
ptg

ptg

Scriptin’ with JavaScript
and Ajax:

A Designer’s Guide
C H A R L E S W Y K E - S M I T H

ptg

Scriptin’ with JavaScript and Ajax: A Designer’s Guide
Charles Wyke-Smith

New Riders
1249 Eighth Street
Berkeley, CA 94710

510/524-2178

Find us on the Web at www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2010 Charles Wyke-Smith

Development Editor and Compositor: Beth Bast

Project Editor: Nancy Peterson

Technical Editor: Christian Heilmann

Production Coordinator: Hilal Sala

Copy Editor and Proofreader: Anne Marie Walker

Marketing Manager: Glenn Bisignani

Indexer: Joy Dean Lee

Cover Design: Aren Howell

Cover Production: Hilal Sala

Interior Design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained
in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout this
book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of
the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation
with this book.

Technical Note: This book was produced using Adobe InDesign. Code was developed in Adobe Dreamweaver.
Graphics were designed in Adobe Fireworks and Adobe Photoshop. Screenshots were taken with SnapzProX by
Ambrosia Software.

ISBN 13: 978-0-321-57260-8
ISBN 10: 0-321-57260-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

ptg

For Beth

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xiv

Acknowledgments

I want to first thank Nancy Ruenzell, Peachpit’s publisher, for the
opportunity to write another book on the New Rider’s imprint, and
Michael Nolan, Peachpit Acquisitions Editor, for encouraging me to
complete the …in’ trilogy.

Nancy Peterson, my Project Editor, has been a wise and gracious
advisor while keeping me focused on the time deadline, which I
have actually met. Our weekly conference calls have been a won-
derful source of guidance and encouragement, and have greatly
contributed to this book’s direction and focus. To you, Nancy, my
sincere thanks, and I hope we will meet in person sometime soon.

Thanks go to the editorial and production team at Peachpit: to
production editor Hilal Sala for her attention to the myriad details
getting the pages ready to go to press, to Anne Marie Walker for her
copyediting and proofing, and to Joy Dean Lee for the indexing.

Several programmers have worked with me on this book. Michael
Rosier assisted with the initial table of contents and some early code
examples. Mark Turansky has been a valuable source of advice and
ideas, and developed the framework examples in Chapter 6. Austin
Markus of Ithus in San Francisco, who was the technical editor on
my book Codin’ for the Web, wrote the PHP and much of the jQuery
for the Author Carousel example in Chapter 7.

My sincere thanks go to Chris Heilmann, International
Development Evangelist for the Yahoo! Development Network and
JavaScript genius. He has been invaluable as the technical editor
of this book, and I am grateful to him for his detailed and always
humorous feedback on the code. He also developed the YUI exam-
ple in Chapter 7. I am glad that he is such a night owl because I have
often been able to videoconference with him on Skype in the early
hours in London where he lives to get advice when working late
here in South Carolina. It has been a great experience working with
Chris, and I thank him for the time he has given to this project.

Special thanks goes to Scott Fegette, Technical Product Manager
for Dreamweaver at Adobe, for his ongoing support and
encouragement.

A quick shout-out goes to David Sarnoff, Sean Rose, and
Mike Harding, fellow musicians in my band Mental Note (www.
mentalnoteband.com). Guys, being able to get out and play from

www.mentalnoteband.com
www.mentalnoteband.com

ptg

v

time to time during the development of this book has helped keep
me sane, and I appreciate your friendship and the time we spend
making music.

Once again, a big hug and a kiss for my wife Beth, who has
expanded her role from my previous books to Development Editor
on this one, and who has advised me on every aspect of it. She has
edited the drafts of the chapters, corrected my grammar, reedited
my run-on sentences (yes, still doing that), and had me rework my
explanations until I produced something she could understand. She
has coordinated the deliveries of the numerous rounds of chapters
with the Peachpit team, developed the diagrams from my sketches,
and, not least, laid out the entire book in its final form in Adobe
InDesign. Thanks to you, sweetie, we did it again!

To my lovely daughters, Jemma and Lucy, we once again have had
less time together while I have been writing, and now it’s time for
our vacation. I love you so much, appreciate your patience while I
have been shut in my office writing, and look forward to enjoying
the rest of the summer with you both.

Finally, I want to thank you, my readers, for buying my books and
for sharing your experiences using the techniques and ideas in
them. I’m delighted to have finally completed this JavaScript book in
response to all of you who have encouraged me to write it.

—Charles Wyke-Smith
Charleston, South Carolina, July 12, 2009

AC K N O W LE D G M E NT S

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xvi

About the Author

Charles Wyke-Smith is the author of Stylin’ with CSS: A Designer’s
Guide and Codin’ for the Web: A Designer’s Guide to Developing
Dynamic Web Sites. Charles has been involved in print, multime-
dia and Web design for over twenty years. He founded PRINTZ
Electronic Design in San Francisco in the mid-eighties, an early all-
computerized design studio, and was a pioneer in interactive media
development.

He has been creating Web sites since 1994 and has provided Web
design and consulting service to companies including Wells-Fargo,
Benefitfocus, ESPN Video Games, and University of California, San
Francisco.

His work today focuses on online application development, with
an emphasis on user experience, information architecture, and
interface design.

An accomplished speaker and instructor, Charles has taught classes
in multimedia interface design and has presented at many industry
conference.

He lives with his wife, Beth, and two daughters in Charleston,
South Carolina.

ptg

vii

Contributors

Christian Heilmann is a geek and hacker by heart. He’s been a pro-
fessional Web developer for about eleven years and worked his way
through several agencies up to Yahoo!, where he delivered Yahoo!
Maps Europe and Yahoo! Answers.

He’s written two books and contributed to three others on
JavaScript, Web development, and accessibility. He managed teams
in the U.S., India, and the U.K. to release dozens of online articles
and hundreds of blog posts in the last few years.

He’s been nominated Standards Champion of the Year 2008 by .net
magazine in the UK. Currently he sports the job title International
Developer Evangelist, spending his time going from conference to
conference and university to university to train people on systems
provided by Yahoo! and other Web companies.

Austin Markus is a Web application developer and principal of
Ithus Digital in San Francisco.

He first got excited about computers and programming in the pre-
Internet days, running a BBS out of his bedroom and marveling
when people connected from around the country and the world.
His early work included developing ActionScript demonstration
applications for Macromedia and a Telex-to-Internet publishing
system for the San Francisco Chronicle.

Today, he develops applications from e-commerce stores, to content
management systems, to social networking applications.

Austin is a big believer in Open Source and has contributed modules
to Drupal and jQuery among others. He thinks the next big thing
will be pervasive computing and augmented reality. To this end,
he is presently working on an application for the Android mobile
platform to bridge the gap between the online and real world.

A B O U T TH E AU TH O R & C O NT R I B U TO R S

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xviii

Contents
Introduction • xii

C HAP TE R 1 : JAVA S C R I P T C O M E S O F AG E • 2

Accessibility and Progressive Enhancement • 5

Three Steps to Progressive Enhancement • 7

1. Make It Functional • 8

2. Make It Look Good • 17

3. Enhance the Experience with JavaScript and Ajax • 21

Summary • 23

C HAP TE R 2 : JAVA S C R I P T B A S I C S • 24

Running the Code Examples • 26

Hello, JavaScript • 27

Scripts, Statements, and Comments • 28

Scripts • 28

Statements • 28

Comments • 29

Data and Ways to Store It • 30

Variables • 30

Strings • 32

Numbers • 34

Booleans • 34

Arrays • 34

Code that Acts on Data • 38

Operators • 38

Loops and Iterating Over Data • 46

Functions • 50

Summary • 55

C HAP TE R 3 : O B J E C T S AN D TH E D O M • 56

Objects • 58

Predefined JavaScript Objects • 59

ptg

ix

User-created Objects • 60

Objects and Instances • 63

DOMinating the Document • 68

Getting Around the DOM • 68

Get, Set...DOM! • 70

Modifying Element Styles • 75

Zebra Tables • 78

Refactoring the Code • 85

Summary • 87

C HAP TE R 4 : E V E NT S • 8 8

Techniques to Handle Events • 90

JavaScript Pseudo Protocol • 90

Inline Event Handler • 91

Handler as Object Property • 93

Event Listeners • 94

The First Event: load • 97

Adding Event Listeners on Page Load • 99

The Event Object • 103

The Event Object’s Type Property • 104

The Event Object in Microsoft Browsers • 105

The Secret Life of Events • 111

Capturing and Bubbling • 112

Event Delegation • 112

Striped Table with Rollovers • 113

Using an Element as a Debugging Tool • 113

Mouse Events • 114

Event Delegation • 114

Determining the Target Element • 116

Traversing the DOM • 118

Adding the Highlight • 120

The Up and Down Life of Keys • 122

Text Fields with Character Limits • 123

Setting Up the Message Display • 124

Monitoring the Character Count • 127

C O NTE NT S

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xx

The Finished Code • 130

Summary • 131

C HAP TE R 5 : A JA X • 132

Understanding Ajax • 134

Ajax by the Letters • 134

Communication with the Server • 136

The XMLHttpRequest Object • 138

How to Use the XMLHttpRequest (XHR) Object • 139

Using the Ajax Function • 144

Using an Object Literal to Maintain State Through an Ajax
Call • 146

Ajax and Data Formats • 149

Creating a Simple Catalog • 149

Using PHP Templates • 150

An Ajax-ready Page • 155

Adding Ajax Functionality to the Catalog • 156

An Accessible Catalog • 161

Working with JSON • 162

The Guitar Catalog Using JSON • 164

Using XML • 167

Using Sajax—the Simple Ajax Framework • 173

Summary • 177

C HAP TE R 6 : FR A M E W O R K S • 178

About Frameworks • 180

Advantages of Frameworks • 180

Considerations When Using a Framework • 181

Namespacing • 182

Pseudo-global Variables • 184

Ajax Implementation in Four Frameworks • 186

jQuery Namespace • 186

Prototype • 188

Yahoo! User Interface (YUI) • 189

Adobe Spry • 190

ptg

xi

RIA Components • 191

Accordion with jQuery and Spry • 191

Highlight with Prototype and Spry • 195

Drag-and-drop with Prototype and jQuery • 197

Tabs with jQuery and Spry • 200

Summary • 203

C HAP TE R 7 : T W O S I M P LE W E B APP LI C ATI O N S • 20 4

About the Projects • 206

An Image Carousel • 207

A Location Finder with AutoComplete • 208

Building the Author Carousel • 209

Styling the Carousel • 211

Managing the Scrollbar • 214

The PHP Backend • 215

Layering on the JavaScript • 222

Implementing the Carousel Interactions • 224

Implementing the Overlay • 228

Parsing the JSON with JavaScript • 230

AutoComplete and Maps with the Yahoo! API • 233

The Location Data • 234

The Project Template—index.php • 234

The Search Form Script—searchform.php • 239

Implementing Search Without JavaScript—
searchresults.php • 248

Summary • 250

APPE N D I X A • 252

APPE N D I X B • 258

APPE N D I X C • 272

APPE N D I X D • 276

I N D E X • 282

C O NTE NT S

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xxii

Introduction
Scriptin’ with JavaScript and Ajax is the third in a series of books
aimed at introducing designers and programmers to the process
of developing browser-based interfaces. The first, Stylin’ with CSS,
focuses on the structure and styling of content, and the second,
Codin’ for the Web, focuses on the three-tier architecture of browser,
middleware, and database that are the core components of almost
every Web site.

The focus of this third book is JavaScript, and a JavaScript-based
programming technique called Ajax that dramatically improves
communication between the user’s browser and the Web server.
The goal of this book is to teach you how to use JavaScript and Ajax
to develop sophisticated and responsive user interfaces for today’s
Web sites and online applications. Ajax has given a new purpose
to JavaScript, and virtually all of today’s successful sites and online
applications use JavaScript and Ajax extensively.

About This Book
My objective in writing this book is to provide you with a solid
understanding of how JavaScript is written and the possibilities it
offers, and how to develop robust and compact code that runs reli-
ably in all modern Web browsers. Through numerous examples that
build on each other, you will develop the understanding and skills
to use JavaScript to improve the user experience and performance
of the Web sites you develop. All the examples can be readily added
into your own pages, which is a great way to start using JavaScript.
Along the way, I’ll show you techniques, shortcuts, and pitfalls
learned from the development of many projects.

As with my other books, the focus is on developing practical, profes-
sional, and, hopefully, profitable skills.

While this is a book about JavaScript, it has, by necessity, a broader
scope. JavaScript cannot be used in isolation: Its purpose is to
enhance a Web page with behaviors. It acts on a page’s structure (the
HTML markup) and its presentation (the CSS styling) to provide
interactivity in what would otherwise be a static page. Through Ajax
interactions, JavaScript can also request content from the server
by communicating with the middleware that generates pages and
manages communication with the database.

ptg

xiii

This means that HTML, CSS, and server middleware (I use PHP
in this book) must all be considered when discussing JavaScript.
Therefore, don’t be surprised to find that many pages of this book
illustrate HTML, CSS, and PHP code: This code is the context within
which JavaScript operates. I provide detailed explanations of the
purpose of such code, but you will benefit most from this book
if you already have a good grounding in HTML, CSS, and PHP or
another middleware language such as .NET or Java.

Also, let me state what this book is not. First, it is not a compre-
hensive coverage of JavaScript. While I show plenty of real-world
examples using coding techniques that are far beyond the basics,
I don’t cover the most advanced topics such as prototypal inheri-
tance and closures. However, after reading Scriptin’, such subjects
will certainly be more understandable to you, and throughout, I
provide many references to resources that can further grow your
skills. Second, I don’t provide details of every property and method
of every object in the JavaScript language. There are many excellent
reference books and online resources available that can provide you
with that information, and I mention many of them in this book.

About JavaScript

JavaScript is the only programming language that runs in the
browser, and you cannot build a modern Web application without
it. Today’s users expect forms to be validated as they fill them out,
on-demand content delivery without waiting for new pages, and a
general application-like look and feel to the interface. JavaScript is
the key to meeting these expectations.

The lines between Web sites and online applications are becom-
ing blurred: Is Facebook a Web site or an online application? It’s
accessed over the Web but its interface and its ability to update data
without page refreshes give it characteristics of a desktop applica-
tion. Certainly, I use the term Web site and online application rather
interchangeably in this book—it may be becoming a meaningless
distinction.

As part of its new role in powering interactive interfaces, JavaScript
has recently been getting the kind of attention from browser devel-
opers that CSS received some years ago in an effort to standardize
its implementation across all browsers. CSS is now much improved
in this regard, but JavaScript still has many differences in the
way it works across the various browsers. These differences are a
throwback to the days of the “browser wars” where Netscape and

I NT R O D U C TI O N

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xxiv

Microsoft spent the late 90s developing competing features in an
effort to differentiate their virtually identical products.

JAVA S C R I P T ’ S W 3 C AN D M I C R O S O F T I M P LE M E NTATI O N M O D E L S

A legacy of the browser wars is two different implementations of
JavaScript. Microsoft browsers adhere to what I will refer to in this
book as the Microsoft model, and other browsers, most notably
Firefox, Safari, and Opera, follow a standard that I refer to in this
book as the World Wide Web Consortium (W3C) model.

The most significant differences between the W3C and Microsoft
models are in three crucial areas of JavaScript’s implementation: the
event object that records the location (which element) and the type
(mouse click, key press, etc.) of user actions; the XMLHttpRequest
object that manages Ajax requests; and the load event, which
enables a page to be initialized with JavaScript-driven behaviors as
soon as it arrives in the browser. In this book, I’ll illustrate ways your
code can detect whether the user’s browser implements the W3C or
Microsoft model and respond appropriately.

These browser differences, the often verbose nature of JavaScript
code, and the demand for more sophisticated interactions in the
user interface have driven the development of numerous JavaScript
frameworks to address these issues. Frameworks, or libraries as they
are often known, provide extensive prebuilt functionality for com-
mon tasks, sophisticated interface components, cross-browser com-
patibility, and, in many cases, virtually a new language that runs on
top of JavaScript. Frameworks can dramatically reduce development
time, and I’ll show examples of several frameworks and their capa-
bilities in the later chapters.

AC C E S S I B I LIT Y

For your Web site to reach the widest possible audience on the wid-
est range of devices, JavaScript should be used only to enhance
already functional Web pages. No site should entirely depend on
JavaScript for its operation: This is an issue of accessibility that I
discuss in Chapter 1. Unfortunately, many sites today are totally
dependent on JavaScript for their operation. Such sites are unusable
by those who cannot run JavaScript in their browsers, who are visu-
ally impaired and rely on screen readers, or who are physically inca-
pable of the gestures that a JavaScript-driven site may require, such
as using the mouse to drag and drop an element.

ptg

xv

In this book, you will learn how to design Web sites that provide
the best experience to users with JavaScript, and yet still provide
an acceptable and functional experience for those users who, for
whatever reason, cannot run JavaScript in their browsers or cannot
interact with the more complex interface features JavaScript can
provide. In Chapter 7, I show two projects that make extensive use
of JavaScript and Ajax, yet both of these projects are still useable if
JavaScript is not present.

Getting Ready to Use This Book

If you were to ask me, “How should I go about learning JavaScript
from this book?,” here’s what I would say.

Start by just reading through the book. Find somewhere quiet when
you have a couple of hours and skim through it. Don’t worry about
understanding everything the first time, just become familiar with
the content of the book and the examples it contains. If you have a
computer at hand so you can review the examples on the Scriptin’
Web site as you read, so much the better.

Take time to study the code. Download the zip file of the code from
www.scriptinwithajax.com and unzip it. Inside the folder called
“code,” you will find all the examples organized by chapter. It is very
helpful as you review the examples in the book to have the associ-
ated code open in a code editor so you can see the wider context of
the part of the code that I am discussing.

You can run the code on your own server. If you copy the entire
code folder onto a Web server running PHP and type the URL of the
code folder into the address bar of your browser, the index.php file
in that folder will load and display links to all the examples.

After you are familiar with the code, take the examples and start
incorporating them into your own projects. When you start to mod-
ify the code for your own purposes, your skills will develop quickly.

The code you write rarely works the first time, but with tools that
give you visibility into what your code is doing, you can rapidly
bridge the gap between what you think the code is doing and what

I NT R O D U C TI O N

www.scriptinwithajax.com

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA Xxvi

it is actually happening. Reconciling these two states is called
debugging.

To help you write and debug your code, I recommend you take the
following steps to set up your computer.

1. Download the Firefox browser at www.getfirefox.com and install
it. Firefox offers good development tools and is probably the
most standards-compliant browser. Once you have your code
working in Firefox, test it on other browsers and make any nec-
essary adjustments.

2. Download and install two essential Firefox add-ons, also from
www.getfirefox.com:

The Web Developer toolbar. Search for this toolbar in the
Add-On section of the site or go directly to https://addons.
mozilla.org/en-US/firefox/addon/60. This toolbar allows you to
turn JavaScript and CSS on and off as you work, validate your
HTML and CSS as you write it, outline all the elements on the
page to show their relationships, view a list of the ancestors of
any element of the page, and much more. To me, its most indis-
pensable feature is View Generated Source, which allows you to
view markup that is dynamically generated by your JavaScript
code as it runs.

Firebug. Firebug provides JavaScript error reporting and allows
you to insert breakpoints in the code so that at any point you
can have the code stop running and see the state of all variables
and objects in the JavaScript. I’ve mostly used alert dialogs in
the examples when illustrating variable checking because it
makes for nice simple screenshots, but Firebug is really a much
better way to go once you are into serious development work.
Check out www.digitalmediaminute.com/screencast/firebug-js
for a good video tutorial on using Firebug.

I haven’t attempted, and there isn’t room, to show and explain every
line of code of every example. Instead, I focus on the parts of the
code that illustrate the topic I am discussing at that point. However,
what I have done is ensure that all the concepts illustrated in the
code have been explained at some point, and that the code is well
commented so you can understand it.

www.getfirefox.com
www.getfirefox.com
https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60
www.digitalmediaminute.com/screencast/firebug-js

ptg

xvii

Feedback Is Welcome
I know that despite my best efforts and the dedicated team of
people who have worked on this book, it may contain errors and
omissions that you, my dear readers, are so adept at finding and
reporting to me. I will post any errata that are found, so please
report these to me on the Scriptin’ Web site. You are also welcome to
write with comments, or to send me URLs of your work. I look for-
ward to hearing from you.

Software-as-a-Service

I think it’s clear that we are moving steadily to the point where
“shrink-wrapped” software that is installed on the user’s computer
will all but disappear. It will surely be replaced by Rich Interface
Applications (RIAs) where the interface runs in the browser and the
Web server manages access to a variety of real-time data sources.
This change in how software is conceived, designed, and delivered
allows applications to constantly evolve rather than being released
in discrete versions, and gives designers and developers nearly lim-
itless scope when imagining and building new online experiences.

The already well-established Software-as-a-Service (SaaS) model,
which makes possible such companies as Saleforce.com and Zoho.
com, gives users on-demand, pay-as-you-go access to RIAs where
they formally had to make expensive investments in monolithic
desktop software programs. For the foreseeable future, these new
RIAs will be powered by JavaScript, and I hope that Scriptin’ will give
you the knowledge, confidence, and inspiration to make your own
contribution to this new and exciting era of the Web’s evolution.

I NT R O D U C TI O N

ptg

C H A P T E R 1

JavaScript Comes of Age

ptg

3S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

MA S TE R I N G JAVA S C R I P T is an essential skill for every

Web designer. This wasn’t always true, but JavaScript has

taken on a new and important role in modern Web sites. For

any interface designer or for any Web engineer who works

with the presentation layer, it is now as important to know

JavaScript as it is to know HTML and CSS.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 14

While HTML has traditionally enabled you to create a structured
Web page, and CSS enabled you to give it a pleasing visual appear-
ance, a page created in this way has little or no visual response
to user action, except perhaps for some links that highlight when
rolled over or a simple CSS-driven drop-down menu. If a user sends
data to the server by clicking a link or submitting a form, she must
wait patiently for that data to be processed on the server and a new
HTML page served back in response. This was the state of Web sites
in the pre-Web 2.0 world and is a world in which many sites still live.

Web 2.0 is a somewhat overused term that is generously applied to
everything that’s new and not so new in today’s world of Web, as this
quote from Wikipedia indicates:

The term “Web 2.0” refers to a perceived second generation of web
development and design, that aims to facilitate communication,
secure information sharing, interoperability, and collaboration on the
World Wide Web. Web 2.0 concepts have led to the development and
evolution of web-based communities, hosted services, and applica-
tions; such as social-networking sites, video-sharing sites, wikis, blogs,
and folksonomies.

Despite this kind of hyperbole, Web 2.0 offers an inspiring reality
that all Web designers should gladly embrace.

From a purely design and technical perspective, the two key quali-
ties that define this “second-generation of web development and
design” are a fluid, interactive feel to the interface and the capability
to request and receive data from the server “behind the scenes,” and
then present that data to the user without loading a new page.

In the hands of a talented and knowledgeable designer, these
two interactions can transform a Web site into a Rich Interface
Application (RIA). In an RIA, stylish and technically sophisticated
interface components accept user input and then respond with
new data seemingly instantly. A simple example is when a user
mouses over a headline in a list of headlines, and almost instantly
the description of that story is delivered from the server and added
into the page below the headline. In the past, this effect could only
be achieved by including the content of every story in the initial
page, resulting in a massive page download. This capability to get
data from the server and add it directly into the page is the result of
a JavaScript-powered coding technique called Ajax. Because of Ajax,
today’s Web sites are morphing into what looks and feels like any
regular “sovereign” application that runs on your computer.

ptg

JAVA S C R I P T C O M E S O F AG E 5

Before Ajax and RIAs, all the processing power used in a Web site
was on the server side. The browser simply collected the data to
be sent to the server and rendered the pages with which the server
responded. In contrast, the interface of an RIA runs on the client
side in the browser, and can therefore make full use of the capabili-
ties of the modern browser as an application platform and the ever-
increasing horsepower of the user’s computer.

Our users now have the front end of the application and formidable
computing power to run it, right where all their regular applications
run—on their computers, not on the other side of the Internet. The
server, now directly accessible to the browser via Ajax, takes a more
focused role as the real-time processor and supplier of the applica-
tion’s data.

This redistribution of responsibilities, with the work more equally
and appropriately shared between client and server, gives you, the
Web designer, a new, more powerful model for imagining and devel-
oping Web sites.

The brave new world of RIAs is driven by JavaScript. It’s the lan-
guage in which the client-side logic of today’s Web applications
is written; it controls the interface and directs the activities of the
server. JavaScript, formally lurking in the wings as a poor cousin to
HTML and CSS, and used mostly for browser-side data validation
and simple animation effects, is now thrust center stage. So the key
for you to open the creative and engineering doors to the potential
of this new Web development model is to master JavaScript.

In the rest of this chapter, you will learn how to plan the coding of
your pages so they can be readily enhanced with Ajax, and thereby
transform your site into a more application-like experience.

Accessibility and Progressive Enhancement
Before I discuss JavaScript and Ajax, I’ll talk about accessibility—in
all its meanings. It is very easy when designing an RIA Web site to
make it entirely dependent on JavaScript for its operation, but such
a site can cause severe problems for many users. That super-cool,
drag-and-drop feature is useless to someone who is physically dis-
abled and can’t use a mouse or who relies on an aural screen reader
because of poor eyesight.

Also, some people use old browsers and low-powered computers
that can’t support the technical capabilities required to experience

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 16

your RIA, or they simply have JavaScript turned off because of per-
ceived security risks. This also is an issue of accessibility.

A common response to any suggestion that a Web site should be
accessible is: “Oh, it doesn’t matter for our site because it’s only for
(pick one: in-house users, a small group of our customers, our pre-
ferred vendors, Superman and Batman) who all use a (enter some
outrageously powerful computer here) and none of them are (enter
some disability here), and anyway my boss told me not to worry
about it.”

Rather than get into a heated debate, my position on accessibility is
this: If you make the decision from the get-go, it is totally feasible to
create a site that offers a rich user experience for fully capable users
and browsers, and a more simple but completely useable experience
for the less empowered.

In short, if the user doesn’t have JavaScript turned on or the browser
doesn’t support the modern JavaScript that operates on the W3C
(World Wide Web Consortium) version of the Document Object
Model (DOM), the site can still function. And this is not some trivial
number of users we are talking about here. Six percent of all users
don’t have JavaScript running in their browsers (The Counter, Feb.
2009 Global Stats) for security or other reasons, which is a signifi-
cant percentage of users to exclude from your site.

The methodology that enables you to offer appropriate, but always
functional, experiences for all users is called progressive enhance-
ment. If compliance with Section 508 of the Americans with
Disabilities Act, the desire to reach as many potential customers as
possible, or simply your conscience demands it, you, too, can build
a JavaScript-driven RIA that still provides its essential functionality
without JavaScript.

However, it should be noted that despite the best intentions, some
JavaScript-driven interface interactions (and drag-and-drop is a very
good example) don’t degrade nicely to regular HTML interface com-
ponents when JavaScript is not present. If you want your site to be
accessible, you may have to forgo such components for even your
most empowered users, or provide an alternative non-JavaScript
means of completing that task. In the latter case, JavaScript nor-
mally hides the alternate HTML component; if JavaScript is not
present, the HTML component is displayed.

What I (and the accessibility community) am suggesting is that you
plan your site so that it can work without JavaScript if JavaScript
is not available. In this chapter, I’ll show you a simple form imple-

ptg

JAVA S C R I P T C O M E S O F AG E 7

mented with HTML and PHP, and later enhance it with Ajax, so it
works with and without JavaScript. You’ll have to decide if this “max-
imum accessibility” approach is one you want to take—I hope it is.

A lot of advice is available on the Web about this subject, and you
can find it by searching for Accessible Ajax or progressive enhance-
ment. The W3C has an interesting initiative called ARIA (nice
acronym) to address accessible RIAs through special markup and
techniques, and Yahoo’s YUI team, and the Dojo and jQuery frame-
work developers are amongst those who are adopting its recom-
mendations. In his succinct and excellent book, Bulletproof Ajax
(New Riders, 2007), Jeremy Keith offers this advice to those who
would make their sites as accessible as possible: “Plan for Ajax first,
implement Ajax last.” Sounds good, but how do we do that?

