin) or three female header strips and one

Arduino offset header
■ An SD card holder
■ An SD card
■ A 74HC4050 level shifter

The next step is an important one, so please don’t skip it: the pins must be modified
so that they’ll fit into the headers on the Arduino. If you don’t modify the pins, the
shield won’t fit onto the Arduino. You have two options: use standard female headers
or use Arduino offset headers. The two different types are shown in figure 12.9.

 You might be wondering why the pins in the Arduino offset header (on the right
in figure 12.10) are bent slightly. The answer is that the perfboard has a grid of
small holes separated by 0.1 inches (2.54 mm), which is to say that the holes are laid
out in 0.1 inch spacing. The Arduino doesn’t use 0.1 inch spacing. This is not out of
malice or a desire to make you buy more shields—it was an error in a very early edi-
tion of the Arduino that, for compatibility reasons, has been preserved. The bent
pins on the Arduino offset header allow you slide the pins into the Arduino’s pins
REF and D8 or D7 and D0 and use non-bent pins to connect to the other digital pins on
the Arduino. These offset header pins are available at several retailers, including
Adafruit and SparkFun.

 If you don’t want to buy pre-bent pins, why not bend your own? Get a pair of needle-
nose pliers and a row of five long-pin female headers and bend each pin slightly. It
might take several tries to get it right, but it should be doable.

 If you don’t want to buy bent pins or bend your own long pins, you have another
option: take the perfboard and drill holes in between the existing holes so that they
match up with the digital pins of the Arduino. To drill the holes you’ll need a 0.8 mm
drill bit. You’ll then need to scrape away some of the copper from the sides of the
board to avoid accidental shorts between pins. Figure 12.10 shows the holes carefully
drilled in a piece of perfboard.

 You’ll need to ensure that the board fits properly before soldering the pins in
place, but once you’ve confirmed that everything will fit, go ahead and secure the pins

Figure 12.9 The two types of header pins:
standard female header on the left, and
Arduino offset header on the right
Download from Wow! eBook <www.wowebook.com>

274 CHAPTER 12 Adding shields
with a healthy amount of solder. If it works, all is well; if not, you may need to unsol-
der one or more of the headers and try to gently tweak some of the pins with a pair
of needle-nose pliers.

 Done? Good. With that out of the way, you’re ready to start connecting the female
headers to the board. You’re going to use these headers to connect to the pins of the
Arduino and to connect to the 74HC4050 and SD card, allowing you to still access all
the pins of the Arduino and provide the power and I2C that the SD card requires. Your
goal is to end up with something that looks like figure 12.11.

 Notice how the headers on the board match the pins on the Arduino. One nice
thing about the SD card shield you’re creating here is that you don’t need to lose any

Figure 12.10 You can drill additional 0.8 mm
holes into the perfboard if you don’t have pre-
bent pins or don’t want to bend them yourself.

Figure 12.11 The SD card shield
is ready to be connected to the
Arduino board.
Download from Wow! eBook <www.wowebook.com>

275Creating your own shield
pins. This is one of the great advantages of I2C: additional components can be attached
to the I2C pins of the Arduino without interfering with any other I2C as long as they’re
using a separate address for communication.

 Now you can solder the 74HC4050 to the perfboard. You can put a 16-pin socket on there
if you want to change the level shifter out at some point, but it’s not necessary. Whether
you’re using a socket or not, you can place the component in the center of the board.

 Next it’s time to place the SD card holder—it will need to be tweaked a little bit to
fit on a standard perfboard. Make sure you know which direction the 74HC4050 is fac-
ing. The level shifter has a small indent indicating the top. It doesn’t matter which way
the top is facing, but it does matter which connections you attach to the Arduino and the
SD card holder.

 First, if your SD card holder has mounting strips like those shown on the left in fig-
ure 12.7, you’ll need to cut them off so the holder can lie flat on the board. If they’re
plastic, you can do this with a knife. If they’re metal, you may need a pair of snips or a
small grinder, depending on how thick they are. Next you’ll need to very gently shift the
position of the last pin on the right, as shown in figure 12.7, so that it can fit the holes
on the board.

 Now you’re ready to start connecting the SD card holder to the perfboard. Our
approach is to solder insulated jumper wires into place where you’re going to attach the
SD card holder, and then to connect the pins on the SD card holder directly to one side of
each jumper wire. You’ll want to be liberal with the solder, because it’s all that’s going to
hold the SD card holder in place, unless you add a little bit of hot glue around the sides.

 Now it’s time to connect the 74HC4050 to the SD card holder. Figure 12.12 shows
the connections between the level shifter and the SD card holder.

Figure 12.12 Connecting the level shifter to the SD card holder
Download from Wow! eBook <www.wowebook.com>

276 CHAPTER 12 Adding shields
You can run the jumper wires over the top of the board, but it’s probably better to run
them under the board where they’ll be out of the way. If you’re running the wires on the
top of the board, thread the wire through the board and bend the non-insulated end to
contact the jumpers from the SD card and the 74HC4050, and then solder them into
place. If you’re running them along the bottom of the board, lay them so that they
connect to the ends of the jumpers for the SD card and the level shifter, and then sol-
der them into place. Be sure to clip away any extra length of the jumper wire.

 Now run jumper wire between the headers connected to the I2C pins on the Ardu-
ino and the level shifter. Again, you can run them over the top of the board or along
the bottom.

 Now you have a shield that you can use with an SD card and that can be controlled
from the Arduino using simple components. If everything has been connected cor-
rectly you should be able to plug your new shield into the Arduino and run a test that
monitors a button. That’s what we’ll do next.

12.3.6 Testing the shield

Now that you have your shield assembled, it’s time to test it.
 For this example you’ll need the following:

■ An Arduino
■ Two buttons
■ Two resistors (5k ohms or similar)
■ An SD card shield (which you just made)

You’ll also need to download the SDFat library for the following example. This library
allows you to communicate with an SD card using a filesystem called FAT16, which is
what we’ll use to create files and store data on the SD card.

 In the next listing you’ll write code to store button presses on an SD card that
you’ve attached to the Arduino using your new shield. When the button is pressed it
should write the time of the button press to a text file. The advantage of using a text
file is that it can be opened on just about any computer or operating system.

#include <SdFat.h>

SdFat sd;
SdFile myFile;

const int chipSelect = 2;
const int READ_BUTTON = 3;
const int WRITE_BUTTON = 4;

void setup() {

 Serial.begin(57600);
 if (!sd.begin(chipSelect, SPI_HALF_SPEED)) //
 sd.initErrorHalt();

Listing 12.3 SDShieldWriter.pde

Start card
reading
Download from Wow! eBook <www.wowebook.com>

277Summary
 pinMode(READ_BUTTON, INPUT);
 pinMode(WRITE_BUTTON, INPUT);

}

void loop() {

 if(digitalRead(WRITE_BUTTON)) {
 if (!myFile.open("logger.txt", O_RDWR | O_CREAT | O_AT_END)) {
 sd.errorHalt("opening logger.txt for write failed");
 return;
 }
 myFile.print(" tapped the button at ");
 myFile.print(millis());
 myFile.print(" milliseconds since starting ");
 myFile.close(); //
 }

 if(digitalRead(READ_BUTTON)) {
 if (!myFile.open("logger.txt", O_READ)) {//
 sd.errorHalt("opening logger.txt for read failed");
 return;
 }

 int data;
 while ((data = myFile.read()) > 0) {
 Serial.write(data);
 }
 myFile.close();//
 }

}

The error checking in this code when opening the file is important to ensure that any
problems reading from or writing to the card and the filesystem don’t crash your pro-
gram. The calls to the SDFat library’s errorHalt() method ensure that the filesystem
on the card won’t be corrupted, and it returns the error message.

 You now have a way to store text data for access later on and to read it back. You
can even send it to a host computer using the serial port. If you’ve made it all the
way through this section of this chapter you’ve also built your own shield, a not-
inconsiderable accomplishment.

12.4 Summary
In this chapter you’ve learned what shields are, what they do, and the small position-
ing details that make them unique to the Arduino. You’ve also explored one of the
better-known shields available—the motor shield from Adafruit. You’ve seen how to
connect multiple motors and motor types to that shield and how to control them very
precisely. You also built a shield from scratch that allows you to connect an SD card to
the Arduino and store information. Finally, you learned how to use the SDFat library
to write files to and read files from an SD card with the Arduino.

Always close
the file

Check for
errors when
opening file

Always close
the file
Download from Wow! eBook <www.wowebook.com>

Software integration
The Arduino is a potent tool on its own, but it becomes all the more powerful
when you connect it to a full-featured computer, like a laptop or a desktop com-
puter. In fact, you do this whenever you connect the Arduino to your computer
with a USB cable to upload code from the Arduino IDE to your Arduino board.
The reason you take this step when you’re programming the Arduino is to take
advantage of the power of your desktop or laptop to compile your code and run
the Arduino IDE.

 You may be thinking of the other powerful things your desktop computer can
do that your Arduino can’t: computer vision, audio synthesis, network communica-
tions, and so on. But your computer is unmistakably a computer, and that’s the
advantage of the Arduino: it allows you to create a new interface to your computer
that doesn’t need to look or feel computer-like.

This chapter covers
■ Using serial ports to communicate with

applications
■ Connecting an Arduino board to a Processing

application
■ Connecting an Arduino board to a Python

application
278

Download from Wow! eBook <www.wowebook.com>

279The serial channel
 You can set up an Arduino and another computer to speak to one another using
serial communication, sometimes called RS232. You’ve seen it in action if you’ve used
the Serial.print() method to send messages from the Arduino to the Arduino IDE
for debugging. But the Arduino IDE isn’t the only device that can receive messages
from and send them to your Arduino. In this chapter, we’ll show you how your Ardu-
ino can communicate with several different programming platforms on a desktop
computer to make new interfaces between your computer and your Arduino.

13.1 The serial channel
You’ve already used the serial channel to send debugging messages to the Arduino
IDE using the Serial.print() method. Lots of devices other than the Arduino use
serial communication to communicate with a parent computer: Bluetooth-enabled
devices, GPS sensors, older printers and mice, barcode scanners, and, of course, the
Arduino board. As a communication protocol, it’s rather low-level and can be quite
simple or quite complex, depending on what you need from it.

 Connecting the Arduino to a computer with a USB cable announces to your com-
puter’s operating system that you’ve connected a serial device. When you install the
Arduino IDE, you also install several drivers that allow the Arduino to be recognized as
a device that communicates over a serial connection. Once your computer’s operating
system recognizes the Arduino any programming language can be set up to listen and
send data over the serial channel.

 The important thing to remember is that, as with the Arduino IDE, the program lis-
tening on your computer needs to be communicating at the same baud rate as your
Arduino. If your Arduino is using 9,600 the program on your computer needs to be set
the same way. Another element you need to consider is that the 9,600 may be acceptable
for some purposes, but for an application that requires faster communication between
your controllers and your computer you might want to use a faster baud rate.

 When the serial channel is set up at 9,600 bps 12 bytes of data takes about 1/100 sec.
to transfer. The fastest transfer rate currently is 115,200 bps, which means those same
12 bits take about 1/1000 sec., which works out to a rate of 1 kHz. This rate is some-
times unnecessary, but in extremely time-critical applications (tangible musical inter-
faces are a great example), that sort of speed can be important in creating greater
fidelity for the person using your application.

 Once your Arduino has broadcast your message you’ll need to receive it. Most
programming languages, and we do mean almost all of them, provide ways for you
to send and receive messages on the serial port of the machine they’re running on.
This means that anything your computer can do, you can network with your Ardu-
ino, and anything that your Arduino is capable of can be controlled or networked
with your computer.

 You can use several different strategies to set up serial communication between
your Arduino and a computer. In the next few sections we’ll outline some of the more
common strategies and look at some example code for each. First, we’ll use face tracking
Download from Wow! eBook <www.wowebook.com>

280 CHAPTER 13 Software integration
in Processing to control servomotors connected to an Arduino in order to ensure that
a detected face stays in the center of the frame.

13.2 Servos for face tracking
Processing is one of the most influential and oldest creative code projects. Originally
developed at MIT by Ben Fry and Casey Reas, it’s now maintained by a larger team. It’s
written in Java, so anyone familiar with Java will understand the platform instantly.
It’s also designed to be friendly to designers and artists who don’t have deep technical
backgrounds so that they can begin making visual or interactive projects. It’s open
source, free to download, and has versions for all the major platforms, so it’s easy to
get up to speed and easy to port your projects from computer to computer or even
onto the internet.

 We don’t want to dig too deeply into how Processing works in this chapter, but
you’ll notice a few similarities between projects in the Arduino IDE and almost all Pro-
cessing applications right away. For example, the Arduino setup() and loop() meth-
ods become setup() and draw() in Processing. The IDEs look more or less the same,
and the libraries are organized similarly. The two projects share a lot of history as well
as a design attitude that allows for exploration and quick prototyping.

SERIAL COMMUNICATION IN PROCESSING

Processing has a library that allows serial communication, and it’s called, unsurpris-
ingly, Serial. The following code lets you easily import this library into your project:

import processing.serial.*;

To create a serial connection you’ll want to create an instance of the Serial class:

Serial arduinoPort;

Next you need to set up the communication between the Arduino and the Processing
application. In the setup() method of your application, where your application is ini-
tialized, you initialize the Serial instance:

arduinoPort = new Serial(this, "", 9600);

The constructor for the Serial class looks like this:

Serial(this, port, rate)

Let’s break this down further:

■ this—The application that will run the Serial instance
■ port—The name of the serial device that represents the connected Arduino
■ rate—The baud rate that the communication will use

If you don’t know the name of the port off the top of your head you can call
Serial.list(). It’ll return an array of the names of all devices attached to the serial
ports of the computer as Strings which will allow you to easily do something like
the following:

arduinoPort = new Serial(this, Serial.list()[0], 9600);
Download from Wow! eBook <www.wowebook.com>

281Servos for face tracking
This selects the first String representing the name of a serial device. For instance, you
might want to use the third serial device, so you’d pass the third item from the result
of Serial.list() as the second argument to the Serial constructor:

arduinoPort = new Serial(this, Serial.list()[2], 9600);

To send a message to the serial port call the following method:

arduinoPort.write();

To read data from a serial port, you check whether there’s any data available in the
serial buffer and read from it until none is left. This works because each call to read()
pulls the byte out of the buffer so that it’s only read once. The buffer shrinks as you
read each byte:

while(Serial.available() > 0) {
 print(arduinoPort.read());
}

Now that you’ve seen how a Processing application can interact with an Arduino
you’re ready to look at a project that leverages both of these tools.

13.2.1 Assembling the face-tracking hardware

One of the things that Processing makes easy and painless is interfacing with periph-
eral devices, such as a camera. Reading data from a webcam attached to your com-
puter can be a hassle in C++ or other programming languages, but in Processing it’s a
breeze. The same goes for doing complex computer vision tasks like detecting faces.
You might be getting some idea of where this is going: in this example we’re going to
build a simple face tracker using Processing and an Arduino.

 For this project you’ll need the following:

■ Two servo motors
■ A pan and tilt kit for the servos, or materials to make your own
■ A breadboard and jump wires
■ An Arduino
■ A desktop or laptop computer with Processing installed on it
■ A USB webcam

Let’s assemble and wire the structure that the Arduino will use to position the webcam
at the center of the detected face. The basic idea is that one servomotor should con-
trol the x rotation of the servo and the other should control the y rotation of the ser-
vomotor. There are kits that allow you to do this quickly, such as the Lynx Pan and Tilt
kit shown in figure 13.1.

 If you don’t want to get a Lynx you can easily create a simple mount for your servo-
motor out of acrylic, metal, or even light wood, and then attach it to the servo disk
with hot glue or screws. As long as the x-axis servo is facing upright and the y-axis
servo is facing sideways you’ll have full 180-degree rotation across a hemisphere. The
trick then becomes attaching the camera atop the servo that’s providing the y-axis
Download from Wow! eBook <www.wowebook.com>

282 CHAPTER 13 Software integration
rotation. As long as your camera is light enough any mount that provides a 90-degree
angle should work. Once you have the camera in place you’re ready to position the
image with signals from the Processing application.

 To ensure that your camera will properly track faces, make sure that the tilt motor
(y-axis) is mounted at the 90-degree position of the pan motor (x-axis) and that the
camera is mounted at the 90-degree position of the tilt motor. This way, the middle
point of your combined servo motors will correspond to what the Processing applica-
tion is sending. Figure 13.2 shows how to connect the two servos to the Arduino
board. The camera will be connected directly to the computer that is running your
Processing sketch.

13.2.2 Code for face-tracking

This example uses OpenCV, the most comprehensive and powerful open source com-
puter vision library available. The OpenCV library for Processing was built by Douglas
Edric Stanley and Stephane Cousot by compiling the original C++ code and then cre-
ating a Java library that can link to the Processing frameworks. This means that you
can use the OpenCV library without needing to compile all the C++ code that com-
prises it, but it also means that the install process for this library is a little more
involved than usual.

 You can find the OpenCV libraries and instructions for installation at ubaa.net/
shared/processing/opencv/, but here they are summarized briefly:

1 Download the files for your OS.
2 Run the installer.
3 Move the library to the libraries folder of your Processing home folder.

You should now be ready to start working with the OpenCV libraries.

Figure 13.1 The Lynx Pan and
Tilt kit
Download from Wow! eBook <www.wowebook.com>

http://ubaa.net/
shared/processing/opencv/
http://ubaa.net/
shared/processing/opencv/

283Servos for face tracking
Now let’s look at the Arduino code in listing 13.1. The general idea is that the Process-
ing application will send the coordinates for the center of the detected face to the
Arduino. These are sent as normalized screen coordinates, which means it uses num-
bers from 0 to 1.0. The Arduino then smoothly moves the two servos toward that cen-
ter. Because the camera is mounted on the servos, you don’t have to worry about
centering the image in the Arduino, only moving them to the location sent from the
Processing application.

#define DSERVO_TWO_X_PIN 10
#define DSERVO_TWO_Y_PIN 11

#include <Servo.h>

const float ratio = 0.7058;
Servo vert;
Servo horz;
byte target[2];
byte current[2];

Listing 13.1 Face tracking using OpenCV in Arduino

pulse

Servo
1

2

3

+

-

pulse

Servo
1

2

3

+

-

Vin

Power

3V3 5V

RST

AREF

Arduino

Arduino1

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

J2

J1

Fritzing.orgMade with

Figure 13.2 Connecting the servomotors to the Arduino

Value 180/255 used
to change unsigned
char into degrees.
Download from Wow! eBook <www.wowebook.com>

284 CHAPTER 13 Software integration
void setup() {
 horz.attach(DSERVO_TWO_X_PIN);
 vert.attach(DSERVO_TWO_Y_PIN);

 memset(target, 0.5, 2);
 memset(current, 122, 2);

 Serial.begin(9600);

}

void loop() {
 if(Serial.available() > 1) {
 target[0] = Serial.read();
 target[1] = Serial.read();
 }

 if(abs(target[0] - current[0]) > 1) {
 horz.write(lerp(0.5, current[0], target[0]) * ratio);
 current[0] = target[0];
 }

 if(abs(target[1] - current[1]) > 1) {
 vert.write(lerp(0.5, current[1], target[1]) * ratio);
 current[0] = target[1];

 }
}

byte lerp(float t, byte a, byte b)
{
 return a + t * (b - a);
}

On the Processing side, there may be some strange new things in the code that you
haven’t seen before, and you don’t need to understand all of it to use the face-detection
functionality in OpenCV. The overview is that OpenCV can read in XML files that
describe the characteristics of certain kinds of shapes: a car, a person, or a face. The
data structure described in that XML file is called a Haar Cascade. By loading that XML
file a data structure is created that the OpenCV library can compare each incoming
frame against. If the information in the frame is a close-enough match to the XML
description file, the library reports the location of the detected shape.

 In this example we’ll be using a prepared XML file that describes faces. This comes
with the Processing OpenCV library, so you don’t need to prepare anything extra; just add
the path to it, stored in the OpenCV library as OpenCV.CASCADE_FRONTALFACE_ALT,
and go.

 The general flow of the Processing application is as follows:

1 Start the camera.
2 Read in the Haar Cascade XML file.
3 Start reading in each frame from the camera.
4 Convert the frame to grayscale to save on memory.
5 Check for matches against the face Haar Cascade pattern.
6 If a match is found send the Arduino the screen-normalized location of the face.

If we’ve got new
positions, store them.

If the x position
needs to be
updated, lerp
to it.

If the y position
needs to be
updated, lerp to it.
Download from Wow! eBook <www.wowebook.com>

285Servos for face tracking
It sounds complex, but as you can see in the following listing the Processing code isn’t
remarkably long for how powerful it is.

import hypermedia.video.*;
import java.awt.Rectangle;
import processing.serial.*;

OpenCV opencv;
Serial arduinoPort;

int contrast_value = 0;
int brightness_value = 0;

void setup() {

 size(320, 240);
 opencv = new OpenCV(this);
 opencv.capture(width, height);
 opencv.cascade(OpenCV.CASCADE_FRONTALFACE_ALT);
 arduinoPort = new Serial(this, Serial.list()[0], 9600);

}

public void stop() {
 opencv.stop();
 super.stop();
}

void draw() {

 opencv.read();
 opencv.convert(GRAY);
 opencv.contrast(contrast_value);
 opencv.brightness(brightness_value);

 Rectangle[] faces =
 opencv.detect(1.2, 2, OpenCV.HAAR_DO_CANNY_PRUNING, 40, 40);

 image(opencv.image(), 0, 0);
 boolean foundFace = true;

 Rectangle bestFace = new Rectangle();
 if(faces.length > 1) {
 for(int i = 0; i < faces.length; i++) {
 if((faces[i].height * faces[i].width) >
 (bestFace.height * bestFace.width)) {
 bestFace = faces[i];
 }
 }
 } else if(faces.length > 0) {
 bestFace = faces[0];
 } else {
 foundFace = false;
 }

 if(foundFace)
 {
 noFill();

Listing 13.2 Face tracking in Processing

Load detection description from
“haarcascade_frontalface_alt.xml”

Grab a new frame
and convert to gray

Find the
largest face
Download from Wow! eBook <www.wowebook.com>

286 CHAPTER 13 Software integration
 stroke(255,0,0);
 for(int i=0; i<faces.length; i++) {
 rect(bestFace.x, bestFace.y,
 bestFace.width, bestFace.height);
 }

 arduinoPort.write(255*(bestFace.x –
 (bestFace.width/2)) / width);
 arduinoPort.write(255*(bestFace.y –
 (bestFace.height/2)) / height);
 }

}

void mouseDragged() {
 contrast_value = (int) map(mouseX, 0, width, -128, 128);
 brightness_value = (int) map(mouseY, 0, width, -128, 128);
}

Now you have a somewhat sophisticated face-tracking system that responds to its envi-
ronment and adjusts accordingly. This is only the beginning of the fun that you can
have with paired servomotors and Processing. If you look around online you’ll find
everything from pet toys, to home-security implementations, to practical jokes that use
the same system.

13.3 Using Firmata to create an equalizer
One thing that Processing does easily that the Arduino doesn’t is audio analysis. The
processor on the Arduino is just not powerful enough to analyze and extract informa-
tion about audio data as it plays, but your computer is. In this example we’ll create an
extremely simple equalizer display using Processing and the Arduino, running Fir-
mata to send an analysis of the audio currently playing from an MP3 file. It’s simple
but it’s fun, and it shows the basics of working with Firmata as well.

 Firmata is a project initiated by Hans-Christoph Steiner that acts almost as a
stripped-down operating system for the Arduino, driven completely by serial commu-
nication. You load Firmata onto your Arduino, and then from another programming
language you can check the values of pins, perform complex communication with
components, and set the values of pins without needing to update your Arduino code
at all. You can use Firmata in Processing, openFrameworks, Cinder, Python, Ruby, Pd,
and several other programming platforms.

13.3.1 Using Firmata in your application

First we’ll go over the simple part so you can see how similar using Firmata in Process-
ing is to programming the Arduino.

 If you load Firmata onto your Arduino and then want to set digital pin 12 to HIGH
from a Processing application, you’d simply create an instance of the Arduino class
(in this case named arduino) and then call the digitalWrite() method:

arduino.digitalWrite(12, Arduino.HIGH);

Draw face
area(s)

Send
coordinates to
the Arduino
Download from Wow! eBook <www.wowebook.com>

287Using Firmata to create an equalizer
To read values you simply use the methods analogRead() or digitalRead(), passing
the appropriate pin numbers as parameters.

 These methods are properties of the Arduino instance that you create, so the
method calls are always going to look like the following:

int an1Value = arduino.analogRead(1);

or:

int dg13Value = arduino.digitalRead(13);

Firmata requires that you set the digital pins that you want to use to be output or input
pins. This is similar to what you do when you write a sketch for the Arduino using the
Arduino IDE, except that, again, you’re calling the methods on the Arduino object
in Processing.

 Now we’re getting to the slightly harder part: how do you make an Arduino object
that your Processing application can use to do all this stuff on the Arduino? The trick
is to construct an instance of the Arduino class and pass in all the appropriate data
when the object is created. Here’s the constructor:

Arduino(parent, name, rate)

In this constructor parent is always the Processing application that’s going to use the
Arduino instance. name is the serial device that you want to connect to, and it’s some-
thing like COM1 on Windows or /dev/tty.usbmodem411 on OS X or Linux. Finally,
rate is the baud rate that you want to communicate with the Arduino at. By default
the Firmata library is set up to use the fastest baud rate available, 115,200, so unless
you’ve changed that in the Firmata library you’ll want to use the default.

 A complete constructor call will look something like this:

Arduino arduino = new Arduino(this, "/dev/tty.usbmodem411", 115200);

You’ll typically want to do this in the setup() method of your Processing application,
or in the initialization of whatever other application you’re using. Once you’ve cre-
ated an instance of the Arduino you can begin sending and receiving information
from the Arduino itself.

 Firmata also allows you to read and write over the I2C protocol, as well as control
servomotors and query the state of all the digital pins on the Arduino. While it’s some-
what limited at this time (SPI or pulseIn/pulseOut aren’t currently supported), Fir-
mata does allow you to control your Arduino from a host computer with a minimum
of configuration and a great deal of control.

13.3.2 Audio analysis in Processing

First let’s look at the audio analysis we’re going to do. When you want to figure out
how loud different frequency ranges in audio data are, most commonly you’ll use
what’s called a fast Fourier transform (FFT). This is a technique that maps the raw
Download from Wow! eBook <www.wowebook.com>

288 CHAPTER 13 Software integration
numbers of audio data to the audible frequency spectrum and provides that data in an
array representing the volumes in a given range of frequencies. Anyone who’s ever
seen an equalizer will have an intuitive sense of what this looks like. The spectrum
does not represent individual frequencies, but frequency bands centered on particu-
lar frequencies.

 To do this FFT in Processing we’ll use Minim, an audio library that uses the
Java Sound API, a bit of Tritonus, and JavaZOOM’s MP3SPI. This audio library is
easy for people developing in the Processing environment to use. The underlying
philosophy of Minim is to make integrating audio into a Processing application
as simple as possible while still providing computational power to do real-time
audio processing.

 Minim comes installed with Processing so you don’t need to do anything to start
using it, other than to add the import statement to the top of your application.

13.3.3 Assembling the equalizer hardware

This example will not have any Arduino code, because you’ll be loading the Firmata
library onto the Arduino and then allowing that to handle all the communication with
the Processing application. But you’ll need a few simple hardware components:

■ Five LEDs
■ Five 4.7k resistors
■ An Arduino
■ A computer with Processing installed

Figure 13.3 shows how to connect the LEDs and resistors to the Arduino to create
the equalizer.

 This application is simple on the Arduino side: the data from the processed audio
file is used to illuminate five LEDs that are attached to the PWM pins of the Arduino.
You’ll want to attach resistors to those LEDs to ensure that they don’t burn out, but
nothing else is required to see your song.

13.3.4 Code for the equalizer

You probably have Firmata already included with your Arduino IDE distribution
because it’s been an included library since Arduino 0012. You should only need to
load the StandardFirmata program from Examples > Firmata onto your Arduino (see
figure 13.4).

 As we mentioned earlier, the Processing library that this example uses to analyze
the audio is called Minim, and it comes standard with the Processing library. You just
need to import the library into the program using the import statement. A library for
Firmata, called Arduino, also comes standard with Processing and is imported with
the following statement:

import cc.arduino.*;
Download from Wow! eBook <www.wowebook.com>

289Using Firmata to create an equalizer
This Processing program (see listing 13.3) loads an MP3 file generically called song.mp3
and begins playing it in a loop. (You’ll need to name an MP3 file “song.mp3” and add
it to the folder for your Processing sketch.) The program then creates an FFT object
that can break the audio data from the song into frequency bins.

 In the loop() of the application, the FFT forward() method is passed the mixed
data from the audio file’s left and right channels. The resulting array is then grouped
into five frequency ranges—one for each LED that you have attached to the Ardu-
ino—and it’s then sent to Firmata on the Arduino using the analogWrite() method.
This calls the analogWrite() method within the Arduino and brightens or dims the
LEDs depending on the strength of the averaged values for the chunk of the fre-
quency spectrum.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
n
a
lo

g
 In

p
u
t

D11

D10

D9

D8

D7

D6

D5

D4

D3
PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

it
a
l
In

p
u
t/

O
u
tp

u
t

Power

Arduino

GND

LED1

LED2

LED3

LED4

LED5

R1

R5

R3

R4

R2

Arduino1

Figure 13.3 Connecting the LEDs to create your Arduino equalizer
Download from Wow! eBook <www.wowebook.com>

290 CHAPTER 13 Software integration
import processing.serial.*;
import cc.arduino.*;

import ddf.minim.analysis.*;
import ddf.minim.*;

static final int FIRST_LED = 3;
static final int SECOND_LED = 5;
static final int THIRD_LED = 6;
static final int FOURTH_LED = 10;
static final int FIFTH_LED = 11;

float bins[];

Arduino arduino;

FFT fft;
Minim minim;
AudioPlayer player;

void setup()
{
 size(300, 300);

 arduino = new Arduino(this, Arduino.list()[0], 57600);

 minim = new Minim(this);

Listing 13.3 Using Firmata in Processing

Figure 13.4 Selecting the StandardFirmata program
Download from Wow! eBook <www.wowebook.com>

291Using Firmata to create an equalizer
 player = minim.loadFile("song.mp3");
 player.loop();

 fft = new FFT(player.bufferSize(), player.sampleRate());

 bins = new float[5];

}

void draw()
{

 background(0);

 fft.forward(player.mix);

 int bands = fft.specSize() / 5;

 for (int i = 0; i < 5; i++) {
 bins[i] = 0;
 for(int j = 0; j < bands; j++) {

 bins[i] += fft.getBand((i * bands) + j);

 }
 bins[i] /= bands;
 rect(i * 20, 0, 20, bins[i]);
 }

 arduino.analogWrite(FIRST_LED,
 (int) map(bins[0], 0, 10, 0, 255));
 arduino.analogWrite(SECOND_LED,
 (int) map(bins[1], 0, 10, 0, 255));
 arduino.analogWrite(THIRD_LED,
 (int) map(bins[2], 0, 10, 0, 255));
 arduino.analogWrite(FOURTH_LED,
 (int) map(bins[3], 0, 10, 0, 255));
 arduino.analogWrite(FIFTH_LED,
 (int) map(bins[4], 0, 10, 0, 255));

}

void stop()
{
 player.close();
 minim.stop();
 super.stop();
}

That’s only the beginning of what Firmata can do. It allows you to easily control an
Arduino and keep your control code in the application running on your computer,
rather than needing to update your code on the Arduino every time you make a
change to your program. For rapid prototyping this is a real advantage, because you
can concentrate on your computer program and let your Arduino act like an input or
output device. To learn more about Processing I highly recommend Processing: A Pro-
gramming Handbook for Visual Designers and Artists by Ben Fry and Casey Reas (MIT
Press, 2007), or Processing for Visual Artists by Andrew Glassner (A.K. Peters, 2010).

Create FFT
object to
read MP3 file.

Sum a section of
values into a bin.

Map each bin
and set the LED
brightness.
Download from Wow! eBook <www.wowebook.com>

292 CHAPTER 13 Software integration
13.4 Using Pure Data to create a synthesizer
Pure Data, often referred to as Pd, is a graphical programming environment intended
primarily for creating real-time audio and video applications. It’s called “real-time”
because you can edit your programs as they’re running without needing to stop and
recompile them as you would need to with Processing or with an Arduino board. Sim-
ply making changes in the IDE updates your program as it’s running. Pd is completely
free software, and there are versions for Windows, Linux, and OS X, as well as other
less-common operating systems.

 Because Pd is a graphical, patch-based environment rather than a text-based pro-
gramming environment, completed code looks different than Arduino code. For
instance, figure 13.5 shows a program or “patch” that creates the classic additive synth
sound. Figure 13.5 shows what subtractive synth looks like in Pd.

 Luckily, though, you can paste a patch in text format into the editor and have the
editor turn it into the graphical patch layout in figure 13.5.

 To bring input from a serial device into your Pd patch, you create an object called a
comport, which is short for “communication port.” Figure 13.6 shows what it looks like.

The 9600 is a parameter passed to the comport, and it sets the
baud rate that the patch will be listening at. If you want to use
this to read from or write to your Arduino it should match the
baud rate that your Arduino is sending or reading at.

 There’s another object that you need to get access to the
serial ports on your computer, though: the devices object. Fig-
ure 13.7 shows the devices object connected to the comport.

 Clicking on the devices object in your PD sketch shows you
all of the serial devices that are attached to the computer that Pd
can read in. Now it’s time to put the power of Pd to work by gen-
erating audio in response to tangible input.

Figure 13.5 A Pd patch

Figure 13.6 The comport object

Figure 13.7
Connecting the
comport to the
devices object
Download from Wow! eBook <www.wowebook.com>

293Using Pure Data to create a synthesizer
13.4.1 Assembling the synthesizer hardware
The example you’ll explore in this section demonstrates one of the most powerful fea-
tures of Pd: the ability to easily generate and combine multiple sounds at once with
extremely fine-grained control. One of the challenges of making sounds using com-
puters is creating expressive and intuitive interfaces so that people can have both
fine-grained control and quick reaction times. A quick survey of some of the favored
controls for musical instruments would put the potentiometer somewhere near the
top of the list, so in this example we’ll use five potentiometers to control four oscillat-
ing sine waves. There are much more complex and expressive things you can do with
Pd, but this is a good introduction not only to how communication between an Ardu-
ino and Pd works, but to some of the components of Pd as well.

 For this example, you’ll need the following:

■ Four potentiometers
■ A breadboard
■ An Arduino
■ A computer with Pd installed

The wiring schematic in figure 13.8 should be quite straightforward.

Vin

Power

3V3 5V

RST

AREF

Arduino

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n

a
lo

g
 In

p
u

t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

IO REF

N/C

SCL

SDA

Fritzing.orgMade with

Arduino1

R1

100kΩ

R3

100kΩ

R2

100kΩ

R4

100kΩ

Figure 13.8 Connecting potentiometers for the mixer
Download from Wow! eBook <www.wowebook.com>

294 CHAPTER 13 Software integration
13.4.2 Code for the synthesizer

The Pd code is a little strange to look at the first
time. You won’t see any function declarations,
variable types, or curly brackets. But you do have
objects, they still have properties, and there is a
flow of logic you can follow.

 The first thing to realize about Pd is that
everything is a flow of data from one compo-
nent to the next. In our case, the data comes
from the Arduino, and it’s passed to a parser,
then to four oscillators, and finally to the sound
card. In the Pd IDE the program looks like fig-
ure 13.9.

 As text, the program looks like what you see
in the following listing.