Three Steps to Progressive Enhancement

The steps to making an application that runs with or without
JavaScript are based on layering enhancements onto the basic func-
tionality of the site.

1. Make it functional. Get the site working with just an HTML
front end and the server technology of your choice (PHP, .NET,
Java, etc.).

2. Make it look good. Style the HTML with CSS in external style
sheets (linked to the page with LINK elements).

3. Enhance the experience. Add interface behaviors that provide
more intuitive responses and controls, and provide Ajax con-
nectivity to enable “no-page-refresh” access to the server-side
functionality.

If you think in this layered fashion, then should your awesome RIA
suddenly find itself in a no-JavaScript environment, it will fall back
to the old “round-trip” model of sending data to the server and
waiting for a page to be served back in response. The user won’t
know the difference; the site will still be nicely styled, and it will still
work. In an even more limited environment, where neither CSS nor
JavaScript are supported, the site, looking rather less attractive per-
haps, will still function. As long as users have the capability to sup-
port just HTML, they will be able to use your site.

The rest of this chapter illustrates with a simple example how to cre-
ate a site that is based on the first two steps to progressive enhance-
ment and is ready for JavaScript interface interactions and Ajax

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 18

server communication to be added, or to use a commonly used and
more accurate term, “layered on.” I’ll just discuss the third step in
this chapter but actually demonstrate it in Chapter 5.

Let’s start with step 1—Make it functional—to see what it takes to
create a form that enables a user to sign up on your site.

1. Make It Functional
In this example I’ll create a working form. To do this, I only need
HTML markup to create the form and a server-side language (I’ll use
PHP) to validate and record the data on the server when the form
data is submitted.

H TM L — C R E ATI N G TH E D O M

HTML is for structure. If you start by writing good HTML, you will
have a great foundation on which to layer the CSS and JavaScript.

Here are some simple guidelines for writing your HTML.

First, use the right element for marking up each piece of your con-
tent. Study an HTML glossary and learn how each element should
be used and the required and optional attributes that can be added
to them. A common markup mistake is to omit the label element
on a form’s input element (text field). The label element should
also have a for attribute with the same value as the input’s ID to
semantically tie the element and the label together. In this way, if
the site is being accessed with a screen reader, the label will be read
aloud when the user moves the cursor into the field.

I can’t emphasize enough how important it is to understand the var-
ious HTML elements and use them appropriately. If you are bolding
the text in paragraph tags to create headings or do not understand
the difference between block and inline HTML elements, you need
to improve your knowledge of HTML so you are using its elements
in semantically meaningful and technically valid ways.

Second, to this last point, validate your markup at validator.w3c.
org or use the Web Developer toolbar so you can be sure that your
markup is well-formed with all tags nested and closed correctly.

If you are wondering why I am obsessing over HTML markup in
a JavaScript book, here’s the reason. When you write HTML, you
are actually creating the DOM, which is a hierarchical collection
of nodes. There are three types of nodes: HTML elements, the ele-

For an HTML quick reference listing,

go to http://w3schools.com/tags/

default.asp. For a more

complete HTML tutorial, try

http://dev.opera.com/articles/

view/12-the-basics-of-html.

http://w3schools.com/tags/default.asp
http://w3schools.com/tags/default.asp
http://dev.opera.com/articles/view/12-the-basics-of-html
http://dev.opera.com/articles/view/12-the-basics-of-html

ptg

JAVA S C R I P T C O M E S O F AG E 9

ments’ attributes, and the text inside of elements (white spaces
in your code are also seen as nodes by modern browsers, and you
will see how to take this into account in Chapter 2). Both CSS and
JavaScript act upon these DOM nodes, but they can only do that
if the document’s structure is well-formed and if the appropriate ID
and class are added onto elements where needed. Get the HTML
markup right and JavaScript can then do its magic.

FO R M MAR K U P

Keeping in mind all that you have read so far, take a look at some
simple markup for a form in which users can submit their email
addresses to sign up for a newsletter. See Figure 1.1. This form will
be brought to life using just HTML and PHP, and then styled with
CSS. Later we will enhance it with Ajax to improve the user’s experi-
ence, but it will be able to fall back to the non-Ajax interaction func-
tionality if JavaScript is not available.

FI G U R E 1.1 The red vertical lines
overlaying this markup indicate
the hierarchical relationship of the
elements. Note that this code snip
shows only the markup between the
body tags.

C O D E 1.1 simple_form_step1.php

Level 1

 Level 2

 Level 3

 Level 4

<body>

 <div id=”sign_up”>

 <h1>Sign up for our newsletter</h1>

<form id=”email_form” action=”#” method=”post”>

 <label for=”email”>Email</label>

<input id=”email” name=”email” type=”text” size=”20” />

<input type=”submit” value=”Go!” />

 </form>

 <p class=”msg”></p>

 </div>

</body>

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 110

Figure 1.2 shows how this HTML looks in the browser.

FI G U R E 1. 2 The unstyled form.

You may have noticed that there is no text in the last paragraph tag
(the one with the ID msg) in the markup. This is because later I will
use PHP to add a message into this tag that tells the user if the sub-
mitted address is invalid. Because it has no text in it yet, the empty
element is not visible on screen.

I N D E NTI N G YO U R C O D E

The first thing that you notice without reading any code is
the indenting of the lines. You don’t have to indent your code,
but you definitely should, and here’s both the why and how of
code indenting.

A tab or a couple of spaces can be used to indent, and the general
consensus according to Chris, my tech editor, is to use a couple
of spaces.

An element should be indented if it’s nested in (enclosed by) the
previous tag. Put another way, you indent the current line if an ele-
ment that opened earlier hasn’t yet closed. For example, in the code
in Figure 1.1, the div after the body tag doesn’t close before the next
(h1) element opens, so the h1 is indented. The label and input ele-
ments are indented further still because they are enclosed by the
form element.

Correct indenting helps confirm that your markup is well-formed
with all the tags correctly nested inside one another. Indenting
naturally creates a code layout where the most deeply nested tags
are farthest to the right, and if the markup is correctly formed, ends
with the last line back at the left of the page. If you miss a closing
tag somewhere, this won’t happen. For example, note the closing
div tag is exactly aligned with its opening tag higher up in the code.
This will always be the case with any enclosing element if you have
correctly nested all the tags within it. By following the indenting rule
mentioned earlier, each child element is indented from its parent

The basic rule is simple:

Indent nested tags.

ptg

JAVA S C R I P T C O M E S O F AG E 11

element. Sibling elements, such as label and input in the form,
have the same indent.

So correctly indented code is not only easier to understand, but it
also lets you see your DOM structure at a glance.

C H I L D N O D E S

The next step in understanding the DOM is to know that the text
within an element is a child of that element. For example, the text
“Sign up for our newsletter” is a text node and a child of the p ele-
ment in which it lives. An element’s attributes are also child nodes
of that element, so the id=”sign-up” attribute on the div is a child
node of the div. JavaScript can access and change element nodes
and their child attribute nodes and text nodes; CSS, with the excep-
tion of the pseudo-classes :before and :after that can enable a
rather limited means of adding content to the page, can only access
the element and attribute nodes.

From the markup in Figure 1.1, I can draw a hierarchical tree ver-
sion of the DOM of the code that looks like Figure 1.3.

FI G U R E 1. 3 The DOM hierarchy.

Compare this diagram with the markup. You want to be able to see
this tree-like DOM view in your mind by looking at the markup. If
you study the indenting and each element’s text and attributes, it’s
not that hard to do. With this mental model, it’s easy to look at any
HTML markup and determine how to use CSS and JavaScript to
access the nodes you want to modify.

P R O C E S S I N G TH E DATA

As mentioned earlier, I’ll use PHP to process the form. I could write
an entire book about PHP (actually, I did), but here I will just cover a
couple of key points, and then simply present the code along with a
line-by-line explanation.

 <body>

 <div>

 <h3> <form> <p>

 <label> <input> <input>

for=”email” Email
attribute node type node

Level 1

Level 2

 Level 3

 Level 4

My book, Codin’ for the Web (New

Riders, 2007), covers PHP and SQL.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 112

PHP is a server-side language for generating HTML pages. PHP is
written in text files with the filename extension .php. Such a page is
known as a PHP script. A PHP script is a mix of HTML and PHP that
generates HTML. Whenever you request a PHP script URL, a new
HTML page is served back to you. So a PHP script can be thought of
as a template that generates an HTML page.

In the case of this form, each time the form data (the email address)
is submitted to the PHP script, PHP serves up a slightly different
version of the HTML page to the browser based on whether the
email is valid or not. If the address is invalid, the PHP code will add
a message to the page requesting that the user try again; if the email
address is valid, PHP will record it into a text file and add thank-you
text into the page instead.

Let’s look at this process step by step. Writing a list of the tasks you
want your code to perform is a worthwhile, time-saving step to take
before you write the actual code. I’ll often start my coding with a list
of comments like this, and once I have them in the right order, add
the actual code in between them.

1. The PHP script is requested the first time, and the HTML in the
script (the layout of the form) is served back to the browser.

2. When the user submits the form, the form data is submitted
back to the same script.

3. PHP detects that the form data has been submitted.

4. PHP tests the email address and determines if the email is
correctly formatted.

5. If the email address is valid, the email address is recorded in a
text file on the server and the message text is set to the Success
message.

6. If the email address is invalid, the message text is set to the
Invalid Email message.

7. PHP writes the message into the HTML “message” element of
the page and serves up the page to the user.

Note that PHP is never sent to the browser—only the HTML that
PHP generates is sent. Clicking the “Go!” button passes the form
data to the same PHP script each time the form is submitted, and
PHP will serve up one of two slightly different versions of the HTML
page in response.

ptg

JAVA S C R I P T C O M E S O F AG E 13

PHP and HTML can be freely mixed on the page. You simply write
<?php to indicate that you are switching from HTML to PHP and
write ?> to indicate you are switching back to HTML again. PHP
only processes code inside the <? and ?> tags, and writes everything
else (the HTML) directly to the page it is generating.

Before I write the code to process the form, there are three bits of
PHP I need to add to our markup.

1. Enable any error message generated by PHP to be added into
that empty p element at the end of the markup.

<p class=”msg”><?php echo $msg; ?></p>

Here I can create a PHP variable (temporary data store) called
$msg that will hold the message that PHP selects after looking
at the email address. PHP will then add that message into the
HTML element with the ID “message” when it writes out
the page.

echo means “add to the page output” so the text in the $msg
variable will get added here in place of <?php echo $msg; ?>.
Remember, PHP is never added to the page.

2. Modify the form tag as follows to make the page submit to itself.

<form id=”tiny_form_vert” action=”simple_form_step1.
php” method=”post”>

The highlighted text is the filename of the current page.

3. Echo the email address the user submitted into the form field,
because then the user can modify it if necessary and not have
to entirely retype it.

<input id=”email” name=”email” type=”text” size=”20”
value=”<?php echo $email;?>” />

The email address will replace the highlighted PHP.

This is called making the field “sticky”—the info stays in the
field between form submissions. Users will hate you, especially
if the form has many fields, if you don’t make form elements
sticky; they really don’t want to have to reenter all the data to
correct an error.

Here’s the entire PHP script with these three pieces of PHP
highlighted.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 114

<?php

if ($_POST) {

$email = $_POST[‘email’];

$valid = verifyEmail($email);

if ($valid) {

 writeToFile($email);

$msg= ‘Thanks for signing up! Please visit our members only area.’;

} else {

$msg = ‘Please type a valid email address.’;

 }

}

function verifyEmail ($testString) {

 return (eregi(“^([[:alnum:]]|_|\.|-)+@
 ([[:alnum:]]|\.|-)+(\.)([a-z]{2,4})$”, $testString));

}

 $dateNTime= date(“F j Y H:i”);

$form_data = $email . “\t” . $dateNTime . “\n”;

$myPointer = fopen(“../../../form_data/data.txt”, “r+”);

fputs ($myPointer, $form_data);

 fclose($myPointer);

}

?>end of the PHP

 closes the file

 writes to the file

end if POST–
the two functions that follow are
required by the above code

 open a file (creates one first if
needed)

move the email address from the
POST array to a variable

gets the current date and time in
March 14, 2009, 3:30 pm format–
see http://us2.php.net/date
for date format info

this code runs only if the form was
submitted—specifically, if there is
anything from the form in the POST
array

returns 1 (TRUE) if email is
well-formatted

assembles the email, a tab, the
date and time, and a line break

the $msg will get written into the
markup as PHP generates the page

checks for a well-formed email
address–i.e., in format:
someTextAndNumbers@
someTextAndNumbers.2-4 char-
acters

pass email address to writeToFile
function to record it in a text file

$validis set if email is valid

if the email passed validation

http://us2.php.net/date

ptg

JAVA S C R I P T C O M E S O F AG E 15

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-
 transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

 <title>Sign-up Form</title>

<meta http-equiv=”Content-Type” content=”text/html;
 charset=iso-8859-1” />

</head>

<body>

 <div id=”sign_up”>

<h1>Sign up for our newsletter</h1>

<p>This info is only used to send you emails.</p>

<p>We don’t share your info with anyone.</p>

 <form id=”tiny_form_vert” action=”simple_form.php”
 method=”post”>

 <label for=”email”>Email</label>

<input id=”email” name=”email” type=”text” size=”20”
 value=”<?php echo $email;?>” />

<input type=”submit” value=”Sign me up!” />

 </form>

 <p id=”msg”><?php echo $msg; ?></p>

 </div>

</body>

</html>

If you don’t know PHP, this can all look rather daunting. If this is the
case, just focus on the results this code achieves—which is what
really matters. There are two possible outcomes when the user sub-
mits the form. If the user supplies a badly formed email address
or leaves the field empty, an error message is added to the page,
as illustrated in Figure 1.4. If the email address is well-formed, the
email and date are written to a file on the server and a link is dis-
played that provides access to the Member’s page.

C O D E 1. 2 simple_form_step1.php

Although this page’s code is all HTML

and the previous page’s code is all

PHP, the code on both pages is part

of the same file.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 116

FI G U R E 1.4 Unstyled form with
incorrect field entry and user prompt.

If the email address is valid, the page looks like Figure 1.5.

FI G U R E 1. 5 Unstyled form with valid
message.

Note that the first ten lines of the PHP code on page 14 are the main
path of the code—the “procedural” steps taken to process the file.
Two functions below these ten lines help in this work—one tests the
email address and the other records the validated email address into
a text file. These functions are called from the procedural code and
return their results to it, but they are not in the main code flow.

Functions allow you to separate out pieces of code that are fre-
quently needed by the “main flow” procedural code instead of
repeatedly adding the same code into the main code flow. However,
there is another important advantage to these “stand-alone”
functions—you can call them directly from the browser using Ajax.
In the case of my form, I will use Ajax to send the email address
directly to the email validation function in this code to test the
email address and have it return the result (1 or 0—valid or invalid)
without running the rest of the code. In this way, I am planning for
Ajax now, even though I will implement it last (Jeremy would be
proud of us). You will see functions in detail when I cover the basics
of JavaScript in Chapter 2.

The form is now functional using only HTML and PHP. Now let’s see
how the look can be improved with CSS.

ptg

JAVA S C R I P T C O M E S O F AG E 17

2. Make It Look Good
Every browser has a built-in style sheet that makes headlines larger
than paragraph text, makes links blue, and controls the default
presentation of HTML. By using a style sheet you can override any
aspect of the default layout, which is predominantly full width ele-
ments one under the other running down the page. With CSS, you
can lay out the HTML in columns if you wish, and style each ele-
ment to your own liking.

CSS works by accessing the DOM. Again, I won’t get into a full-on
CSS lesson here (I already wrote that book, too) but instead will
demonstrate how the DOM is accessed by CSS and how to use CSS
in ways that support progressive enhancement.

A CSS rule has the format

selector {property:value} as in p {color:red;}, which colors all
paragraph element text red. The property/value pair is collectively
known as the declaration. This basic rule format can be extended
with multiple selectors and rules

h1, h2 {color:#069; font-style-:italic;}

See Table 1.1 for some selectors that target by context—using an
ID, or a class, or by referencing an element’s ancestor (parent and
above)— elements in the DOM:

A Note on Security

Accepting user input opens your site to the potential for code injection and XSS (cross-site scripting) attacks. The PHP
code that starts on page 14 illustrates some steps you can take to protect yourself when receiving data and writing it into
your file system. First, the input is validated. This not only mitigates the chances of the user typing in an incorrect email
and then wondering why you didn’t send him anything, but it makes it more difficult to pass malicious code to your
server via the form. Second, the action of the form (the URL to which the form will be submitted) includes only the
page name, not the entire URL into the page. In that way, you don’t expose your folder structure in your code—informa-
tion that could help a potential hacker. Third, when you write the file, you do not let PHP create a file if one is not there
already—you create that file manually. Then, when you set the file mode to “r+”, you allow read/write access for the file
but no file creation. Because you now don’t have to provide folder-level write access, which you would have to do if you
allow PHP to create a file, you prevent anyone from writing a file to your file system. Fourth, the file to which you put this
file is in a folder above the root folder of the Web site, making access to it much more difficult. These simple steps com-
bine to make it much harder to break in through this form.

Security is a major issue with JavaScript because, unlike PHP, the code is running in the browser and is visible and modi-
fi able by anyone. Learn more about JavaScript secutiry issues on the DevArticles Web site at www.devarticles.com/c/a/
JavaScript/JavaScript-Security.

My book, Stylin’ with CSS (New

Riders, 2008), covers CSS and

XHTML.

makes h1 and h2 headings blue
and italicized

www.devarticles.com/c/a/JavaScript/JavaScript-Security
www.devarticles.com/c/a/JavaScript/JavaScript-Security

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 118

S E LE C TO R D E S C R I P TI O N

p all paragraph selectors

#email { } an element with the ID email (every ID on a page must have a unique name)

.warning { } any elements with the class warning (the same class name can be used on
multiple elements on the same page)

div#email { } a div with the ID email

p.warning { } a paragraph with the class warning

div p { } a paragraph with a div ancestor

div#email form input { } an input with a form ancestor that has a div ancestor with the ID email

a[title] { } a link with a title attribute*

input[type=”submit”] { } an input that has a type attribute with the value submit*

TA B LE 1.1 CSS selectors.

*doesn’t work in IE6

CSS rules should live in an external style sheet, which is simply a
text document with the extension .css and is linked to the HTML by
adding a link tag into the head of the HTML page like this:

<link type=”text/css” rel=”stylesheet” href=”sign_up_form.
css”>

You want to avoid using CSS to add presentational styles to your
HTML as inline tags, like this:

<p style=”color:red;”>Warning: don’t add inline CSS!</p>

or embedding CSS in the page in style tags, like this:

<style>

p.bignono {color:red;}

</style>

(and certainly don’t use deprecated presentational HTML like FONT,
COLOR, and ALIGN).

You permanently assign these styles to your markup when you add
the styles to the tags, or to the page when you use embedded CSS.
A linked style sheet gives you maximum flexibility. You can change
either the markup or the CSS without affecting the other, and you
can link that style sheet to as many pages as you wish to save repeti-
tive CSS coding and provide consistent styling across all the pages of
your site.

ptg

JAVA S C R I P T C O M E S O F AG E 19

Many CSS properties are inherited—that is, passed down to their
descendant elements. For example, if you set a font size on the
body to 80%, all the font sizes in the document become 80% smaller
because font size is inherited and body is the great granddaddy ele-
ment of them all. Any inheritable properties set on an element affect
all of its descendants too, unless that property is specifically restyled
by a rule that targets an element farther down the DOM.

Armed with this CliffsNotes quality overview of CSS, here is some
CSS that provides a more pleasing look for our form page.

* {

margin:0;

 padding:0;

}

body {

font-family:verdana, arial, sans-serif;

 font-size:.8em;

}

div#sign_up {

 width:28em;

 color:#069;

border-top:3px solid #069;

border-bottom:2px solid #069;

 margin-top:2em;

 margin-left:auto;

 margin-right:auto;

 padding:0 1em;

}

div#sign_up h1 {

 margin-bottom:.2em;

}

div#sign_up p {

 margin-bottom:.4em;

sets all margins and padding to 0

makes the overall font size smaller

centers the div on the page (and
everything in it)

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 120

}

div#sign_up label {

 font-weight:bold;

}

div#sign_up input[type=’submit’] {

 color:#069;

 background-color:#EEF;

}

div#sign_up p.msg {

 margin-top:.3em;

 font-style:italic;

}

div#sign_up p.msg a {

 color:#963;

}

Figure 1.6 shows what this CSS does to the page.

FI G U R E 1. 6 Styled form.

Note the use of relative units—in this case ems. I could have also
used percentages—not just for sizing text but for the width of the
containing div. By specifying everything in ems, I make my page
more accessible. If the user presses Ctrl-+ (PC) or Command-+
(Mac) to enlarge the onscreen text, the entire layout also resizes to
accommodate the new text size.

I now have a functional and nicely styled page, but the HTML and
CSS are completely separate. The page would still work without the
CSS, and the CSS could easily be linked to other pages that could
share its styles.

C O D E 1. 3 simple_form_step2.php
with sign_up_form.css

ptg

JAVA S C R I P T C O M E S O F AG E 21

3. Enhance the Experience with
JavaScript and Ajax

Now we come to JavaScript. I’ll end this chapter with an overview
of how JavaScript and Ajax are used to enhance the user experi-
ence. In Chapter 5, I will return to this email form example and use
JavaScript to create an Ajax interaction with the server so I can vali-
date the email address using the PHP code on the server before the
user submits the form.

Let’s start with three simple ideas: JavaScript is a powerful coding
tool, is DOM scripting capable, and is Ajax capable.

A P O W E R FU L C O D I N G TO O L

JavaScript is a full-featured scripting language that runs in the user’s
browser. It lets you manage data in variables, arrays, and objects,
and write code logic that is common to almost every programming
language, such as if-then-else, that allows you to infuse your code
with decision-making capabilities. You can write code in either a
procedural, step-by-step style—where each line of the code is exe-
cuted sequentially—or in an object-oriented style—where objects
composed of properties and methods (variables and functions) can
communicate with one another to accomplish the work of the pro-
gram. In reality, your script will probably be a mix of both. You will
learn about these concepts in Chapter 2.

Unlike well-known, industrial-strength programming languages
such as C# (c-sharp) and Java, JavaScript does not need to be com-
piled (that is, processed into low-level computer machine code)
before it can run. This makes it easier to test your code as you write
it—you just open the page in a browser and it runs. Because it does
not get complied, JavaScript is known as a scripting language, not a
programming language. PHP is also known as a scripting language
for the same reason. However, with today’s more powerful comput-
ers, being compiled no longer gives a programming language such a
big speed advantage over a scripting language.

Being a powerful and robust scripting language is only part of
JavaScript’s appeal. Where it shines is in the area of DOM scripting.

D O M S C R I P TI N G C APA B LE

As the name suggests, DOM scripting is JavaScript’s capability to
manipulate the DOM and thereby dynamically change the content
and appearance of the page as the user interacts with it.

Java and JavaScript are not related

in any way, except they are both

used to program computers. Their

relationship, or rather lack thereof,

was summarized in a now infamous

blog comment, which read: “Java is

to JavaScript as car is to carpet.”

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 122

CSS only allows you to set the properties of DOM elements, and
then only the style-related properties, such as color and position.
JavaScript, on the other hand, lets you get and set all the properties
of not only the DOM elements but also their attributes and text.
This enables you to do things like add and remove content and
navigation elements as needed. It also creates a very interesting
relationship between CSS and JavaScript.

With JavaScript, you can override CSS styles dynamically or add
classes and IDs to elements on the fly, and thereby have CSS rules
for these classes and IDs suddenly come into effect on those ele-
ments. A simple example of this latter technique would be to set up
a CSS background-color class called tr.odd that defines an alternate
table row color. JavaScript can then zip through an HTML table and
add the odd class name onto alternate rows, resulting in striped rows
in the table to make it more readable (Figure 1.7).

FI G U R E 1.7 A striped table.

This is also a nice little example of JavaScript’s power to get, process,
and then set DOM properties. I’ll show you how to code striped
tables in Chapter 3.

PHP can only write out HTML elements that are included within the
PHP page template, even though its code logic allows you to deter-
mine what gets written out and when. JavaScript, on the other hand,
can be thought of as a programmable HTML writing machine; it has
the capability to create HTML elements, add text and attributes to
them, and then write them into the page.

A JA X C APA B LE

JavaScript can perform what are known as Ajax transactions and
move data between the server and browser.

Ajax is actually a lot less than some people think. By that, I mean
that Ajax is purely a technique that uses JavaScript’s XMLHttpRequest

ptg

JAVA S C R I P T C O M E S O F AG E 23

object to request and receive data from the server without refreshing
the page. It’s not all the interactions of the cool, new interface com-
ponents that are included with many Ajax frameworks (code tool
kits), and with which the term Ajax has become associated. These
interface components, such as sliding panels and auto-populating
tree menus, might use Ajax to get their data, but the interactions are
not Ajax. Ajax is about the movement of data and has nothing to do
with the actual interface. This ultimately becomes something of a
technical distinction, because although Ajax is just about moving
data ”behind the scenes,” just about every aspect of the interface
can be improved because of this capability.

In the old “round-trip” model, the user must receive a new, com-
plete page from the server to update any part of the current page, as
you saw when adding just a single line of text to the form example
earlier in this chapter. Using Ajax and a little DOM scripting, it’s easy
for JavaScript to grab the email address as soon as the user finishes
typing it, send it to the server, get back a simple yes or no, and add
the appropriate text to the page. There is no page refresh, and in
most cases, no discernible delay between action and response. After
all, you are sending an email address of maybe 30 characters to the
server and getting back not a page of HTML but a single character, 1
or 0, to tell you if the address is valid or not. That doesn’t take long
even over a slow connection—and it’s certainly faster than serving
back an entire page. I will add this Ajax capability to the form exam-
ple as soon as I cover the basics of Ajax in Chapter 5.

Summary
I hope what you take away from this chapter is that JavaScript does
not live in isolation on your page. Its comprehensive access to the
DOM offers you the developer the means to write code that can
change the structure, styling, and data in a Web page in response to
user action or in response to the state of data on either the client or
the server. This means that you must take extra care and planning to
construct your HTML, CSS, and server-side code so that JavaScript
can access them efficiently.

Now it’s time to look at how to write JavaScript. In the next chap-
ter, I will cover JavaScript from the ground up, using lots of simple
hands-on examples that will help you understand and become
familiar with writing the basic structures of JavaScript code.

ptg

C H A P T E R 2

JavaScript Basics

ptg

25S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

N O W IT ’ S TI M E TO LE AR N TH E B A S I C S O F

JAVA S C R I P T. This chapter and the next two chapters on

objects and events combine simple examples with general

discussion about how the various aspects of JavaScript work.

In later chapters, I will bring these ideas together in practical

and useful ways.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 226

When I am asked how programming works, my simple reply is:
There is data, and there is code that acts on data. Most of this chap-
ter is divided into two sections around this thought. First, you will
see all the ways that data can be stored within JavaScript. Second,
you will see all the code structures that allow you to run various
kinds of tests and processes on that data. These code structures
make up the basic building blocks of a fully functional application.

In preparation, let me briefly show you how to make the code
examples run in your browser so you can follow along. I’ll illustrate
this with a very simple JavaScript example and an overview of how
to format your code.

You can download and review the code examples for several of the
examples in this chapter. The names of these files are listed next to
the related code example.

Running the Code Examples

To run any code example in this chapter, place it within the follow-
ing HTML markup in a text file, save the file with a name of your
choice and the extension .html, and open it in your Web browser.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//
 EN”>

<html>

 <head>

 <title>My JavaScript Test</title>>

 </head>

 <body>

 <script type=”text/javascript”>v

 // replace this line with the code example

 // remove the opening and closing script tags also if

they are in the example

 </script>

 </body>

</html>

C O D E 2 .1 html_template.html

ptg

JAVA S C R I P T BA S I C S 27

Because the browser needs to know when it is processing HTML and
when it is processing JavaScript, I’ll use the HTML script element
with a type attribute of “text/javascript”, as highlighted in the
preceding example, to indicate that I am switching from HTML to
JavaScript. At the end of the JavaScript, I’ll close the script element
with </script> and the browser reverts to interpreting the code as
HTML. The empty lines are only then there to make the code easier
to read; the browser ignores white space that is longer than
a single space in your code.