#N canvas 892 52 463 519 10;
#X obj 110 92 comport 0 115200;
#X msg 174 65 close;
#N canvas 194 45 687 494 parse 0;
#X obj 140 122 select 13 10;
#X obj 142 186 repack 22;
#X obj 137 32 inlet;
#X obj 97 390 outlet;
#X obj 142 219 route 48 49 50 51;
#X text 207 47 Comport spits out ASCII strings: potPin id \, val \, carriage

return \, newline.;
#X text 230 119 strip off return and bang on each newline;
#X text 211 184 repack;
#X text 266 219 route by ID;
#X text 503 296 ASCII to float;
#X obj 213 298 string2any 16;
#X obj 96 299 string2any 16;
#X obj 310 297 string2any 16;
#X obj 405 297 string2any 16;
#X obj 405 389 outlet;
#X obj 310 389 outlet;
#X obj 213 390 outlet;
#X connect 0 0 1 0;
#X connect 0 2 1 0;
#X connect 1 0 4 0;
#X connect 2 0 0 0;
#X connect 4 0 10 0;
#X connect 4 1 11 0;
#X connect 4 2 12 0;
#X connect 4 3 13 0;
#X connect 10 0 16 0;

Listing 13.4 Pd application as text (AIA13_4.pd)

Figure 13.9 The Pd patch in the Pd IDE
Download from Wow! eBook <www.wowebook.com>

295Using Pure Data to create a synthesizer
#X connect 11 0 3 0;
#X connect 12 0 15 0;
#X connect 13 0 14 0;
#X restore 110 135 pd parse;
#X text 78 16 Your port here;
#X msg 83 64 open \$1;
#X obj 80 40 hradio 15 1 0 8 empty empty empty 0 -8 0 10 -262144 -1
-1 1;
#X obj 118 319 dac~;
#X obj 112 188 osc~;
#X obj 36 188 osc~;
#X obj 190 188 osc~;
#X obj 264 188 osc~;
#X obj 115 266 *~ 0.25;
#X connect 0 0 2 0;
#X connect 1 0 0 0;
#X connect 2 0 8 0;
#X connect 2 1 7 0;
#X connect 2 2 9 0;
#X connect 2 3 10 0;
#X connect 4 0 0 0;
#X connect 5 0 4 0;
#X connect 7 0 11 0;
#X connect 8 0 11 0;
#X connect 9 0 11 0;
#X connect 10 0 11 0;
#X connect 11 0 6 0;
#X connect 11 0 6 1;

On the Arduino side we’ll attach four potentiometers to control each of the oscilla-
tors on the Pd side, and then we’ll read the values from each of them, as shown in the
next listing.

float val1,val2,val3,val4;

int potPin1 = 0;
int potPin2 = 1;
int potPin3 = 3;
int potPin4 = 4;

void setup()
{

 Serial.begin(115200);
}

void loop()
{

 val1 = analogRead(potPin1);
 Serial.print(potPin1);
 Serial.println(map(val1, 0, 1024, 200, 1000),DEC);

 val2 = analogRead(potPin2);
 Serial.print(potPin2);
 Serial.println(map(val2, 0, 1024, 200, 1000),DEC);

Listing 13.5 Application to communicate with Pd
Download from Wow! eBook <www.wowebook.com>

296 CHAPTER 13 Software integration
 val3 = analogRead(potPin3);
 Serial.print(potPin3);
 Serial.println(map(val3, 0, 1024, 200, 1000),DEC);

 val4 = analogRead(potPin4);
 Serial.print(potPin4);
 Serial.println(map(val4, 0, 1024, 200, 1000), DEC);

}

There’s not much to the Arduino side, but combined with the Pd application it allows
you to create a rich range of sounds that can be closely tuned by the Arduino. Note that
the data sent over the serial port is mapped between 200 and 1000, which ensures
that the frequency of the sine wave is a little more palatable.

 Using the Arduino with Pd is powerful because it allows musicians and DJs to cre-
ate their own tangible interfaces to Pd and to their music. This means that you can
not only recreate interfaces that you may be familiar with, but also experiment with
new ways of physically inputting data and creating music.

 To learn more about Pd I recommend that you look at the Pd tutorial site at
www.pd-tutorial.com.

13.5 Using Python to monitor temperatures
Python is one of the most popular programming languages—it’s flexible, powerful,
and accessible. It has a remarkable number of libraries for doing everything from
game development to applied mathematics to website development. It’s been under
constant development since 2001 and has steadily grown in popularity and capability
over the years.

 The example we’ll explore in this section revolves around a simple idea: what is
the temperature in discrete parts of a home at any given time? You could walk around
with a thermometer and figure this out, but it might be more fun and more practical
to place several thermometers around the house and send the temperature data as
email messages to your own email account. This example has the Arduino sleep until
it’s time to wake up (to save on power or battery), and upon waking, send a message to
the Python program. Once the Python application has received a message it parses it
by room and then emails it off.

 One thing to note is that this example assumes for the sake of brevity that you’re
connecting to an external SMTP server. You can get an SMTP server running on your
computer fairly easily, but the steps to do so are a little beyond the scope of this book,
so we’ll leave it as an exercise for you to complete. Try searching around for “postfix”
if you’re on OS X or Linux, or “enable smtp iis 7” if you’re on Windows.

13.5.1 The Serial library in Python

The Python library for serial communication is called pySerial, and you may need to
explicitly install it on your computer before beginning to work with serial communica-
tion in a Python application. The library, along with installation instructions for your
operating system, can be found at http://pyserial.sourceforge.net.
Download from Wow! eBook <www.wowebook.com>

www.pd-tutorial.com
http://pyserial.sourceforge.net

297Using Python to monitor temperatures
 Once you’ve installed the library you can load it into your program by putting the
following line at the beginning of your program:

import serial

Now it’s a matter of creating a serial instance:

arduino = serial.Serial(
 port='/dev/ttyUSB1',
 baudrate=9600,
)

If you’re familiar with Python, the preceding line should look quite familiar. If you’re
not, you might be wondering where the declaration of the Arduino variable is hidden.
The answer is that there isn’t one. In Python you don’t need to give variables a type
before starting to work with them, so the preceding line works fine.

 Once you’ve made a Serial instance, given it a port to communicate on and a
baud rate, and stored it in the arduino variable, the arduino variable is now an
instance of Serial. This is the long way of saying that a variable is only typed after it
has been constructed, not before. That might seem a bit bizarre, but it’s actually one
of the key affordances of Python. If you’re interested in learning more about Python
and how it works check out http://python.org/. Now we’ll discuss more about how to
interface Python and the Arduino.

 To start the serial communication you issue the following call:

arduino.open()

Note that this call to open() isn’t necessary if you haven’t closed the connection or
reconnected a device.

 To read from the serial port call read():

message = arduino.read(1)

The read() method takes an integer that dictates how many bytes you want to read
from the serial port. The preceding example reads 1 byte.

 You might wonder how you can read everything that’s in the serial channel.
There’s a handy method to determine whether the Arduino has sent anything to the
serial port: inWaiting(). To get all the data in the serial port, do something like
the following:

while arduino.inWaiting() > 0:
 message = arduino.read(1)
print message

That’s all there is to it. To send a message to the Arduino over the serial channel use
write():

arduino.write('x')

Clearing the serial buffer is as easy as calling flush():

arduino.flush()
Download from Wow! eBook <www.wowebook.com>

http://python.org/

298 CHAPTER 13 Software integration
When you’re all done with the serial communication simply call close():

arduino.close()

This should all seem a bit familiar from the previous examples; most programming
languages implement serial communication in more or less the same way. Now it’s
time for an example.

13.5.2 Assembling the thermometer hardware

For this example you’ll need the following:

■ Three Texas Instruments LM35 thermometers
■ An Arduino
■ A computer with Python installed

The temperature sensor we prefer to use is the LM35; you can find more informa-
tion about it via the manufacturer’s site: www.ti.com/lit/ds/symlink/lm35.pdf. It
primarily comes in two packages: an 8-pin DIP package and a 3-pin upright plastic
package. The 3-pin version has a V+ pin, a GND pin, and a pin that returns the
detected temperature as a linearized analog value. The 8-pin package has the same
active pins with five no-connect pins, but connecting it is the same. The connections
are shown in figure 13.10.

Vin

Power

3V3 5V

RST

AREF

Arduino

Arduino1

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

GND

A0

A1

A2

A3

A4

A5

A
n
a
lo

g
 In

p
u
t

D
ig

it
a
l
In

p
u
t/
O

u
tp

u
t

PWM

PWM

PWM

PWM

PWM

PWM

TX

RX

IO REF

N/C

SCL

SDA

Fritzing.orgMade with

+Vs

LM

35
GND

Vout

+Vs

LM

35
GND

Vout

+Vs

LM

35
GND

Vout

T1

T2

T3

Figure 13.10 Connecting the temperature sensors to the Arduino
Download from Wow! eBook <www.wowebook.com>

www.ti.com/lit/ds/symlink/lm35.pdf

299Using Python to monitor temperatures
13.5.3 Code for monitoring temperatures

The Arduino code contains no big surprises, though you do need to convert the volt-
age returned from the analogIn() method to correctly get the temperature in Cel-
sius. That’s done in the convertToCelsius() method at the end of the following
listing. (To convert to Fahrenheit, simply add 32 and multiply by 1.8.)

const int LIVING_ROOM = 1;
const int BEDROOM = 2;
const int KITCHEN = 3;

void setup()
{
 Serial.begin(57600);
}

void loop()
{
 if(Serial.available() > 0)
 {
 Serial.print(LIVING_ROOM);
 Serial.print(',');
 Serial.print(convertToCelsius (LIVING_ROOM));
 Serial.print(';');
 Serial.print(BEDROOM);
 Serial.print(',');
 Serial.print(convertToCelsius (BEDROOM));
 Serial.print(';');
 Serial.print(KITCHEN);
 Serial.print(',');
 Serial.print(convertToCelsius (KITCHEN));
 Serial.print(';');
 }
}

int convertToCelsius(int pin)
{
 return (5.0 * analogRead(pin) * 100.0)/1024.0;
}

The Python application sleeps for 15 minutes and then sends a message to tell the
Arduino to query its LM35 sensors and return their values (see the following listing).
Once all of the data is read in from the Arduino, an email detailing the detected tem-
peratures is sent to the user’s address using the user’s mail server to connect to the
SMTP server.

import smtplib
import time
import serial

SERVER = "smtp.somemail.com:587"

Listing 13.6 Arduino application to send temperature data to Python

Listing 13.7 Python application to receive temperature data
Download from Wow! eBook <www.wowebook.com>

300 CHAPTER 13 Software integration
FROM = "house@somemail.com"
TO = ["you@somemail.com "] # must be a list

rooms = ["living room", "bedroom", "kitchen"]

def sendMessage(room, value):

 SUBJECT = "Hello! The temperature in the " +
 rooms[room] + " is" + value

 TEXT = "Just thought you might like to know :)"

 message = " From: %s To: %s Subject: %s %s "
 message = message % (FROM, ", ".join(TO), SUBJECT, TEXT)

 # Send the mail

 server = smtplib.SMTP(SERVER)
 server.starttls()
 server.login("house@somemail.com", "password")
 server.sendmail(FROM, TO, message)
 server.quit()

def readArduino():
 room = ''
 temp = ''
 arduino.write("check")
 time.sleep(0.1)
 datastring = ''
 while arduino.inWaiting() > 1:
 datastring += arduino.read(1)

 splitArr = datastring.split(';')
 i = 0
 while(i < len(splitArr)):
 room = splitArr[i].split(',')[0]
 temp = splitArr[i].split(',')[1]
 sendMessage(room, temp)
 i+=1

here's the actual connection to the Arduino
arduino = serial.Serial(
 port='/dev/tty.usbmodem12341',
 baudrate=57600,
)

arduino.open()

while(true):
 time.sleep(9000)
 readArduino()

In reality you’d probably want to log this data to a service like Cosm or Twitter, but for
simplicity in this example we used email. Again, this example is only a start—the
advantages and strengths of Python are many. Connecting your Arduino to Python
allows you to do more with your Arduino and with Python, and it’s great fun as well.
To learn more about Python I recommend Zed Shaw’s Learn Python the Hard Way,
available at learnpythonthehardway.org.

Login to the
server to send
the message

Send the message,
then stop server

Sleep for 15 minutes, then
read the temperature and
send an email
Download from Wow! eBook <www.wowebook.com>

301Summary
13.6 Summary
Integrating your Arduino with software allows you to easily create physical input and
feedback for an application running on a larger computer, like a desktop or a laptop
computer. This means you can extend the functionality of an application into tangible
and physical interaction easily, as well as vastly extending the capacity of the Arduino
to perform image or audio processing, networked communication, or graphics.
Download from Wow! eBook <www.wowebook.com>

appendix A
Installing

the Arduino IDE

This appendix details how to install the Arduino IDE on the Windows, Mac OS X,
and Linux platforms. The Arduino IDE for all platforms is available from the Ardu-
ino website (http://arduino.cc/en/Main/Software). Download the IDE package
for your platform and continue with the appropriate installation section for your
operating system.

A.1 Windows
Arduino for Windows comes packaged as a zip file, so once it’s downloaded you
must first extract its contents. Browse to where you downloaded the file (typically
your User/Downloads folder) and double-click the zip file. As shown in figure A.1,
extract or drag the containing folder to somewhere accessible on your hard drive,
such as C:\Program Files.

A.1.1 Installing drivers for your board

Now that you have the Arduino package copied to your computer, you’re ready to
install the drivers for your board. Follow the instructions in the appropriate subsec-
tion for the board and version of Windows that you’re using.

DRIVER INSTALLATION FOR THE ARDUINO UNO

To begin the driver installation process, connect your Arduino Uno to the com-
puter using a USB cable. The Uno board is USB-powered, so the green ON LED will
light up. Once connected, Windows will attempt to install the board’s drivers, but it
will fail. This is OK!

 In the Windows Start menu, select Control Panel > System and Security > System
> Device Manager. Next, click and expand Ports (COM & LPT). Your Uno should
302

Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/en/Main/Software

303Windows
appear in the list as Arduino UNO (COMxx). If Ports (COM & LPT) does not appear in
the Device Manager, or your Arduino isn’t in the list, your Uno may be recognized as
an unknown device. If this is the case, expand the Other Devices menu and your
Arduino should appear in the list as an unknown device.

 Right-click the Arduino UNO (COMxx) or Unknown Device item and select
Update Driver. If you are on Windows XP, the Hardware Update wizard will ask, Can
Windows Connect to Windows Update to Search for Software? Select the radio button
that says No, Not at This Time, and click Next to continue.

 Next, you need to manually instruct the driver installer where your Uno driver file
is located. On Windows XP, the wizard should now ask, What Do You Want the Wizard
to Do? Select the radio button that says Install From a List or Specified Location
(Advanced). On Windows 7, simply select the list item that says Browse My Computer
for Driver Software (Locate and Install Driver Software Manually).

 Now, on Windows XP, make sure the radio buttons that say Search for the Best Driver
in These Locations and Include This Location in the Search are both clicked. Finally,
click the Browse button to set your driver path to the Arduino folder you previously
extracted, and then to the folder named Drivers. Similarly for Windows 7, under Search
for the Best Driver Software in This Location, browse and navigate to the Arduino folder
you previously extracted, and then to the folder named Drivers (shown in figure A.2).
Make sure the Include Subfolders check box is checked, and click Next.

 The Windows driver installer will complete the driver installation process. If a
warning message pops up that says Windows Can’t Verify the Publisher of This Driver
Software, click Install This Driver Software Anyway.

Figure A.1 Extracting/copying the Arduino IDE and drivers to your local hard drive on Windows 7
Download from Wow! eBook <www.wowebook.com>

304 APPENDIX A Installing the Arduino IDE
After the installation process completes your Uno will successfully appear under Ports
(COM & LPT). You’re all set.

DRIVER INSTALLATION FOR THE ARDUINO DUEMILANOVE, NANO, OR DIECIMILA

Connect your Arduino board to the computer using a USB cable. If this is your
first time using the Arduino Windows will automatically begin the driver installa-
tion process. The board should be powered via USB and you should see the green
PWR LED light.

IMPORTANT If you are using Windows Vista the driver will automatically be
downloaded and installed, and you can skip this section. For Windows 7 and
XP users, please continue to read.

If you’re on Windows XP the Hardware Update wizard will appear with the prompt
Can Windows Connect to Windows Update to Search for Software? Select the radio
button that says, No, Not This Time to continue with the manual install. Instead,
select the radio button that says Install From a List or Specified Location (Advanced)
and click Next. Depending on your version of Windows you’ll want to make sure
that you uncheck the Search Removable Media check box, but make sure Search for

Figure A.2 Setting driver location search path for Arduino Uno driver installation on Windows 7
Download from Wow! eBook <www.wowebook.com>

305Windows
the Best Driver in These Locations and Include This Location in the Search are
both checked.

 For Windows 7 the prompt will be slightly different. Instead, when asked How Do
You Want to Search for the Driver? select the list item that says Browse My Computer
for Driver Software (Locate and Install the Driver Software Manually). At the follow-
ing prompt click the Browse button to set the path in which your drivers are located,
making sure to also select the check box to Include Subfolders. Whether you are on
Windows XP or Windows 7 (shown in figure A.3), for the driver search path you
should browse to your downloaded Arduino folder and browse to the drivers/FTDI
USB Drivers directory so that the Windows driver installer will know where to find the
driver file.

 Click Next and the installation wizard will search for and find the driver, and it’ll
then notify you that a USB serial converter has been found. Next, the New Hardware
Wizard will appear again and it will take you through the process again. Select and set
the same options and locations as before, and at the end a USB serial port will be
found. You’re all set.

Figure A.3 Setting driver location for FTDI-based Arduino boards (such as the
Duemilanove, Nano, and Diecimila) on Windows 7
Download from Wow! eBook <www.wowebook.com>

306 APPENDIX A Installing the Arduino IDE
A.2 Mac OS X
The Mac OS X Arduino software is packaged as a zip file. Download the latest version.
When the download has completed, double-click on the zip file to expand it. Copy the
Arduino application to your Applications folder.

 If you are using a board older than an Arduino Uno or Mega2560 you’ll need to
also install FTDI drivers to work with the FTDI on these boards. The drivers can be
downloaded from the FTDI website at http://www.ftdichip.com/Drivers/VCP.htm as a
disk image (.dmg) file. Once it’s downloaded, double-click the file and follow the
instructions given. When the drivers are installed you’ll need to restart your machine
to load them.

 The next step is to connect your Arduino board to your computer using an appro-
priate USB cable. Power to the Arduino board is provided by the USB cable.

 Start up the Arduino application by clicking on its icon—this will load the Arduino
IDE. To work with your board you’ll need to set two settings in the menu. The first is
the board type, found under Tools > Board, as shown in figure A.4.

 The next step is to select the serial port that connects your computer to the Ardu-
ino board. This can be found under Tools > Serial Port, as shown in figure A.5.

 That completes the setup of your Arduino software.

A.3 Linux
There are many flavors of Linux, each of which comes with slightly different instruc-
tions. We’re going to outline the instructions for Debian, because that’s a very popular
distribution, but you can find instructions for other distributions on the Arduino web-
site in the “Getting Started” section. They’re fairly similar but have slight differences
across versions.