Hello, JavaScript
It seems like every good book about programming starts with a
Hello World example where you learn how to display the message
“Hello World!” In terms of data and code that acts on data, the text
string “Hello World” is the data. To make the data display, in this
case in an alert dialog, the code you use is the alert function. A
function requires parentheses, which can contain any data it needs
to act upon—in this example the text string:

alert (“Hello World!”);

So, grab the markup from the previous section (Code 2.1 example)
and insert this function. As soon as the page loads into the browser,
the JavaScript runs, and you see the dialog in Figure 2.1.

FI G U R E 2 .1 Alert dialog.

Inspired by the incredible simplicity of this display of JavaScript’s
capabilities, let’s now learn the basics of writing JavaScript.

C O D E 2 . 2 hello_world.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 228

Scripts, Statements, and Comments
A script is a number of lines of JavaScript and is also used as a
kind of general term for the JavaScript that you write—as in
“I wrote a new script that does xyz.” Within a script are statements
and comments.

Scripts

A script can be placed between script tags within your HTML file
or in a separate text file with the filename extension .js that is linked
to your HTML page using a script tag. In the examples in this
book, I added the JavaScript into the page so you can see it with its
associated HTML markup. In a Web site of any size, you will want
to link separate JavaScript files to your pages instead of adding the
JavaScript directly into your document. The scripts are then down-
loaded only once and cached (stored) on the user’s browser, and can
be shared between all the pages of the site.

Statements

Each line of script is a statement. A statement is an instruction that
JavaScript can evaluate (make sense of). Statements end with a
semicolon, and it’s standard practice to start each statement on a
new line, although the code will still work if you don’t.

O N FO R MAT TI N G JAVA S C R I P T

As a formatting demonstration, here is a four-line script that adds
two numbers together:

var x=2;

var y=3;

alert (x+y);

// displays 5

Each of the first three lines is a statement that JavaScript can evalu-
ate, and each ends with a semicolon and a line break (press Return).
You can separate statements by using line breaks only, but this is
considered poor practice and makes the code confusing to read if
statements wrap to more than one line. Always end a statement
with a semicolon. The fourth line is a comment, which in this case
states the anticipated outcome as shown in Figure 2.2.

C O D E 2 . 3 demo_2_plus_3.html

ptg

JAVA S C R I P T BA S I C S 29

FI G U R E 2 . 2 An alert dialog displays
the result of the calculation.

Comments
It’s worth taking the time to put comments in your code so you
know what that code is meant to do when you or someone else
works on it in the future. Comments are entirely ignored by
JavaScript and are simply meant to be read by anyone looking at
the code.

A single-line comment starts with //

// this is a comment

Everything after the // is ignored by JavaScript until a new line
starts, so you don’t need to explicitly end a single-line comment—
just start a new line. Often, you will add a single-line comment after
a code statement on the same line:

var myFavAxe; // my favorite guitar

You can also write a multiline comment, which starts with /* and
ends with */.

A multiline comment might look something like this:

/* This next piece of code handles any errors.

 Errors will be written into the error array.

 Errors are processed after all tests are completed. */

If you want to prevent the execution of a number of lines of code
within a script temporarily, perhaps while you are troubleshooting a
problem, you can simply enclose that code in a multiline comment.

Also, if you want to strip out comments to “minify” the scripts
before you put them into production, use a minifying tool such as
Douglas Crockford’s JSMin (www.crockford.com/javascript/jsmin.
html).

Now it’s time to look at the ways in which JavaScript can store data.

www.crockford.com/javascript/jsmin.html
www.crockford.com/javascript/jsmin.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 230

Data and Ways to Store It
 JavaScript classifies data into different types and offers different

ways to store it. For your code to perform optimally, you need to
understand and correctly use these options.

Variables

Variables, as you saw in the 2+3 example earlier, are the locations in
which you can store various kinds of data so your JavaScript code
can act on them. That data might come from sources such as a form
the user filled out or be returned from an Ajax request to the server.
A server could return data from its database, from a file on disc, or
from an XML file far, far away across the Internet. Wherever your
data comes from, you first put it in variables so your code can go to
work on it.

N A M I N G VAR IA B LE S

You can give a variable any name you want, but that name can’t
begin with a number and it can’t contain spaces. It’s a good idea to
give a variable a name that makes sense when you and others read
the code later; for example:

var userName;

var productId;

var totalWithTax;

These variables are written in a style called “camel case” where you
join several words together to give a variable a meaningful name.
Make the first word lowercase and capitalize subsequent words—
without any spaces, of course. This will always give you a single
easyToReadOneWordVariableName. This format is called camel case
because of the visual humps created by the uppercase letters.

Am I Writing HTML or JavaScript?

 At first, it’s easy to forget at any given moment if you are writing JavaScript or HTML, especially when adding comments.
It’s a common mistake to write JavaScript outside of the script tags where only HTML is valid or to write HTML inside
a script and things then don’t work right. You just have to learn to change gears mentally to the right language for the
right part of the page.

ptg

JAVA S C R I P T BA S I C S 31

D E C L AR I N G A VAR IA B LE

When you first declare (create) a variable, you should put var in
front of it, as shown in the three examples in the preceding section.
In all future references, you can simply use the variable name. If you
do not use var, you create a variable with global scope, which you
usually do not want to do. I’ll discuss scope in more detail when I
introduce functions later in the chapter.

In the previous three variable examples, I didn’t use the equals sign
to set these variables to a value, so their current value would be
“undefined”—meaning not set to any value. Undefined should not
be confused with 0, which is the value zero. Sometimes you want to
create an undefined variable so it is ready to receive a value that is
generated later by your code.

However, you can declare (create) and set (put something into) a
variable in a single step. The contents of a variable are known as its
value, and when you reference a variable in your code, JavaScript
effectively replaces that reference with the variable’s value. Both
these points are demonstrated by this next simple, two-line
example:

 uses var when variable is first
declared var myNickname = “Charlie”;

no need to use var in subsequent
references to the variable

alert (myNickname);

// displays Charlie

Now that you have a basic understanding of variables, let’s look at
the different data types variables can contain.

A variable can contain any of the following data types:

• a string

• a number

• a Boolean (true and false, or 1 or 0)

• an array (a group of related variables)

• a function

• an object

Let’s take a look at each of these data types.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 232

Strings
Strings are simply text characters. You can put any characters you
want in a string. A string is always quoted—that is, enclosed in sin-
gle or double quotes—your choice. When quoting strings, make sure
your characters are "straight up-and-down" quotes and not “curly”
quotes that may be automatically formatted by a text program. Here
I put some strings into variables:

var joesGreeting = “Waaazup?”;

var userPrompt2 = “Enter your name”;

var carMake=”Lotus”, carType=”Elan”, carCategory=”classic
sports car”;

The preceding example shows that you can declare several variables
on one line, separated by commas.

It’s very important to realize that JavaScript does not attempt to
evaluate strings (see the sidebar “Key Concept: Evaluation”), as the
following example illustrates.

In this example:

 2+3 is evaluated to 5 var answer = 2+3;

alert (answer);

displays: 5

whereas:

the string is not evaluated var answer = “2+3”

alert (answer);

displays: 2+3

“2+3” is a string, so JavaScript makes no effort to evaluate it and
simply copies the string into the variable.

Conversely, JavaScript will attempt to evaluate anything that is not
a string. So if you want to pop up a cheery greeting to your visitors
and you write

note the text is missing quotes alert (Hello!);

ptg

JAVA S C R I P T BA S I C S 33

you will trigger an error because you forgot to put quotes around
the string. In this case, JavaScript would assume that you are
referring to a variable named Hello!, and if there was no variable
called Hello! (probably not), would display the error message Hello!
is not defined in your error console.

Forgetting to quote a string like this is an easy mistake to make, as
you may soon discover when you start writing your own code.

With this in mind, note the problem with this string:

“She said “Go away!” and went back to her book.”

The string closes (ends) right before the G of Go because that’s
where the second double quote is located—the rest of the text is
considered outside the string, so JavaScript will then try to evaluate
Go away” and went back to her book”. You may not be surprised to
learn that this phrase is not part of the JavaScript language, so an
error occurs. There are two ways to get around this issue of quotes
within a string: One way is to “escape” the problem characters with
a backslash:

“She said \”Go away\” and went back to her book.”

Escaping a character causes it to be treated as a string character and
not be evaluated as code, so now the string does not end until the
closing quote at the end of the line.

The other way is to use single quotes around the string and double
quotes within it (or vice versa):

‘She said “Go away!” and went back to her book.’

Key Concept: Evaluation

In JavaScript, and most programming languages, the common statement structure

someVariable = someExpression;

sets the value of the variable on the left to the evaluated result of the expression on the right. In this context, “evaluated”
means “processed by JavaScript”. For example, if you use a variable name on the right side of the statement, JavaScript
will evaluate that variable name to its value and set the variable on the left to that same value. Every expression you
write must be able to be evaluated by JavaScript or an error will result.

The Error Console is a simple debug-

ging tool that displays JavaScript

error messages and their associated

line numbers. It can be opened from

the Firefox Tools menu, and it’s very

useful to have it open all the time as

you test your work in the browser.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 234

JavaScript can automatically add escape characters to strings to pre-
vent these problems, as you will see later.

Numbers
Numbers can be positive or negative and can be

• Integers. Whole numbers such as 1, 45, -34, 2354564

• Floating-point numbers. With numbers to the right of the deci-
mal point, such as 3.142, -.000001, and so on

• Exponentials. In JavaScript you can use e to mean “to the
power of,” so you can represent the number 109 as 10e9

You can also represent numbers in octal (base 8) and hexadecimal
(base 16) formats. Hexadecimal is useful when working with colors
because they can be expressed in three groups of two-digit hexa-
decimal values, such as #FF0000, which is red.

Booleans
Boolean values are special values known as constants. They can only
be true and false, and can also be represented as 1 and 0, respec-
tively. Note that although they are words, they are not strings and
should not be quoted. Booleans are used to represent entities that
can only have one of two states, such as on or off, yes or no, equal or
not equal. You will learn more about Boolean values when we look
at if statements later in this chapter.

Arrays

Arrays can be thought of as a variable that can hold more that one
value. Often you want to keep a set of related values together, and
arrays are the way to do this. Arrays are powerful structures: Every
array you create is a child of the global Array object, so your arrays
have access to a complete set of methods that enable you to easily
create, access, add, remove, and perform operations on an array’s
values. You can find a listing of the Array methods in Appendix B.

An array is capable of holding any list of items, such as this list of
animals:

dog, cat, pig, horse, sheep

Let’s see how to create and manage an array with these items in it.

ptg

JAVA S C R I P T BA S I C S 35

C R E ATE AN AR R AY

Here’s how to create an array:

left and right square brackets var animalArray = [];

You now have a new empty array called animalArray that you can
start to populate as your code runs.

I N D E X E D AR R AY S

Indexed arrays are a list of items whereby each item is referenced by
its index—its numerical position in the array.

Let’s begin by creating and populating the array in a single step,
separating the items with commas:

var animalArray = [“dog”, “cat”, “pig”, “horse”, “sheep”];

Note that the names are strings. If you didn’t quote them, when your
code later accessed the array, JavaScript would look for variables
elsewhere in the code with these names.

Each part of an array is known as an element; the array now has five
elements.

R E AD I N G AN E LE M E NT FR O M AN AR R AY

To read from an array, use the format

arrayName[arrayIndex];

For example:

alert (animalArray[2]);

// displays pig

The [2] reads the element in the third position, not the second,
because the array indexing starts from 0, not 1. This concept of
counting from index 0 is common in programming languages.

Keep Track of Your Data Types

In strongly typed languages, such as C++ and Java, you must declare what type of variable you are creating—string,
number, Boolean, array, and so on—when you create it: You can only use it to hold that kind of data. In JavaScript, which
is weakly typed, you can simply declare a variable and put any type of data in it. This makes JavaScript more flexible
because you can change your mind about what type of data you want in a particular variable at will. However, if you
don’t keep track of the type of data in your variables, you can write code that produces unexpected and unwanted
results. You can always use the typeOf operator to test what type of data you are dealing with before you use it.

C O D E 2 .4 array_demo.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 236

This system of indexing from 0 instead of 1 may seem strange at
first, but once you start extracting elements in a programmatic way
using loops, it will make more sense.

AD D I N G AN E LE M E NT TO AN AR R AY

You can add elements into an array at any time. Let’s add goat to our
array, like this:

animalArray.push(‘goat’);

array now contains:

var animalArray = [“dog”, “cat”, “pig”, “horse”, “sheep”,
“goat”];

The Array method push (more on methods later) adds the stated
element to end the end of the array, so “goat” is now added as a new
element in the last position in the array.

S O RTI N G AN AR R AY

You can sort the array alphabetically, using the sort method:

sort(animalArray);

Then the array sequence changes to:

var animalArray = [“cat”, “dog”, “goat”, “horse”, “pig”,
“sheep”];

If you display the element where “goat” was located in the previous
example

alert (animalArray[3]);

you now get “horse” because it is at index 3 in this alphabetized
array.

A S S O C IATI V E AR R AY S

So far you’ve seen an indexed array where you can reference the
elements by their index (numerical position). But there is a second
kind of an array known as an associative array that has elements that
are each made of two parts: a key and a value. The key is a text string
that allows you to associate each value with an actual name.

ptg

JAVA S C R I P T BA S I C S 37

The format to populate an associative array is

arrayName[key] = value

In the next example, a country name is the key and the name of the
country’s capital city is the value.

Here’s how to build an associative array of countries and their capi-
tals

creates the array

var capitalCitiesArray[];

capitalCitiesArray[“USA”] = ”Washington DC”;

capitalCitiesArray[“England”] = ”London”;

capitalCitiesArray[“France”] = ”Paris”;

capitalCitiesArray[“Italy”] = ”Rome”;

The power of an associative array is that you can easily find a value,
regardless of its position in the array, by referencing its key.

The format is the same as that for an indexed array except instead
of using the index number you use the key name. The key here is a
string, so you have to remember to put it in quotes:

var thisCapital = capitalCitiesArray[“France”];

To reinforce what you saw earlier, note that the variable on the
left, thisCapital, is set to the evaluated result of the expression
capitalCitiesArray[“France”], which is Paris.

Even if you sort this associative array, this line of code will still find
the correct capital because you locate the value by its key, not the
indexed position.

You can also use an object literal in place of an associative array,
as you will see in the next chapter on objects. An object literal
is a simple structure in which to store properties and other values.
Generally, it’s best to use an object literal because the syntax
is simpler.

C O D E 2 . 5 array_game_capital_
cities.html

sets thisCapital to Paris

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 238

Code that Acts on Data
Now you have seen the different data types and ways you can store
them. Let’s look at code structures you can use to work on that data.

Operators
Operators go between data elements to indicate how JavaScript
should evaluate them. In most cases, an operator indicates the pro-
cess that the right side should perform on the left side. There are
several types of operators.

MATH

We’re all familiar with the basic math operators:

adds 3 to 2 2 + 3

subtracts 7 from 10 10 - 7

multiplies 125 by 5 125 * 5

 divides 200 by 4 200 / 4

Note that you can add and subtract 1 from a number with just a
double operator.

var age = 12;

age now equals 13 age++;

var livesLeft = 3;

livesLeft now equals 2 livesLeft--;

The double operator is frequently used in loops, so you can look at
each element in a set of data sequentially—see “Loops and Iterating
over Data” later in this chapter.

ptg

JAVA S C R I P T BA S I C S 39

C O M PAR I S O N O PE R ATO R S

Often you will want to use a comparison operator to see if two
values are the same or to see if one is greater or less than the other.
I introduced Booleans earlier—now you can see them in action. A
comparison always evaluates to one of the two Boolean values: true
or false. You can make comparisons with an if-then-else control
structure, which is formatted like this:

if (this comparison evaluates to true) {

// then do these things

} else { // the else part is optional

// do these other things

}

For example:

“less than” comparison if (yourHeight < minHeight) {

alert “You are too short to ride!”;

}

“greater than” comparison if (livesLeft > 0) {

alert “Play again!”;

} else {

alert “You die!”;

}

equality comparison (are both
same value and type?)

if (a === b) {

 alert “Identical!”;

} else {

alert “Not the same!”;

}

If the comparison evaluates to true, then the statements inside the
first set of braces execute; if the statement evaluates to false, the
optional else part of the statement inside the second set of braces
executes.

no else statement in this example

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 240

TH E = , = = , AN D = = = O PE R ATO R S

You may have noticed the triple equals sign (===) operator in the
preceding example, so this is a good moment to clarify the possible
meanings of the equals sign.

A single equals sign does not mean equal to; it means “set,” as in

var a=15+10;

The element on the left, a, is set to the result of the evaluated
expression on the right, which is 25.

== is an equality operator and means equal to.

By contrast, == “loosely” compares two values to see if they are the
same, but they don’t have to be of the same type. Because the ==
operator equates values of differing types, the following compari-
sons all evaluate to true:

a string and a number 1==”1”

a Boolean and a string false==”false”

two different falsey values undefi ned==null

=== means exactly equal to. This is a more stringent comparison
than == because both values must be the same and of the same
data type:

sets x to an integer x=4

sets y to a string y=’4’

true (x==y)

false–not both same type (x===y)

You almost always want to use the === operator and avoid the ==
operator. Be sure that you want the looser == comparison if you use
it. It is important to keep track of what type of data your variables
hold, and if in doubt, check a variable’s data type with the typeOf()
operator before using it, like this:

if (typeOf myVar===’number’) { /* do something with a
number here */ }

When you are sure of the data type, you can confidently use === .
If you use ==, your code can return incorrect and a hard-to-debug
comparison results. You will see more of the == and === operators as
you go forward. For now, just know that they are both used in com-
parisons, and that === is the one you want to use except in specific
cases where a looser comparison is required.

The space on either side of the

equals signs is optional. I add

the spaces to improve clarity such

as between long variable names.

In short math formulas, I forgo

the spaces. It’s a matter of

personal style.

ptg

JAVA S C R I P T BA S I C S 41

TH E ! (N OT) O PE R ATO R

To see if two values are not the same, you can use the ! (NOT) oper-
ator. Now you are effectively testing for false instead of true.

inequality comparison (are not
same value)

if (a !== b) {

alert “Not the same value!”;

} else {

 alert “Identical!”;

}

Note that the !== operator is stringent in its comparisons and
behaves like the negative version of ===.

TH E AN D AN D O R O PE R ATO R S

You can make comparisons with more than one operator as you saw
with the equality and NOT operators in the NOT operator example.

Other comparison operators you might want to add to your com-
parisons are && (which means AND) and || (the double pipe sym-
bol, which means OR and is written by pressing Shift-\ [at least it is
on U.S. and U.K. keyboards]). These operators allow you to do more
complex comparisons.

if (a && b < c) {

// do this if both a and b are less than c

}

if (a || b < c) {

 // do this if either a or b are less than c

}

if (a < b && b < c) {

 // do this if a is less than b and b is less than c

}

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 242

U S I N G TH E O R O PE R ATO R TO S U PP LY D E FAU LT VALU E S

Then there is the very interesting and handy use of the OR operator
to supply a default value, as shown here:

var userName = logInName || ‘Visitor’

Here, I want to set the userName variable to the name the user sup-
plied when that user logged in. However, if logInName is undefi ned
(the variable was never set because this person hasn’t logged in), the
user name will be set to “Visitor”. When the OR operator is used in
this format, the value to its right is a fallback value in case the one to
the left is not set. This is very handy for setting a variable to a default
value when the primary value is not provided, as demonstrated in
this example.

TH E + O PE R ATO R — AD D ITI O N AN D C O N C ATE N ATI O N

The + (plus symbol) operator actually has two uses. The first, as you
have seen, is its familiar role of adding numbers together.

alert (123+456) //displays 579

alert 100++ //displays 101

However, the + operator will also concatenate (join together)
two expressions, such as strings—a common task you will often
perform.

alert (“lap” + “top”) //displays laptop

Be aware that the + operator will only add two values together if
they are both numbers; otherwise, it will concatenate them.

a number a=5;

a string b=”4”;

alert (a+b); // displays 54

This displays 54, because you are adding a string to a number, so
JavaScript treats both values as strings and concatenates the two
values.

If you want to use a number that is stored as a string, you can use
the string methods parseInt() and parseFloat() to convert it to an
integer or a floating-point number, respectively. Just put the num-
ber, or the variable that contains it, in the parentheses, like this:

parseInt(b);

ptg

JAVA S C R I P T BA S I C S 43

Now you can add the integer to the string in the previous example if
you rewrite the code like this:

evaluates to 9 a+parseInt(b);

You will want to use parseInt() when a data source serves up a
string like this

“25 pounds weight”

and you need to use the value 25 in a calculation.

The parseInt() method only sees the numbers at the start of a
string and ignores the rest, so

var perPound= 5;

var totalWeight=”25 pounds weight”;

* means multiply

alert (perPound * parseInt(totalWeight)); // displays 125

Because JavaScript is weakly typed, you need to keep in mind the
types of data that are stored in your variables. As illustrated earlier
in the chapter, use the typeOf operator to determine what type of
data your code is dealing with, and if necessary, convert it to an
appropriate format before using it.

Here is a real-world example of concatenation. I want to display the
user’s first and last name, but they are stored in two separate vari-
ables. I can concatenate them with the + operator.

When I do this, I also want a space between the first and last names,
so I also include a string with a just a space in it:

fi rstName=”Austin”;

lastName=”Markus”;

alert (fi rstName+” “+lastName) // displays Austin Markus

Note that the string is located between the two + signs (highlighted).
It has a single space in it. By concatenating this between the first
and last name variables as an additional expression, the displayed
first and last names are separated by a space.

TH E “ S E T N E S S ” TE S T

Very frequently, before you access a variable, function, array, or
object, you want to check if it has data in it or if it simply exists at
all. This is particularly true if the process you want to run will cause
an error or even cause the application to fail entirely if the required
data is not present. So, a very common true/false test is to check if a

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 244

variable is set or not. This can be done in a simple, shorthand way—
you don’t even need a comparison operator.

Let’s imagine you want to check if a visitor to your site is logged
in (has provided a user name and password) before you allow the
visitor to access the site’s “Members Only” area. You might create a
userLoggedIn variable for this purpose:

var userLoggedIn;

Here you have declared a variable but have not assigned a value to
it. When the user successfully logs in, it is set to true. Then at any
time you can check if the user is logged in or not, like this:

if (userLoggedIn) {

// code here takes user to member content

// code only runs if userLoggedIn evaluates to true

}

In this case, the expression

if (userLoggedIn)

is the shorthand equivalent of

if (userLoggedIn===true)

If the variable is set to anything except a falsey value, the test will
evaluate to true.

JavaScript’s falsey values are

0 (Number)

NaN (Not a number)

false (Boolean)

“” (Empty string)

null (Object)

undefined (Undefined)

It doesn’t matter which of these falsey values are returned—any
of them cause the expression to evaluate to false. You initialized
the userloggedIn variable when the user arrived at the site, but
you didn’t define a value for it. So currently, because undefi ned is a

ptg

JAVA S C R I P T BA S I C S 45

falsey value, the user will not get to see your Members Only content.
However, if the variable didn’t even exist, the test would also return
undefi ned, and the test would still evaluate to false.

This neat little structure appears somewhere in just about every
script, and you can use it to check if a field has text in it, to test if
an element with a particular ID exists in the markup before you
attempt to modify it, or to determine if you received a false result
back from a function.

Its big benefit is that you don’t have to know or explicitly state in
your test what the variable should be set to. You might choose to put
the user’s session ID or first name in this variable when you change
it from 0—it doesn’t matter.

All that matters is that the variable is set to something other than
the falsey values listed earlier. This structure could be thought of as
a test for setness, and yes, I made up that word.

TH E S W ITC H S TATE M E NT

The final comparison structure I’ll show here is switch.

switch (value to test) {

case 1:

// case 1 code here

 break;

 case 2:

// case 2 code here

 break;

 case 3:

// case 3 code here

 break;

 default:

// default code runs if no case matches

}

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 246

It’s similar to the if statement and should be used when you want
to test if a variable is one of several possible values.

switch (upgradeOptions) {

case “silver”:

 additionalCost=100

 break;

 case “gold”:

 additionalCost=500

 break;

 case “platinum”:

 additionalCost=1000

 break;

 default:

 additionalCost=0;

}

The variable we want to test here is upgradeOptions—the argu-
ment for the switch statement. It is compared with the value for
each case. You can have as many case tests as you want. If there is
a match, the code for that case runs. Note that the last line of each
case is break, which terminates the end statement. You will rarely
find a situation where you want more than one case to match, so
remember to add break to each case statement. If none of the cases
match the switch argument, the optional default case runs, if pres-
ent. When you find yourself testing the same variable for several
possible values by writing a laundry list of if statements, it’s prob-
ably time to refactor your code as a switch statement.

Loops and Iterating Over Data
Sometimes you’ll want to examine a set of data, typically held in an
array, and test each item in that set for some particular characteris-
tic—values greater than 10, as a random example. Examining each
item of a data set is a process known as iteration, and it’s a common
programming task.

To help you in this work are code structures called loops. A loop is a
code structure that runs the same piece of processing code repeat-

ptg

JAVA S C R I P T BA S I C S 47

edly on a data set and uses a counter to keep track of which item
of data it should process next until some exit condition is met, and
then it stops. Let’s look at these ideas in more detail.

C O U NTE R S AN D E X IT C O N D ITI O N S

Loops use a variable that acts as the counter. The counter usually
starts at 0 and increments (goes up by one) each time the loop runs.
It is used, for example, as the index reference when processing the
elements of an indexed array. Each time the loop runs, the next ele-
ment in the array is processed by the code within the loop.

When programming a loop, you must ensure that some event occurs
that triggers an exit condition or the loop will not stop and your
code will eventually error out, or lock up and crash the browser.
So, each time a loop runs, the exit condition is checked; if the exit
condition evaluates to false, the loop stops. Let’s see these ideas in
action.

TH E W H I LE LO O P

The structure of the while loop looks like this:

while (some condition is true) {

// repeatedly do these things

}

Let’s use a while loop to simply write out the numbers 1 to 10 in the
browser window.

var x = 1;

while (x < 11) {

document.write (x + “
”);

 x++;

}

// lists the numbers 1 thru 10

In this example, the loop keeps running as long as x is less than 11.
Without the line x++ (which increments x each time the loop runs),
x would always equal 1, the exit condition (x becoming equal to or
greater than 11) would never be met, and you would have the infa-
mous infinite loop condition.

I use the document.write()

method to display the output on the

page here because it is simple to

understand and use at this early

stage in the book. It is pretty much

obsolete now that I can reliably use

DOM scripting (see Chapter 3) to add

data into HTML elements. Generally,

document.write() should

be avoided.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 248

TH E D O W H I LE LO O P

A variation on the while loop is the do…while loop. It looks like this:

do {

// these things

 }

 while (some condition is true);

Unlike the while loop, the do…while loop runs at least once, even if
the test evaluates to false. This is because, as you can see from its
format, the test is at the end of the loop, not the start. Look at this
do…while variation on the while loop example:

var x = 1;

do {

document.write (x + “
”);

 x++;

 }

while (x > 11);

// displays: 1

In this example, I changed the test around so the loop runs while x
is greater than 11. Because the initial value of x is 1, the test resolves
to false; however, the loop runs once before stopping.

TH E FO R LO O P

A more complex but more useful loop is the for loop, which
requires three values in order to work.

for (counterInitialValue; exitCondition; counterIncrement)
{

// do this repeatedly

}

ptg

JAVA S C R I P T BA S I C S 49

A common use of this loop is to iterate over (examine each element
of) an array. I first set up an array that holds the names of my five
favorite Web languages (yes, I know, some of them technically aren’t
languages!). The loop will extract each element’s value in turn.

var languages=[“HTML”, “CSS”, “JavaScript”, “PHP”, “SQL”];

for (var arrayPos=0; arrayPos<languages.length; arrayPos++) {

 alert(languages[arrayPos]);

}

A sequence of alert dialogs displays each item.

The meanings of the three (highlighted) elements of this for
loop are

1. Set a variable called arrayPos to 0. This variable is the counter
that will keep track of the position in the array as I check each
element and will automatically increment, moving to the next
element each time the loop runs.

2. Each time the loop runs, check if the counter is less than the
number of items in the array (note that languages.length
evaluates to 5, the length of the array as an integer), and if so,
the loop runs again.

3. Each time the loop runs, increment the counter, in this case
by one.

Now let’s look at the code within the loop:

alert(languages[arrayPos]);

This code will extract the element whose index is equal to the value
of the counter arrayPos and display it in a dialog. So the first time
the loop runs, I retrieve the element at index 0 because the counter’s
initial value is 0. The counter increments before the loop runs again
and, because the counter (now 1) is still less than the number of
items in the array (5), the loop runs again and I get the element at
index 1. Eventually, when the loop runs for the fifth time, I extract
the item at index 4 (the fifth and final item) and I increment the
counter to 5. Now the test of the counter being less than the number

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 250

of items in the array evaluates to false (they are now equal), and
the loop stops.

The workings of the for loop can be a little hard to grasp, but it’s
worth getting your head around this structure, because you will use
it frequently when examining the data within arrays and objects.

Functions

Functions are the building blocks of your page’s functionality, as
their name suggests. Each function performs a task, such as validat-
ing an email address, adding numbers together, or moving an ele-
ment onscreen. What makes functions so useful is that they can be
written to accept items of data, called arguments, which they use in
their work.

Imagine you owned a very smart robot that could do your bidding.
It has a very useful shopping function that enables the robot to look
up store locations, find its way to the store, track down items, pay
for them, and get home with the goods. All you have to do is call
the shopping function on your robot, remembering to include the
required store and item arguments

goShopping(“Borders”, “Codin’ for the Web”);

and soon after, it returns with a nice book with a blue cover. The
enormous quantity of code to get your robot to do this is hidden
away in a function that you don’t have to worry about. You just call
the function with the required arguments and everything else is
already taken care of.

Functions also keep things nice and tidy. The main flow of your code
doesn’t contain all those miles of instructions telling the robot how
to walk or pick up things. All these individual, and often complex,
tasks are abstracted (out of sight but useable) into functions that
can be called with a single instruction from anywhere in your code.

In short, you call a function, passing it any arguments (data) it
needs to do its job, and then it returns the result to you. That func-
tion can have a million lines of code in it, but you can call it and
obtain the returned result with a single line.

The basic format of a function is

function functionName(parameter1, parameter2,…parameterN) {

// code that executes when function is called

}

ptg

JAVA S C R I P T BA S I C S 51

Variables Declared Within a Function Are Local Variables

Variables declared within functions are local variables, which means they are only useable by the code within the func-
tion and last only as long as the function in which they are declared is running. Once the function ends, those variables
are disposed of. Next time the function runs, they are created again.

This is a good thing. A local variable’s scope is limited to the function, so it cannot conflict with a variable with the
same name in another function. The only other kind of variable scope in JavaScript is global where the variable can be
accessed from any function. It is rare that you’ll need a global variable, and it’s a recipe for bugs if you create one inad-
vertently. If you need to create a variable that sticks around, create it as the property of an object. You will learn how to
do this in the next chapter.

Another advantage of using local variables is that the memory they use can be retrieved after the function completes
and the variables are no longer needed. JavaScript performs a regular process called garbage collection that frees up
unused memory. This is another reason to put var in front of variables when you declare them. If you don’t use var
when you create variables, they become global variables, and unless you then explicitly dispose of them, the memory
they use is not garbage collected. Depending on how your application is coded, you can accumulate large numbers of
global variables by constantly (and usually inadvertently) creating new ones, and your application can eventually grind
to a standstill as JavaScript tries to juggle an ever-diminishing amount of memory. Using local variables, unless global
variables are absolutely necessary, is very important in an Ajax-driven world where a user can be in your application
for hours; those little “memory leaks” can really add up with prolonged use of your application.

This structure is know as a function literal, and it comprises the
reserved word function (you can’t use it for any other purpose in
your code), the optional function name, any parameters you choose
to add within the required () operator, and the statements within
the curly braces that execute when the function is called.

When JavaScript first loads in the browser, code within functions
is not executed. Code within functions is only executed when the
function is called, using a function call. The basic format of a func-
tion call is

function functionName(arg1, arg2,…argN)

For example, here’s a function that adds two numbers together:

function addThese(fi rstNum, secondNum) {

return fi rstNum + secondNum;

}

When you call the function with this code

var theAnswer = addThese(5478, 430672);

the variable theAnswer is set to 436,150.

C O D E 2 . 6 simple-addition_
function.html

the function

the function call

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 252

How Functions Work

1. A function is a block of code that is called (triggered) by a function call.
var a = 250;
var b = 170;

var theAnswer = addThese(a,b);
alert (theAnswer);

function addThese(fi rstNum, secondNum) {
return fi rstNum + secondNum;

 }

2. The function call can pass data arguments (data items) into the corresponding parameters of the function.
var theAnswer = addThese(a,b);
alert (theAnswer);

function addThese(fi rstNum, secondNum) {250 170
return fi rstNum + secondNum;

 }

3. The function uses the parameter values in its code.
var theAnswer = addThese(a,b);
alert (theAnswer);

function addThese(fi rstNum, secondNum) {
 return fi rstNum + secondNum;250 170

 }

4. The result of the function’s work is returned to the calling code, which evaluates to that value.
var theAnswer = addThese(a,b); 420
alert (theAnswer);

function addThese(fi rstNum, secondNum) {
 return fi rstNum + secondNum;
 }

5. Here the variable that was set to the evaluated value of the function call is displayed.

function name parameters

function namevariable name

function call

function

arguments

ptg

JAVA S C R I P T BA S I C S 53

Here’s how this works. The function has two parameters, fi rstNum
and secondNum, which are special kinds of variables that are set to
the values of the arguments passed to the function by the function
call. In this example, the parameters’ values are added and the result
is returned to the code that made the function call. In functions, the
right side of the line of code that calls the function evaluates to the
returned result, so the left side, in this case theAnswer, is set to that
value. Now you can use the variable theAnswer later in your code,
and it will evaluate to the number 436,150.

The return keyword is not required, but its purpose is to pass back
the result of the function’s work to the code that called it. Sometimes
you don’t need to return anything from a function, so you can omit
return (in which case it will return undefi ned). However, note that
once the function encounters return, it stops running and the call-
ing script regains control.

Once you have written a function like this, you can use it over and
over in your code by simply calling the function with the two num-
bers you want to add.

Any time you find yourself writing the same piece of code or some-
thing very much like it a second time, it makes sense to break it out
into a function. You can then write and maintain it in one place, and
use it whenever the code logic requires it.

FU N C TI O N S D O N ’ T R E Q U I R E AR G U M E NT S

Sometimes you won’t want to pass any arguments with a function.
Perhaps your function just returns the current time, for example,
and doesn’t need any additional information to do that.

var rightNow = currentTime();

Even if you don’t pass arguments, you still need to include the
parentheses or the function will not be called.

PA S S I N G AN O N Y M O U S FU N C TI O N S A S VAR IA B LE S

An interesting aspect of JavaScript functions is that they can be
passed around in your code like variables.

If you want to stop a function

from running during testing, add-

ing return; as the first line of the

function’s code is an alternative to

commenting out the function. Just

don’t forget to take it out when you

are done.

If you’re confused about the

difference between arguments and

parameters, remember this: The

arguments of the function call set

the parameters of the function.

corresponding function not
illustrated

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 254

It’s common in programming languages to set the value of a variable
to the value of another variable, like this:

var thisVar = 20;

var thatVar = thisVar;

alert (thatVar); // displays 20

What’s remarkable about JavaScript is that you can do the same kind
of thing with functions. Here, I set a variable to a function:

var bigWoof = function() {

 return (“WOOF!”);

}

I can then call the function using the name of the variable in which
it is stored, like this:

var bark = bigWoof();

Now the variable bark is set to “WOOF!”, as seen in the display in
Figure 2.3.

alert (bark);

FI G U R E 2 . 3 The dialog displays the
result of the passed function.

The function doesn’t have a name after the word function as you
saw in earlier function examples; it’s what is called an anonymous
function. It doesn’t need a name because you reference it with the
name of the variable in which it is stored. It’s very handy to be able
to pass an anonymous function to other parts of your code like this,
giving it whatever appropriate variable name you want as you do so.
You will see anonymous functions used in many later examples.

A common use is to pass a function to an Ajax call as the callback,
which is the code that runs when the requested data comes back
from the server. Normally, you just pass the name of the function to
run, but you can give it the entire function instead and let the Ajax
request response run it for you as illustrated on pages 187-188.

C O D E 2 .7 big_woof.html

note the parenthesis because I am
calling the function

ptg

JAVA S C R I P T BA S I C S 55

C ALLI N G A FU N C TI O N FR O M A LI N K

User actions are the trigger for many of the functions you will write.
User actions actually trigger events, which are messages that are
fired off by the browser when the user does any of a number of
actions, such as clicking the mouse, moving on or off an element,
or pressing a key on the keyboard. Events are a large and important
topic that will be the subject of Chapter 4. However, in the inter-
est of being able to follow Chapter 3, “Objects,” just understand for
now that you can easily detect a click event and use it to trigger a
JavaScript function. Here’s an example of how that works:

Bark and Go!

The (highlighted) onclick event handler is triggered when the click
happens and in this case, the bigWoof function is then called. The
event handler (onclick) receives the click message before the href.
So in this case, you would first get the WOOF! and then the dogs.
html page specified in the href would load. Often, you don’t want
the href to work if the JavaScript function is called (for example, if
you are using Ajax to get the data and only want the regular page
to reload as a backup if the JavaScript isn’t present). To prevent the
href from receiving the event after the JavaScript event handler, you
do this:

Bark
and Stay!

Now the click event triggers the function, but it is not passed on to
the href of the element and you remain on the current page.

Summary
In this chapter, you’ve seen the basic concepts of how JavaScript
works. You’ve seen how data is stored and the ways you can perform
processes, such as conditional tests and iterative looping, on that
data. You’ve also seen how functions are the basic building blocks of
your application’s capabilities.

Next, I’ll show you objects. Because JavaScript is so heavily based on
objects and the Document Object Model (DOM) is an object, let’s
start a new chapter and take a close look at objects and the DOM.

Adding an onclick handler directly

to a link like this is no longer con-

sidered a good way to associate

an event with a link because it

mixes the JavaScript with the HTML.

However, it’s simple and easily

understood, so I will use this tech-

nique until I cover events in depth

in Chapter 4.

ptg

C H A P T E R 3

Objects and the DOM

ptg

57S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

O B J E C T S AR E TH E FO U N DATI O N of object-oriented

programming (OOP), which is the way the logic of most mod-

ern applications and Web sites is written. As you will start to

discover, everything in JavaScript is an object. For example,

when you create a function or an array, you are actually cre-

ating a specialized kind of object. As its name implies, the

Document Object Model (DOM) is simply, from JavaScript’s

view, a large data object. When you use JavaScript to add

HTML elements to your markup, you are extending this object

with new properties.

If you have worked with JavaScript a little and have added

some simple functionality to a page, you may find that this

chapter takes your understanding to a new level. If you are

new to JavaScript, get ready to see JavaScript’s power to create

interactive interfaces.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 358

Objects

There are numerous advantages to using objects in your coding
work. The primary advantage is that they provide a high level of
organization to your code. If you try to write anything but the most
basic functionality without using objects, you’ll soon find that you
have numerous functions that call one another and you’ll find your-
self playing “pass the parcel” with the arguments as you move data
from function to function. The code gets hard to read, because it
becomes difficult to see which functions relate to which task. It’s
much easier to take the variables and functions that relate to a par-
ticular task and package them into an object.

An object is a named collection of variables and functions. To indi-
cate that they are part of an object, a variable inside an object is
known as a property, and a function inside an object is known as
a method.

You access an object’s properties and methods with “dot syntax,”
which separates elements with dots (periods) and looks like this:

objectName.aPropertyOfTheObject;

objectName.aMethodOfTheObject();

You will see dot syntax a great deal in this book. As mentioned ear-
lier, everything in JavaScript is an object, or at least can be treated as
an object, and accessed with dot syntax.

However, you can also use the array syntax to access an object. You
would do this when you need to select the property to read based
on some condition in your code and don’t want to hard-code the
property name in your script. In that case, you can use a variable as
the property name, in this format:

var theProperty = changeableValue

objectName[theProperty]

There are two types of objects: predefined objects that already exist
as part of the JavaScript language ready for you to use, and user-
defined objects that you write yourself for some purpose specific to
your application.

ptg

O B J E C T S AN D TH E D O M 59

 Predefined JavaScript Objects

JavaScript has a hierarchy of predefined objects, each with built-
in methods and properties ready for use. At the top of this hier-
archy is the Window Object, and its immediate descendant is the
Document Object, which contains the DOM of your document.
There are a number of other predefined objects that help with
particular types of tasks, such as the Number, Math, and Date
Objects. Listings of these predefined objects and their methods are
in Appendixes A, B, and C, and you will see many examples of each
as we go forward. However, the Window and Document Objects
warrant further discussion here.

TH E W I N D O W O B J E C T

The Window Object gives you access to a hierarchical representation
of the browser-related properties and methods that can be accessed
and sometimes set via the Window Object. For example, the Window
Object stores the history of pages visited and can be used to move
to pages previously visited—it’s like operating the Back button right
from the code.

To move the user to the previous page visited, write

window.back();

This calls the back method of the Window Object, and the browser
goes back one page.

The Window Object has methods that can open, load content into,
and close additional windows. Other Window Object methods
display some basic dialogs (alert, prompts, and confirm), set and
remove the focus on elements, and set up time delays to control
time-based events such as animation.

TH E D O C U M E NT O B J E C T

As its name suggests, the Document Object gives you access to the
DOM. The DOM is a hierarchical representation of an HTML docu-
ment. JavaScript enables you to manipulate the DOM in sophis-
ticated ways, including adding, changing, and removing HTML
elements from the document as the code runs—a capability that is
integral to the use of Ajax in your work.

The Document Object’s predefined getElementById method is one
of the ways you can “get” an HTML element as an object so that you

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 360

can use dot syntax to extract a property from it. For example, you
can extract the text from within this h1 element:

<h1 id=”headline”>Big news!</h1>

like this

var theElement=document.getElementById(“headline”);

alert(theElement.innerHTML);

// displays Big news!

In the first line, I put the h1 element into a variable. In the second
line, I get the text of the h1 element and display it. To do this, I use
the innerHTML property, which references whatever is in between
that element’s opening and closing tags. I’ll show you how to access
the DOM in detail later in this chapter, but for now, note that you
use dot syntax to access the DOM because it is an object.

You may already know that CSS also uses the DOM as the basis for
its operation on the document, and the selector of a CSS rule (the
part before the curly braces) defines which elements of the DOM
the CSS rule affects.

#nav li {code goes here}

CSS is capable of setting the style-related properties of an element—
its text color or its position onscreen, for example.

JavaScript takes this DOM relationship much further and allows you
to not only set style properties, but also to get and set all the values
of the properties and attributes of the DOM. This means that with
JavaScript you have programmatic control of the entire DOM and
can manipulate the document structure in response to user actions.
I’ll get right to the specifics of how to do this after we look at user-
created objects.

User-created Objects

While JavaScript has many predefined objects, you can also create
your own objects to manage large tasks and data sets within your
application. Within an object, you define its properties and the
methods that can act on those properties.

O B J E C T LITE R AL S

The simplest way to create an object is to use a format called an
object literal. The format of an object literal is

selects all list items in element with
ID “nav”

ptg

O B J E C T S AN D TH E D O M 61

objectName={

 propertyName1:value,

 propertyName2:value,

functionName1: function() {

// code for function

 },

functionName2: function() {

// code for function

 }

}

Here is a simple example of an object created using the object literal
format. This object does math using the constant π (pi)—the ratio of
the radius of a circle to its circumference, as we all remember from
high school.

circleMath={

 pi:Math.PI,

 calcCircumf:function(rad) {

var circum = rad * circleMath.pi;

alert (circum + “ inches”);

 },

 calcArea:function(rad) {

var area = (rad * circleMath.pi) * rad;

alert (area + “ square inches”);

 },

 calcVolume:function(rad) {

var volume = (4/3) * circleMath.pi * (rad * rad * rad)

alert (volume + “ cubic inches”);

 }

}

C O D E 3 .1 circle_math_obj.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 362

The object is called circleMath, and it contains one property—the
value of π, which is obtained from the built-in Math object—and
three methods that calculate the circumference, area, and volume
of a circular object. (For simplicity here, I’ve assumed the units to
be inches.)

By writing

circleMath={

// all the properties and methods of the object

}

I set circleMath variable to the value of the object itself, so we use
dot syntax to access the properties and methods within. Here, in
each case, I pass 10 as the radius of the circle:

circleMath.calcCircumf(10) // displays 31.416 inches

circleMath.calcArea(10) // displays 314.1592653589793 square
 inches

circleMath.calcVolume(10) // displays 4188.790204786391 cubic
 inches

Object literals are very unforgiving of formatting errors, so have the
Firefox Error Console open while you test your object literals, and
any errors will be identified. Some common formatting errors can
be avoided if you remember the following points about object
literals:

• Property names and values are separated by a colon; don’t use
the equals sign to set them, as you would with variables.

• Every time you refer to a property or method in your code,
even within the object itself, you must precede its name with
objectName.—as in circleMath.calcCircumf(10) when call-
ing the calcCircumf() method—or you will get a “not defined”
error.

• The first line of each function is formatted differently from the
functions you have seen so far. With an object literal the format
is function name, colon, the keyword function, and then the
() parentheses. This is then followed by the curly braces, that
contain the function’s code, like this

functionName:function() {

// function’s code

}

As you can see, JavaScript can

return some very long floating-

point numbers. To keep the code as

simple as possible, I left them that

way, but I could shorten the circum

value to three decimal places using

the toFixed(x) Number object

method, where x is the required

number of decimal places, like this:

var circum=circum.

toFixed(3);

ptg

O B J E C T S AN D TH E D O M 63

• An object literal is simply a comma-separated list of properties
and methods, so don’t forget those commas. Take a close look
at the placement of the commas in the circleMath example on
page 61. Note that no comma is used after the last item’s }, right
before the object’s closing }.

The key takeaway here is that object literals are a powerful organiza-
tional structure for your code. Use meaningful names for the objects
you create because they are effectively the name of the object’s col-
lection of properties and methods.

The benefit that this extra level of organization that object literals
(and objects in general) brings to your code cannot be overstated.
I am constantly improving my code by identifying functions that
are “loose” in my scripts and moving them into object literals along
with other related functions and variables.

In short, with good use of objects, you organize your code into the
tasks that your application performs. It’s so much easier to under-
stand what is happening if you do this. In contrast, if you have to
work on a large script that’s just made up of dozens of functions,
you have to work out how they all relate to one other by reading
every one of them line by line.

Object literals are a great organizational tool, but the power of
objects is revealed when you understand how to create instances of
the objects you create.

Objects and Instances

Often, you will use an object to manage a set of data where each
entity in the data set has the same types of properties (a set of prod-
ucts may each have a brand name, a model number, and a price,
for example). You can then create an instance of the object for each
product—each instance with its own set of property values for the
object’s properties—and then use the object’s methods to perform
all kinds of operations on the instances.

To help you understand this concept, in this example, I’ll create an
object to hold information about my guitars.

I’ll first write an object, again using an object literal format, called
Guitar that can help me do this. It’s standard practice to start an
object name with a capital letter if instances can be created from it.

Technically, an object literal is just

a list of properties, and the value

of a property can be a function.

However, I find it easier and more

consistent simply to refer to the

properties that contain functions as

methods.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 364

var Guitar = function (theName, theBrand, theModel) {

 this.guitarName=theName;

 this.guitarBrand=theBrand;

 this.guitarModel=theModel;

this.describeGuitar= function() {

var description = this.guitarName+” - “+this.guitarModel+
” by “+this.guitarBrand;

 return (description);

 }

}

This is what is called a constructor function; instances can be “con-
structed” from it. Because I use the this keyword as a prefix to each
property name, instances can be created where the values of these
properties are different for every instance.

In technical terms, the keyword this is bound to the instances of
the object, but the easy way to think about this is that it means
“this instance of the object.” The value of a property that is preceded
with this can be different for each instance. For example, the word
this that you see here

this.guitarName = theName

means “this instance’s value for the property guitarName”. So the
entire line above means, “set this instance’s value of the property
guitarName to the passed-in value of the parameter theName.”

Note also that the object has one method, describeGuitar.
A method is simply a function inside an object, but methods are
different from functions in a very important way.

When you call a function, you pass the data the function needs to
do its work as arguments at the time you call the function.

When you create a new instance of an object, you set its proper-
ties at that time. When you later call the methods of an object, it
simply needs to know which instance of the data you want it to use,
and it can get the data for itself. Method calls don’t need no stinkin’
arguments! That is, unless you need to change any property values
later as your code runs. Most of the time, all you need to pass is

C O D E 3 . 2 guitar_object.html

the object’s method

the object’s properties

end object

ptg

O B J E C T S AN D TH E D O M 65

the instance name to which the values of its properties are already
associated. This is what makes objects so very efficient as a means
of working on large data sets—you don’t need to pass all this data
around anymore. All the object’s methods work on the predefined
properties of whichever instance is passed to them.

Methods use the this.methodName() name syntax for their data,
and they, like properties, effectively replace this with whichever
instance’s variable name precedes the method call. The code effec-
tively acts as if it were written like this:

instanceVariableName.thisMethod();

I’ll now instantiate (create) an instance of the Guitar object with the
appropriate arguments for one of the guitars. By passing this data
into the object at the time of creation of the instance, I will
not need to pass it again when I later call the object’s methods on
the instance.

var instrument1 = new Guitar(“Tiger”, “Paul Reed Smith”,
“Hollowbody II”);

Note the use of the word new in front of the object name—this is
what causes the new instance to be created.

I’ll now instantiate a second instance:

var instrument2 = new Guitar(“Sunny”, “Ibanez”, “Roland G3
Synth Controller”);

Now, at any time, I can call the object’s methods for each instance,
and the methods will act on that instance’s data.

instrument1.describeGuitar();

displays: Tiger - Hollowbody II by Paul Reed Smith

instrument2.describeGuitar();

displays: Sunny - Roland G3 Synth Controller by Ibanez

Let’s look at how this works, starting with the line that creates the
instrument1 instance.

var instrument1 = new Guitar(“Tiger”, “Paul Reed Smith”,
“Hollowbody II”);

I pass three arguments to the Guitar object when I instantiate it,
which are the data that relate to this specific instance of the object—
the nickname of the guitar, its model, and its brand.

Here, I just create two instances, but

if you are working with a large data

set, creating numerous instances of

an object can use large amounts of

memory. To prevent such memory

use, the Prototype Property allows

you to store the methods of the

objects you create in a way that

they can be shared by the instances

instead of being duplicated in every

instance as I have done here. You

can learn more about the Prototype

Property at www.packtpub.com/

article/using-prototype-property-

in-javascript.

C O D E 3 . 3 guitar_object.html

My eight-year-old daughter has

named each of my guitars and now

everyone refers to them by these

names like they are pets or some-

thing.

www.packtpub.com/article/using-prototype-propertyin-javascript
www.packtpub.com/article/using-prototype-propertyin-javascript
www.packtpub.com/article/using-prototype-propertyin-javascript

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 366

These arguments set the values of the object’s three parameters,
theName, theBrand, and theModel. These values are then used to set
the properties of this instance of the object.

Once the instance has been created, a copy of the object along with
its new property values is stored in the variable instrument1. If
you try to display the value of the instrument1 variable in an alert

How Objects Work

// code here creates two instances of the Guitar object
var instrument1 = new Guitar(“Tiger”, “Paul Reed Smith”, “Hollowbody II”);
var instrument2 = new Guitar(“Sunny”, “Ibanez”, “Roland G3 Synth Controller”);

var Guitar = function (theName, theBrand, theModel) {

// the object’s properties
 this.guitarName=theName;
 this.guitarBrand=theBrand;
 this.guitarModel=theModel;

// the object’s method
this.describeGuitar= function() {
var description = this.guitarName+” - “+

 this.guitarModel+
 ” by “+this.guitarBrand;
 return (description);
 }
} // end object

<p>Guitar 1 Info</p>
<p>Guitar 2 Info</p>

Guitar 1 Info

Guitar 2 Info

instrument1 instrument2
theName Tiger Sunny
theBrand Paul Reed Smith Ibanez
theModel Hollowbody II Roland G3

Synth Controller

ptg

O B J E C T S AN D TH E D O M 67

dialog, you will just see the words object Object. All that matters
is that the variable instrument1 now contains the instrument1
instance’s data.

instrument1.describeGuitar(); // calls the describeGuitar
method using the instrument1 instance data

When you call the object’s method on this instance, the methods
will be using the project1 instance’s property values and you get

Tiger - Hollowbody II by Paul Reed Smith

The important takeaway here is that each instance’s unique data set
can be run against a set of methods defined in the object. I’ll extend
the code I’ve used here into a more complete, real-world example in
a later chapter. But before moving on, let’s talk about object scope.

O B J E C T S AN D S C O PE

A big advantage of an object is the limited scope of its properties
and methods—they are accessible only by explicitly referencing the
instance of the object, as in

instrument1.describeGuitar();

This makes each object a self-contained entity and, if the names
used for the object’s methods and properties were to be used else-
where in the code, there would not be a conflict. This concept is
known as encapsulation, and it is very helpful when large teams are
working on a project. As long as an object behaves in a predictable
manner, accepts specific data, and returns predictable responses,
only the team members working on that object need concern them-
selves about its internal implementation, which is immaterial to the
rest of the code.

My brilliant wife, who is the Development Editor on this book, wrote
a large “HUH?” next to this Objects section when she first read a
printout. If she didn’t get it…well, let’s just say that I have reworked
this section a few times to make it clearer. The fact is, objects is a
concept that isn’t easy to grasp and certainly can’t be fully explained
in a few pages like this. However, once you start to really under-
stand objects and OOP, your coding abilities will reach a new level.
So, if you are also saying “Huh?” right about now, come back to this
section after you have seen some real-world examples later in this
book, and I think it will all make more sense.

A concept called closure can be used

to further protect an object’s data

from access by other code. Closures

are not a simple subject, but here’s

the most basic tutorial I could find

http://javascriptkit.com/javatutors/

closures.shtml.

http://javascriptkit.com/javatutors/closures.shtml
http://javascriptkit.com/javatutors/closures.shtml

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 368

DOMinating the Document
Now let’s look at an object you will work with extensively—the
DOM—and see how it can be manipulated with a JavaScript tech-
nique called DOM scripting.

Much of the logic of your DOM-related code will go something
like this: “Find the HTML element with the attribute ‘x’ and add a
paragraph after it with the text ‘blah, blah…’.” Your ability to access
an easy-to-get element such as one with an ID, move up or down
the DOM from that element to the one you actually want, and then
modify that element in some way is key to achieving DOM mastery.

The DOM is a family tree-like hierarchical representation of the
elements, attributes, and text of an HTML document, known col-
lectively as the document’s nodes. When you use DOM scripting to
modify a visible part of a document, such as the text of a paragraph,
that change is immediately visible onscreen. Using the techniques
you’ll learn in this section, you can rewrite any part of the docu-
ment’s HTML and thereby change the appearance of the document
as the user works.

Before I show you some DOM scripting examples, I’ll mention that
the way in which browsers provide access to a document’s elements
has changed over time, as those of you who worked years ago with
Netscape’s now-obsolete concept of layers will know. Today, the
W3C’s DOM model has become the de facto standard way of access-
ing the DOM. All modern browsers use it, and I will focus on it here.
That said, Internet Explorer (6, 7, and 8) still has many incompat-
ibilities, and I will discuss a number of these and show you how to
work around them.