 To correctly install Arduino on a Debian-based system you’ll want to first start up
the Synaptic Package Manager (System > Administration > Synaptic Package Man-
ager) and enter your system administrator password so that you can make changes to

Figure A.4 Select the type of Arduino board
Download from Wow! eBook <www.wowebook.com>

http://www.ftdichip.com/Drivers/VCP.htm

307Linux
your system. Once you have Synaptic up and running, type 'jre' in the quick search
box and find Openjdk-7-jre (Java Runtime Environment). Figure A.6 shows the Synap-
tic Package Manager.

 Now click on Openjdk-7-jre and select the Mark for Installation check box, as
shown in figure A.7.

 The package manager will want to install a lot of other supporting libraries, as
shown in figure A.8, so go ahead and mark all of those for installation as well.

 Next you need to install the compiler that Arduino uses, so enter ‘gcc-avr’ into the
quick search box and mark it for installation, just like you did with Openjdk. Finally,
you need to install avr-libc, so search for it, mark it, and allow any extra libraries.

Figure A.5 Select your serial port

Figure A.6 Using the Synaptic Package Manager to install dependencies for Linux
Download from Wow! eBook <www.wowebook.com>

308 APPENDIX A Installing the Arduino IDE
Figure A.7 Marking OpenJDK for installation

Figure A.8 Libraries to be installed for OpenJDK
Download from Wow! eBook <www.wowebook.com>

309Linux
Now you’re done with Synaptic, so you can close it down. You might also need to
restart your computer, particularly if you’re on Ubuntu, to make sure all the changes
you’ve made have percolated through your system. Even if you’re not on Ubuntu
restarting is a good idea to ensure that the new libraries you’ve added can be found.

 Now you can go ahead and download the Arduino IDE from the website and unzip
it to a friendly location on your computer. You should now be able to run the Arduino
IDE and use it to program and communicate with your Arduino boards in the same
way as the other operating systems in this appendix.
Download from Wow! eBook <www.wowebook.com>

appendix B
Coding primer

This coding primer is a basic guide to the Arduino language and how it’s used to
create sketches that can be run on an Arduino. We’ll cover the following topics:

■ History of the Arduino language
■ Using variables
■ Using control statements
■ Using loops
■ Using functions

B.1 The Arduino language
The Arduino language is based on C/C++, and anyone who has previously studied
C or C++ will readily be able to read the written code. If you haven’t studied C or
C++ before, don’t worry. The Arduino language was designed to make coding as
painless as possible, allowing you to concentrate on what can be done rather than
how it’s done.

History of the Arduino language
Students at the Interactive Design Institute, Ivrea, the original home of Arduino,
were taught to program using a language called Processing. The Processing design
philosophy is to teach the fundamentals of programming within a visual context,
and the Arduino team, realizing they needed to develop a language that made the
prototyping of ideas as simple as possible, adopted a similar philosophy.

The decision was made to use the Processing IDE as the model for the Arduino
IDE, because the original Arduino system was aimed at art and design students
who were already familiar with Processing. The close links to Processing are still
evident today, and any improvements made to the Processing IDE can be directly
imported into the Arduino system.
310

Download from Wow! eBook <www.wowebook.com>

311Variables
Arduino makes extensive use of libraries to provide common functions. Figure B.1
shows some of these libraries. The libraries help the language hide much of its com-
plexity and simplify many common tasks, such as setting digital pins as input or out-
put, reading in analog values, controlling servomotors, or switching DC motors on and
off. Many of the core libraries used are based on a library called Wiring, which was
developed by Hernando Barragan.

 Shields that add functionality also often require specialized libraries, and these are
normally provided and maintained by the shield developers.

 It’s now time to move on and investigate the Arduino language in more detail by
looking first at variables and their types. Then we’ll move on to how code is controlled
within a sketch.

B.2 Variables
One way to think of variables is to consider them as being like buckets, each contain-
ing something. Your code can look in individual buckets and see or change their con-
tents. A variable is the name, or identifier, given to a container holding a piece of data
that can be inspected and changed. Figure B.2 shows some typical variables.

 The advantages of using variables are twofold: they make code easier to under-
stand, and they also make it easier to maintain. If you had a variable called pinLED that
denotes pin 13 as a digital output, and at a later stage you decide to use pin 12 instead,
you would only need to make one change in your code. The following listing shows
this in action.

Arduino
language

Digital I/O Analog I/O
Advanced

I/O

Libraries

Figure B.1 Additional functionality is
added to the language by using libraries.

1.5

'A'

255

'b'

24000

3.142

true

variablex

stringy

bytea boola numb

pi

charc

Figure B.2 Typical variables,
considered as though they are
held in named buckets
Download from Wow! eBook <www.wowebook.com>

312 APPENDIX A Coding primer
int pinLED = 13;

void setup(){
 pinMode(pinLED,OUTPUT);
}
void loop(){
 digitalWrite(pinLED,HIGH);
 delay(1000);
 digitalWrite(pinLED,LOW);
 delay(1000);
}

The code has four instances of the variable pinLED, but it’s simple to change them all
by changing the value of pinLED when it is first declared, from 13 to 12. From then on
all instances of pinLED will have the value 12.

 When naming a variable in your code give it a meaningful, descriptive name that
makes your code both easier to read and understand. A variable can be given any
name you want, as long as it isn’t one of the Arduino keywords. The following are all
valid variable names:

■ outputPin

■ inputPin

■ leftMotor

■ rightMotor

■ pinLED

You’ve seen how useful variables can be and how they make code easier to understand
and maintain. Now let’s have a look at some variable types.

B.2.1 Variable types

There are a number of types of variables. The variable type and the variable itself must
be declared before you can use them in your code.

 Variables don’t have to be initialized—given a value—when declared. As a result,
the following two statements are both correct:

int startIndex;
int startIndex = 0;

Nevertheless, it’s considered good programming practice to initialize a variable when
you declare it as this can aid in debugging—locating code errors.

 When declaring numeric variables think carefully about the range of numbers
your sketch will need and whether they or the result of a calculation will be whole or
decimal numbers, as each is declared differently. Table B.1 outlines the range of vari-
able types.

Listing B.1 Value of the variable pinLED

Variable pinLED
set to 13
Download from Wow! eBook <www.wowebook.com>

313Variables
NOTE With the whole number types you can get a situation called roll over,
where a value that has increased or decreased past the end of the range for
that variable type rolls over to the other end of the range. For example, if 1 is
added to an int that has a value of 32,767, the value will become –32,768 and
not 32,768 as you might think. This is true for all the whole number types.

B.2.2 Arrays
Arrays are a collection of variables that are indexed with a number. The array has to
be declared before it can be used.

 You can declare an initialized array like this:

int myVariable[4];

Or you can initialize an array like this:

int myVariable[4] = {1,2,3,4};

The index for an array starts from 0. Using the array name and an index accesses a
value in an array.

Table B.1 Variable types

Variable type Description Code example

byte An 8-bit whole number with a range of 0 to 255. byte myVariable = 215;

int Short for integer; a 16-bit whole number with a
range of 32,767 to –32,768.

int myVariable =
32000;

long A long integer stored as a 32-bit value with a range
of 2,147,483,647 to –2,147,483,648.

long myVariable =
320000;

float A number that has a decimal point, stored as a
32-bit value with a range of 3.4028325E+38 to
–3.4028235E+38.

float myVariable =
3.14;

unsigned
int

An integer without any negative values, stored as a
16-bit value with a range of 0 to 65,545.

unsigned int
myVariable = 45000;

unsigned
long

A long integer without any negative values, stored
as a 32-bit value with a range of 0 to
4,294,967,296.

unsigned long
myVariable = 569124;

word An unsigned number, stored as a 16-bit value with a
range of 0 to 65,545 (the same as an unsigned
int).

word myVariable =
53000;

boolean A Boolean variable that holds one of two values:
true or false.

boolean myVariable =
true;

char A single ASCII character, stored as an 8-bit, or byte,
number. This allows characters to have arithmetic
functions performed on them. The character 'c' is
stored as number 99, so you could add 2 to this
and get 'e'.

Char myVariable = 'c';
Char myVariable = 99;
Download from Wow! eBook <www.wowebook.com>

314 APPENDIX A Coding primer
NOTE Be careful that you don’t access data from beyond the end of an array,
as it will return meaningless data from memory.

int myVariable[4] = {1,2,3,4};
newVariable = myVariable[3];
myVariable[0] = 2;
newVariable = myVariable[0];

The preceding code snippet initializes an array with four values: 1, 2, 3, and 4. Then it
accesses the fourth value with index 3, which is the end of the array. It then changes
the value at the beginning of the array with index 0 and accesses that value by calling
it with its index number.

 Arrays are commonly used to manipulate values within a for loop, where the incre-
ment counter is used as the index for an array. We’ll look at for loops in section B.4.

B.2.3 Strings

Text strings can be used in two ways: they can be declared as an array of type char, or
you can use the String class. The String class offers a wide range of text manipula-
tion functions that can be performed on text strings; these are discussed in some
detail in chapter 7, where we work with LCD displays. Here we’ll only consider the sim-
pler array type, char.

 When strings are used as an array of char they normally terminate with a null
character, ASCII 0. This allows other functions to recognize when they have come to the
end of the string, so when calculating the size of an array remember to add 1 to allow for
the extra character.

 A char array can be declared in a number of ways. All of the following are valid:

char myVariable[10];
char myVariable[6] = {'H', 'e', 'l', 'l', 'o'};
char myVariable[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
char myVariable[] = "Hello";
char myVariable[6] = "Hello";
char myVariable[10] = "Hello";

The first of the preceding lines of code sets up an uninitialized array, the second line
automatically appends '\0' to the end, and the third line includes it. The fourth
line automatically splits the characters and auto-sizes the array, the fifth line auto-splits
the array, and the sixth line leaves space in the array for a larger string.

B.2.4 Constants

Some variables don’t change the values assigned to them at initialization, and in these
cases the keyword const can be added to the start of the variable. Typical examples
would be assigning PIN numbers or constant values like the value of pi:

const int pinLed = 13;
const float pi = 3.142;

If you try to assign a value to a constant after it has been initialized the compiler will
throw an error.
Download from Wow! eBook <www.wowebook.com>

315Variables
 The Arduino has some reserved words that are constants:

■ true, false—true is any value that is not 0; false is the value 0.
■ INPUT, OUTPUT—Digital pins can be set as either an INPUT or an OUTPUT using

the pinMode() function:

pinMode(13, OUTPUT)

■ HIGH, LOW—You can set the value of a pin to either LOW (logic level 0, 0 volts) or
HIGH (logic level 1, 5 volts).

B.2.5 Variable scope

Variables in Arduino also have what is called scope; the value of a variable can be refer-
enced from some places within a sketch depending on where it’s declared. Variables
declared outside the main setup and loop functions are termed global variables,
because their value is available from anywhere in the sketch. Variables declared within
a function are termed local variables and they have local scope; their values are only
available to the function in which they’re declared.

 The following listing shows global and local variables in action: pinLedGlobal is
available to any function.

int pinLedGlobal = 13;
void Setup {
 pinMode(pinLedGlobal, OUTPUT);
{
void loop {
 int pinLedLocal = 14;
 pinMode(pinLedLocal, OUTPUT);
 digitalWrite(pinLedGlobal, HIGH);
 digitalWrite(pinLedLocal, LOW);
}

As your code gets longer and becomes more complex, using local variables can pre-
vent you from inadvertently changing the value of same-named variables that are used
in other functions. Figure B.3 shows the scope of variables.

 The value of varA is available to functions functionA, functionB, and functionC
and in this context has global scope. Both variables varB and varC have local scope:
variable varB has its value available to both functionB and functionC, whereas varC
has its value only available to functionC.

 In this section we’ve looked at variables and their types, learned about arrays, and
investigated a method of dealing with text strings. We’ve looked at constants, includ-
ing those already included by Arduino, and we’ve looked at variable scope. In the next
section we’ll take a look at some Arduino control structures.

Listing B.2 Global and local variables within a sketch

Global
variable

Local
variable
Download from Wow! eBook <www.wowebook.com>

316 APPENDIX A Coding primer
B.3 Taking control
Program code, like real life, is based on mak-
ing decisions, albeit in a simpler sense. Your
sketch code makes decisions based on what are
called Boolean tests. The results are either
true or false.

 Here are a few real-world examples:

■ I am tired; true
■ It is dark; false
■ Carrots are orange; true

In your code, the Boolean test is performed
using relational operators:

■ 15 < 30; true
■ 15 > 6; true
■ 17 <= 16; false
■ 17 == 16; false

The standard numerical relational operators
are shown in table B.2.

NOTE == is not the same as =. == tests for equality and returns true or false.

Control statements control the flow of your code. The statements can perform a
number of tasks, and typical examples are reading a value from a sensor, turning an
LED on or off, controlling the motors or servos on a robot, or measuring the dis-
tance from an object. The results from some tasks can determine what the next
action will be.

 For example, in the real world, if you went into a room and it was dark you would
switch on a light. This sequence of events can be broken down into tasks as repre-
sented in figure B.4.

True or false is how computers evaluate an expression.
 In the next section we’ll look at how the different control structures behave in

what are called conditional operators.

Table B.2 Relational operators

Operator Description Operator Description

> Greater than < Less than

>= Greater than or equal to <= Less than or equal to

== Equality != Inequality

functionA {

functionB {

functionC {

}

}

}

varA

varB

varC

Scope varA

Scope varB

Scope varC

Figure B.3 The scope of variables varA,
varB, and varC
Download from Wow! eBook <www.wowebook.com>

317Taking control
B.3.1 If, else, else if

The first of the conditional operators we’re
going to look at is the if statement. In the real
world the if statement would be akin to asking
a question with a straight yes (true) or no
(false) answer:

■ Am I tired of walking? Yes, then I’ll stop.
■ Am I hungry? Yes, then I’ll eat.

In the real-world examples we’re saying that if
something is true, we’ll perform the action. In
code we ask the same questions, and if the state-
ment is true we perform the action:

if (Boolean expression) {
 // do Action if Boolean expression is

true
}

The statement preceding the { is evaluated as
a Boolean expression. If it’s true the code
between the curly braces is run:

if (indexA < indexB) {
 digitalWrite(pinLed, HIGH);
{

In the preceding code, if the value of indexA is less than the value of indexB, the code
statement is run and the pin is switched to HIGH.

 Now that you understand the if statement we can introduce else:

■ If I am tired, then stop; else carry on.
■ If you are hungry, then eat; else pack up.

Here we’re saying that if the answer to the question is yes (true) we’ll perform the first
action. Otherwise (else), if the answer is no (false) we’ll perform the second action.

 In Boolean expression terms we can think of this as follows:

if (Boolean expression) {
 // run this code if Boolean expression is true
{
else {
 // run this code if Boolean expression is false
}

If the Boolean expression is true the first statement block is run; otherwise the sec-
ond block is run:

if (indexA < indexB) {
 digitalWrite(pinLed, HIGH);
}

Enter room

Is it dark

Turn on light Leave light off

Yes No

Figure B.4 A simple task: upon entering
a room, if it is dark, turn on the light.
Download from Wow! eBook <www.wowebook.com>

318 APPENDIX A Coding primer
else {
 digitalWrite(pinLed, LOW);
}

In the preceding code, if the value of indexA is less than the value of indexB the first
statement block is run, switching the pin to HIGH; otherwise the second code block is
run, switching the pin to LOW.

 We’ll now add the last part of the puzzle, else if, where we can ask one or
more questions:

■ If I am tired, then stop; else, if you are tired, then stop; else let’s carry on.
■ If you are hungry, then eat; else, if you are thirsty, then drink; else pack up.

In Boolean expression terms, it looks like this:

if (Boolean expression A) {
// run this code if Boolean expression A is true
{
else if (Boolean expression B) {
 // run this code if Boolean expression B is true
}
else {
 // run this code if both Boolean expressions are false

Here’s a code example:

if (indexA < indexB) {
 digitalWrite(pinLedA, HIGH);
}
else if (indexA == index B) {
 digitalWrite(pinLedB, High);
}
else {
 digitalWrite(pinLedA, High);
}

}

In this case, if the value of indexA is less than the value of indexB the first code
block is run; otherwise, if the value of indexA is equivalent to the value indexB the
second code block is run; otherwise, if none of the preceding are true the third
block is run.

 We’ve now covered the if, else, and else if conditional operators, but if you find
you’re using a series of else if statements in your code it’s worth considering the
switch-case statement. We’ll look at this next.

B.3.2 Switch case

Switch-case statements are a great way of simplifying complicated if, else if state-
ments, and we find them much easier to understand and read. The following listing
shows the typical layout for a switch-case statement.
Download from Wow! eBook <www.wowebook.com>

319Taking control
switch (value){
 case 1:
 // code statements when value == 1
 break;
 case 2:
 // code statements when value == 2
 break;
 case 3:
 //code statements value == 3
 break;
 case 4:
 case 5:
 case 6:
 // code statement when value == 4 or 5 or 6
 break;
 default:
 // code statements run for any other value
 break;
}

The switch-case statement computes a series of comparisons and the computed
value is compared with each case. If it’s found equivalent the statements are run for
that case.

 The break; statement shown in the listing is optional, but if it’s included it ceases
further comparisons, which is generally more efficient.

 The default statement is also optional, but it can be used like the final else in a
complicated if, else if series of statements.

 This completes our look at switch-case statements. We’re now going to move on
and look at logical operators. These will give us more tools for comparing expressions
and will expand our coding abilities.

B.3.3 Logical operators

The conditional operator examples we’ve looked at so far have just considered simple
expressions like “if I am tired, then stop.” Adding the logical operators AND, OR, and
NOT gives us more scope to ask slightly more developed questions:

■ If I am tired AND you are tried, then we will stop.
■ If I am tired OR you are tired, then we will stop.
■ If you are NOT tired, we will carry on.

In code, we don’t use the words AND, OR, and NOT but instead represent them in the
following manner:

■ AND becomes &&
■ OR becomes ||
■ NOT becomes !

Let’s look at each in turn.

Listing B.3 The switch-case statement
Download from Wow! eBook <www.wowebook.com>

320 APPENDIX A Coding primer
AND
if (indexA > indexB && indexC > indexD) {
 digitalWrite(pinLedA, HIGH);
}

If the value of indexA is greater than the value of indexB AND the value of indexC is
greater than the value of indexD, then run the code block and switch the pin to HIGH.

OR
if (indexA > indexB || indexC > indexD) {
 digitalWrite(pinLedB, HIGH);
}

If the value of indexA is greater than the value of indexB OR the value of indexC is
greater than the value of indexD, then run the code block and switch the pin to HIGH.

NOT
if (!buttonPressed) {
 digitalWrite(pinLedA, HIGH);
}

If NOT variable buttonPressed, run the code block and switch the pin to HIGH.

B.4 Going loopy
As we’ve already discussed, the main part of a sketch typically takes part in the control
loop which continues to loop until the Arduino is powered off. But there are other
types of loops that can occur within the main loop, designed to be used with repetitive
code. These are set so that they loop until a certain condition is met, and if that condi-
tion isn’t met the loop will continue indefinitely.

 We’re going to look at three types of loops: for, while, and do while.

B.4.1 The for loop

For loops are used to loop through a block of code a certain number of times. They’re
normally used with some form of incremental counter that increments until a certain
value is reached, which terminates the loop.

 The following listing shows a typical for loop that prints the value of i, from 0 to
99, repeatedly until the Arduino is powered off.

void setup()
{
 Serial.begin(9600);
}

void loop {
 for (int i = 0; i < 100; i++){
 Serial.println(i);
 }
}

Listing B.4 A for loop printing the value of i, from 0 to 99
Download from Wow! eBook <www.wowebook.com>

321Going loopy
The variable i is initialized with the value 0. This is incremented by one with the code
i++, which is a shorthand way of saying

i = i + 1

The code loops, printing out the value of i until i equals 100. At that point the loop
terminates that run and starts again from 0.

 The top line or header of a for loop consists of three parts, as shown in figure B.5:
initialization, test, and the increment or decrement counter.

 The initialization only occurs once, at the start of the routine. The second part, the
test, is performed each time the loop runs. If the test is true the code block is exe-
cuted and the counter value is incremented (++) or decremented (--) as specified in
the third part of the header. The routine will continue to loop until the test is false,
which in this case is when the counter reaches 100.

 The next type of loop we’ll consider is the while loop.

B.4.2 The while loop

The while loop tests an expression contained within parentheses and will continue to
loop through a block of code between curly braces until the expression tests false:

while (expression) {
// do statements
}

The previous code for the for loop can be written using a while loop, as shown in the
following listing.

void setup() {
 Serial.begin(9600);
}
void loop(){
 int i = 0;
 while (i < 100){
 Serial.println(i);
 i++;
 }
}

You can consider a for loop as a special case of a while loop; the while loop is used
when you are unsure how many times the code will loop. Typical uses for the while
loop include testing the input from sensors or buttons.

Listing B.5 A while loop that prints out the value of i from 0 to 99

for (int i = 0; i < 100; i++)

Initialization Test Increment or decrement
Figure B.5 A for loop header showing
initialization, test, and increment or decrement
Download from Wow! eBook <www.wowebook.com>

322 APPENDIX A Coding primer
 The following snippet tests the value of a sensor:

int sensorValue = 0;
while (sensorValue < 2000 {
 sensorValue = analogRead(analogPin);
}

This code will continue to loop while the value of sensorValue is less than 2000.

NOTE Make sure the code does change the value of the variable being tested
in the expression, or the code will loop indefinitely.

The third and last type of loop is the do while loop, and we’ll look at that next.

B.4.3 The do while loop

The do while loop is not used as often as the while loop. The difference between it
and the while loop is that it tests the expression at the end of the code block, so the
code block will always run at least once. The do while loop is typically used for reading
data from files:

do {
 // code block
} while (expression);

Like a while loop, this code block will continue to run until the expression tests false.

B.5 Functions
We’ve already looked at the two main functions or routines that are needed in a
sketch: setup() and loop(). Both are declared as type void, which means they
don’t return a value. Arduino simplifies many tasks by using readily accessible func-
tions to control digital and analog input and output of data, as well as mathematics,
trigonometry, and time functions, but we discuss these in the chapters as we come
across them.

 You can also write your own functions. They are normally used to help with repeti-
tive tasks or calculations. You first need to declare the function type, as you do with a
variable, and give it a name—something memorable that indicates what the function
does. In parentheses, you place any parameters that you want to pass to the function.
Code statements are then contained within curly braces:

type functionName(parameters){
// code statements here
}

Remember, if the function doesn’t return a value you should give it a type of void.
Functions of type void can use a return; statement to exit or return from the func-
tion; functions that return a value use the keyword return followed by the return
value and then a semicolon (;). The following code snippet shows a function that
converts a temperature in Fahrenheit to Celsius and returns the Celsius value:
Download from Wow! eBook <www.wowebook.com>

323Summary
float calcTemp(float fahrenheit){
 float celcius;
 celcius = (fahrenheit – 32)/ 1.8;
 return celcius;
}

The function is declared as type float and it’s passed a value for fahrenheit. Sub-
tracting 32 from fahrenheit and then dividing by 1.8 produces the celsius value.
The return statement returns the value of celsius. This function could be used as
part of a system for logging temperature data.

 As you can see, functions are an ideal way to simplify code and take care of repeti-
tive tasks.

B.6 Summary
In this appendix we looked at some parts of the Arduino language. Variables are a
good way to help with our code, and choosing good names for them helps indicate
how a code sketch works. We started to come to grips with language constructs such as
if, else, and else if, and the switch-case statement. We also looked at the logical
operators AND, OR and NOT. Finally, we ran through the different loop types, con-
cluding with a look at functions. As you’ve seen, even if you’re completely new to cod-
ing these techniques are quick to pick up and master.
Download from Wow! eBook <www.wowebook.com>

appendix C
Libraries

In chapter 4 we covered software libraries and how they’re used to extend the basic
functionality of the Arduino. Other chapters have provided examples of how using
libraries in your own projects can easily extend their functionality.

 When you’ve gained some experience in writing your own sketches there will
come a time when you develop a sketch that you could reuse in future projects or
that may be useful to the Arduino community. You can either keep the developed
code in a sketch or split it out into a library. Splitting the sketch out into a library
will probably make it more useful to other users.

 This appendix will guide you through the anatomy of a library so that you can
see what’s involved in writing your own.

C.1 Anatomy of a library
Arduino sketches are coded using C++ (see appendix B for more detail), and much
of the complexity and functionality of Arduino programming is hidden from users
by the extensive use of software libraries.

 A software library is made up of at least one C++ class and maybe many more.
A class consists of two files: a header file with a .h extension and a file with a
.cpp extension.

 The .h (header) file acts as a blueprint for the library, describing the functions
of the library and what the class does. The .cpp file contains the fine detail of the
library, detailing the functions and variables declared by the header.

 Let’s start by looking at the makeup of a header file.

C.1.1 The .h (header) file

The header is the blueprint for a library of classes. Imagine that we have a sensor
called a Sabre that detects the presence of fossils in a patch of ground and counts
them. You need to think what functions the library is going to provide. In this
324

Download from Wow! eBook <www.wowebook.com>

325Anatomy of a library
example we have two public functions available: one will set up the Sabre and the
other will update readings from the Sabre.

 We’ll define the header in the next listing.

#ifndef SABRE _H
#define SABRE _H

#include <Arduino.h>

class Sabre {

public:

Sabre();
void begin();
void update();

private:
 int pollSabre();
 int countFossils(int inputData);

};

#endif

The start of the file is the #ifndef include guard directive. This prevents the code being
included multiple times B. Including the Arduino library is optional c; include it if
your code makes use of elements from the Arduino library, such as digitalWrite,
delay, pinMode, and so on.

 After the public keyword, the library’s public functions are included; then the
constructor, which is required to set up the library, is included d.

 After the private keyword are the private functions; these are only accessible to
the library. The end of the class is designated with the end of the #ifndef directive e.

 Having completed the header file, we can now create the .cpp file, which will be
the file that carries out the actions identified by the header file.

C.1.2 The .cpp file

The .cpp file contains the meat of the library. It includes the .h (header) file and
fleshes out the functions declared in that file. The next listing shows the outline for
our .cpp file.

#include "Sabre.h"

Sabre::Sabre () {

}

void Sabre::begin(){
 // perform actions to initialize Sabre sensor here
}

Listing C.1 Sabre.h

Listing C.2 Sabre.cpp

Include guard directiveb
Include Arduino
library

c

Start of Sabre class

Declare public keyword
Declare class
constructor

d

Declare functions

Declare
private
keyword

Declare
private
functions

Mark end of
ifndef directive

e

Declare include for classb

Declare class
constructorc

Define public
functions
Download from Wow! eBook <www.wowebook.com>

326 APPENDIX A Libraries
void Sabre::update(){
 int data = pollSabre();
 int result = countFossils(data);
}

int Sabre::pollSAbre(){
 //code to poll Sabre sensor
}

int Sabre::countFosssils(int inputData){
 //code to count number of fossils found
}

The class declaration is included at the head of the file B before constructing the
class c. The public and private functions of the class then complete the library.

NOTE The double colon (::) is the scope resolution operator, and it tells the
compiler that this function is inside the class.

Once you’ve finished writing your library you’ll want to make it available to your
sketches. To do so you need to copy the .h (header) and .cpp files into a subfolder of
the Arduino libraries folder with the same name as your library, like this:

libraries/Sabre/Sabre.h
libraries/Sabre/Sabre.cpp

Let’s finish off this section by looking at how to use this library.

C.2 Using a library
Once you’ve created a library you can use it in your own sketches, and you can also dis-
tribute it so others can use it in their sketches. You might consider sharing your code
on the Arduino playground, which can be found at http://playground.arduino.cc. The
playground is also a good place to find other people’s libraries and code examples.

C.2.1 Using a library in a sketch

The following listing shows how the Sabre library would be used in an example sketch,
where the Arduino is connected to a Sabre sensor.

#include "Sabre.h"

Sabre mySabre

void setup(){
 mySabre.begin();
}

void loop(){
 mySabre.update()
}

Listing C.3 Sabre.ino

Define private
functions

Include Sabre libraryb

Initialize instance
of Sabre classc

Initialize
Sabre sensor

Update Sabre
sensor
Download from Wow! eBook <www.wowebook.com>

http://playground.arduino.cc

327Using a library
You need to include the Sabre library in the sketch B before initializing an instance
of the Sabre class c. The Sabre sensor is initialized during setup and updated in the
main sketch loop.

 That’s all there is to using a library in a sketch.

C.2.2 Distributing a library

You should consider distributing libraries that you write to the wider Arduino commu-
nity. By distributing your libraries you give others the benefit of your experience and
also invite other people to take what you have written and suggest ideas for future
improvements. This sharing of libraries and willingness to help others is what makes
the Arduino community so great.

 When distributing a library to others, which is normally done as a zip file, you
should include one or more example sketches showing how the library should be
used. The examples should be placed in their own examples subfolder:

Libraries/Sabre/Examples/sabre.ino
Download from Wow! eBook <www.wowebook.com>

appendix D
Components list

This appendix lists the components used in the projects for each chapter.

Chapter 1
An Arduino board
One LED

Chapter 2
An Arduino board
A breadboard and a selection of jumpers
Six red LEDs
One green LED
Seven resistors, 180 ohm
One resistor, 10k ohm
A momentary-contact push button

Chapter 3
An Arduino board
A breadboard and a selection of jumpers
A small potentiometer (a trimpot is ideal, as it can easily plug into a breadboard)
Five zener diodes, 0.5 watt 5V1 (we used a BZX55C5V)
Five resistors, 1M ohm
One resistor, 1k ohm
A small speaker, 8 ohm

Chapter 4
Not applicable
328

Download from Wow! eBook <www.wowebook.com>

329Chapter 8
Chapter 5
An Arduino board
A breadboard and selection of jumpers
A small DC motor
An external power supply suitable for the motor
An external power supply for the Arduino (9 volts recommended)
A miniature relay DPDT 5 volt coil, rated 2 amps or more
A 2N2222 diode
A 1N4003 diode
A L293D dual H driver
A stepper motor
Two 2-pin screw connectors
A servomotor
A section of 0.1 inch header
A brushless motor
A brushless electronic speed controller (ESC)
A suitable power supply for a brushless motor

Chapter 6
An Arduino board
A breadboard and selection of jumper wires
A parallax ping
A speaker
A sharp GP2D12
One resistor, 10k ohm

Chapter 7
An Arduino board
A Hitachi HD44780-based LCD screen
A potentiometer, 10k ohm, or trimpot
A resistor, value dependent on the backlight of the LCD
A serial LCD (SparkFun compatible 16 x 2 serial LCD recommended)
A DS18B20 temperature sensor
One resistor, 4.7k ohm
A KS0108 graphical LCD
One resistor, 10k ohm
One resistor, 220 ohm

Chapter 8
An Arduino board
An Arduino Ethernet Shield
A momentary contact button
Download from Wow! eBook <www.wowebook.com>

330 APPENDIX A Components list
One resistor, 10k ohm
An Arduino Wifi Shield
An accelerometer, such as the ADXL335
A Bluetooth module, such as the SparkFun BlueSMiRF Silver
A AD5206 digital potentiometer from Analog Devices
Four LEDs
Four resistors, 220 ohm
A potentiometer

Chapter 9
An Arduino board
A Wii Nunchuk
Optionally a WiiChuck or NunChucky
An Xbox 360 game controller
A USB Host Shield, version 2.0

Chapter 10
An Arduino board
An iOS device
A breadboard and selection of jumpers
A Mac desktop or laptop computer with Xcode 4.0 or greater
A Redpark serial cable
A RS232-to-TTL adapter
A colored LED
One resistor, 200 ohm
A Sharp GP2D12 IR distance sensor

Chapter 11
Two flex sensors
An Arduino LilyPad
Four LEDs
Three meters of conductive thread
An Arduino Pro Mini
An HMC5883 three-axis digital compass
A 7-segment serial display
Three more meters of conductive thread
A pair of headphones
An Arduino Pro Mini
A QRE1113 reflectance sensor
A 0.25 watt speaker
Ten thin pieces of copper
Five thin pieces of rubber foam
A spool of thread
Download from Wow! eBook <www.wowebook.com>

331Chapter 13
Chapter 12
An Arduino board
An Adafruit Motor Shield
A 5V stepper motor
Two AA batteries
Two buttons
A small DC motor
A servomotor
A potentiometer
One perfboard (preferably double-sided)
Four female header strips (long pin) or three female header strips and one Arduino
offset header
An SD card holder
An SD card
A 74HC4050 level shifter
One resistor, 5k ohm
An SD card shield

Chapter 13
An Arduino board
Two servomotors
A breadboard and selection of jumper wires
A desktop or laptop computer with Processing, Pure Data, and Python installed
A USB webcam
Five LEDs
Five resistors, 4.7k ohm
Four potentiometers
Four resistors, 10k ohm
Three LM35 temperature sensors
Download from Wow! eBook <www.wowebook.com>

appendix E
Useful links

This appendix lists a variety of useful Arduino-related links.

Additional Arduino articles
■ A Tour of Arduino (http://manning.com/free/green_mevans.html)—An over-

view and general information about the Arduino, where it comes from, and
the development IDE.

■ Adafruit Motor Shield (http://manning.com/free/excerpt_mevans.html)—
Using various motors with the handy Motor Shield by AdaFruit.

■ Introducing the LilyPad (http://manning.com/free/excerpt_mevans_b.html)—
Introducing the Arduino LilyPad, an Arduino designed for use with wear-
ables and textiles.

■ Wi-Fi Communication and Arduino (http://www.manning.com/free/excerpt_
mevans_c.html)—Using the WiFly module for Wi-Fi on your Arduino.

Other useful links and materials
■ Arduino home page (www.arduino.cc)—Arduino’s main home on the web.
■ Arduino foundations (http://arduino.cc/en/Tutorial/Foundations)—Core

hardware and software concepts explained by Arduino.
■ Arduino examples (http://arduino.cc/en/Tutorial/HomePage)—Additional

examples from blinking an LED to other libraries.
■ Arduino language reference (http://arduino.cc/en/Reference/HomePage)—

The bible for writing Arduino code.
■ SparkFun (www.sparkfun.com/)—A popular USA supplier for Arduinos,

shields, electronic components, and all things DIY. Lots of information
can also be gleaned from the SparkFun message board forum and the
product comments.
332

Download from Wow! eBook <www.wowebook.com>

http://www.manning.com/free/excerpt_mevans_c.html
http://www.manning.com/free/excerpt_mevans_c.html
www.arduino.cc
www.sparkfun.com/
http://manning.com/free/green_mevans.html
http://manning.com/free/excerpt_mevans.html
http://manning.com/free/excerpt_mevans_b.html
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage

333Other useful links and materials
■ Adafruit (www.adafruit.com/)—Another popular USA supplier for Arduinos
and DIY electronics. Like SparkFun, Adafruit also has great tutorials and online
forums. Highly recommended!

■ SK Pang Electronics (www.skpang.co.uk)—UK supplier for Arduinos and DIY
electronics.

■ Cool Components (www.coolcomponents.co.uk)—UK supplier for Arduinos
and DIY electronics. Subscribe to their newsletter for updates.