Getting Around the DOM
The DOM is a tree of linked nodes. There are three types of nodes:
HTML elements, element attributes, and text within elements,
which rather confusingly includes the white space between the
HTML elements created by the formatting of your code.

If you add white space between two li’s (list items), say by press-
ing Return and then indenting the next line a few spaces, that white
space is contained within the parent ul and is a child node of that

Other tag-based document types,

such as XML, also define a DOM and

can be manipulated by JavaScript in

the same manner as I demonstrate

in this section using an HTML docu-

ment. There will be examples of

XML in Chapter 5, “Ajax.”

A must-bookmark reference on the

various browsers’ JavaScript capa-

bilities is the Compatibility Tables at

QuirksMode.org (www.quirksmode.

org/compatibility.html).

www.quirksmode.org/compatibility.html
www.quirksmode.org/compatibility.html

ptg

O B J E C T S AN D TH E D O M 69

parent element. For this reason, you must be sure you are accessing
the element you expect and not white space. It is quite simple to
check, as

if (nodeType===3) { /* move to another node */ }

returns true if the node is white space. Later you’ll see how you can
move to an adjacent DOM element if this is the case.

A set of DOM-related methods—known colloquially as getters and
setters—allow you to access the nodes.

You can access an element node with a getter, and then you can
access the properties of it and its child elements, including the attri-
bute and text nodes. You can also traverse (move around) the DOM
to get nodes relative to the one you currently have. Once you have
“got” the node you want, you can then modify that node or add a
new one in a location relative to it using the DOM methods known
as setters.

To get a node and put it into a variable, you need some kind of
definitive reference to find it. This reference is often an ID attri-
bute. As those of you who have read my book Stylin’ with CSS (New
Riders, 2008) will know, I strongly advocate dividing a page’s markup
into sections using div (division) elements and giving each div an
ID. Because you are only allowed to use an ID name once on a page,
IDs provide CSS with a unique reference, or hook, to the div and its
child elements. Using this reference, CSS can be targeted accurately
at the desired elements. IDs serve exactly the same purpose for
JavaScript. The difference is that when using JavaScript, IDs enable
you to get an element along with its child elements and store it in a
variable so you can manipulate it. Let’s see these ideas in action.

Two Meanings for Getters and Setters

“Getters and setters” is also the name of an advanced JavaScript technique
that John Resig describes as allowing you “to build useful shortcuts for
accessing and mutating data within an object.” When you are ready for a
little mutating, you can read more at http://ejohn.org/blog/javascript-getters-
and-setters. In this context, however, I am using the terms getters and setters
in the way that Jeremy Keith describes them in Bulletproof Ajax (New Riders,
2007) as, and I précis slightly here, “methods for accessing, adding, and
removing the individual nodes of a document.”

Internet Explorer, unlike most other

browsers, does not treat white space

in the document as document nodes.

http://ejohn.org/blog/javascript-getters-and-setters
http://ejohn.org/blog/javascript-getters-and-setters

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 370

Get, Set...DOM!
Here’s some markup I’ll work with in this section. The highlighted
code contains the DOM elements I will get and set. The code that
follows is simply links that trigger the demo functions.

// only document body shown to save space

<body>

<h1>Simple DOM exercises</h1>

<p>View Source to see the code</p>

<hr />

<div id=”content” title=”This is the div’s title text!”>

<h2>Manipulating the DOM</h2>

<p id=”dom_description”>The DOM is a representation of a
Web page as a family tree-like structure of nodes.</p>

 <div id=”demo_links”>

<p>Show text of
the paragraph (by ID)</p>

<p>Show content
div’s title attribute (by ID)</p>

<p>Show headline
text (by ID of parent)</p>

<p>Display
headline text (add it into an existing element)</p>

<p id=”display”>The displayed headline will appear here.
 </p>

<p>
Display headline text (in a new element)</p>

<p>Add style</p>

<p>Add class</p>

 </div>

</div>

</body>

C O D E 3 .4 dom_exercises.html

markup to be manipulated

each link element has an onClick
event attached to it that triggers a
JavaScript function when the link
is clicked

I admit I am abusing links here

by using them to trigger JavaScript

while the hrefs of the links point to

nowhere—not something I would

do in production code. However, I

did this here so I can demo styling

these links with JavaScript later in

this example. If not for this, I would

have more correctly used buttons to

trigger these examples.

ptg

O B J E C T S AN D TH E D O M 71

Figure 3.1 shows how the preceding markup displays in the browser.

FI G U R E 3 .1 The DOM exercises code
displayed in the browser.

I’ll first show you the getters, the JavaScript methods that provide
access to the nodes of the DOM. As with just about everything in
JavaScript, what you actually get using these techniques is an object
that contains all the properties of the element, including all its
child elements and their properties. Because the “got” element is an
object, you can read out its properties using dot syntax.

G E T TI N G TH E TE X T FR O M W ITH I N AN E LE M E NT

The text of an element node is a separate child node,

<p>This text is the child node of its paragraph element</p>

so to get the text of the paragraph in the markup that starts “The
DOM is a representation…” and has the ID dom_description, I need
to first get the element using its ID, and then get the element’s first
(and only) child node. Finally, I can get the child node’s nodeValue—
the text string. I’ll do this in three steps, each time putting an ele-
ment into a variable, and then extracting a “sub-element” from it
using the variable name.

Frameworks such as jQuery greatly

simplify getting and setting nodes by

using a kind of shorthand. I’ll discuss

the pros and cons of frameworks in

Chapter 6, “Frameworks.”

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 372

function alertElementText() {

 var myElement=document.getElementById(“dom_description”);

var myNode= myElement.fi rstChild;

 myText=myNode.nodeValue;

 alert(myText);

}

// displays The DOM is a representation of a Web page as a
family-tree-like structure of nodes.

I could also write these three lines as a single more complex line like
this:

alert (document.getElementById(“dom_description”).fi rstChild.
nodeValue);

For beginners, going step by step, as in the preceding multiline
code example is probably best, so that you can test for the correct
value at each step. If you are a more experienced programmer who
is confident of the syntax, writing out all the elements on one line
separated by dots can makes your code clearer and more concise.
I’ll show you a step-by-step and a concise version of these examples
as I go along.

Next, let’s get the text of an element’s attribute. It’s easy if that ele-
ment happens to have an ID, as in this example. Again, I’ll first go
step by step.

C O D E 3 . 5 dom_exercises.html

Checking for the Existence of an Element

 As I illustrate in the downloadable file for this example, it’s good practice to use an if statement to check that a child
node actually exists before you try to get it, like this:

if (theTags[0].fi rstChild) { // is child node present?

 alert(theTags[0].fi rstChild.nodeValue);

 }

}

Checking for the existence of data before attempting to use it can bulletproof your code in situations where nodes may
or may not be populated or exist at all.

put the value (the text) of the ele-
ment’s child node into the variable
“myText”

 put the firstChild node of “myEle-
ment” into “myNode”

put the div with ID “dom_descrip-
tion” into the variable “myElement”

show the “myText” variable in an
alert dialog

ptg

O B J E C T S AN D TH E D O M 73

G E T TI N G AN E LE M E NT ’ S AT T R I B U TE

It can be very useful to access an element’s attributes, such as its
class or title. In this example, I’ll get the title attribute of the div
with the ID content and display that attribute’s text.

function alertDivAttribute() {

 var theContent=document.getElementById(“content”);

 var thisText=content.getAttribute(“title”);

alert (thisText); // displays This is the div’s title
 text!

}

The more concise form looks like this:

alert (document.getElementById(“content”).
getAttribute(“title”));

G E T TI N G TH E TE X T O F A C H I L D E LE M E NT

Often the element you want is within a containing div that has an
ID, so you would first get the div and then “drill down” to the ele-
ment you want. In this example, the element I want—the text node
of the h2 element—is the first child of the h2 element.

function alertHeadlineText() {

 var content=document.getElementById(“content”);

 var theTags=content.getElementsByTagName(“h2”);

 alert (theTags[0].fi rstChild.nodeValue);

// displays Manipulating the DOM

}

Here’s the same thing in one line. As shown, you would normally put
the result into a variable and only use an alert for testing.

var theText=document.getElementById(“content”).
getElementsByTagName(“h2”)[0].fi rstChild.nodeValue;

You can see how these single-line versions can become long and
complex. Using a couple of extra lines and going step by step can
make the code easier to read.

Now let’s take a look at the setters, which as their name suggests, set
the properties of an element and can even add a completely new
element into the markup.

C O D E 3 . 6 dom_exercises.html

C O D E 3 .7 dom_exercises.html

put the attribute value into var
thisText

put the div with ID “content” into
the variable “content”

put the div with ID “content” into
the variable “content”

put all h2 elements within the div
into variable “theTags” (in this case,
there is only one h2)

get the text from the text node of
the first (and in this case, only) ele-
ment

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 374

S E T TI N G TH E TE X T O F AN E LE M E NT

Here I will use the text I got from the h2 element in the previous
example and insert it into a different element. The only difference is
the highlighted line.

function displayHeadlineText() {

var content=document.getElementById(“content”);

var theTags=content.getElementsByTagName(“h2”);

var theText=(theTags[0].fi rstChild.nodeValue);

document.getElementById(“display”).fi rstChild.
 nodeValue=theText;

}

With a single line (highlighted) I put the text into the text node of
the paragraph element with the ID display, replacing the text that
was there.

C R E ATI N G A N E W E LE M E NT AN D AD D I N G TE X T AN D AN
AT T R I B U TE TO IT

In the final example that uses this markup, I’ll grab the h2 text in the
same way as the previous two examples. This time, however, I’ll cre-
ate a completely new element, add the text into that element, and
then add the new element into the page.

// modifi es the previous example, creating a completely new
element for the text

function newElementForHeadlineText() {

var content=document.getElementById(“content”);

var theTags=content.getElementsByTagName(“h2”);

var theText=(theTags[0].fi rstChild.nodeValue);

var myPara=document.createElement(“p”);

var myTextNode=document.createTextNode(theText);

myPara.appendChild(myTextNode);

myPara.setAttribute(“title”,”I created this paragraph using
 DOM scripting!”);

content.appendChild(myPara);

}

Code 3.8 dom_exercises.html

Code 3.9 dom_exercises.html

get the text from the h2 element

create a new paragraph element

add the text into the element with
the ID “display”, replacing its previ-
ous text

create a new text node

insert the text node into the new
paragraph element

add an attribute to the paragraph

insert the paragraph as a child of
the “content” div (automatically
added as last element of the
parent)

ptg

O B J E C T S AN D TH E D O M 75

The comments in the preceding code example pretty much explain
what is going on, but I’ll also make two remarks here. First, when
you create an element like this, it’s just hanging around unseen in
JavaScript “hyperspace” until you append it to the page.

Second, appendChild always adds the element right before the clos-
ing tag of the parent element; in this case, the content div. It would
make more sense aesthetically to add the new text right after the
link that we clicked to generate it, but JavaScript does not have an
insertAfter(someElement) method. However, you can do this
with the insertAfter helper function that you can find in the
scriptin_helper.js file.

Modifying Element Styles
 This final DOM scripting example will, I hope, give you a lot of

inspiring ideas by showing you how JavaScript and CSS can work
together. In short, because JavaScript enables you to change the
attributes of an element, you have two interesting possibilities for
applying CSS with JavaScript:

• Style attribute. As you probably know, you can use CSS to add a
style attribute to an element to, say, bold its text or even change
its visibility or position.

<p style=”font-weight:bold”>As bold as you please!</p>

You can do the same thing with JavaScript and ideally, you
would use the setAttribute method like this

myElementObject.setAttribute(“style”,”font-weight:bold;”)

and indeed you could. However, IE6 doesn’t use setAttrib-
ute predictably, so it’s more reliable to treat the element as the
object it is and use dot syntax like this:

myElementObject.style.fontWeight=”bold”;

All browsers including IE6 understand this syntax. See the
sidebar, “Applying Styles with JavaScript,” to learn more about
applying styles in this way.

• DOM scripting. A second and very powerful technique for
modifying the styling of an element is to use DOM script-
ing to add a class attribute. This can cause a number of CSS
rules that have that class as a contextual selector to come into
effect instantly on referenced elements. For example, any styles
within these paragraph and link rules

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 376

.myClass p { /* CSS styles */ }

.myClass a:hover { /* CSS styles */ }

would be applied when the class of myClass is added by
JavaScript to one of the paragraph’s or link’s ancestor elements
(assuming that no more-specific styles override them).

So let’s use the first of these two techniques by adding styles to bold
each of the links.

AD D I N G A S T Y LE TO AN E LE M E NT

Now I’ll show you how you can add a style to an element. I’ll get all
the links that are used to trigger the demo examples and set the font
of each one to bold.

function addStyle() {

var linkDiv= document.getElementById(“demo_links”);

var theLinks= linkDiv.getElementsByTagName(“a”);

for (var aLink=0; aLink < theLinks.length; aLink++) {

 // theLinks[aLink].setAttribute(“style”,”font-
 weight:bold;”);

 theLinks[aLink].style.fontWeight=”bold”;

 }

}

There is nothing here that you haven’t seen in earlier exercises. I
first get the div that contains the links, get all the links within it, and
finally loop through all the links, setting each one’s style attribute.

The line of code that uses setAttribute and is commented out
(highlighted) works perfectly in all W3C DOM-compliant browsers,
but doesn’t work reliably in IE6. On the line that follows, you can see
the alternate, dot-syntax version that works in all browsers.

AD D I N G A C L A S S TO AN E LE M E NT

Changing a class on a containing element can have a much more
far-reaching effect on the document than simply adding a style,
because this can cause many CSS styles to be invoked on many ele-
ments from the style sheet at once.

I’ll illustrate this by writing a couple of CSS styles (you can see them
within a style tag in the head of the document in the downloadable

C O D E 3 .10 dom_exercises.html

As I’ll show you on page 109, instead

of writing aLink < theLinks.

length in the for statement, it’s

actually best to set a variable for the

array length so JavaScript doesn’t

have to count the elements every

time the loop runs, but it’s easier to

understand written this way.

commented out

ptg

O B J E C T S AN D TH E D O M 77

example). These are styles for links (the a tags) and have the contex-
tual class of important_links.

.important_links a {

 font-weight:bold;

 }

.important_links a:hover {

 color:#666;

 }

When I add the important_links class to the containing div, all
links within it will immediately be affected by this CSS. Because the
containing div has a nice hook—its ID—we can get and set this ele-
ment with a single line of code.

function addClass() {

 document.getElementById(“demo_links”).className=”important_
links”;

}

Not only are all the links now bolded, but they also turn gray when
the cursor moves over them.

Applying Styles with JavaScript

Here’s a little more detail on adding a style attribute to an element. If you were to manually add a style to the element in
the HTML, you could write

<p id=”myPara” style=”font-weight:bold;”>Here is some bolded text</>

Alternatively, the highlighted code can be added using JavaScript like this:

document.getElementById(“myPara”).setAttribute(“style”,”font-weight:bold;”)

Here, I format the style’s declaration (its property/value pair—highlighted) just as I would write it if adding the style
manually. However, because setAttribute is not reliable in IE6, I use use the dot syntax style to add the style in a way
that is understood by both W3C DOM-compliant and IE6 browsers.

myElementObject.style.fontWeight=”bold”;

Now, instead of using JavaScript to simply write some CSS into the markup, I am setting the property via JavaScript.
When I use JavaScript in this way, I change the format of the property name (highlighted), converting the hyphenated
CSS format font-weight to its JavaScript camel case equivalent fontWeight. When using dot syntax to set styles, I can,
in almost every case, simply change the hyphenated CSS version to the camel case version and get the right format for
the property name. The exception is fl oat which becomes cssFloat.

C O D E 3 .11 dom_exercises.html

From a performance perspective,

this approach also helps avoid loop-

ing through a large list of links, table

rows, or whatever you are working

on, and adding classes to each one,

which can be very slow.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 378

Using this technique, you can have all kinds of extra styles in your
style sheet ready to be invoked with the addition of a class to an
element when the right moment arrives—as you will see in the
following example.

Zebra Tables
Here I’ll use DOM scripting to add a class to alternate rows of a
table to create a striping effect. This effect helps guide the user’s eye
across the rows and is especially useful if the table is wide. You saw
this table in Chapter 1—now I’ll write the JavaScript to make it work.

Achieving this stripe effect requires some of the DOM scripting
techniques you just saw. I’ll also use the onload event handler to
trigger the function that adds the stripes right after the page loads.
Also, after you learn about event handling techniques in the next
chapter, I’ll come back to this table and make the table rows high-
light as the user moves the cursor over them.

In this example, I’ll add the class of stripe_table on the table
element, as shown in this markup.

<table class=”stripe_table” border=”1”>

<caption>More JavaScript books for your reading pleasure
 </caption>

<thead>

 <tr>

 <th scope=”col”>Title</th>

 <th scope=”col”>Author</th>

 <th scope=”col”>Publisher</th>

Adding and Removing Classes

You can have multiple class names separated by spaces in a class attribute, like the three classes illustrated here:

<div class=”nav links members”><!-- --></div>

In this situation, you can run into problems if you simply set a class, as I do in the “Adding a class to an element” exam-
ple, on an element that already has other classes. Those existing classes will be replaced by the one you are adding. To
avoid overwriting existing classes when you add new ones, you have to first get the classes that are currently there, store
them in an array, add your new class, and then write the whole thing back, not forgetting the space that goes between
each class name. There is a nifty helper function that will correctly add and remove classes in the scriptin_helper.js file
in the downloads, and I will use it in later examples.

ptg

O B J E C T S AN D TH E D O M 79

 <th scope=”col”>Comment</th>

 </tr>

</head>

<tbody>

 <tr>

 <td>PPK on JavaScript</td>

 <td>Peter-Paul Koch</td>

 <td>New Riders</td>

<td>Europe’s foremost JS expert gives his personal
 insights.</td>

 </tr>

// etc...additional rows removed here to save trees

</tbody>

</table>

This markup uses thead and tbody tags to separate the header row
from the table’s data rows. Not only is this good semantic markup
(that is, it meaningfully structures the content), but as you’ll see,
it also provides a targeting context for the rows I want to stripe.
Those rows are all contained within the tbody tag, and by targeting
only the rows within it, my code won’t affect the header row, which
I want to leave untouched. Figure 3.2 shows how this unstyled
markup looks in the browser.

FI G U R E 3 . 2 A table with the default
browser styling.

The browser’s default styling of tables, with a border around the
table and a border around every cell within, is unattractive, does
not help show how the data elements are related, and distracts your
attention from the data.

C O D E 3 .12 table_stripe_step0.
html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 380

Fortunately, the look of a table can be improved easily with a little
CSS (and the deletion of the border attribute from the HTML table
element) as shown in Figure 3.3.

body {font-family:verdana, sans-serif; font-size:.8em;}

table.stripe_table {border-collapse:collapse;}

table.stripe_table {border:0;}

.stripe_table caption {margin-bottom:.3em; font-weight:bold;
 font-size:1.2em;}

.stripe_table th {color:white; background-color:#036;}

.stripe_table tr {background: #EEF; border-bottom:1px solid
 #036;}

.stripe_table tr:last-child {border-bottom:2px solid #036;}

.stripe_table td {padding:.3em;}

.stripe_table td:fi rst-child {font-weight:bold;}

.stripe_table tr.odd {background: #DEE;}

FI G U R E 3 . 3 Removing the table
borders and adding a little color and
some thin horizontal lines improves
the aesthetic, and brings out the rela-
tionships in the data.

To set up the stripe effect, I write a CSS style like this (highlighted in
the preceding code):

stripe_table tr.odd {background: #DEE;}

I could then manually add the .odd class to every other tr element
of the table. However, in an application where the table is generated
dynamically, I have JavaScript do this for me.

Let’s start with a list of the steps that add the stripes to the table.

1. Set up an onLoad event handler that triggers the getTheTables-
ToStripe function as soon as the page loads.

C O D E 3 .13 table_stripe_step1.
html

I’ll use this example to show you

how to develop your code step by

step, adding a few lines at a time

and then checking that you are get-

ting the anticipated result. By doing

this, you can be confident that your

code works as expected when you

complete it.

“odd” class to be added to markup
by JS

ptg

O B J E C T S AN D TH E D O M 81

2. Write the getTheTablesToStripe function to find all the tables
on the page that have the stripe_table class. There will only be
one in this example, but the code will support multiple tables
on a page.

3. Pass the name of any tables with the stripe_table class to a
second function that adds the .odd class (highlighted in the
preceding CSS) to every other row of the table.

Here’s step 1—setting up the load event:

window.onload=getTheTables;

Because this line of code is not contained within a function, it will
run as soon as it loads into the browser. The getTheTables func-
tion will then be called as soon as the rest of the page’s content has
loaded and the load event fires. You will learn about the onload
event handler in more detail in the next chapter. For now, just
accept that you can’t add stripes to a table that hasn’t loaded in the
browser. Using the previous line of code ensures the getTheTables
function doesn’t get called until the page has loaded.

As its name suggests, the getTheTables function will go out and
get all the tables on the page and identify any that need the stripe
effect; that is, those that have the stripe_table class.

Before I add the code to do that, I’ll simply check that the function
is being called by the onload event.

window.onload=getTheTables

function getTheTables() {

alert (“getTheTables function called”);

}

When the page loads, the alert dialog appears, as shown in
Figure 3.4.

FI G U R E 3 .4 The onload event han-
dler successfully calls the function
when the page finishes loading.

C O D E 3 .1 4 table_stripe_step2.
html

Note that I delete each line of code

with an alert before moving on to

the next step.

Of course, I only show one table on

the page in this example, but this

code allows me to determine which

of several tables on a page will have

the stripe effect.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 382

With the function being called successfully from the onload event,
it’s time to add the real code into it. I’ll first check if the browser
offers support for the DOM scripting method I want to use, and exit
the function if it doesn’t. Note that this is the “setness” test from
Chapter 2.

if (!document.getElementsByTagName) {return false;}

In browsers that pass this test, and these days most browsers includ-
ing IE6 will, I can now use the getElementsByTagName method to
find all the page’s tables and store them in a variable that I’ve called
theTables. I’ll ensure this step is working by checking how many
tables were returned; in this case, there should be one, of course.
The getElementsByTagName method returns an array-like node list. I
can use the length method to determine the number of elements in
it, but note that other array methods, like sort, push, and pop, won’t
work on a node list.

function getTheTables() {

if (!document.getElementsByTagName) return false;

var theTables = document.getElementsByTagName(“table”);

alert (theTables.length+” table(s) found”);

}

When we run this code, the alert dialog shows that one table was
found (Figure 3.5).

FI G U R E 3 . 5 The table array holds
the anticipated single element.

Next, I’ll loop through the elements in the node list to check if any
of them have the class stripe_table.

function getTheTables() {

if (!document.getElementsByTagName) {return false;}

C O D E 3 .15 table_stripe_step3.
html

C O D E 3 .16 table_stripe_step4.
html

get all the tables

then this is not a W3C DOM-
capable browser–bye-bye!

ptg

O B J E C T S AN D TH E D O M 83

var theTables = document.getElementsByTagName(“table”);

for (var i=0; i < theTables.length; i++) {

if (theTables[i].className == “stripe_table”) {

 addStripes(theTables[i]);

 }

 }

}

Here I use a for loop to iterate over the tables I found in the earlier
step. In this case, there is only one table, but for the code to be con-
sidered robust, it must be able to cope with however many tables
might appear on the page.

Within the loop, I test each table to see if it has the stripe_table
class. If it does, I pass it to the addStripes function to add the .odd
class to every alternate row.

I’ll start by writing the structure of the addStripes function and
check that it’s being called from the getTheTables function.

function addStripes(theTable) {

alert(“addStripes function called”);

}

As ilustrated in Figure 3.6, I then get confirmation that the function
was successfully called.

FI G U R E 3 . 6 The getTheTables
function is now calling the
addStripes function.

 I’ll use the getElementsByTagName method again—first to get the
tbody element and a second time to get the rows within it. As a
sanity check, I’ll display the length of the node list.

if a table has the required class

end of for loop

end of if

loop through them

get all the tables as objects

pass it to the function that adds the
stripes

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 384

function addStripes(theTable) {

var theTableBody = theTable.getElementsByTagName(“tbody”);

var theTableRows = theTableBody[0]
 getElementsByTagName(“tr”);

var rowCount=theTableRows.length //

alert (rowCount+ “ rows in this table”);

}

When you run the code, you see the result shown in Figure 3.7

 FI G U R E 3 .7 There are five rows in
this table including the header.

 Now I know I am successfully getting the five rows of this table that
are within the tbody tag.

All that’s left is to write a loop that adds the .odd class to every alter-
nate row.

function addStripes(theTable) {

var theTableBody = theTable.getElementsByTagName(“tbody”);

var theTableRows = theTableBody[0].
 getElementsByTagName(“tr”);

 var rowCount=theTableRows.length

for (var i=1; i < rowCount; i++) {

 theTableRows[i].className = “odd”;

 i++;

 }

}

C O D E 3 .17 table_stripe_step5.
html

C O D E 3 .1 8 table_stripe_step6.
html

set rowCount to the number of
rows

adds stripes (the “odd” class) to
any table passed to it

get the table body’s rows

get the table body

give the counter a second incre-
ment here so you skip every other
row

add the “odd” class to every other
row

run the loop on each row

ptg

O B J E C T S AN D TH E D O M 85

As Figure 3.8 shows, the table is now nicely striped

FI G U R E 3 . 8 The stripes are now
added to the alternate rows.

There are three interesting points I want to explain about this code.

First, this example is a good illustration of JavaScript’s object-
oriented nature. When I get the table elements, they are stored in
an array-like node list object. This node list can be queried for its
length, and each element of the node list can then be queried for its
properties using a loop.

Second, note also how theTables[i] (where i is the loop’s current
counter value) can simply be passed to another function. It’s the ref-
erence to the object that contains that table, so the receiving func-
tion can immediately work on that table. Once you understand that
you are passing around references to objects and can at any time
access that object’s properties using objectName.propertyName dot
syntax, reading and working with JavaScript gets much easier.

Third, let’s examine the counter in the loop. When adding the class
to the alternate rows, the loop uses i++ in the for statement to
increment its counter by one in the standard manner. However, in
this case, because I only want to apply the class to every other row,
I give the counter a second increment within the code. This causes
the counter to be incremented by two each time the loop runs, and
the class is thereby added to every other row, not every row.

Refactoring the Code
In the next chapter I’ll add more functions to this code. In prepara-
tion, I’ll refactor the two functions into the methods of an object
literal that I will call stripeTable.

Refactoring is the process of improving your code without altering
its functionality. You might do this to make it run faster, to make it
more secure, or in this case, to simply make it more organized, read-

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 386

able, and easier to extend. I’ll start by creating the basic structure of
the object.

 var stripeTable={

}

Now, I drop the functions inside this object, indent them within the
object, and rework each one’s first line. I also add the object name in
front of the call to the addStripes method.

var stripeTable={

 getTheTables:function() {

if (!document.getElementsByTagName) return false;

var theTables = document.getElementsByTagName(“table”);

for (var i=0; i < theTables.length; i++) {

if (theTables[i].className == “stripe_table”) {

 stripeTable.addStripes(theTables[i]);

 }

 }

 },

 addStripes:function(theTable) {

var theTableRows = theTable.getElementsByTagName(“tr”);

 var rowCount=theTableRows.length;

for (var i=1; i < rowCount; i++) {

 theTableRows[i].className = “odd”;

 i++;

 }

 }

 }

I also need to modify the onload event to call the getTheTables
function. You would think that this simple modification

window.onload=stripeTable.getTheTables

C O D E 3 .19 table_stripe_objlit_
step7.html

doesn’t work!!!!

ptg

O B J E C T S AN D TH E D O M 87

would do the job, but the dot syntax doesn’t work in this context. So,
I’ll add a simple function called init (initialize) that I’ll call from the
event and add the call to the object there.

window.onload=init;

function init() {

 stripedTables.getTheTables();

}

Now it works. Also, if I wanted to call other functions when the page
loads, I could now add them to this initialization function.