■ Bitsbox (www.bitsbox.co.uk)—UK supplier of a range of electronic components.
■ Proto-PIC (www.proto-pic.co.uk)—UK supplier for Arduinos and DIY electronics.
■ oomlout (www.oomlout.co.uk)—UK supplier of Arduinos, electronic components,

and kits.
Download from Wow! eBook <www.wowebook.com>

www.adafruit.com/
www.skpang.co.uk
www.coolcomponents.co.uk
www.bitsbox.co.uk
www.proto-pic.co.uk
www.oomlout.co.uk

index
Symbols

!= (inequality) operator 316
&= ~ operator 196
#ifndef 325
+5V pin 137
<= (less than or equal to)

operator 316
< (less than) operator 316
== (equality) operator 316
> (greater than) operator 316
>= (greater than or equal to)

operator 316
| operator 196
|= operator 196

Numerics

1A pins 92
2A pins 92
2N2222 NPN transistor 82–84
4-bit configuration, vs. 8-bit

configuration 133
5V pin 143
8-bit configuration, vs. 4-bit

configuration 133

A

AAA Battery Holder 247
accelerometers

client 169
wireless 167

accessories, for LilyPad 247
Adafruit Industries 9–10,

112

Adafruit motor shield 262–269
AFMotor library 263–264
assembled vs.

unassembled 269
using with DC motor 265–

268
using with stepper motor 264

Adafruit Wave shield 11
ADC (analog-to-digital

converter) 42, 58, 87
AF_DCMotor class 263, 265
AF_Stepper instance 263
AFMotor library 262–264
analog input/output 42–46

digital vs. 42
pentatonic keyboard

project 54–57
circuit diagram for 54
connecting hardware 54–

55
sketch for 56–57
uploading and testing 57

piezoelectric transducers
circuit diagram with 47–48
connecting to Arduino 48–

49
overview 46–47
sketch to read from 49–50
uploading and testing 51

potentiometers
connecting to Arduino 43–

44
overview 43
sketch to read from 44–45
uploading and testing 45–

46

speakers
circuit diagram with 51
connecting to Arduino 51
sketch for 53
uploading and testing 53–

54
analogIn() method 299
analogRead() method 42, 45,

287
analog-to-digital converter. See

ADC
analogWrite() method 87–88,

103, 289
AND operator 319
angle brackets 63
API key, for Cosm feeds 182–

183
Arduino accelerometer

client 169
Arduino Diecimila 304–305
Arduino Duemilanove 5–6,

304–305
Arduino Ethernet 6
Arduino Ethernet Shield 156
Arduino IDE, installing

on Linux 306–309
on Mac OS X 306
on Windows 302–305

Arduino language 310–311
flow control 316–320

if, else, else if
statements 317–318

logical operators 319–320
switch-case statements 318–

319
functions 322–323
334

Download from Wow! eBook <www.wowebook.com>

INDEX 335
Arduino language (continued)
loops 320–322

do while loop 322
for loop 320–321
while loop 321–322

variables 311–315
arrays 313–314
constants 314–315
scope of 315
strings 314
types of 312

Arduino Mega 6–7
Arduino Nano 8, 304–305
Arduino Pro Mini, wearables

using 254
Arduino Uno 5, 302–304
Arduino, history of 4
ArduinoBT board 172
ArduinoTestSuite library 63–64
arrays 313–314
ASCII table 16
assembled shields, vs. unassem-

bled shields 269
assembling circuits 22
ATMega1280

microcontroller 64
ATMega168 microcontroller 64
ATMega168 microprocessor 5–

6, 9
ATMega2560

microcontroller 64
ATMega2560 microprocessor 7
ATMega328 microcontroller 64
ATMega328 microprocessor

5–6, 8–9
ATMega328 processor 6, 8
ATMega8 microcontroller 64
ATMega8U2 microcontroller 5
ATMegachips 172
ATS_begin test 64
ATS_end test 64
ATS_GetFreeMemory test 64
ATS_Test_AnalogInput test 64
ATS_Test_DigitalPin test 64
ATS_Test_EEPROM test 64
ATS_Test_PWM test 64
ATS_TestSerialLoopBack test 64
attach() method 69–70, 104
attached() method 70, 104
attachInterrupt(interrupt, func-

tion, mode) function 31
audio, analyzing in

Processing 287–288
autoscroll() method 134
autoscrolling 134

available() method 69, 75, 154–
155, 158, 166–167, 185

B

Banzi, Massimo 4
Battery Holder 247
battery packs 107, 109
begin command 174
begin method 170
begin() method 66–67, 72–74,

154–155, 194
begin(chipSelect) method 181
begin(int column, int row)

method 134
beginPacket() method 155
beginTransmission function 73
Beyond Logic website 204
Bianconi, Gabrial 193
big-endian 208
BIN option 45
bipolar stepper motors 95–98
bit value. See BV
Bitsbox 333
blink() method 134, 141
blinking LEDs

code for 12
connecting to board 12–13
overview 11
uploading and testing 13–14

BlueSMiRF line 172–173
Bluetooth Mate Silver 256
Bluetooth wireless 171–175

adding Bluetooth
module 172–173

establishing connections 173
sketch for 174–175
using ArduinoBT board 172

Boarduino 9
boolean variable type 313
bounce, defined 31
breadboards

connecting hardware to 24–
25

connecting push buttons
to 28–29

overview 22
break command 32
break statements, in

sketches 32–33
breakout board 246
brightness of LEDs, controlling

sketch for 236
testing sketch 236–237
Xcode for 230–235

brightnessLED action 230
brushless DC motors 106–111

connecting to Arduino 109–
110

controlling 107–108
controlling direction of 110
overview 106–107
sketch for 108–111
uploading and testing 110–

111
BSSID() method 166
Buechley, Leah 245, 249
buf buffer 210
Build Phases tab 223
buttons, on Wii nunchuk 190–

191
BV (bit value) 196
_BV macro 195–196
byte data, Nunchuk 193
byte variable type 313

C

cableConnected method 228
CAD (computer-aided design)

files 8
cards 65
cathode, defined 24
char data type 130–133, 313
charAt() method 131
checkStatus() method 160
circuit diagrams 22–24

for pentatonic keyboard
project 54

for reactometer project 33
circuits, assembling 22
Circuits@Home 203
clear() method 69, 134, 140, 144
clearLine() method 140
ClearScreen() method 146,

150–151
Client class 68, 154–156
Client function 68
Client.available() method 155
Client.connect() method 154
Client.connected()

method 154, 158, 169, 185
Client.flush() method 155
Client.print() method 154–155
Client.println() method 155,

158, 185
Client.read() method 155, 158,

185
Client.stop() method 155, 159,

185–186
Download from Wow! eBook <www.wowebook.com>

INDEX336
Client.write() method 154
Client() method 154
clock phase 72
clock polarity 72
clones of Arduino hardware 8–9

Boarduino 9
found on eBay 9
Seeeduino 9
Seeeduino Film 9
Sippino 9

close() method 66, 181–182,
298

closing braces 27
CNC (computer numerical

control) 94
color parameter 147
COM (common) pins 86
commenting, in sketches 18–19
communication port 292
communications 152–187

Arduino web server 156–159
overview 156–157
sketch for 158–159
troubleshooting 159
uploading and testing 159

Bluetooth wireless 171–175
adding Bluetooth

module 172–173
establishing

connections 173
sketch for 174–175
using ArduinoBT

board 172
Cosm feeds 182–186

API key for 182–183
creating data feed 183–184
sensor logging to 184–186
uploading and testing 186

data logging 179–182
SD card sensor logger

project 181–182
SD cards 180
SD library functions 180
types of memory 180

Ethernet library
functions 154–155

Ethernet shield 155–156
SPI 175–179

circuit diagram for 177–
178

digital LED dimmer
project 178–179

digital potentiometers 176–
177

SPI library functions 176

Twitter integration 159–163
circuit diagram for 161
sketch for 161–162
tokens for 160
Twitter library

functions 160
uploading and testing 163

Wi-Fi 163–171
connecting to Arduino 168
sketch for 168–171
uploading and testing 171
WiFi library functions 165
Wifi Shield 164–165
wireless accelerometers 167

compareTo() method 131
compatibility, for shields 80
components, list of for all

projects 328–331
computer numerical control. See

CNC
computer-aided design files. See

CAD
COMxx 303
concat() method 131
conductive thread and fabric,

for LilyPad 247–249
connect() method 68, 167
connected() method 68, 167
connections, establishing

Bluetooth 173
connectToNetwork()

method 169–170
constants 314–315
contributed libraries 75–76
control statements 316
convertToCelsius() method 299
Cool Components 333
Copy Items into Destination

Group’s Folder (if Needed)
option 223

core library 62
Cosm feeds 182–186

API key for 182–183
creating data feed 183–184
sensor logging to 184–186
uploading and testing 186

.cpp file, in libraries 325–326
createChar() method 141
Cuartielles, David 4
curly braces 15
cursor() method 134, 141
CursorTo() method 146
custom shields

connecting to Arduino 273–
276

level shifters 270
memory considerations 269–

270
SD cards

connecting to
Arduino 271–272

holders for 270–271
testing 276–277

D

D1 diode 86
D2 pin 137
D3 pin 137
D4 pin 137
D5 pin 137
D10 pin 137
D11 pin 137
D12 pin 137, 143
DallasTemperature library 141–

142, 144–145
data logging 179–182

SD cards
logging data to 181–182
overview 180
SD library functions 180

types of memory 180
DB4 (bit 4) pin 137
DB5 (bit 5) pin 137
DB6 (bit 6) pin 137
DB6 (bit 7) pin 137
DC (direct current) motors 263

connecting to Arduino 84–86
controlling speed and direc-

tion of
connecting hardware 91
L293D dual H driver 90
sketch for 92–94
uploading and testing 93–

94
using H-bridge 89–90
using PWM 87–89

sketch for 84
stopping and starting 83–84
uploading and testing 86–87
using Adafruit motor shield

with 265–268
DDR register 195
debounce 31
default boot configurations, and

Xbox 208
default statement 319
delay() method 116
delayMicroseconds()

method 116, 122
Download from Wow! eBook <www.wowebook.com>

INDEX 337
detach() method 69–70, 104
Devantech SRF05

additional pins on 116
sketch for 117–118

devices object 292
DHCP (Dynamic Host Configu-

ration Protocol) 157
digital input/output, analog

vs. 42
digital LED dimmer

project 178–179
digital potentiometers 176–177
digitalRead() method 62, 270,

287
digitalWrite() method 12, 27,

62, 286
Dingley, John 189
diodes 49
direct current motors. See DC
direction

controlling for brushless DC
motors 110

controlling for DC motors
connecting hardware 91
L293D dual H driver 90
sketch for 92–94
uploading and testing 93–

94
using H-bridge 89–90
using PWM 87–89

Directory Name Service. See DNS
disconnect() method 166
display() method 134, 141
distance outlet 238
distance, calculating 121
distributing, libraries 327
DNS (Directory Name

Service) 153
dnsServerIP function 67
do while loop 322
DOUBLE option 264
double pole double throw relay.

See DPDT
double slash (//) character 19
Download as tar.gz button 204
DPDT (double pole double

throw) relay 83
draw() method 171, 280
DrawBitmap() method 146
DrawCircle() method 147
DrawHoriLine() method 147
DrawLine() method 147
DrawRect() method 147
DrawRoundedRect()

method 147

DrawVertLine() method 147
drivers, Windows

for Arduino Diecimila 304–
305

for Arduino
Duemilanove 304–305

for Arduino Nano 304–305
for Arduino uno 302–304

DS18B20 temperature
sensor 141, 143

duration parameter 53
Dynamic Host Configuration

Protocol. See DHCP

E

E (Enable) pin 137
eBay 9
echolocation 115
EEPROM library 63–65
electronic speed controllers. See

ESCs
else/else if statements 317–318
enablePin 93
encryptionType() method 166
end connector, Nunchuk 192
end() method 72, 74, 176
endPacket() method 155
endpoint attribute 206
endsWith() method 131
endTransmission() method 73,

197, 258
environment 10–11

hardware 10
software 10
tools 11

equalizers 286–291
assembling equalizer

hardware 288
audio analysis in

Processing 287–288
code for equalizer 288–291
using Firmata in

application 286–287
equals() method 131
equalsIgnoreCase()

method 131
errorHalt() method 277
ESCs (electronic speed

controllers) 107
Ethernet class 67
Ethernet library

functions for 154–155
overview 67–68

Ethernet Shield, Arduino 156

exists() method 66, 181
extending Arduino 61–80

contributed libraries 75–76
core library 62
libraries, defined 62
shields 76–80

compatibility for 80
Ethernet shields 77
motor shields 77
prototyping shields 79
Wi-Fi shields 78–79

standard libraries 63–75
ArduinoTestSuite

library 63–64
EEPROM library 64–65
Ethernet library 67–68
Firmata library 68–69
LiquidCrystal library 69
SD library 65–67
Servo library 70
SoftwareSerial library 74–

75
SPI library 71–72
Stepper library 70–71
Wire library 72–73

F

fabric, conductive 247–249
face tracking 280, 283, 285–286

assembling hardware for 281–
282

code for face-tracking 282–
286

serial communication in
Processing application
280–281

Facebook 160
fast Fourier transform. See FFT
FAT16 file system 270
FAT32 file system 270
FFT (fast Fourier

transform) 287
File class 66, 180–181
FillRect() method 147
Firmata library 63, 68
Firmata project 286–291

assembling equalizer
hardware 288

audio analysis in
Processing 287–288

code for equalizer 288–291
using in application 286–287

fixed resistors 43
flex sensor 249, 253
Download from Wow! eBook <www.wowebook.com>

INDEX338
float variable type 313
flow control 316–320

if, else, else if statements 317–
318

logical operators 319–320
switch-case statements 318–

319
flush() method 68, 167, 181,

297
for loop 26–27, 32, 94, 111, 314,

320–321
forward() method 289
four-wire bus 71
frames 153
freqout() method 123
frequency 53
FTDI cable 246, 254–255
FTDI chipset 5–7
functions 322–323

G

gaming 188–215
Nintendo Wii

communicating with 193–
201

overview 188–190
testing connection 201–202
Wii nunchuk 190–193

Xbox 202–214
communicating with 204–

206
connecting to Arduino 203
default boot

configurations 208
input report for

interface 206–208
sketch for 210–213
testing connection 213–214
USB Host Shield library

for 203–204
Xboxhidboot library

files 208–210
gatewayIP() method 166
getBytes() method 131
getSocket() method 166
ghost echoes 119
GitHub 264
GLCDks0108 library

functions 146–147
GLCDs (Graphic LCDs) 146–

151
circuit diagram for 147–148
connecting to Arduino 148–

149

GLCDks0108 library
functions 146–147

sketch for drawing to 150
uploading and testing 151

global variables 315
GND pin 137, 143
gndpin bit 195
GotoXY() method 146
Graphic LCDs. See GLCDs
Gravitech 8

H

.h (header) file, in
libraries 324–325

H&D Wireless 164
Haar Cascade 284
Half-H driver 90
hardware

Arduino Duemilanove 5–6
Arduino Ethernet 6
Arduino Mega 6–7
Arduino Nano 8
Arduino Uno 5
clones 8–9

Boarduino 9
found on eBay 9
Seeeduino 9
Seeeduino Film 9
Sippino 9

connecting to
breadboard 24–25

for working environment 10
LilyPad Arduino 7–8
obtaining 9–10

Hardware Update wizard 303–
304

H-bridge, controlling DC
motors 89–90

header pins 273
headers 254
HEX option 45
HID (human interface

device) 206
hidboot.cpp file 208
hidboot.h file 208
HIGH signal 86, 115
history of Arduino 4
Hitachi HD44780 chip 69
Hitachi HD44780 LCD 133–139

4-bit vs. 8-bit
configurations 133

circuit diagram for 134–135
connecting to Arduino 135–

137

LiquidCrystal library
functions 133

sketch for writing to 137–138
uploading and testing 138–

139
HMC5883L magnetic

compass 257
holders, for SD cards 270–271
home() method 134, 140
human interface device. See HID

I

i variable 321
I/O pins 164
I2C pins 272
I2C protocol 270
ICSP (in-circuit serial

programming) 5
IDE (integrated development

environment)
main editor

errors in 16
overview 14–15

overview 16–17
serial monitor 15–16

if statements 253, 317–318
import statement 288
inc folder 223
in-circuit serial programming.

See ICSP
include statement 63
Include Subfolders check

box 303
indexOf() method 131
infrared 119–124

connecting hardware 123
nonlinear algorithm for calcu-

lating distance 121
passive infrared 124–128

connecting hardware 127–
128

Parallax PIR sensor 125
sketch for 125–126
uploading and testing 128

Sharp GP2D12 range
finder 121

sketch for 122–123
uploading and testing 123–124
using with ultrasound 120

Init() method 146
input report for interface, for

Xbox 206–208
input/output, for Nintendo

Wii 193
Download from Wow! eBook <www.wowebook.com>

INDEX 339
inputPin variable 312
inrunner motor 106, 111
installing

Arduino IDE
on Linux 306–309
on Mac OS X 306
on Windows 302–305

contributed libraries 76
Windows drivers

for Arduino Diecimila 304–
305

for Arduino
Duemilanove 304–305

for Arduino Nano 304–305
for Arduino uno 302–304

int variable type 313
integrated development envi-

ronment. See IDE
INTERLEAVE option 264
Internet Protocol. See IP
internet service provider. See

ISP
interrupts, in reactometer

project 29
InvertRect() method 147
inWaiting() method 297
iOS integration 216–243

connecting device to
Arduino 218–220
connecting RS232 adapter

to Arduino 220
using Redpark serial

cable 218–219
controlling LED brightness

with Slider control
sketch for 236
testing sketch 236–237
Xcode for 230–235

controlling LED with toggle
switch
sketch for 229
testing sketch 229–230
Xcode for 225–228

creating single-view
applications 221–223

displaying sensor data
GP2D12 IR distance

sensor 241–242
testing sketch 243
Xcode for 237–241

IOSArduino-Info.plist 228
IP (Internet Protocol) 153
ip() method 171
IPAddress object 157
isListening function 74

ISP (internet service
provider) 157

iTunes 255–256

J

jacket with compass
project 257–260

joystick, on Wii nunchuk 190
jumper wires 51, 276

K

Keys page 183
knee voltage 49
knock sensor 47
Kurt, Tod 192
Kv value 106

L

L293D chip 98–99, 102
L293D dual H driver 89–90, 98
L293D H-bridge 93
lastIndexOf() method 131
lastMillis variable 31
LCD class 138
LCD interface 65
LCDs (liquid crystal

displays) 129–151
and char data type 130–133
and String data type 130–133
graphic Samsung KS0108

GLCD 146–151
circuit diagram for 147–148
connecting to

Arduino 148–149
GLCDks0108 library

functions 146–147
sketch for drawing to 150
uploading and testing 151

overview 130
parallel Hitachi HD44780

LCD 133–139
4-bit vs. 8-bit

configurations 133
circuit diagram for 134–135
connecting to

Arduino 135–137
LiquidCrystal library

functions 133
sketch for writing to 137–

138
uploading and testing 138–

139

serial LCD weather station
project 139–145
circuit diagram for 142
connecting to Arduino 143
DallasTemperature

library 141–142
Maxim IC DS18B20 temper-

ature sensor 141
OneWire library 141–142
SerLCD library

functions 139–141
sketch for writing to 144–

145
uploading and testing 145

serial vs. parallel 139
Leah Buechley 7
least significant bits. See LSBs
LED- pin 137
LED+ pin 137
ledArray array 27
ledOnOff() method 30, 32, 35,

38
ledPin 236
LEDs (light-emitting diodes)

controlling brightness from
iOS device
sketch for 236
testing sketch 236–237
Xcode for 230–235

dimmer for 178–179
making blink

code for 12
connecting to board 12–13
overview 11
uploading and testing 13–

14
overview 24
turning on and off from iOS

device
sketch for 229
testing sketch 229–230
Xcode for 225–228

leftMotor variable 312
leftToRight() method 134, 140
length() method 131
level shifters, for custom

shields 270
lib folder 223
libraries 324–327

.cpp file 325–326
defined 62
distributing 327
.h (header) file 324–325
overview 324
using in sketch 326–327
Download from Wow! eBook <www.wowebook.com>

INDEX340
light-emitting diodes. See
LEDs

LilyPad 7–8
accessories for 247
conductive thread and

fabric 247–249
wearables using 245–249

Link Binary With section 223
Linux, installing Arduino IDE

on 306–309
LiPo (lithium polymore) battery

pack 107
LiPo batteries 247
liquid crystal displays. See ICDs
LiquidCrystal library 62–63

functions for 133
overview 69

LiquidCrystial class 138
list() method 280
listen() method 74–75
lithium polymore battery pack.

See LiPo
little-endian 208
LM35 sensors 299
localIP() method 67, 166, 170
logging data 179–182

SD cards
logging data to 181–182
overview 180
SD library functions 180

types of memory 180
logical operators 319–320
long variable type 313
loop function 18, 197
loop routine 17
loops 320–322

do while loop 322
for loop 320–321
while loop 321–322

LSBs (least significant bits) 72,
194, 196

Lynx Pan 281–282

M

mA (milliamperes) 24
MAC (Media Access Control)

address 153
Mac OS X, installing Arduino

IDE on 306
macAddress() method 166
magnetic compass 257
main editor

errors in 16
overview 14–15

MainStoryboard_iPhone.story-
board 221

Maker Shed 10
Mark for Installation check

box 307
Martino, Gianluca 4
master input, slave output. See

MISO
master output, slave input. See

MOSI
Mate Silver, Bluetooth 256
Maxim IC DS18B20 temperature

sensor 141
Media Access Control address.

See MAC
MedTex 180 248
Mellis, David 4
memory

custom shields and 269–270
types of 180

memory cards 65, 270
microSD card 270
microSD shield 67
MICROSTEP option 264
milliamperes. See mA
millis() method 30–32, 35, 37–

38, 185–186
Minim library 288
MISO (master input, slave

output) 175
mkdir function 66
monitoring, temperatures 296–

300
assembling thermometer

hardware 298
code for monitoring

temperatures 299–300
serial library in Python 296–

298
MOSI (master output, slave

input) 175
Most Significant Bit. See MSB
motor brakes 89
motor control shield kit 112
motor shields 11, 262

Adafruit 262
overview 77

motor terminals 89
MotorDriving.pde 264
motors 81–113

brushless DC motors 106–111
advantages of 106–107
connecting to

Arduino 109–110
controlling 107–108

overview 106–107
reverse 110
sketch for 108–111
uploading and testing 110–

111
DC motors

connecting to Arduino 84–
86

controlling speed and direc-
tion of 87–94

sketch for 84
stopping and starting 83–

84
uploading and testing 86–

87
motor control shield 112
servomotors 102–105

connecting to Arduino 105
controlling 102–103
library functions for 103
(Servo) library functions

for 103
sketch for 104–105
uploading and testing 105

stepper motors 94–102
connecting to Arduino 98–

99
library functions for 99–101
sketch for 101
unipolar vs. bipolar 95–98
uploading and testing 101–

102
moveSlider outlet 230
MSB (Most Significant Bit) 72
multicolor backlighting 133
multimeters 96–97
musical cards 46

N

NC (normally closed) pins 86
New function 14
New Hardware Wizard 305
New Referencing Outlet

option 221, 230
newMillis variable 31
NiCd battery pack 107
Nickel mesh 248
NiMH battery pack 107
Nintendo Wii

communicating with 193–201
code to set up and power

nunchuk 194–199
complete sketch 199–201
input/output for 193
Download from Wow! eBook <www.wowebook.com>

INDEX 341
Nintendo Wii (continued)
overview 188–190
testing connection 201–202
Wii nunchuk

buttons on 190–191
connecting to

Arduino 191–193
joystick on 190
three-axis accelerometer

in 190
NO (normally open)

connection 86
noAutoscroll() method 134
noBlink() method 134, 141
noCursor() method 134, 141
noDisplay() method 134, 141
nonlinear algorithm for calculat-

ing distance 121
normally closed pins. See NC
normally open connection. See

NO
NOT operator 319
noTone command 53
null character 132, 314
number one wire 97
number_steps variable 100
nunchuck_send_request()

function 199
NunChucky 194
nunchuk_init() method 194,

196
nunchuk_setpowerpins()

function 194–195
nunchuk, Wii

buttons on 190–191
connecting to Arduino 191–

193
joystick on 190
three-axis accelerometer

in 190
NXP Semiconductors 270

O

object detection 114–128
with infrared 119–124

connecting hardware 123
nonlinear algorithm for cal-

culating distance 121
Sharp GP2D12 range

finder 121
sketch for 122–123
uploading and testing 123–

124
using with ultrasound 120

with passive infrared 124–128
connecting hardware 127–

128
Parallax PIR sensor 125
sketch for 125–126
uploading and testing 128

with ultrasound 115–118
additional pins on Devan-

tech SRF05 116
connecting hardware 118
sketch for Devantech

SRF05 117–118
sketch for Parallax

Ping 116–117
ultrasonic sensors for 115–

116
uploading and testing 118

OCT option 45
OneWire library 141–142
onReceive function 73
onRequest function 73
oomlout 10, 333
open() method 14, 66, 297
OpenCV library 282, 284
Openjdk-7-jre 307
operating voltage 24
OR operator 319
outbuf array 193, 197–198
outputPin variable 312
outrunner motor 106–107

P

P4B TTL to RS232 adapter 219–
220

Pachube 182
packets 153
Parallax Ping, sketch for 116–

117
Parallax PIR sensor 125
parallel LCDs

Hitachi HD44780 LCD 133–
139
4-bit vs. 8-bit

configurations 133
circuit diagram for 134–135
connecting to

Arduino 135–137
LiquidCrystal library

functions 133
sketch for writing to 137–

138
uploading and testing 138–

139
vs. serial LCDs 139

parsePacket() method 155
passive infrared 124–128

connecting hardware 127–
128

Parallax PIR sensor 125
sketch for 125–126
uploading and testing 128

passive infrared sensors. See PIR
PCBs (printed circuit

boards) 77
Pd patch 292, 294
pentatonic keyboard

project 54–57
circuit diagram for 54
connecting hardware 54–55
sketch for 56–57
uploading and testing 57

pentatonic scales 54
perfboard 269, 273–275
Piezo buzzer 11
piezo transducer 41
piezoelectric transducers

circuit diagram with 47–48
connecting to Arduino 48–49
overview 46–47
sketch to read from 49–50
uploading and testing 51

Pin 1 143
Pin 2 143
Pin 3 143
Pin 8 143
PIN register 195
ping sound 47
pinLED variable 311–312
pinLedGlobal 315
pinMode() function 315
PIR (passive infrared) sensors

124
port manipulation 195
PORT register 195
position function 66
post() method 160
pot trimmer tool 44
potentiometers 293, 295

connecting to Arduino 43–44
overview 43
sketch to read from 44–45
uploading and testing 45–46

potentiometers, digital 176–177
PotToMotors.pde 267
Power over Ethernet (POE)

module 6
premounted headers 254
prevState buffer 210
print command 174
Download from Wow! eBook <www.wowebook.com>

INDEX342
print function 68
print() method 139–140, 166–

167, 181, 197, 199, 279
printCustomChar()

method 141
printData() method 170–171
printed circuit boards. See PCBs
println() method 45, 66, 68–69,

154, 167, 181, 185
PrintNumber() method 146
printVersion method 68
printWifiStatus() method 169–

170
private keyword 325
Processing project 280–286

assembling hardware for face
tracking 281–282

audio analysis in 287–288
code for face-tracking 282–

286
serial communication in 280–

281
processInput method 69
project boards 269
protection diode 86
Proto-PIC 333
prototyping shields 79
public keyword 325
pull-down resistors 28
pull-up resistors 28
pulse 115
pulse width modulation. See PWM
pulseIn() method 116–117
Pure Data (Pd)

environment 292–296
assembling synthesizer

hardware 293
code for synthesizer 294–296

Pure Data environment. See Pd
push buttons, connecting to

breadboard 28–29
pushbutton switches 249
PUT command 185–186
PutChar() method 146
Puts() method 147
PWM (pulse width modulation)

42, 87–89, 99, 254
pwrpin bit 195
pySerial library 296
Python 296–300

assembling thermometer
hardware 298

code for monitoring
temperatures 299–300

serial library in 296–298

Q

QRE1113 IR-reflectance
sensor 254

R

randMax argument 35
randMin argument 35
random function 35
randomSeed function 36
reactometer project

circuit diagram for 27, 33
completed connections for 33
connecting push button to

breadboard 28–29
interrupts in 29
sketch for 25–27, 30–31, 33–38
uploading and testing 27, 32–

33, 36, 38–39
read function 65–66, 68, 70, 74
read_gp2d12 function 242
read() method 75, 104, 155,

167, 181, 281
Read/Write pin. See RW
readBytesAvailable method 238,

240
readMicroseconds()

method 104
readString() method 171
receive function 73
Redpark Product

Development 218
Redpark SDK 217–218, 220
Redpark serial cable 217–219
reduced instruction set com-

puter microprocessor. See
RISC

Register Select pin. See RS
remove function 66
replace() method 131
requestFrom function 73
resistor values, calculating 24
resources 332–333
return keyword 322
revolutions per minute. See RPM
rightMotor variable 312
rightToLeft() method 134, 140
RISC (reduced instruction set

computer) micro-
processor 5

rmdir function 66
rotary volume control 43
RPM (revolutions per

minute) 100

RS (Register Select) pin 136
RS232 adapter 220
RS232 DB-9 connector 219
RS232 to TTL adapter 229
RSSI() method 166, 170
run() method 263
RW (Read/Write) pin 137
RX pin 143

S

Sabre.cpp file 325
Sabre.h file 325
Sabre.ino file 326
Samsung KS0108 GLCD 146–

151
circuit diagram for 147–148
connecting to Arduino 148–

149
GLCDks0108 library

functions 146–147
sketch for drawing to 150
uploading and testing 151

Save function 14
scales, pentatonic 54
scanNetworks() method 166
schematic, defined 22
SCK (serial clock) 175
scope resolution operator 326
scope, of variables 315
scrollDisplayLeft() method 134
scrollDisplayRight()

method 134
SD cards 65, 270

for custom shields
connecting to

Arduino 271–272
holders for 270–271

logging data to 181–182
overview 180

SD class 66, 180–181
SD library 63, 66

functions for 180
overview 65–67

SdFat library 65–66
SDHC memory cards 65
SDShieldWriter.pde 276
Search Removable Media check

box 304
Seeeduino Film 9
seek function 66
SelectFont() method 146
selectLine() method 140
semicolon (;) character 12, 16
send function 73
Download from Wow! eBook <www.wowebook.com>

INDEX 343
send_zero() method 197, 199
sendAnalog method 69
sendData() method 186
sendDigitalPortPair method 69
sendString method 69
sendsysex method 69
sendTweet function 162
sensorPin 45, 55
sensors, logging data from

to Cosm feed 184–186
to SD card 179–182

sensors.begin() method 144
sensors.requestTemperatures()

method 145
sensorValue variable 45
serial cables 217
serial channel, software integra-

tion using 279–280
Serial class 280
serial commands 139
serial communication

in Processing project 280–
281

in Python 296–298
with Firmata library 68–69

Serial function 62
serial LCD weather station

project 139–145
circuit diagram for 142
connecting to Arduino 143
DallasTemperature

library 141–142
Maxim IC DS18B20 tempera-

ture sensor 141
OneWire library 141–142
SerLCD library

functions 139–141
sketch for writing to 144–145
uploading and testing 145

serial LCDs, vs. parallel
LCDs 139

serial monitor 15–16, 45,
50–51

serial peripheral interface. See
SPI

SerLCD library, functions
for 139–141

serLCD object 144–145
SerLCD.h file 141
serLCD() method 140
Server class 67, 156
Server function 67
Servo library 63, 70, 266

functions for 103
overview 70

servo motors, face tracking
with 280–286

assembling hardware for 281–
282

code for face-tracking 282–
286

serial communication in Pro-
cessing application 280–
281

servo object 104–105
servomotors 102–105, 267

connecting to Arduino 105
controlling 102–103
library functions for 103
sketch for 104–105
uploading and testing 105

setBitOrder() method 72, 176
setBrightness() method 140
setCharAt() method 131
setClockDivider() method 72,

176
setCursor method 69, 138
setCursor() method 134, 141
setDataMode() method 72, 176
SetDot() method 147
setFirmwareVersion method 68
setLed() method 179
setSpeed function 71, 100–101
setSplash() method 140
setup function 17–18, 171, 174
sewing thread, Shieldex 248
Sharp GP2D12 range finder 121
Shieldex sewing thread 248
shields 76–80

Adafruit motor shield 262–
269
AFMotor library 263–264
assembled vs.

unassembled 269
using with DC motor 265–

268
using with stepper

motor 264
compatibility for 80
creating custom

connecting to
Arduino 273–276

level shifters 270
memory

considerations 269–270
SD cards on 270–272
testing 276–277

Ethernet shields 77
motor shields 77
overview 261–262

prototyping shields 79
Wi-Fi shields 78–79

single backlighting 133
SINGLE option 264
single pole double throw relay.

See SPDT
Single View Application

option 221
single-view applications, for

iOS 221–223
SiP (system in package) 164
Sippino 9
size function 66
SK Pang Electronics 10, 333
sketches

break statements in 32–33
commenting in 18–19
for pentatonic keyboard

project 56–57
for reactometer project 37–38
loop function 18
setup function 17–18
using library in 326–327

slave select pin. See SS
slave select wire 71
Slider control, iOS devices

controlling LED brightness
using
sketch for 236
testing sketch 236–237
Xcode for 230–235

smart headphone project 254–
257

software integration
Firmata project 286–291

assembling equalizer
hardware 288

audio analysis in
Processing 287–288

code for equalizer 288–291
using in application 286–

287
Processing project 280–286

assembling hardware for
face tracking 281–282

code for face-tracking 282–
286

serial communication
in 280–281

Pure Data environment 292–
296
assembling synthesizer

hardware 293
code for synthesizer 294–

296
Download from Wow! eBook <www.wowebook.com>

INDEX344
software integration (continued)
Python 296–300

assembling thermometer
hardware 298

code for monitoring
temperatures 299–300

serial library in 296–298
serial channel 279–280

software, for working
environment 10

SoftwareSerial library 63, 74–75,
140, 143–145

SparkFun Electronics 139–
143

SPDT (single pole double
throw) relay 83

speakerPin variable 53, 56
speakers

circuit diagram with 51
connecting to Arduino 51
sketch for 53
uploading and testing 53–

54
speed, controlling for DC

motors
connecting hardware 91
L293D dual H driver 90
sketch for 92–94
uploading and testing 93–

94
using H-bridge 89–90
using PWM 87–89

SPI (serial peripheral
interface) 175–179

circuit diagram for 177–
178

digital LED dimmer
project 178–179

digital potentiometers 176–
177

SPI library functions 176
SPI interface 156, 164
SPI library 63, 71
SS (slave select) pin 175
SSID() method 166, 170
standard libraries 63–75

ArduinoTestSuite library 63–
64

EEPROM library 64–65
Ethernet library 67–68
Firmata library 68–69
LiquidCrystal library 69
SD library 65–67
Servo library 70
SoftwareSerial library 74–75

SPI library 71–72
Stepper library 70–71
Wire library 72–73

StandardFirmata program 288,
290

starting, DC motors 83–84
start-stop display 30
startsWith() method 131
state variable 30
status() method 160
step() method 71, 264
stepCount function 101
Stepper function 71
Stepper library 63, 70–71

overview 70–71
setSpeed function 100
Stepper function 100
steps function 100–101

stepper motors 94–102
connecting to Arduino

98–99
library functions for 99–

101
setSpeed function 100
Stepper function 100
steps function 100–101

sketch for 101
unipolar vs. bipolar 95–98
uploading and testing 101–

102
using Adafruit motor shield

with 264
stepper_oneStepAtATime

sketch 101
stop() method 68, 167
stopping DC motors 83–84
storing data, SD library 65–67
String class 130–132, 314
String data type 130–133
subnetMask() method 166
substring() method 131
Supported External Accessory

Protocols option 228
Supporting Files group 228
sweep sketch 104
switch statement 32
switch variable 226
switch-case statements 318–

319
Synaptic Package Manager 306–

307
synthesizer

assembling hardware for 293
code for 294–296

system in package. See SiP

T

Tag value 231
TButton 191
TCP (Transmission Control

Protocol) 153
TCP/IP stack 67, 77
TDD (test-driven

development) 63–64
Temperature Sensor 247
temperatures, monitoring 296–

300
assembling thermometer

hardware 298
code for monitoring

temperatures 299–300
serial library in Python 296–

298
test-driven development. See

TDD
testing

custom shields 276–277
sketches 13–14

thermometer, assembling hard-
ware for 298

thread, conductive, for
LilyPad 247–249

three-axis accelerometer, in Wii
nunchuk 190

threshold sketch 50
Tilt kit 281–282
toCharArray() method 131
toggleLED action 224
toggleSplash() method 140
toggleSwitch outlet 224
tokens, for Twitter

integration 160
toLowerCase() method 131
toneDuration variable 53, 56
toneFrequency variable 53–

54
tones array 56–57
Tools menu 138
tools, for working

environment 11
torque 95
toUpperCase() method 131
transfer function 72
transfer() method 176, 179
transistor-transistor logic. See

TTL
Transmission Control Protocol.