I now have a nicely organized object called stripeTable, which I
will extend with additional functionality in the next chapter.

Summary

Objects are the fundamental nature of everything in JavaScript.
The examples in this chapter will start you down the road to deeply
understanding how JavaScript works and how to write code that
takes full advantages of its capabilities. By using objects to contain
related code elements, you take control of your code as it grows and
prevent scoping conflicts. By creating objects from which you can
create instances, you have a powerful mechanism for managing
large data sets.

DOM scripting enables you to manipulate the user interface and
takes your Web page from a fixed layout to a fluid canvas that you
can modify at will.

Now it’s time to look at events and discover how to detect and
provide appropriate responses to the user’s interaction with
your application.

ptg

C H A P T E R 4

Events

ptg

89S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

I N A M O D E R N W E B S ITE or browser-based application,

JavaScript’s primary purpose is to provide responses to the

user interactions with the interface, or to be more technically

precise, to handle events that are triggered by user actions.

Events are messages that the browser fires off in a constant

stream as the user works; for example, every time the user

moves the pointer over an HTML element, clicks the mouse,

or moves the cursor into a field of a form, a corresponding

event message is fired. JavaScript receives these messages,

but does nothing unless you provide an event handler that

provides a response to them.

Your ability to write code that can monitor and respond to

the events that matter to your application is key to creating

interactive interfaces.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 490

To make your application respond to user action, you need to:

1. Decide which events should be monitored

2. Set up event handlers that trigger functions when events occur

3. Write the functions that provide the appropriate responses to
the events

You’ll see the details of this process throughout this chapter. For
now, just get the idea that an event, such as click, is issued as the
result of some specific activity—usually user activity, but sometimes
browser activity such as a page load—and that you can handle that
event with an event handler. The event handler is always the name
of the event preceded by “on”; for example, the event click is han-
dled by the onclick event handler. The event handler causes a
function to run, and the function provides the response to the
event. Table 4.1 lists the most commonly used event handlers.

Techniques to Handle Events

In this section, I’ll show you four techniques that you can use to
trigger JavaScript functions in response to events. The first two
require adding JavaScript into the markup, so I try to avoid them,
preferring techniques where event handlers are programmatically
added to and removed from elements as needed. In small projects,
such as simple Web sites, the first two techniques work just fine, but
with important caveats that I will discuss for each one.

JavaScript Pseudo Protocol
If you worked with JavaScript in years past, you may have used the
the JavaScript pseudo protocol to trigger a function from a link:

Link Name

When the user clicks the link, the function someFunctionName is
called. No onclick is stated; this technique simply replaces the href
value. The problem with this approach is that it completely replaces
the URL that normally would be the href value. If the user doesn’t
have JavaScript running or the associated JavaScript function fails to
load for some reason, the link is completely broken. This approach
also adds JavaScript into the markup, an issue I’ll discuss after I
show you the second method. In short, avoid triggering events with
the pseudo protocol.

ptg

E V E NT S 91

E V E NT C ATE G O RY E V E NT T R I G G E R E D W H E N … E V E NT HAN D LE R

Browser events Page completes loading onload

Page is removed from browser window onunload

JavaScript throws an error onerror

Mouse events User clicks over an element onclick

User double-clicks over an element ondblclick

The mouse button is pressed down over an element onmousedown

The mouse button is released over an element onmouseup

The mouse pointer moves onto an element onmouseover

The mouse pointer leaves an element onmouseout

Keyboard events A key is pressed onkeydown

A key is released onkeyup

A key is pressed and released onkeypress

Form events The element receives focus from pointer or by tabbing navigation onfocus

The element loses focus onblur

 User selects type in text or text area field onselect

User submits a form onsubmit

User resets a form onreset

Field loses focus and content has changed since receiving focus onchange

TA B LE 4 .1 This table contains a list of the most commonly used event handlers.

Inline Event Handler

An inline event handler, as you saw briefly in Chapter 2, attaches an
event handler directly to an element.

<input type=”text” onblur=”doValidate()” />

Here, a form text field has the JavaScript function doValidate asso-
ciated with its blur event—the function will be called when the user
moves the cursor out of the field by pressing Tab or clicks elsewhere.
The function could then check if the user actually typed something
in the field or not.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 492

Inline event handlers have been the standard way of triggering
events for years, so if you have to work on a Web site that has been
around for a while, you will no doubt see inline handlers all over
the markup. A benefit of inline handlers is that the this keyword is
bound to the function that is called from an inline handler. To illus-
trate this point, here’s a link that calls a function named addClass

so in the function you can simply write

this.className=”hilite”;

without having to first “get” the element.

Additionally, you don’t have to worry about users triggering
JavaScript events that act on the DOM before the DOM has
loaded into the browser, because the event handler is attached to
the markup. We’ll examine this DOM ready issue in “The First Event:
load” section of this chapter.

However, both benefits can be realized using the two other ways of
associating events with elements. Before I describe them, keep in
mind that neither of the first two techniques is ideal in that they mix
JavaScript with the HTML. In the previous example, the addClass
function is permanently associated with this HTML element. If you
change the function’s name or remove it from your code, you’ll also
have to find and remove every occurrence of the handler in the
markup. Also, if for some reason the addClass script doesn’t load,
JavaScript will throw an error when the link is clicked. In a modern
Web application—in the interests of accessibility, maintainability,
and reliability—you want to keep JavaScript and CSS out of your
HTML markup.

Because inline handlers are still widely used, it would be remiss of
me not to show you how they work in some detail, because they will
be around for years to come. In later chapters, I’ll show you exam-
ples of inline handlers and how to use them. That said, I hope they
will be fading into obscurity as programmers become more aware
of Web standards and the advantages of using JavaScript to register
events with their associated elements. With all this in mind, let me

Focus and Blur

When the user clicks into a text field, the focus event message is fired because the focus of the keyboard is now on that
field, and anything the user types then appears in that field. If the user then presses Tab or clicks elsewhere to move the
cursor out of that field, the field loses focus and the blur message is fired.

ptg

E V E NT S 93

now show you the ways you can create responses to events without
adding JavaScript into the HTML markup.

Handler as Object Property
var clickableImage=document.getElementById(“dog_pic”);

clickableImage.onclick=showLargeImage;

This example shows a two-step process. First, I assign an object—
an HTML element with the ID dog_pic—to a variable. In line 1 of
the example, the object representing the HTML element is stored
in the clickableImage variable. Second, I assign the event handler
onclick as a property of the object, using a function name as the
onclick property’s value. The function showLargeImage will now
run when the user clicks on the element with the ID dog_pic.

While this technique has the desirable quality of keeping the
JavaScript out of the markup, it has a couple of serious drawbacks.

First, only one event at a time can be assigned using this technique,
because only one value can exist for a property at any given time.
I can’t assign another event to the onclick property without over-
writing this one, and for the same reason, another event that was
previously assigned is overridden by this one.

Second, when the user clicks on this element and the function is
called, that function has to be hard-coded with the name of the
object so that it knows which element to work on.

function showLargeImage() {

 thePic=document.getElementById(“dog_pic”);

// do something with the pic

 }

If you change the object that is the source of the event, you will also
have to modify the function.

For this reason, the “handler as object property” technique is suit-
able only when you just want to assign one event to one object, such
as running an initial onload function once the page is first loaded
(see “The First Event: load” section later in this chapter). However,
for the reasons noted, it really doesn’t provide a robust solution for
use throughout an RIA, where events commonly get assigned and
removed from objects as the application runs. In almost every case,
the best way to manage events is to use event listeners.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 494

Event Listeners

Introduced with the W3C DOM model, event listeners provide com-
prehensive event registration.

An event listener does what its name suggests: After being attached
to an object, it then listens patiently for its event to occur. When it
“hears” its event, it then calls its associated function in the same
way as the “handlers as object properties” method but with two
important distinctions.

First, an event listener passes an event object containing information
about its triggering event to the function it calls. (I emphasize this
point because it is so important.) Within the function, you can read
this object’s properties to determine the target element, the type of
event that occurred—such as click, focus, mousedown—and other
useful details about the event.

This capability can reduce coding considerably, because you can
write very flexible functions for key tasks, such as handling clicks,
that provide variations in their response depending on the calling
object and triggering event. Otherwise, you would have to write a
separate, and probably very similar, function for every type of event
you have to handle. You will learn how to write functions with this
kind of flexibility later in the chapter.

Second, you can attach multiple event listeners to an object. As a
result, you don’t have to worry when adding one listener that you
are overwriting another that was added earlier, as you do when
simply assigning an event as an object property.

While both the W3C and Microsoft browsers enable event handlers,
they differ in the way those handlers are attached to elements and
in the way they provide access to the event object. I’ll start with the
W3C approach, which will be the de facto standard in the future,
and then discuss how event listeners work in Microsoft browsers.

W 3 C E V E NT M O D E L

Here’s the W3C technique for adding listeners to elements. I’ll add
two listeners to a form’s text field that will cause functions to run
when the user clicks (or tabs) into or out of the field:

get the object emailField=document.getElementById(“email”);

add a focus listener emailField.addEventListener(‘focus’,doHighlight,false);

add a blur listener emailField.addEventListener(‘blur’,doValidate,false);

ptg

E V E NT S 95

Now the function doHighlight will be called when the cursor moves
into the field, and the function doValidate will be called when the
cursor moves out of the field. (The third argument, false, relates to
event bubbling, a concept that can wait until later in this chapter.)
I can attach as many event listeners as I want to the object in
this manner.

I can remove the events from the element in a similar way using the
removeEventListener method.

get the object emailField=document.getElementById(“email”);

emailField.removeEventListener(‘focus’,doHighlight,false);

emailField.removeEventListener(‘blur’,doValidate,false);

TH E M I C R O S O F T E V E NT M O D E L

Microsoft’s event registration model is slightly different. The equiva-
lent of this W3C style

emailField.addEventListener(‘focus’,doHighlight,false);

in the Microsoft model is

emailField.attachEvent(‘onfocus’,doHighlight);

and the equivalent of this W3C style

emailField.removeEventListener(‘focus’,doHighlight,false);

in the Microsoft model is

emailField.detachEvent(‘onfocus’,doHighlight);

Note the use of on, as in onfocus, in the name of the event for the
Microsoft version. Clearly, there are some syntax variations here,
so let’s look at how to write code that works on both browsers.

AN AD D E V E NT H E LPE R FU N C TI O N

To add event listeners to elements correctly, regardless of the user’s
browser type, I’ll use an existing helper function written by John
Resig that can determine the correct event models to use. This func-
tion accepts the following arguments:

• The element to which the listener should be attached

• The type of event to listen for

• The name of the function to call when the event occurs

You only need to explicity remove

event handlers if your application

requires that an element no longer

respond to an assigned event. In

most cases, you only add event

listeners and don’t explicity remove

them. They only persist for as long as

the page is loaded in the browser.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 496

It will then use these arguments to construct a correctly formatted
event listener registration for the user’s browser.

The function first tests if the browser supports Microsoft’s
attachEvent method (highlighted) and then branches the code
accordingly.

function addEvent(obj, type, fn) {

it’s a Microsoft browser if (obj.attachEvent) {

 obj[‘e’+type+fn] = fn;

 obj[type+fn] = function(){obj[‘e’+type+fn]
 (window.event);}

obj.attachEvent(‘on’+type, obj[type+fn]);

it’s a W3C browser } else {

 obj.addEventListener(type, fn, false);

 }

}

Removing events can be achieved with a second, similar helper
function.

function removeEvent(obj, type, fn) {

if (obj.detachEvent) {

W3C
 obj.detachEvent(‘on’+type, obj[type+fn]);

 obj[type+fn] = null;

} else {

Microsoft
 obj.removeEventListener(type, fn, false);

 }

}

These functions, as you can see, are somewhat complex, but fortu-
nately you don’t have to understand them; you just have to be able
to use them. If you wanted to add an event listener to the email field
from the preceding example, all you would have to do is call the
addEvent helper function like this:

addEvent(emailField, ‘focus’, doHighlight);

The three arguments are the element, the event, and the function
to call when that element receives that event. The function then

ptg

E V E NT S 97

takes care of formatting the event registration appropriately for the
browser on which it is running.

A common time at which to add listeners to elements is when the
page first loads, or to be more specific, upon an event that virtu-
ally every JavaScript application must detect and handle—the load
event that is triggered when the page is fully loaded and rendered in
the browser.

The First Event: load
 Typically, the first thing you want JavaScript to do is set up the initial

state of the page so it’s ready for use. A very common part of this ini-
tialization process is to attach event listeners to the elements in the
DOM that will respond to user actions, and you can’t do that until
the DOM has loaded into the browser.

For example, you might want to attach blur events to the text fields
of a form so you can detect when the user clicks or tabs away from
them. You can then immediately validate the text the user entered.

Software Design Patterns

If you are a designer, you may be aware of the classification of common user interface interactions into design
patterns—such as Wizard, multiple undo, and drag-and-drop to name just a few—that define each interaction’s
appropriate use and implementation. Design patterns document successful user interactions, give designers a common
vocabulary, and most of all, provide users with familiar interactions across the sites they visit. Jenifer Tidwell’s Designing
Interfaces (O’Reilly, 2005) is the seminal work on this subject and essential reading for all interface designers.

A similar set of design patterns exists in software also and provides a standardized way to solve and discuss common
programming problems. The first major classification of software design patterns was published in Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994) by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (known as “The Gang of Four”).

Most of the helper functions used in Scriptin’ with JavaScript are simple implementations of the Façade pattern, where
“a common interface is provided to two or more interfaces in a subsystem.” The code addresses a single interface—
in the case of adding event listeners, the addEvent function—and the interface takes care of addressing, in a syntacti-
cally correct manner, one of two objects—addEventListener or attachEvent—depending on the user’s browser.
By using these Façade pattern helpers, you abstract away cross-browser issues and simply pass your requests to these
intermediate objects that resolve them for you.

As your skills grow, studying design patterns can help you write better code, because you’re then using best coding
practices and can avoid struggling to discover solutions to coding problems that were discovered and proven long ago.

Event listener registration is yet another example of the cross-browser issues you face with JavaScript. However, once
you have a nice little collection of helpers or a framework such as jQuery, you don’t have to worry about them as much.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 498

To help you ensure that you are working with a DOM that actually
exists, a load event is issued when the page is entirely loaded into
the browser window. You can use the onload handler to detect this
event and trigger the JavaScript functions that will set up the initial
page state for the user. Then you know that the DOM is ready.

Here’s a simple example of how to do this:
note the use of the “event as object
property” style of event assignment
here

window.onload=init;

function init() {

alert (“The page is fully loaded!”);

// normally, code to set up initial page state (such as
adding event listeners) would be here

}

In the highlighted line that calls the init function, you can see that
there are no parentheses after the init function name. You would
normally add parentheses after a function name because you would
want the function to run immediately at that point in the code.
However, because you are setting up an event that will call the func-
tion at a later time, you don’t do that here. If you wrote

window.onload=init();

How onLoad Can Work Against You

There are two ways that you can run into problems with the onLoad event:

Delay in assigning listeners.• Be aware that linked content, such as images, loads after the DOM (the HTML
markup), and that the load event does not fire until after all linked content is loaded. So if your page contains many
large images, there can be a substantial delay between the DOM loading and the onLoad event. In this interval, the
user may try to type into a search field or click a link—after all, the DOM is loaded and those elements are visible. If
you then wait until after a number of large images are loaded before you get the load event that registers the event
listeners, the user may be clicking on links that as yet do nothing.

As a workaround for this problem, there are now some helper functions that can cause a “DOM is ready” type
of event to be called as soon as the DOM is ready. For example, the jQuery framework has a .ready method that
is called after the DOM and CSS (but before images and other linked content) are loaded to avoid this delay in
assigning listeners.

Competing for the onLoad event.• Because of the importance of waiting for the DOM to be ready, third-party
scripts that you use might also want to set the window.onLoad property, and this can override your setting or you
can override theirs, depending on who loads last. Thanks to a contest organized by Peter-Paul Koch, there is now
a robust helper function called addLoadEvent that allows multiple events to be assigned to the window.onload
property. I will use this function in later examples and it is included in the Scriptin’ helper file. I recommend you
use this function to assign your initialization functions.

ptg

E V E NT S 99

the function would run immediately (setting the onload property
to the result of the function!) and not wait for a page load event to
be sent.

Also note that you write window.onload=init because onload is a
method of the window object, so you must always precede it with
window. for it to work.

By omitting the parentheses when you assign the init function
to the onLoad property, the function does not run immediately;
instead, it runs when the load event occurs after the page is
fully loaded.

The onload handler is very important in every JavaScript application
because it is used to initialize the page state; that is, to set up all the
event responses that the interface will provide to the user. If you are
looking at an existing piece of JavaScript and trying to determine
what it does, the best place to start is with the function that is called
by the load event—everything flows out from there.

Also note that any JavaScript statement not enclosed in a function
and just “loose” on the page runs as soon as it loads. For this reason,
it’s very unusual to place any JavaScript except the onload event
assignment outside of a function.

Adding Event Listeners on Page Load

After all this discussion, I’ll now show you a simple example of event
listeners that are added to an element when the page loads. In this
case, when the onload event handler calls the init function, it will
add event listeners to a text field.

As a result of the functions called by these event listeners, the text
field will highlight (its background property will be set to green)
when the field receives focus; it will unhighlight (the default white
background will be restored) when the focus is removed. I’ll do this
using the addEvent helper function I showed earlier, so that it works
on both W3C and Microsoft browsers.

Here’s the form field input.

<input id=”email” name=”email” type=”text” size=”24” />

It’s the only HTML element that is relevant to this demo, so I’ll leave
the rest of the markup to your imagination—you can see it in the
download file.

Step one is to ensure the load event is triggering the function that
will set up the event listeners.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4100

window.onload=setUpFieldEvents;

function setUpFieldEvents() {

 alert (“called”);

 }

Figure 4.1 shows that when the page loads, the function is called.

FI G U R E 4 .1 The function is
successfully called from the onload
event handler.

Next, I’ll add the code that actually adds the event listeners to the
field. To do this, I’ll use the addEvent helper function.

// add event helper function

function addEvent(obj, type, fn) {

if (obj.attachEvent) {

 obj[‘e’+type+fn] = fn;

 obj[type+fn] = function(){obj[‘e’+type+fn]
 (window.event);}

obj.attachEvent(‘on’+type, obj[type+fn]);

 } else

 obj.addEventListener(type, fn, false);

}

window.onload=setUpFieldEvents;

function setUpFieldEvents() {

 get the field var emailField=document.getElementById(“email”);

add focus event addEvent(emailField, ‘focus’, addHighlight);

add blur event addEvent(emailField, ‘blur’, removeHighlight);

 }

 C O D E 4 .1 hilite_field_basic1.html

 C O D E 4 . 2 hilite_field_basic2.html

ptg

E V E NT S 101

Because it’s not contained in a function, the highlighted onload
event is set up when that line of code loads in the browser, and
then the setUpFieldEvents function is called when the page has
completely loaded. This causes the two event listeners to be added
to the field via the addEvent helper function. Now, when the field
gets focus, the addHighlight function will be called; when the field
loses focus (blurs), the removeHighlight function will be called.

To ensure this step is working, you can simply add the functions,
with temporary alerts, for the two events.

function addHighlight() {

 alert(“addHighlight called”);

 }

function removeHighlight() {

 alert(“removeHighlight called”);

 }

Then click in the field, and you will see the alert dialog shown in
Figure 4.2.

 FI G U R E 4 . 2 When the field receives
focus, the addHighlight function
is called.

 OK the alert and then click away from the field. You will see the alert
dialog shown in Figure 4.3.

 FI G U R E 4 . 3 When the field loses
focus, the removeHighlight func-
tion is called.

Once the functions are successfully triggered by the events, all
you need to do is replace the alerts with the code to highlight and
unhighlight the field.

 C O D E 4 . 3 hilite_field_basic2.html
(cont.)

Firefox on the Mac behaves very

strangely with this test and displays

both of the dialogs several times

when the field receives focus. This

is because the alert dialog triggers a

blur of the field. However, when the

final code is in place, it runs fine.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4102

function addHighlight() {

 var emailField=document.getElementById(“email”);

 emailField.style.backgroundColor =”#6F3”;

 }

function removeHighlight() {

 var emailField=document.getElementById(“email”);

 emailField.style.backgroundColor =””;

 }

Now the field’s background becomes green when it receives focus as
shown in Figure 4.4. The normal white background color is restored
when the field loses focus as shown in Figure 4.5.

FI G U R E 4 .4 The background of the
field now changes color when it
receives focus.

FI G U R E 4 . 5 The background of the
field is restored to its default color
when it loses focus.

While this example serves to show a simple implementation of event
listeners, it does not take full advantage of the power that event
listeners offer. In the preceding example, the functions that were
called by the event listeners then use getElementById to get the
field before changing its background style. Hard coding the event’s
element into the function in this way limits its flexibility: This func-
tion can only provide a response to events on this one field.

It is, in fact, unnecessary to get the element at this point because,
as mentioned in the introduction of the chapter, event handlers
provide the functions they call with access to the name of the object
to which they are attached and their triggering event. Once you

 C O D E 4 .4 hilite_field_basic3.html

 restore field’s default settings

ptg

E V E NT S 103

understand how to take advantage of this feature, you will be able
to write event handling code that is both versatile and compact.

The Event Object
When a W3C event listener’s event occurs and it calls its associated
function, it also passes a single argument to the function—a refer-
ence to the event object. The event object contains a number of
properties that describe the event that occurred.

Table 4.2 lists the names of the most commonly used properties of
the event object, which of course usually differ between the W3C
and Microsoft models.

W 3 C N A M E M I C R O S O F T N A M E D E S C R I P TI O N

e window.event The object containing the event properties

type type The event that occurred (click, focus, blur, etc.)

target srcElement The element to which the event occurred

keyCode keyCode The numerical ASCII value of the pressed key

shiftKey
altKey
cntlKey

Returns 1 if pressed, 0 if not

currentTarget fromElement The element the mouse came from on mouseover

relatedTarget toElement The element the mouse went to on mouseout

TA B LE 4 . 2 This table contains a list of the most commonly used event object properties.

By convention, the parameter name e is used in event-triggered
functions to receive the event object argument. If I wanted to deter-
mine the type of event that occurred, such as a click, I would write:

function myEvent(e) {

var evtType = e.type

 alert(evtType)

// displays click, or whatever the event type was

}

This code would not work on a Microsoft browser, because the
Microsoft model does not pass an event object reference like the

Several other less commonly used

event object properties are not

listed in Table 4.2, including mouse

coordinates. Peter-Paul Koch pro-

vides an in-depth discussion and

demos of the event object properties

at www.quirksmode.org/js/

events_advanced.html.

www.quirksmode.org/js/events_advanced.html
www.quirksmode.org/js/events_advanced.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4104

W3C model; instead, it uses a central global object that contains the
properties of the most recent event. I’ll start with the W3C approach
and then show you how to work with the Microsoft event object.

To demonstrate the W3C model, I’ll use two event object properties
as I modify the two functions in the preceding example so that
those functions no longer have to get the target element before
modifying it.

This takes two simple steps: I’ll add the parameter to accept the
event object, and then replace the “get” of the field element with the
target property of the event:

function addHighlight(e) {

 var emailField=document.getElementById(“email”);

 var emailField=e.target;

emailField.style.border=”3px solid #6F3”;

 }

function removeHighlight(e) {

 var emailField=document.getElementById(“email”);

 var emailField=e.target;

 emailField.style.border=””;

 }

There is no visual change—see Figures 4.4 and 4.5.

You could now assign this same event listener to multiple input
fields, and those fields would all display the highlight behavior.
Instead of stating “highlight this field,” the code now states “high-
light the field to which the event occurred.”

The Event Object’s Type Property
With access to the event object, I can now also determine the type
of the event that occurred (focus, blur, click, etc.), so I can use a
single function to detect both the focus and blur events.

To do this, I’ll change the event listeners to call the same function,
checkHighlight. This name makes more sense for the new
function, which will add and remove the highlighting.

add focus event addEvent(emailField, ‘focus’, checkHighlight);

add blur event addEvent(emailField, ‘blur’, checkHighlight);

 C O D E 4 . 5 hilite_field_basic4.html

ptg

E V E NT S 105

I’ll then change the name of the addHighlight function to
checkHighlight, delete the removeHighlight function entirely, and
modify the checkHighlight function to look like this:

function checkHighlight(e) {

 switch (e.type) {

 case “focus”:

 e.target.style.backgroundColor=”#6F3”;

 break;

 case “blur”:

 e.target.style.backgroundColor=””;

 break;

 }

}

There is no visual change—see Figures 4.4. and 4.5.

This function is pretty self-explanatory. The switch statement checks
if the event type (highlighted) is focus or blur and branches the
code accordingly.

The Event Object in Microsoft Browsers
So far you’ve learned that when an event listener triggers a function
in W3C-compliant browsers, a reference to an object containing
properties that describe the triggering event is passed to the func-
tion; this event object can be accessed through the e parameter.

In Microsoft browsers, the model is slightly different. There is one
global object, window.event, that holds the last event that occurred.
Because it’s global, it doesn’t have to be passed to the function like
the W3C event object; it’s always available to your code. For com-
parison, these two lines are equivalent in their respective browsers:

e.type

window.event.type

The simplest way to write cross-browser event object code is
like this:

function eventType(e)

then it’s a W3C browser if (e) {

W3C–e must be stated as function
parameter

Microsoft–direct access of global
event object

 C O D E 4 . 6 hilite_field_basic5.html

If you are wondering why I used

a switch instead of an if state-

ment, here’s the reason: An if

statement only checks one case for

truthiness and does the false part

if there is no match, regardless of

what that “false” condition might

be. By using switch, I am absolutely

explicit; if any other case than focus

or blur is passed to this function, it

will be ignored. Also, I can easily add

click or other events to this func-

tion if I want to extend it later.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4106

 alert (e.type)

it’s a Microsoft browser

} else {

 alert (window.event.type)

}

// displays the triggering event (click, focus, etc)

While this works fine, branching your code for every event object
property you want to use gets old fast. A better solution is to get the
object, whichever kind it is, and give it a new name. Peter-Paul Koch
uses the OR operator very neatly to achieve this.

var evt = e || window.event;

If e evaluates to true (a W3C event object exists), the evt variable
is set to e—the W3C event object with all its properties. If not, evt
is set to the Microsoft object instead. So now this works in both
browsers:

var evt = e || window.event;

alert (evt.type)

The preceding example works because, unlike many event object
properties, the property name for the type of event that occurred is
the same—type—in both kinds of browsers. If you want to get the
event target, which is target for W3C and eventSrc for Microsoft,
you can build on the previous step and again use an OR statement
to create a common cross-browser name (highlighted) for the event
target, too:

var evt = e || window.event;

var evtTarget = evt.target || evt.srcElement;

alert(evtTarget);

Once you start working with the event object, you can manage col-
lections of events within a single function. I’ll now add this idea into
the code.

function checkHighlight(e) {

var evt = e || window.event;

var evtTarget = evt.target || evt.srcElement;

switch (evt.type) {type is the same name in both objs

sets evt variable to either W3C or
Microsoft event obj

gets the target of the event

ptg

E V E NT S 107

 case “focus”:

 evtTarget.style.backgroundColor=”#6F3”;

 break;

 case “blur”:

 evtTarget.style.backgroundColor=””;

 break;

 }

}

Again, there is no visual change, just much better code. See Figures
4.4 and 4.5.

Now you have a working cross-platform version of a single form
field. The next step is to make the event handlers attach themselves
to as many text inputs as the form might contain. Let’s add a couple
more form fields to the markup so users can also enter their first
and last names.

<div id=”sign_up”>

<h3>Sign up for our newsletter</h3>

<form id=”email_form” action=”#” method=”post”>

 <label for=”fi rst_name”>First Name</label>

 <input id=”fi rst_name” name=”fi rst_name” type=”text”
 size=”18” />

 <label for=”last_name”>Last Name</label>

 <input id=”last_name” name=”last_name” type=”text”
 size=”18” />

 <label for=”email”>Email</label>

<input id=”email” name=”email” type=”text” size=”18”
 />

<input id=”submit” type=”submit” value=”Go!” />

 </form>

 </div>

Figure 4.6 shows this revised markup.