See TCP
tri-color backlight 145
Trim() method 131
Download from Wow! eBook <www.wowebook.com>

INDEX 345
trimpots 43, 134, 136
troubleshooting, web server on

Arduino 159
truth tables 92, 96
TTL (transistor-transistor

logic) 139, 219–220
turn-signal jacket project 249–

251
TWI (two-wire interface) 72,

191
Twitter integration 159–163

circuit diagram for 161
sketch for 161–162
tokens for 160
Twitter library functions 160
uploading and testing 163

Twitter() method 160
two-wire interface. See TWI

U

UDP class 155
ultrasonic sensors, for

ultrasound 115–116
ultrasound 115–118

additional pins on Devantech
SRF05 116

connecting hardware 118
sketch for Devantech

SRF05 117–118
sketch for Parallax Ping 116–

117
ultrasonic sensors for 115–

116
uploading and testing 118
using with infrared 120

unassembled shields, vs. assem-
bled shields 269

unipolar stepper motors 95–98
unsigned int variable type 313
unsigned long variable type 313
Upload button 13
Upload function 14
Upload icon 138
uploading to Arduino 13–14
USB Host Shield library, for

Xbox 203–204
USB-to-serial driver 6

V

V0 pin 137
varA variable 315
varB variable 315
varC variable 315

variable resistance 87
variables 311–315

arrays 313–314
constants 314–315
scope of 315
strings 314
types of 312

Vcc pin 136–137
Vdd pin 143
Verify function 14
Vibe Board 247
ViewController.h 221, 238
ViewController.m 226, 233
volatile keyword 30
voltage output 121
volume control 43
Vss pin 136–137

W

wait() method 160
wearable piano project 251–253
wearables 244–260

jacket with compass
project 257–260

smart headphone
project 254–257

turn-signal jacket
project 249–251

using Arduino Pro Mini 254
using LilyPad 245–249

accessories for 247
conductive thread and

fabric 247–249
wearable piano project 251–

253
web server on Arduino 156–159

overview 156–157
sketch for 158–159
troubleshooting 159
uploading and testing 159

while loop 321–322
Wi-Fi 163–171

connecting to Arduino 168
sketch for 168–171
uploading and testing 171
WiFi library functions 165
Wifi Shield 164–165
wireless accelerometers 167

Wi-Fi shields 78–79, 164–165
WiFiClient() method 167
Wii, Nintendo

communicating with 193–201
code to set up and power

nunchuk 194–199

complete sketch 199–201
input/output for 193

overview 188–190
testing connection 201–202
Wii nunchuk

buttons on 190–191
connecting to

Arduino 191–193
joystick on 190
three-axis accelerometer

in 190
WiiChuck 194
Windows

installing Arduino drivers
for 302–305

installing Arduino IDE
on 302–305

wiper connection 43
wire designations 71
Wire library 63, 73, 258
wireless accelerometers 167
wires, color designations for

191
Wiring library 311
WMW (pulse width

modulation) 5
word variable type 313
write() method 104, 134, 154–

155, 167, 181, 297
writemem() method 258
writeMicroseconds function 70,

104

X

X-axis acceleration 193
X-axis joystick 193
x-axis servo 281
Xbox 202–214

communicating with 204–
206

connecting to Arduino 203
default boot

configurations 208
input report for

interface 206–208
sketch for 210–213
testing connection 213–214
USB Host Shield library

for 203–204
Xboxhidboot library

files 208–210
Xboxhidboot.cpp file 209–

210
Xboxhidboot.h file 209
Download from Wow! eBook <www.wowebook.com>

INDEX346
Xboxhid.ino sketch 214
Xboxhidboot library files 208–

210
Xboxhidboot.cpp file 209–210
Xboxhidboot.h file 209

Y

Y-axis acceleration 193
Y-axis joystick 193
y-axis servo 281

Z

Z-axis acceleration 194
zener diode 47–50, 54
Download from Wow! eBook <www.wowebook.com>

Evans ● Noble ● Hochenbaum

A
rduino is an open source do-it-yourself electronics platform
that supports a mind-boggling collection of sensors and
actuators you can use to build anything you can imagine.

Even if you’ve never attempted a hardware project, this easy-to-
follow book will guide you from your fi rst blinking LED through
connecting Arduino to your iPhone.

Arduino in Action is a hands-on guide to prototyping and build-
ing DIY electronics. You’ll start with the basics—unpacking your
board and using a simple program to make something happen.
Th en, you’ll attempt progressively more complex projects as
you connect Arduino to motors, LCD displays, Wi-Fi, GPS,
and Bluetooth. You’ll explore input/output sensors, including
ultrasound, infrared, and light, and then use them for tasks like
robotic obstacle avoidance.

What’s Inside
● Getting started with Arduino—no experience required!
● Writing programs for Arduino
● Sensing and responding to events
● Robots, fl ying vehicles, Twitter machines,
 LCD displays, and more!

Arduino programs look a lot like C or C++, so some program-
ming skill is helpful.

Martin Evans is a professional developer, a lifelong electronics en-
thusiast, and the creator of an Arduino-based underwater ROV.
Joshua Noble is an author and creative technologist who works
with smart spaces. Jordan Hochenbaum uses Arduino to explore
musical expression and creative interaction.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/ArduinoinAction

$39.99 / Can $41.99 [INCLUDING eBOOK]

Arduino IN ACTION

ARDUINO/ELECTRONICS

M A N N I N G

“Well-written with many
helpful examples.

 Not just for practice!”—Matt Scarpino
author of OpenCL in Action

“Merges soft ware hacking
 with hardware tinkering.”—Philipp K. Janert

author of Gnuplot in Action

“A comprehensive
 introduction to Arduino.”—Steve Prior, geekster.com

“Takes us to a brand new
 world—planet Arduino.”

—Nikander & Margriet Bruggeman
Lois & Clark IT Services

“A solid, applications-
 oriented approach.”—Andrew Davidson, Human-

Centered Design & Engineering

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the cover illustration
	Part 1—Getting started
	1 Hello Arduino
	1.1 A brief history of the Arduino
	1.2 The Arduino hardware
	1.2.1 Arduino Uno
	1.2.2 Arduino Duemilanove
	1.2.3 Arduino Ethernet
	1.2.4 Arduino Mega
	1.2.5 Other Arduino boards
	1.2.6 Attack of the clones
	1.2.7 Getting an Arduino

	1.3 Setting up your working environment
	1.3.1 Software for Arduino
	1.3.2 Basic hardware setup
	1.3.3 Your Arduino toolbox

	1.4 Make something happen!
	1.4.1 Your first blinking LED
	1.4.2 Sketch to make an LED blink
	1.4.3 Connecting everything
	1.4.4 Uploading and testing

	1.5 Touring the IDE
	1.5.1 The main editor
	1.5.2 Serial monitor
	1.5.3 Catching errors
	1.5.4 Process

	1.6 Anatomy of a sketch
	1.6.1 A routine called setup
	1.6.2 The endless loop

	1.7 Commenting code
	1.8 Summary

	2 Digital input and output
	2.1 Getting started
	2.1.1 Using a breadboard
	2.1.2 Circuit diagram
	2.1.3 Adding the LEDs
	2.1.4 Connecting the hardware
	2.1.5 Sketch to flash five LEDs
	2.1.6 Upload and test

	2.2 Gaining control
	2.2.1 Circuit diagram
	2.2.2 Connections
	2.2.3 Interrupts butting in
	2.2.4 Sketch to control the LEDs with a push button
	2.2.5 Upload and test
	2.2.6 Time for a break
	2.2.7 Upload and test

	2.3 Reaction tester
	2.3.1 Circuit diagram
	2.3.2 Connections
	2.3.3 Sketch to test reaction speed
	2.3.4 Upload and test

	2.4 Reactometer: Who really has the fastest reaction time?
	2.4.1 Sketch to measure reaction speed
	2.4.2 Upload and test

	2.5 Summary

	3 Simple projects: input and output
	3.1 Time to get analog
	3.1.1 What’s the difference between analog and digital?
	3.1.2 Reading a potentiometer
	3.1.3 Connecting the hardware
	3.1.4 Sketch to read a potentiometer
	3.1.5 Upload and test

	3.2 A piezoelectric transducer
	3.2.1 The circuit diagram
	3.2.2 Connecting the hardware
	3.2.3 Sketch to measure output from a piezoelectric transducer
	3.2.4 Upload and test
	3.2.5 Circuit with added speaker
	3.2.6 Connecting the hardware
	3.2.7 Sketch to generate a tone
	3.2.8 Upload and test

	3.3 Making a pentatonic or five-tone keyboard
	3.3.1 Circuit diagram
	3.3.2 Connecting the hardware
	3.3.3 Sketch to create a pentatonic keyboard
	3.3.4 Upload and test

	3.4 Summary

	Part 2—Putting Arduino to work
	4 Extending Arduino
	4.1 Extending the Arduino with libraries
	4.2 Core library
	4.3 Standard libraries
	4.3.1 Test-driven development with ArduinoTestSuite
	4.3.2 Storing values using EEPROM
	4.3.3 Storing more data with SD
	4.3.4 Get connected with Ethernet
	4.3.5 Serial communication with Firmata
	4.3.6 Displaying data using the LiquidCrystal library
	4.3.7 Controlling a servo motor
	4.3.8 Turning a stepper motor
	4.3.9 Communicating with SPI peripherals
	4.3.10 Communicating with the two-wire interface
	4.3.11 Get more serial ports with SoftwareSerial

	4.4 Contributed libraries
	4.4.1 Installing a new library

	4.5 Expanding the Arduino with shields
	4.5.1 Common shields
	4.5.2 Gotchas: will it work with my Arduino?

	4.6 Summary

	5 Arduino in motion
	5.1 Getting up to speed with DC motors
	5.1.1 Stopping and starting
	5.1.2 Sketch to turn a small DC motor on and off
	5.1.3 Connecting the hardware
	5.1.4 Upload and test

	5.2 Speed control and reverse
	5.2.1 PWM to the rescue
	5.2.2 The H-bridge for motor control
	5.2.3 The L293D dual H driver
	5.2.4 Connecting the hardware
	5.2.5 Sketch to control a motor with an L293D
	5.2.6 Upload and test
	5.2.7 Changing motor speed
	5.2.8 Upload and test

	5.3 Stepper motors: one step at a time
	5.3.1 Unipolar or bipolar
	5.3.2 Connecting the hardware
	5.3.3 Stepper motor library functions
	5.3.4 Sketch to control a stepper motor
	5.3.5 Upload and test

	5.4 Try not to get in a flap with servomotors
	5.4.1 Controlling a servomotor
	5.4.2 Servomotor functions and methods
	5.4.3 Sketch to control a servomotor
	5.4.4 Connecting the hardware
	5.4.5 Upload and test

	5.5 Mighty power comes in small packages with brushless DC motors
	5.5.1 Why go brushless
	5.5.2 Gaining control
	5.5.3 Sketch to control a brushless motor
	5.5.4 Connecting the hardware
	5.5.5 Upload and test
	5.5.6 Reverse
	5.5.7 Sketch to reverse a brushless motor
	5.5.8 Connecting the hardware
	5.5.9 Upload and test

	5.6 The motor control shield for more motors
	5.7 Summary

	6 Object detection
	6.1 Object detection with ultrasound
	6.1.1 Choosing an ultrasonic sensor
	6.1.2 Three wires or four
	6.1.3 Sketches for ultrasonic object finding
	6.1.4 Connecting the hardware
	6.1.5 Upload and test

	6.2 Infrared for range finding
	6.2.1 Infrared and ultrasound together
	6.2.2 The Sharp GP2D12 range finder
	6.2.3 Nonlinear algorithm for calculating distance
	6.2.4 Sketch for range finding
	6.2.5 Connecting the hardware
	6.2.6 Upload and test

	6.3 Passive infrared to detect movement
	6.3.1 Using the Parallax PIR sensor
	6.3.2 Sketch for infrared motion detection
	6.3.3 Connecting the hardware
	6.3.4 Upload and test

	6.4 Summary

	7 LCD displays
	7.1 Introduction to LCDs
	7.1.1 String variables: String type vs. char type

	7.2 Parallel character LCDs: the Hitachi HD44780
	7.2.1 4-bit or 8-bit?
	7.2.2 Library and functions
	7.2.3 Circuit diagram
	7.2.4 Connecting everything up in 4-bit mode
	7.2.5 Sketch for writing to the Hitachi HD44780
	7.2.6 Upload and test

	7.3 Serial LCD weather station
	7.3.1 Serial vs. parallel LCDs
	7.3.2 SerLCD library and functions
	7.3.3 The Maxim IC DS18B20 temperature sensor
	7.3.4 OneWire and DallasTemperature libraries
	7.3.5 Circuit diagram
	7.3.6 Connecting everything up
	7.3.7 Sketch for an LCD weather station
	7.3.8 Upload and test

	7.4 Graphic LCDs: the Samsung KS0108 GLCD
	7.4.1 Library and functions
	7.4.2 Circuit diagram
	7.4.3 Connecting everything up
	7.4.4 Sketch for drawing to a GLCD
	7.4.5 Upload and test

	7.5 Summary

	8 Communications
	8.1 Ethernet
	8.1.1 The Ethernet library
	8.1.2 Ethernet Shield with SD data card

	8.2 Arduino web server
	8.2.1 Setting up the server
	8.2.2 Sketch for creating a web server
	8.2.3 Upload and test
	8.2.4 Troubleshooting

	8.3 Tweet tweet: talking to Twitter
	8.3.1 Of Twitter and tokens
	8.3.2 Libraries and functions
	8.3.3 Circuit diagram and connecting the hardware
	8.3.4 Sketch for the Twitter button-press tweeter
	8.3.5 Upload and test

	8.4 Wi-Fi
	8.4.1 Arduino Wifi Shield
	8.4.2 WiFi library and functions
	8.4.3 Gestures: wireless accelerometers
	8.4.4 Connecting the hardware
	8.4.5 Sketch for Bluetooth communication
	8.4.6 Upload and test

	8.5 Bluetooth wireless
	8.5.1 ArduinoBT
	8.5.2 Adding Bluetooth
	8.5.3 Establishing a Bluetooth connection
	8.5.4 Sketch for Bluetooth communication

	8.6 Serial peripheral interface (SPI)
	8.6.1 SPI library
	8.6.2 SPI devices and digital potentiometers
	8.6.3 Circuit diagram and connecting the hardware
	8.6.4 Sketch for a digital LED dimmer

	8.7 Data logging
	8.7.1 Types of memory
	8.7.2 SD cards and SD library
	8.7.3 Sketch for an SD card sensor logger

	8.8 Cosm
	8.8.1 Sign up for an account and get an API key
	8.8.2 Creating a new data feed
	8.8.3 Sketch for Cosm sensor logging
	8.8.4 Upload and test

	8.9 Summary

	9 Game on
	9.1 Nintendo Wii salutes you
	9.1.1 Wii Nunchuk
	9.1.2 Nunchuk connections
	9.1.3 Wii will talk
	9.1.4 Wii will test

	9.2 Release the Xbox
	9.2.1 Getting connected
	9.2.2 USB Host library
	9.2.3 Learning about the Xbox controller using the USB Host Shield
	9.2.4 Xbox reporting for duty
	9.2.5 Let’s boot it
	9.2.6 Interfacing with code
	9.2.7 Xboxhid.ino
	9.2.8 Hardware connections and testing

	9.3 Summary

	10 Integrating the Arduino with iOS
	10.1 Connecting your device to the Arduino
	10.1.1 The Redpark serial cable
	10.1.2 The final connection

	10.2 iOS code
	10.2.1 Creating a single-view application in Xcode
	10.2.2 Writing the code

	10.3 The Arduino gets involved
	10.3.1 Sketch to switch LED from iOS device
	10.3.2 Testing the sketch

	10.4 Doing more with Xcode
	10.4.1 Adding a Slider control

	10.5 Arduino sliding
	10.5.1 Arduino slider circuit
	10.5.2 Testing the circuit

	10.6 Moving data to the iOS device
	10.6.1 Xcode coding
	10.6.2 The GP2D12 IR distance sensor
	10.6.3 Testing

	10.7 Summary

	11 Making wearables
	11.1 Introducing the LilyPad
	11.1.1 LilyPad accessories
	11.1.2 Conductive thread and fabric

	11.2 Creating a turn-signal jacket
	11.3 Creating a wearable piano
	11.4 The Arduino Pro Mini
	11.5 Creating a smart headphone
	11.6 Creating a jacket with a compass
	11.7 Summary

	12 Adding shields
	12.1 Shield basics
	12.2 The Adafruit motor shield
	12.2.1 The AFMotor library
	12.2.2 Using the motor shield with a stepper motor
	12.2.3 Using the motor shield with a DC motor
	12.2.4 Getting a motor shield

	12.3 Creating your own shield
	12.3.1 Memory
	12.3.2 Level shifters
	12.3.3 The SD card holder
	12.3.4 Connecting the SD card to the Arduino
	12.3.5 Preparing the perfboard
	12.3.6 Testing the shield

	12.4 Summary

	13 Software integration
	13.1 The serial channel
	13.2 Servos for face tracking
	13.2.1 Assembling the face-tracking hardware
	13.2.2 Code for face-tracking

	13.3 Using Firmata to create an equalizer
	13.3.1 Using Firmata in your application
	13.3.2 Audio analysis in Processing
	13.3.3 Assembling the equalizer hardware
	13.3.4 Code for the equalizer

	13.4 Using Pure Data to create a synthesizer
	13.4.1 Assembling the synthesizer hardware
	13.4.2 Code for the synthesizer

	13.5 Using Python to monitor temperatures
	13.5.1 The Serial library in Python
	13.5.2 Assembling the thermometer hardware
	13.5.3 Code for monitoring temperatures

	13.6 Summary

	appendix A Installing the Arduino IDE
	A.1 Windows
	A.1.1 Installing drivers for your board

	A.2 Mac OS X
	A.3 Linux

	appendix B Coding primer
	B.1 The Arduino language
	B.2 Variables
	B.2.1 Variable types
	B.2.2 Arrays
	B.2.3 Strings
	B.2.4 Constants
	B.2.5 Variable scope

	B.3 Taking control
	B.3.1 If, else, else if
	B.3.2 Switch case
	B.3.3 Logical operators

	B.4 Going loopy
	B.4.1 The for loop
	B.4.2 The while loop
	B.4.3 The do while loop

	B.5 Functions
	B.6 Summary

	appendix C Libraries
	C.1 Anatomy of a library
	C.1.1 The .h (header) file
	C.1.2 The .cpp file

	C.2 Using a library
	C.2.1 Using a library in a sketch
	C.2.2 Distributing a library

	appendix D Components list
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	appendix E Useful links
	Additional Arduino articles
	Other useful links and materials

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