 C O D E 4 .7 hilite_field_basic6.html

 C O D E 4 . 8 hilite_field_basic7.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4108

FI G U R E 4 . 6 The new markup has
three form fields.

Because I am now working with several form elements, my hook
into the DOM will be higher up at the form element’s ID, email_
form. Once I have this parent element I can get at all the form’s child
elements within. I’ll start by modifying the setUpFieldEvents func-
tion to tell me how many input tags are within the form.

function setUpFieldEvents() {

 var emailForm=document.getElementById(“email_form”);

 var theInputs=emailForm.getElementsByTagName(“input”);

 var inputCount=theInputs.length;

alert(inputCount);

// addEvent(theInputs[i], ‘focus’, checkHighlight);

// addEvent(theInputs[i], ‘blur’, checkHighlight);

}

The number of fields is shown in an alert dialog (Figure 4.7).

FI G U R E 4 .7 The new code indicates
the form has four inputs.

 I first get the form element and then all the elements inside it with
the tag name input. My alert test shows me I have four inputs, not
three as you might expect. The reason there are four is that the but-
ton, to which I don’t want to add the event listeners, is also an input
tag: The only thing that makes it appear as a button is that it has a
different type attribute—submit. Without step-by-step testing like

 C O D E 4 . 9 hilite_field_basic7.html
(cont.)

get the form

temporarily commented out

temporarily commented out

ptg

E V E NT S 109

this, I might have missed that and would have baked in a weird
bug that changes the background color of the button every time it’s
clicked.

I’ll worry about filtering out the button in a moment. I’ll first just
loop through all the input fields and apply the event listeners to
each of them, so that I can see that I’m able to highlight all the
fields.

function setUpFieldEvents() {

 get the field var emailForm=document.getElementById(“email_form”);

 var theInputs=emailForm.getElementsByTagName(“input”);

var inputCount=theInputs.length;

for (i=0; i < inputCount; i++) {

add focus event addEvent(theInputs[i], ‘focus’, checkHighlight);

add blur event

 addEvent(theInputs[i], ‘blur’, checkHighlight);

}

}

The first highlighted line counts the number of inputs and then
puts that number in a variable; doing this allows me to write a more
efficient loop. I could have skipped that line and simply written the
loop like this:

for (i=0; i < theInputs.length; i++) { // etc.

The problem with this version is that JavaScript then has to deter-
mine the length of the theInputs node list (highlighted) every time
the loop runs; counting items in arrays and node lists is a relatively
slow process in JavaScript. It isn’t such a big deal with a few items
like this, but if you are looping over a big data set or hundreds of
table rows, the wasted time can add up. It’s always good practice to
get the number of items once and store that in a variable that you
then use as the loop count, as I have done here.

Now, when I click in each of the fields, they highlight and then
return to their initial appearance when I click away. The event lis-
teners are now successfully attached to each one, as illustrated in
Figure 4.8.

 C O D E 4 .10 hilite_field_basic8.
html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4110

 FI G U R E 4 . 8 Each field now highlights
when it receives focus.

The problem, as I knew would happen when the earlier test
returned four inputs, is that the button, which is also an input, now
also gets the background color when I click it. Figure 4.9 shows that
this looks very strange.

FI G U R E 4 . 9 Applying highlight
events to all the form’s inputs has the
undesired effect of highlighting the
button as well.

What makes the button different from the text inputs is that its
type attribute is submit not text, so I can create a simple if state-
ment filter based on this difference to identify and exclude it from
having event listeners added.

I’ll first simply check that I can access the type attribute of each
input by adding this line of code into the for loop.

alert (theInputs[i].getAttribute(“type”));

This pops up a sequence of four dialogs, which read text, text,
text, and submit.

Now that I know I can differentiate the submit input, I’ll work up
this bit of code into an if statement inside the for loop.

function setUpFieldEvents() {

 var emailForm=document.getElementById(“email_form”);

 var theInputs=emailForm.getElementsByTagName(“input”);

 var inputCount=theInputs.length;

for (i=0; i < inputCount; i++) {

 var theInputType=theInputs[i].getAttribute(“type”);

 if (theInputType===”text”) {

 C O D E 4 .1 1 hilite_field_basic9.
html

 C O D E 4 .12 hilite_field_basic10.
html

only true if input’s type attribute
is “text”

ptg

E V E NT S 111

add focus event addEvent(theInputs[i], ‘focus’, checkHighlight);

add blur event

 addEvent(theInputs[i], ‘blur’, checkHighlight);

 }

 }

}

Now, the text input form fields are still highlighting correctly, but
the button no longer has event handlers added to it.

That completes this example. The code that you saw developed here
will work reliably across today’s Web browsers and even back to
IE5.5. It has dynamic capabilities to add the field highlighting effect
to as many inputs as are present in the form. The actual end result
of highlighting the field is rather simplistic and not what is impor-
tant. What you should take away from this example are the key
concepts illustrated here: cross-browser event listeners, event object
handling, and the selective addition of event listeners to a number
of like elements while filtering out unwanted elements. These are
common tasks you will perform many times while making your
applications respond to events.

I’ll now return to the stripe table example that I showed you in
Chapter 3 and use events to make each table row highlight as the
cursor moves over it. Along the way, I’ll illustrate the concepts of
event bubbling and event delegation.

The Secret Life of Events
You saw that an event message (e.g., click) can trigger an event
handler (onclick) that is attached to a DOM object. However, an
event message isn’t just received by that one DOM element: Events
travel up and down the DOM and are received by any elements they
pass through along the way. This feature, known as event propaga-
tion, gives you some interesting options in how and where events
get handled, and which elements the event affects.

In this next example, I want to highlight a table row when the cursor
moves over it, and remove the highlight when the cursor moves off
it. The problem, as you will see, is that although I want to highlight
the table row, the mouse events that tell whether the cursor is mov-
ing in or out of a given row are in fact triggered by the table cell

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4112

within the table row, or by the link within the table cell within the
table row, if a link is present.

In other words, unlike the examples I’ve shown you so far, the
event’s target is not the element I want to change when the event
occurs. To understand how to find and modify elements that are not
the target of the event, let’s first discuss the concepts of event cap-
turing, event bubbling, and event delegation.

Capturing and Bubbling

When an event message is fired (and let’s say it’s a click event for
the sake of this discussion), that click message does not go directly
to the target of the event. It is first sent to the object at the top of the
DOM hierarchy, body, and then moves down through the document
tree to the target—the object that actually received the click. The
message’s downward journey to the target element is known as the
capturing phase.

Once the message reaches the target object, it then travels back up
the DOM to the body tag: The upward journey is called the bubbling
phase. After the message makes it all the way back up to the body
tag, like a salmon swimming upstream to its spawning grounds, its
life ends.

You can add an event handler to any element that receives the
click message as it makes this “down-and-then-up-again” journey.
This can bring great efficiencies to your code, because you can now
apply a technique called event delegation.

Event Delegation

Event delegation is the technique by which you place an event han-
dler on an element that is not the target element of the event. The
most advantageous use of event delegation is when you attach the
event handler to the parent of a large number of child elements that
must all provide a response to a particular event.

Significant coding economies can be realized by taking advantage
of event delegation. Instead of attaching individual event handlers
to every child, the message of interest is allowed to bubble up from
whichever child triggered it and is handled by a single handler that
is attached to the parent element. I’ll show this process in the next
example. If needed, the event object can supply the name of the
target element: Then just that one “downstream” element—out of

ptg

E V E NT S 113

the many that might have triggered the parent’s event handler—
can be modified.

The W3C model supports both the capturing and bubbling phase.
The third argument of a W3C event registration (highlighted)

someElement.addEventListener(‘focus’, doHighlight, false)

is set to true if the event is to be handled in the capturing phase
and false if it is to be handled in the bubbling phase.

However, the capturing phase is not supported in IE, and event del-
egation really only makes sense as the message travels up the DOM
from children to parents. For these reasons, you will almost always
use the bubbling phase to delegate events. In the W3C model, that
third argument will, almost without exception, be false.

All these concepts will be illustrated as I add the rollover effect to
the striped table.

Striped Table with Rollovers
In Chapter 3, I showed you how to add stripes to the rows of a table.
You can see the complete JavaScript code on page 86. Now I’ll mod-
ify this code so that each table row highlights as the cursor moves
over it.

I’ll start by modifying the HTML markup in two places. I’ll first add
a link into one cell of the table.

<td>Ajax in Action</td>

It’s very common to have links and other elements in a table cell,
and the code needs to be robust enough to cope with such circum-
stances. This one link will represent an additional level of content
hierarchy within the tds while I test.

Using an Element as a Debugging Tool
Next, I’ll manually add a p tag with the attribute id=”display” right
after the table.

</table>

<p id=”display”>Display Area</p>

</body>

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4114

This element will display the kinds of test values that I have dis-
played with alert dialogs in earlier examples. When I start testing
these rollovers, events will be generated so rapidly that I would
soon tire of clicking the OKs in all those alert dialogs. Instead, I’ll
write my test results into the text of this element, which currently
reads “Display Area”, and see the results right in the page—no alerts
needed. Now, any time I want to check a value, I can use this line
of code

document.getElementById(“display”).innerHTML = valueToDisplay

and the words “Display Area” will be replaced by the value of
valueToDisplay. Just remember, whenever you see

document.getElementById(“display”).innerHTML = someValue

in subsequent code, you’ll know I am just displaying a test value.

The final preparatory step is to add a CSS style that will be the high-
light background color for the rows—in this case, white.

the rollover color .stripe_table tr.row_hilite {background:#FFF;}

The sole purpose of the code I’ll write is to add and remove the
stripe_table class name from the table rows as the cursor passes
over them.

Mouse Events

JavaScript is very chatty when it comes to mouse events. Every time
the mouse moves on or off an element, or even moves the smallest
amount, events are fired off describing these activities.

To detect if the cursor is over a table row, I’ll use the mouse events
mouseover and mouseout, which occur when the mouse enters and
leaves an element, respectively.

Event Delegation
Because events bubble up, I’ll add the two event listeners for these
events at the tbody level. I want only table rows within the body of
the table to highlight, so tbody is the highest level at which I can
detect them without also receiving events from the table rows that
are in the header, which I don’t want to stripe.

I am already getting the tbody element in the existing striping code,
so it’s easy to add event handlers in the line right after that one.

ptg

E V E NT S 115

var theTableBody = theTable.getElementsByTagName(“tbody”);

// add event listeners to the tbody tag

 addEvent(theTableBody[0],’mouseover’, stripeTable.
 checkEventSource);

 addEvent(theTableBody[0],’mouseout’, stripeTable.
 checkEventSource);

// stripe the table rows

var theTableRows = theTableBody[0].
 getElementsByTagName(“tr”);

 var rowCount=theTableRows.length

for (var i=0; i < rowCount; i++) {

 theTableRows[i].className = “odd”;

 i++;

 }

 },

checkEventSource:function() {

 document.getElementById(“display”).innerHTML = “row
event triggered”; // temporary display

 },

etc

In the first piece of highlighted code, I again use the addEvent
helper function to add the event listeners, specifying that the
mouseover and mouseout events will be attached to the tbody ele-
ment. Both of these events will call the same function, checkEvent-
Source.

As its name suggests, the checkEventSource function will check
which element was the source of the event when the mouse moves
over the table rows and then add the hilite class to the related
table row. That functionality will come later. For now, as you can see
in the second piece of highlighted code, I’ve added the checkEvent-
Source function and within it simply used the “Display Area” ele-
ment to display a bit of text confirming that the function was called.

When I first load the page, I see the “Display Area” default text in the
lower-left corner, as shown in Figure 4.10.

get the table body’s rows

note: don’t use mouseleave–
it doesn’t work

C O D E 4 .13 table_stripe_roll1.html

add rollover event handlers and
“odd” class for stripes

set rowCount to the number
of rows

add the “odd” class to every other
row

called when the user mouses over
the table rows

get the table body

increment counter a second time

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4116

FI G U R E 4 .10 The page with the
default Display Area text.

When I move the cursor over the bottom row of the table, as shown
in Figure 4.11, the checkEventSource function is called and the
“Display Area” message is updated.

FI G U R E 4 .11 The Display Area text
is replaced with the text from the
function.

 This confirms that at least one of the two event handlers, mouseover,
is attached successfully. I can be fairly confident that mouseout was
too—I’ll soon find out.

From the perspective of this code, I know that the mouseover event
is bubbling up to the event listener on the tbody, but I don’t know
the triggering element, so I don’t yet know which row I need
to stripe.

Determining the Target Element
The next step is to determine the target element—the element that
is actually triggering the event. To do this, I need to get the target
element’s nodeName, which in the case of an element gives the name
of the tag—a, td, or tr, for example.

checkEventSource:function(e) {

ptg

E V E NT S 117

var evt = e || window.event;

var evtTarget = evt.target || evt.srcElement;

 document.getElementById(“display”).innerHTML =
 evtTarget.nodeName;

 }

You’ve seen the first two lines of code within this function before—
they get the event target. The highlighted code in the third line sim-
ply gets the node name of that target element; you can see the node
names displayed in the lower-left corners of Figures 4.12 and 4.13.

FI G U R E 4 .12 When the cursor is
over a table row, the event target is a
table cell.

FI G U R E 4 .13 When the cursor is
over a link within a table row, the
event target is the link.

This test shows that the table row elements don’t trigger events
when the mouse goes over them, because they are entirely filled
with their child tds. There simply is nowhere you can place the cur-
sor to get the tr to trigger a mouse event. The target element—the
element directly under the mouse—will always be the td unless you
explicitly add padding or margins to create space between it and
the tr. The td, because it’s a child of the tr, will always be on top of
the tr in the element stacking order and will therefore always be the

C O D E 4 .14 table_stripe_roll2.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4118

target of any mouse event. You can also see in Figure 4.14 that if the
mouse moves over a link within a td, as you might expect, that link
will be the target.

FI G U R E 4 .14 The event bubbles up to the event listener on tbody.

The most important thing that this test shows is that the target of
the event, be it the td, a link, or some other element that might
appear within a table cell, is a child of the row that you want to
highlight.

Traversing the DOM

To find the event target’s ancestor table row so I can apply the
row_hilite CSS class to it, all I need to do is start moving up the
DOM from the target element until I find an element with the node
name tr and apply the highlight class to that element. This process
of moving up, down, or across the DOM to an adjacent element is
known as traversing.

<body>
 <table class=”stripe_table”>

<caption>More JavaScript Books for Your Reading Pleasure</caption>
 <thead>
 <tr>
 <th scope=”col”>Title</th>
 <th scope=”col”>Author</th>
 <th scope=”col”>Publisher</th>
 <th scope=”col”>Comment</th>
 </tr>
 </thead>

<tbody> Event listener on tbody has mouseover handler that triggers checkEventSource function

<!-- 4 table rows removed here -->

 <tr>
 <td>

Ajax in Action User rolls over link
 </td>
 <td>David Crane & Eric Pascarello</td>
 <td>Manning</td>

<td>Modern coding techniques for professional Web programmers.</td>
 </tr>
 </tbody>
 </table>
</body>

mouseover
message

bubbles up

ptg

E V E NT S 119

checkEventSource:function(e) {
set up cross-browser event obj
names var evt = e || window.event;

var evtTarget = evt.target || evt.srcElement;

if the event didn’t happen to the tr while (evtTarget.nodeName.toLowerCase() !== “tr”) {

 evtTarget=evtTarget.parentNode;

 }

 document.getElementById(“display”).innerHTML =
 evtTarget.nodeName;

 }

You can see the way I do this in the preceding highlighted code. I
simply change the event target property from the target element
to the parent of that element. This effectively moves me up the
DOM—if the target was a, a link, I am now at the level of its parent
table cell. I keep moving up like this until my test returns tr. (Note
that I use the String method toLowerCase to convert the node name
to lowercase for cross-browser compatibility. Some browsers, such
as Firefox, return the node name in uppercase, as you can see in the
lower-left corners of Figures 4.14 and 4.15.)

By the time I get a tr and the loop stops, my event target is already
set to tr because each time the loop runs, I set the target to the
parent element of the current target element before the loop deter-
mines if it should run again. The event target is now set to the ele-
ment I want to modify and is no longer set to the original target of
the event. In short, now when the mouse rolls over the table, the
target element, whether a link or a table cell (or anything else), is
instantly changed to the tr ancestor of that target element, as illus-
trated in Figure 4.15.

FI G U R E 4 .15 Even though the cursor
is over a link, the reported event tar-
get is now the table row.

C O D E 4 .15 table_stripe_roll3.html

move up from any child element
to the tr

temporary–for testing

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4120

Adding the Highlight
Now that I have the row I want to highlight as the reported target
for the mouseover and mouseout events, a few lines of code within
a switch statement are all that’s needed to add and remove the
hilite class.

checkEventSource:function(e) {

var evt = e || window.event;

var evtTarget = evt.target || evt.srcElement;

while (evtTarget.nodeName.toLowerCase() !== “tr”) {

 evtTarget=evtTarget.parentNode;

 }

 switch (evt.type) {

 case ’mouseover’:

 stripeTable.oldClass = evtTarget.className

 evtTarget.className=”row_hilite”;

 break;

 case ’mouseout’:

 evtTarget.className=stripeTable.oldClass;

 break;

 }

 }

Figure 4.16 shows that the row that has the cursor over it now high-
lights, and the rollover effect code is complete.

FI G U R E 4 .16 Each row now high-
lights when the cursor is over it.

if the event didn’t happen to the tr

then respond to the event type case
“mouseover” or “mouseout”

move up from any child element
to the tr

set up cross-browser event obj
names

C O D E 4 .16 table_stripe_roll4.html

change it to the hilite class–table
row hilites

store the current class–either “odd”
or undefined

restore the orginal class–table row
returns to original appearance

ptg

E V E NT S 121

This is an good example of event delegation, because three separate
elements are involved. The event happens to the link, the event han-
dler attached to the table head responds to the event, and the link’s
table row is modified. This relationship is illustrated in Figure 4.17.

FI G U R E 4 .17 The checkEventSource function determines the parent table row of the event target.

You can see in the code that before I set the row_hilite class on the
tr, I store any class that is currently on that element. This is because
there is a 50 percent chance that the row already has the odd class
that does the striping. So, if the event handler is mouseover, which
means I need to add the row_hilite class, I put any existing class
name in a variable called oldClass and then change the class on
the element to row_hilite. When the user moves off the row and
the mouseout handler fires, I set that row back to the class name in
the oldClass variable.

<body>
 <table class=”stripe_table”>

<caption>More JavaScript Books for Your…</caption>
 <thead>
 <tr>
 <th scope=”col”>Title</th>
 <th scope=”col”>Author</th>
 <th scope=”col”>Publisher</th>
 <th scope=”col”>Comment</th>
 </tr>
 </thead>

<tbody> Event listener

<!-- 4 table rows removed here -->

 <tr> Modified element
 <td>

Ajax in Action Event target
 </td>
 <td>David Crane & Eric Pascarello</td>
 <td>Manning</td>
 <td>Modern coding techniques for…</td>
 </tr>
 </tbody>
 </table>
</body>

checkEventSource function asks…

 …is target now tr?
Yes, so highlight class is applied to tr.

 …is target now tr?
 No, target is td.

Target is set to target’s parent–tr.

 …is target now tr?
 No, target is a.

Target is set to target’s parent–td.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4122

As illustrated in the previous diagram, what is really interesting
about this example is that the element with the event listener is
tbody, the element that triggers the event is td or a, and the element
that is modified as a result of the event is tr. By combining event lis-
teners, event delegation, event bubbling, and DOM traversing, you
can have a single event handler manage events from dozens, hun-
dreds, or thousands of child elements and then have the event affect
any element that you choose.

Now that you’ve seen some ways to work with mouse events, let’s
take a look at the other way the user interacts with your applica-
tion—the keyboard.

The Up and Down Life of Keys
It’s easy to have a simplistic view of the keyboard: The user
just presses a key and a character appears, right? The reality—
JavaScript’s reality, at least—is rather more complex. A keystroke is
several discrete events, each with its own event message. When a
key is pressed, the sequence of events is as follows:

1. keydown is sent when the key makes contact and is immediately
followed by keypressed.

2. keypressed is a general event that summarizes a complete key
press/release cycle.

Then the character actually appears at the location of the key-
board’s focus.

3. keyup occurs when the key breaks contact.

If you hold the key down until it starts to repeat the character,
keydown and keypressed repeat as well. (I think it’s wrong for
keypressed to repeat here, but it does.)

Mouse Coordinates

When an event is triggered by mouse activity, the event object holds several sets of x and y coordinates for the mouse,
which give the mouse position with respect to the event target, the browser window, and the screen. These coordinate
sets are unevenly supported by the various browsers and will not be covered here. Also, you will find you rarely actually
need the mouse coordinates; knowing which element is under the cursor is usually sufficient information when work-
ing with mouse events. However, if you want some cross-browser code to help reliably obtain the mouse coordinates,
check out the research of Peter-Paul Koch at www.quirksmode.org/js/events_properties.html#position. His book, ppk
on JavaScript (New Riders, 2007), also has an in-depth discussion on working with mouse coordinates.

www.quirksmode.org/js/events_properties.html#position

ptg

E V E NT S 123

Generally, I work with keyup or keydown. Which one I use depends
on the circumstance. Usually, I’ll use keyup but sometimes keydown
when I want to test the character before it appears onscreen.
For example, if you have a numbers-only text field, you might use
keydown so you can test the character, and reject it without letting it
appear in the field if it is not a number.

Text Fields with Character Limits

Those of you who have tried to pack the excitement of what you are
doing right now into a 140-character Twitter tweet have encoun-
tered a text field with a character limit. As soon as you type that
hundred-and-forty-first character, the Update button dims and you
can’t send your tweet. Ahhhh, now the world will never know all the
tasty details of that bologna sandwich!

Limiting text input can help ensure you are getting correctly sized
data (U.S. zip codes and phone numbers for example) and com-
pel those who would rant via your site to at least organize their
thoughts.

I’ll demonstrate how to set character limits on fields with a
textarea (multiline) text field, as shown in Figure 4.18.

FI G U R E 4 .18 This is the finished
example. A display below the text
area shows how many more charac-
ters the field will accept.

For this example, I’ve limited the field to 20 characters, but this can
easily be changed.

The strategy for designing such a control is simple.

1. Each time the user types a character in the field, count the total
number of characters in the field.

2. Update an onscreen display so users can see how many charac-
ters they still have left to type.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4124

3. If the limit is reached, highlight the onscreen display to warn
the user and delete any characters over the limit.

4. If the user deletes characters to reduce the text to below the
maximum, remove the warning highlight.

This layout requires some simple HTML and CSS, which you can
see in the download file. The only HTML that interacts with the
JavaScript code is the text area and the display text.

<textarea id=”msg_fi eld” cols=”35” rows=”3”></textarea>

<p id=”display”></p>

The p tag is currently empty, but I will add text into it as I go along.
The initial code file, text_fi eld_max_chars1.html, is displayed in
the browser in Figure 4.19.

FI G U R E 4 .19 The initial markup
for the text field displayed in the
browser.

Setting Up the Message Display
Here’s a start to the code.

window.onload=init;

function init() {

 limitChars.setUp();

}

limit_chars={

theMaxChars: 20,

 setUp:function() {

 limitChars.theDisplay=document.
 getElementById(“display”);

the element to receive user
feedback text

ptg

E V E NT S 125

limitChars.displayMsg(“Message limit: “ + limitChars.
 theMaxChars + “ characters.”)

 },

displayMsg:function(toShow) {

 limitChars.theDisplay.innerHTML=toShow;

 }

}

In this first step I set up theMaxChars property to specify the char-
acter count limit (highlighted) and define the setup method, which
is called when the page loads. For now, this method simply passes a
text string stating the character limit to the displayMsg helper func-
tion (also highlighted), which then updates the display with the text
string, as shown in Figure 4.20.

FI G U R E 4 . 20 The display now indi-
cates the 20-character limit defined
by theMaxChars property.

The next step gets the text the user types in the field so I can deter-
mine how many characters have been typed. To do this, I’ll set an
event listener on the field that calls its function on keyup events; in
other words, the function will be called every time the user types a
character into the field.

limitChars={

 theMaxChars: 20,

 setUp:function() {

 limitChars.theField=document.getElementById(“msg_fi eld”);

 addEvent(limitChars.theField,”keyup”, limitChars.
 checkField);

 C O D E 4 .17 text_field_max_chars2.
html

 the “checkfield” function is called
on every keyup

add initial text stating character
limit

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4126

 limitChars.theDisplay=document.
 getElementById(“display”);

limitChars.displayMsg(“Message limit: “ + limitChars.
 theMaxChars + “ characters.”)

 },

checkField:function() {

 var theText=limitChars.theField.value

 limitChars.displayMsg(theText);

 },

displayMsg:function(toShow) {

 limitChars.theDisplay.innerHTML=toShow;

 }

}

There is nothing here you haven’t seen in earlier examples in this
chapter. In the first block of the preceding highlighted code, I get
the message field and then add an event listener to it that calls
the checkField function whenever the keyup event occurs. To test
that this arrangement is working, I’ll have the checkField function
display the user text in the display area (second highlighted code
block). You can see this happening in Figure 4.21.

FI G U R E 4 . 21 The keyup event suc-
cessfully triggers a function that, for
now, simply shows the text in the
display area below.

Every time the user types a character, the text in the text field imme-
diately appears in the display area below. Capturing the text every

C O D E 4 .18 table_stripe__roll3.
html

get the current text

display the typed text

ptg

E V E NT S 127

time a character is added is crucial to the functionality I am
creating here.

Monitoring the Character Count

Now it’s time to do something more useful with this capability than
to simply display the text—let’s add some real functionality to the
checkField method.

setUp:function() {

 limitChars.theField=document.getElementById(“msg_
 fi eld”);

 addEvent(limitChars.theField,”keyup”, limitChars.
 checkField);

 limitChars.theDisplay=document
 getElementById(“display”);

limitChars.displayMsg(“Message limit: “ + limitChars.
 theMaxChars + “ characters.”);

 },

checkField:function() {

 var theText=limitChars.theField.value

 limitChars.theField.value = theText.substring(0,
 limitChars.theMaxChars);

 }

I’ve removed the test display code and replaced it with a piece of
code that deletes any characters in the field that exceed the number
defined by theMaxChars property—20.

To do this, I use a String object method substring, which returns
part of a string—known as the substring. The substring method
accepts two parameters: the index of the first character to be
returned and the length of the substring.

 C O D E 4 .19 text_field_max_chars4.
html

called every time a key is pressed

get the current text

trim off excess chars

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4128

The highlighted line states “return a 20-character substring of the
text in theText object starting from index 0 (the first character), and
then set the contents of theField to that text.”

This code is a sort of circular reference: The text is being read from
the field in which the user is typing, trimmed to the first 20 char-
acters, and put back into the same field. When there are less than
20 characters in the field, this has no visible effect. Once the user
exceeds 20 characters, however, the effect is that the twenty-first and
subsequent characters are deleted as fast as the user types them.

It’s impossible to show this effect in a static screenshot, but if you
open text_fi eld_max_chars4.html in your browser and start typing,
you’re 20 characters away from seeing it for yourself.

While this achieves the objective of limiting the amount of text
that can be typed in the field, it’s not a very nice user experience to
simply delete the user’s text without giving some kind of warning.
To help the user understand the rules of the field, let’s first create a
countdown in the display that states how many characters can still
be typed.

checkField:function() {

 var theText=limitChars.theField.value

 if (theText.length > limitChars.theMaxChars) {

 limitChars.theField.value = theText.substring(0,
 limitChars.theMaxChars);

 } else {

 limitChars.charsLeft = limitChars.theMaxChars -
 theText.length;

theText=(limitChars.charsLeft + “ of “ + limitChars.
 theMaxChars + “ characters left”);

 limitChars.displayMsg(theText);

 }

There is actually no point in updating the text in the field until the
user exceeds the character limit, so I’ve added an if statement to
control when the field is updated. Once the limit is exceeded, I’ll

 C O D E 4 . 20 text_field_max_
chars5.html

trim off excess chars

max chars not yet reached

maximum chars reached

get the current text

= max chars – current length

assemble string stating number of
characters remaining

display string

ptg

E V E NT S 129

trim the text. As long as the character count is below the maxi-
mum allowed, I’ll update the message below the field to read “x of
y characters left.” Figure 4.22 shows that the user is still below the
20-character limit.

FI G U R E 4 . 22 Now there is a count-
down display that shows how many
more characters can be typed.

 As a finishing touch, when the limit is exceeded, I’ll make the dis-
play text bold and bright red. I’ll add this one line to the CSS.

div#sign_up #display.hilite {color:red; font-weight:bold;}

Then I’ll add the hilite class onto the display element when the
limit is reached, as shown in Figure 4.23, and remove it if the user
deletes enough text to get back below the limit again.

FI G U R E 4 . 23 The display text now
highlights when the character limit is
exceeded.

 C O D E 4 . 21 text_field_max_
chars6.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 4130

The Finished Code
Here’s the complete code for this example with the two additional
lines of JavaScript.

// Note: addEvent helper function must be linked to page

window.onload=init;

function init() {

 limitChars.setUp();

}

limitChars={

 theMaxChars: 20,

 setUp:function() {

 limitChars.theField=document.getElementById(“msg_fi eld”);

 addEvent(limitChars.theField,”keyup”, limitChars.
 checkField);

 limitChars.theDisplay=document.
 getElementById(“display”);

limitChars.displayMsg(“Message limit: “ + limitChars.
 theMaxChars + “ characters.”)

 },

 checkField:function() {

 var theText=limitChars.theField.value

if (theText.length > limitChars.theMaxChars) {

 limitChars.theField.value = theText.substring(0,
 limitChars.theMaxChars);

Which Key Was Pressed?

If you want to know which key the user pressed, perhaps to create keyboard navigation for a game, get the Event
Object’s keyCode property. This gives you the numeric ASCII code (see the ASCII code table in Appendix D for details)
that you can convert to an actual character such as “A” by running it through the String.fromCharCode(keyCode)
String method.

get the current text

trim off excess chars

maximum chars reached

 checkfield() is called on every
keyup

the element to receive user
feedback text

ptg

E V E NT S 131

 limitChars.theDisplay.className=”hilite”;

 } else {

 limitChars.charsLeft = limitChars.theMaxChars -
 theText.length;

theText=(limitChars.charsLeft + “ of “ + limitChars.
 theMaxChars + “ characters left”);

 limitChars.displayMsg(theText);

 limitChars.theDisplay.className=””;

 }

 },

displayMsg:function(toShow) {

 limitChars.theDisplay.innerHTML=toShow;

 }

}

That completes this example and this chapter.

Summary
In this chapter you have learned how to monitor and respond to
events. The keyboard and mouse are the only ways the user can
interact with your application (although touch, voice, and motion
are beginning to offer alternatives), and providing meaningful
responses to these inputs is what makes an interactive application
interactive. The techniques you have learned are a basic toolkit for
building responsive RIAs.

In the next chapter, I’ll show you Ajax techniques that enable your
application to respond even faster and smoother to those user
inputs, by fetching data from the server and updating the page’s
content without making the user wait for a new page.

end checkField

removes hilite if present by
resetting default styles

= max chars–current length

max chars not yet reached

hilites info text if too many chars
typed

ptg

C H A P T E R 5

Ajax

ptg

133S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

N O W IT ’ S TI M E TO LO O K AT A JA X . In this chapter,

you will not only learn how Ajax works, but also how it

changes the way you think about and develop online

applications. You will also see the different formats of

data that Ajax allows you to access and how to process

each format in the browser, ready for display on the page.

Ajax is an acronym for Asynchronous JavaScript and

XML, even though it appears in this book as a regular

noncapitalized word.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5134

Ajax is simply a catchy name given to a JavaScript programming
technique that enables data to be moved between the browser and
the server without the usual “round-trip to the server and a page
refresh”—the only model by which the Web previously worked. In
that model, even updating one word in the page required the server
to send an entirely new page to the browser. A new page was the
only context in which new data could arrive in the browser.

Ajax offers a new model. Using Ajax you can request data from the
server and then use the DOM scripting techniques discussed in
Chapter 3 to add that data into the page. This occurs without the
user having to wait for an entire new page to load—in fact, without
reloading the page at all.

This capability lets you deliver a more application-like experience.
If the user has a reasonably fast Internet connection, there is often
little or no perceivable delay between clicking a link and seeing new
data appear in the page. Suddenly, the response of your site is less
of the old click-and-wait experience and much more like a regular
“sovereign” application running on the user’s local computer. Things
happen as soon as you click or select from a menu without the rest
of the screen changing.

A more subtle but powerful change that Ajax brings is a sense of
place; instead of perceiving the site as a series of discrete pages,
the experience is now a workspace that changes and updates as
the user works.

Understanding Ajax
 Ajax is quite simple to understand and not too difficult to imple-

ment. Let’s start at the beginning and look at why this programming
technique was called Ajax in the first place.

Ajax by the Letters

The first A of Ajax stands for Asynchronous. The Merriam-Webster
dictionary defines asynchronous as “digital communication (as
between computers) in which there is no timing requirement for
transmission.” In other words, the Ajax request that is made by the
browser does not affect the browser’s other activities.

In the regular round-trip model, the user can do nothing after, say,
submitting a form except wait until a new page is served back to

Ajax is a term coined by Jesse James

Garrett of Adaptive Path in his now

legendary posting, which you can

read at www.adaptivepath.com/

ideas/essays/archives/000385.php.

www.adaptivepath.com/ideas/essays/archives/000385.php
www.adaptivepath.com/ideas/essays/archives/000385.php

ptg

A JA X 135

the browser. The process is entirely synchronous—one event must
complete before the next can start. Because an Ajax request is
asynchronous, once the request is sent off to the server, control is
immediately restored to the user, who can continue working while
that request is being fulfilled. When the requested data is delivered
to the browser from the server, a preassigned callback function is
automatically called and the data is then processed and displayed
by JavaScript.

The J in Ajax is for JavaScript. JavaScript handles the entire Ajax
transaction, and this chapter focuses on showing you the program-
ming techniques to implement Ajax functionality in your Web site.

The second A in Ajax is simply And.

The X in Ajax stands for XML. In Jesse James Garrett’s client pro-
posal where he first used the term, XML was the data format that
would be returned from the server. However, the term XML is some-
what misleading, because data can be returned in many formats, of
which XML is one. For example, HTML, plain text, and JavaScript
Object Notation (JSON) are all commonly requested data formats
used in Ajax transactions. I’ll show you how to work with these for-
mats later in this chapter.

JSON is a data format based on the object literal construct you saw
in Chapter 3. Because it is a very compact data format and can be
evaluated by JavaScript as code, JSON is frequently replacing XML
as the data format of choice for today’s applications.

Before starting into the workings of Ajax, let’s consider how commu-
nication between the browser and server is implemented.

To Ajax or Not to Ajax?

The technical and user experience changes that Ajax brings also create new design challenges. For example: If a small
amount of the page content changes, will the user notice? How can I direct the user’s attention to these changes? What if
the request to the server has no response and the required data is not delivered? How will my page respond under this
circumstance, and how can the user be made aware of any problems this causes?

It’s also important to understand that Ajax is not appropriate for every browser/server transaction. If you simply want to
add a line of text—perhaps a validation message on a form—it makes perfect sense to get that little piece of data from
the server as an Ajax request and add it into the page with DOM scripting. If the request will update the entire page, or
most of it, it makes better sense to do this as a normal round-trip with a page refresh. In short, use Ajax only where it
enhances the operation of the application or the user experience.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5136

Communication with the Server

The HyperText Transfer Protocol (HTTP) defines how transactions
between the browser and server are handled. While this protocol
is pretty complex, in the scope of this discussion, you only need to
understand the POST and GET methods, which control how the
browser makes requests to the server.

When I talk about the HTTP request method, I mean method as in
“way of doing things,” not as in “a function in an object.”

TH E G E T M E TH O D

A server request begins with an action that causes the browser to
make either a GET or POST request to the server.

A GET request, typically made when a link is clicked, is a URL with a
query string, like this:

display_product_info.html?productID=45034A&colorpref=red

The query string (highlighted) is separated from the rest of the URL
with a question mark. It consists of a number of name/value pairs
separated by ampersands that are passed to the requested page.
These name/value pairs serve the same purpose as the arguments
passed to a function; they contain data that the requested page will
use when processing the request.

The entire GET request string is visible in the browser’s address bar,
and it’s tempting for users to modify the query string to see what
they might get (a different user’s account, perhaps?) This means it’s
important to only use GET when the user is requesting nonsensitive
information—a particular news story, for example.

TH E P O S T M E TH O D

A POST request is typically made when a form is submitted. If you
look at the markup for a form, you’ll notice that the method attribute
is almost always POST. For each field of the form, the name attribute
value and the data entered in that field are passed as the name/
value pair. However, while the URL is visible in the browser address
bar, the name/value pairs are sent behind the scenes to the browser
and are not visible in the address bar.

As a rule of thumb, if you are sending data that will be recorded on
the server, use POST. If you are simply requesting a page, use GET.

There is typically a limit (depending

on browsers and proxy servers) of

1024 characters in a GET URL.

ptg

A JA X 137

TH E T R AD ITI O N AL M O D E L

Under what I’ll call the traditional model—the only model prior to
Ajax—the data is passed to the server via a POST or GET request
and is then processed by the middleware (such as PHP, .NET, or
Java). A new Web page is then generated and served back to the
browser in response.

The downside of the traditional model is that no user activity can
take place between the request being submitted and the new page
being entirely rendered in the browser. Once that link is clicked or
the form submitted, the user must wait for that new page to display.

Even though a slow response can result in frustration and random
clicking on the part of the user, the synchronous nature of the tradi-
tional “click-and-wait” model is very familiar and comfortable to
the user.

TH E A JA X M O D E L

When an Ajax request is made to the server, again using a POST or
GET request, it is made via the browser’s XHR (XMLHttpRequest)
object, which I will discuss in detail in a moment. The XHR object
is the key to Ajax because it acts as an intermediary between the
browser and the server. Actually initiating an Ajax request by call-
ing the XHR object takes a matter of milliseconds, and then control
is returned to the user while the XHR object fulfills the request, as
shown in Figure 5.1. Because the request is now happening “in the
background,” the user can continue working as soon as the XHR
object receives the request.

FI G U R E 5 .1 Unlike a tradi-
tional request where the user
must wait until a new page is
rendered in the browser, an
Ajax request returns control to
the user as soon as the request
is made, without waiting for a
response.

However, the most significant advantage of using Ajax it that you
can request specific data, not just an entire page, as a response. For
example, the user could add an item to a shopping cart and, instead
of waiting while the server is updating the cart status, the user could
do more shopping and add a second item. Once the server update is

W E B S E RV E R W E B S E RV E R

X H R

B R O W S E R B R O W S E R

Traditional round-trip request Ajax-enabled request

Time elapsed until user regains control of the page

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5138

complete, the server could return just the text needed to update the
onscreen cart display, and this text would then be added into the
page using DOM scripting without a refresh of the page. With data
able to flow into the browser in this way and the necessity for con-
stant page refreshes removed, a Web site can be transformed into a
responsive online application. This is why Ajax has created so much
excitement in the Web development community.

The XMLHttpRequest Object
Ajax is made possible because of the browser’s XMLHttpRequest
(XHR) object. The XHR object can make requests to the server and
receive data in response. It was developed as part of Microsoft’s
ActiveX strategy to enable its online mail products to communicate
with a mail server. It was only recently made part of the official W3C
standard, even though it has been well supported in all the major
browsers for several years. Microsoft’s implementation of the XHR
object is different from the implementation in W3C browsers, so
as with the event object you saw in Chapter 4, some cross-browser
compatibility issues exist. Fortunately, the popularity of Ajax
ensures that these issues have been thoroughly addressed by the
many helper functions and frameworks that are available. You will
rarely, if ever, have to concern yourself with the XHR object’s dif-
ferences between the browsers. However, even though these helper
functions and frameworks exist, it is useful to understand how the
XHR object works, so I’ll now show you how to write an Ajax helper
function that talks to the XHR object.

Note on Demo Ajax Function

While the ajax_request.html code I’ll show in this section of the chapter works well in all modern browsers and
serves the purpose of demonstrating the concepts of how an Ajax request is made, it is not industrial strength. It has no
capability to reject really old browsers that don’t have an XHR object. Also, there is no handling for the possibility of an
HTTP status of 304 being returned, meaning that the document is already cached on the user’s computer and the user
will get that data instead of data from the server.

If you want a more robust Ajax function that you can use on a site you will be putting into production, it’s best to use
one of the many frameworks that offer Ajax capabilities. Or, if you don’t want to use a framework, try simpleXHR.
js written by Scriptin’s technical editor Chris Heilmann—you’ll find it in the Chapter 5 code folder. It overcomes the
technical shortcomings associated with the demonstration Ajax function in this example but is rather more difficult to
understand. However, as with other helper functions, you don’t have to understand it to use it, and it accepts the same
two arguments as the demonstration ajax_request.html example.

ptg

A JA X 139

How to Use the XMLHttpRequest (XHR)
Object

To use the XMLHttpRequest object, you must be able to communi-
cate with it and then monitor its activity so you know when it has
successfully acquired the requested data. The way you do this is
to write a function that can communicate with the browser’s XHR
object and can handle all your application’s Ajax requests.

This kind of function is known as a wrapper. A wrapper serves as an
interface to a piece of usually complex functionality—in this case,
the XHR object—and manages all communication with it. Your code
will talk to the wrapper function, and the wrapper will be written to
handle the complexities of managing the XHR object. When you call
this wrapper function, you will simply pass it two arguments:

• the name of the requested resource—a filename that will provide
the data you want from the server

• the name of your callback function—a function that will be
called when the request completes. This function will receive
the returned data and process it in some way according to your
application’s needs.

An XMLHttpRequest wrapper function greatly simplifies your life
because it abstracts away from the rest of your code all the com-
plexities of managing an Ajax transaction and the associated cross-
browser differences. At any point where your code requires data
from the server, you can just call this Ajax function, passing it the
two required arguments. When the transaction is complete and the
requested data is returned, the wrapper function will pass the data
to the specified callback function—the function you write to process
the returned data. Once the callback function is called, the process
is complete.

I’ll now show you, step by step, how to write this wrapper function
(that I will name ajaxRequest), which will help you understand
exactly how an Ajax transaction works. Of course, you don’t actually
have to write this function if you don’t want to; you can find it in
the Chapter 5 code examples. This function will perform the
following steps:

1. Create a new instance of the XHR object.

2. Define a function to monitor the request’s progress.

3. Send the request via the XHR instance.

You can see this completed

ajaxRequest function on page 144.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5140

4. Check that the request was successful when the server
responds.

5. Pass the returned data to the assigned callback function so it
can be used.

Let’s look at each step.

1. C R E ATE A N E W I N S TAN C E O F TH E X H R O B J E C T

The first step in using the XHR object is to instantiate a new
instance of it. In this example, I’ll store it in a variable called
ajaxObj. For a W3C browser, you would write

ajaxObj = new XMLHttpRequest();

and for a Microsoft browser, you would write

ajaxObj = new ActiveXObject(“Microsoft.XMLHTTP”)

You can write this as a one-step, cross-browser instantiation
like this:

var ajaxObj = (window.ActiveXObject)

? new XMLHttpRequest()

:new ActiveXObject(“Microsoft.XMLHTTP”);

After you have instantiated the XHR object, you can then use its
properties and methods to request and manage the movement of
data between the browser and Web server.

2 . D E FI N E A FU N C TI O N TO M O N ITO R TH E R E Q U E S T

A crucial component of the XHR process is the server’s communica-
tion with the browser. Without this feedback from the server, you
would never know when the request has completed. At key points
in the process, the server updates the XHR object’s readystate
property with a numerical value that defines the current state of
the request.

The five possible values are:

0 = uninitialized—the object exists but the open method has not
 been called

1 = loading—the open method has been called but the send
method has not

I have broken this into three lines

for clarity, but it’s the same ternary

if statement format of (test) ?

true stuff : false stuff that

I used for the cross-browser event

object creation in Chapter 4.

072209_scriptin_ch5.indd Sec1:140 7/24/09 1:47:18 PM

ptg

A JA X 141

2 = loaded—the send method has been called and the request is
 in process

3 = interactive—the server is sending a response

4 = complete—the response has been sent

Your wrapper function can be notified each time this state changes
by monitoring the onreadystatechange event handler, which as
its name suggests is called each time the XHR object’s readystate
property is updated by the server.

Because the order of these responses is different between brows-
ers, and because all you really need to know is when the request
has completed, you simply want to monitor for a readystate prop-
erty value of 4 each time the onreadystatechange event handler
is triggered. You do this by assigning a function to the onreadys-
tatechange event handler in which you can track the state of
the request. You need to specify that function before making the
request, because, as you can see from the descriptions of the values
of the readystate property, the server starts sending back request
state information even before the request is fully submitted.

Consequently, after instantiating the object—but before you do any-
thing with it—you want to define the function that will process the
onreadystatechange information.

The XHR object also tracks the three-digit HTTP status of the
request. You are probably all too familiar with HTTP Status 404—
Page Not Found, which you get when you request a URL that
doesn’t point to a valid resource. What you want your code to check
for is status 200—success. Upon determining a status of 200, your
object can safely assume the request data has arrived and pass
whatever is in the response to the callback function. In the sequence
of your code, once the readystate is 4, you check for the request’s
HTTP status (which is stored in the XHR object’s status property).
If the status is 200, the responseText property’s value—the
requested data—is passed to the callback function.

To do this, I simply assign an anonymous function that makes these
checks to the onreadystatechange event handler each time the
readystate changes. (This is a very similar concept to the onload
event handler, because both are called by events that are not initi-
ated by the user.)

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5142

myAjaxObj.onreadystatechange = function {

if (ajaxObj.readyState == 4 && ajaxObj.status == 200) {

 cbFunc(ajaxObj.responseText);

 }

}

With monitoring now in place for the request, you are all set to
make the request for the data you want.

3 . S E N D TH E R E Q U E S T V IA TH E X H R I N S TAN C E

The first decision you need to make when requesting data is the
method to use to make the request—GET or POST.

Use the request method GET if you just want to get data from the
server or POST if you want to update data on the server. I’ll first show
the GET request process.

Sending a request with GET. A GET request requires the use of two
methods of the XHR object: open and send. The open method allows
you to specify the kind of request method (GET or POST) you want to
make, the name of the file you are requesting, and a Boolean value
that defines whether you are making an asynchronous or synchro-
nous request. Here is the format:

objName.open = (requestMethod, URL, asynchronous?)

If you set the third value to false, the application will stop running
until the request is fulfilled, which defeats one of the key benefits of
Ajax. Almost always you will set this third argument to true so that
the user can continue working while the request is being fulfilled.
There are additional optional parameters besides these, and you
can learn more about them at www.w3.org/TR/XMLHttpRequest/
#xmlhttprequest.

The name of the file is simply a URL and, because I am using GET,
can be extended with a query string of name/value pairs. A GET
request might look like this:

myAjaxObj.open = (‘GET’, ‘lookupUserInfo.php?username=ajaxScr
ipter&email=charles@scriptinwithajax.com’’, true)

Now that your request is defined, you can send the request to
the server

myAjaxObj.send(null)

pass the data to the callback
function

if true, then the request has
successfully completed

www.w3.org/TR/XMLHttpRequest/#xmlhttprequest
www.w3.org/TR/XMLHttpRequest/#xmlhttprequest

ptg

A JA X 143

When using GET, the data argument of the send method is always
set to null; you don’t need to include any data with the send. If you
want to send information to further define your request, you can
append a query string to the URL, as in the previous example where
the query string states the user name in the record to be retrieved.

Sending a request with POST. A POST request, which is used when
you want to update data on the server (such as a database record),
requires two additional steps. First, you set the request method to
POST. Second, you don’t append a query string to the URL as you do
with GET; any data that is part of the request is sent separately from
the URL as the argument of the send method. To do this, the con-
tent type of the HTTP header must be set correctly using the XHR
object’s setRequestHeader method, so that this data is handled cor-
rectly when it arrives at the server.

The open and send steps shown earlier for GET would look like this
for POST:

myAjaxObj.open = (‘GET’, ‘updateUserInfo.php’, true)

myAjaxObject.setRequestHeader(‘Content-Type’, ‘application/x-
 www-form-urlencoded’

myAjaxObj.send(‘oldEmail=charles@stylinwithcss.
 com&newEmail=charles@scriptinwithajax.com’)

4 . C H E C K THAT TH E R E Q U E S T WA S S U C C E S S FU L W H E N TH E
S E RV E R R E S P O N D S

Whether you use GET or POST to make your request, your Ajax
function now keeps track of the request by monitoring the
onreadystatechange event handler using the anonymous function
assigned to it in the previous step. As shown earlier, once you get a
readyState of 4 and status of 200, the request data has arrived.

5 . PA S S TH E DATA TO TH E A S S I G N E D C ALLB AC K FU N C TI O N S O IT
C AN B E U S E D

When the callback function is called, it is passed the responseText
property value as its argument, which is the requested data, and the
Ajax function’s work is complete.

That’s it. Here’s what the complete function looks like:

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5144

function ajaxRequest(url, cbFunc) {

if (document.getElementById) {

var ajaxObj = (window.ActiveXObject) ?
 new ActiveXObject(“Microsoft.XMLHTTP”) :

 new XMLHttpRequest();

}

if (ajaxObj) {

ajaxObj.onreadystatechange = function() {

if (ajaxObj.readyState == 4 && ajaxObj.status ==
 200) {

 cbFunc(ajaxObj.responseText);

 }

 }

ajaxObj.open(“GET”, url, true);

 ajaxObj.send(null);

 }

}

Using the Ajax Function

I’ll now use this Ajax function to request some text from a file called
basic_text.txt on the server. The Ajax function will return the file’s
text as a string that I will display in the page. A simple file request
like this requires no server-side middleware—the file simply has to
be at the specified location on the server.

Here’s some markup of a link that calls a function to request the
data and an empty element into which I can add the requested text:

<a href=”basic_text.txt” onclick=”readFile(); return
 false;”>Get text

<p id=”display”></p>

function readFile() {

 ajaxRequest(‘basic_text.txt’,cbReadFile);

 }

parameters: the url of the data,
the callback function

does browser support this
property?

if the ajaxObj object was
successfully created…

pass the data to the callback
function

if true, then the request data has
arrived

send the request

open server connection–
GET request, requested URL,
asychronous set to true

if so, determine which browser and
create a new XHR object

makes the call to the Ajax function

set up function to run whenever
readyState changes before making
the request

C O D E 5 .1 ajax_request.html

C O D E 5 . 2 ajax_request/ajax_
request.html

To keep this example simple, I am

using an inline event handler on the

element to trigger the function. In a

real application, it would be better

practice to set up an event listener

on the element.

ptg

A JA X 145

The readFile function called by the link passes the Ajax function
the two required arguments—the URL of the file and the name of
the callback function that will display the data when it is returned.
Note the name of the callback function is cbReadFile—so in this
case, readFile() requests the data, and cbReadFile() handles the
response.

Here’s the callback handler.

function cbReadFile(theData) {

var theDisplay = document.getElementById(‘display’);

theDisplay.innerHTML = theData;

 }

This code simply writes the text into the element with the
ID display.

Here’s how this all looks onscreen to the user. Figure 5.2 shows the
link displayed in the page.

FI G U R E 5 . 2 Clicking the link will ini-
tiate the Ajax request for the text file.

When the link is clicked, the Ajax request is made and the text is
added into the empty paragraph tag, as shown in Figure 5.3.

FI G U R E 5 . 3 The text from the
requested file is displayed on
the server.

To help me always see the connec-

tion between the calling function

and its associated callback func-

tion, I give both functions the same

name except the callback handler’s

name begins with the letters cb; for

example, myFunction and

cbMyFunction.

called by callback from
Ajax function

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5146

Note that the text simply appears on the page. There is no page
refresh and, except with a very slow Internet connection, an almost
instantaneous response. The behind-the-scenes process is shown
in Figure 5.4.

FI G U R E 5 .4 A conceptual
diagram of the Ajax request in
Code 5.2.

Using an Object Literal to Maintain State
Through an Ajax Call

One problem with requiring two functions for an Ajax call—one to
make the call and the other to handle the callback—is that you are
passing control from one function to the other. However, because
that control goes via the Ajax function, you can’t at that time pass
data from the calling function to the callback—one does not directly
call the other. The variables that existed in the calling function are
not accessible to the callback function. This is a problem of main-
taining state in your application—where important values must per-
sist for later reference.

I’ll show you a simple example of this problem and then how to fix it
using the two functions in the Code 5.2.

In this example, I’ll get the user’s name from a form field, so I can
display a personalized welcome message. The form markup looks
like this:

<form action=”#” method=”get”>

<label for=”fi rst_name”>Enter your fi rst name: </label>

<input type=”text” id=”fi rst_name”>
C O D E 5 . 3 ajax_request/ajax_
request_scope_problem.html

W E B S E RV E R

X H R

A JA X W R APPE R

ajaxRequest(‘basic_text.txt’,cbReadFile) cbReadFile()

ptg

A JA X 147

 <input type=”Submit” onsubmit=”readFile(); return false;”
value=”Go!”>

 <p id=”display”></p>

 </form>

I’ve left the form action value as #—an anchor link, and not sup-
plied a URL. I would usually, and more correctly, put a URL here to
the server site script that would process the form if JavaScript were
not available. I left out this step because I don’t want to confuse the
simple point of this demo.

Once I have the user’s name, I’ll fetch the welcome message from
the server and add the user’s name to it. I’ve modified the calling
function to look like this:

function readFile() {

var fi rstName = document.getElementById(“name”).value

 ajaxRequest(‘basic_text.txt’,cbReadFile);

 }

Then I modify the corresponding callback function to look like this:

function cbReadFile(theData) {

var theDisplay = document.getElementById(‘display’);

 theDisplay.innerHTML = “Hi, “ + fi rstName + “. “ + theData;

 }

This code fails and the Firefox Error Console displays “Error: first-
Name is not defined.” This occurs because the variable fi rstName
declared in the calling function has function-level scope and is
therefore unavailable to the callback function. This issue can be
overcome by refactoring the code as an object literal where both call
and callback share the same scope (the object), like this:

ajaxFile = {

readFile:function () {

ajaxFile.fi rstName = (document.getElementById(“fi rst_name”).
value) || ‘Visitor’;

makes the call to the Ajax function

 get text from a form field and set
the variable

use the variable–DOESN’T WORK!

makes the call to the Ajax function

C O D E 5 .4 ajax_request/ajax_
request_scope_problem.html
(cont.)

I’m using onsubmit as the event for

the Submit button. Unlike onclick,

onsubmit can also be triggered

from the keyboard if the button

has focus.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5148

ajaxRequest(‘basic_text.txt’,ajaxFile.cbReadFile);

},

cbReadFile:function (theData) {

var theDisplay = document.getElementById(‘display’);

theDisplay.innerHTML = “Hi, “ + ajaxFile.fi rstName + “. “ +
 theData;

}

}

Now the fi rstName variable declared in the calling function is avail-
able to the callback function because both share the ajaxFile
object scope, as shown in Figure 5.5.

FI G U R E 5 . 5 Because the calling
and callback functions share the
object literal’s scope, the user’s name
declared in the calling function is
available to the callback function.

Note that the highlighted line in Code 5.5, which gets the user’s
name from the field, is written as an OR structure. If the user leaves
the field blank, the default name “Visitor” is used, as shown in
Figure 5.6. Without this default text, a blank entry would result in
“Hi, . Here’s some text from the server.”

FI G U R E 5 . 6 By assigning the
fi rstName variable using an OR
structure, the default value “Visitor”
is used when the name field is left
blank.

C O D E 5 . 5 ajax_request/ajax_
request_obj_literal.html

callback function to process
response from Ajax function

ptg

A JA X 149

Object literals are an effective way to keep variables in scope
between functions without having to resort to the dangers of
global variables.

Ajax and Data Formats

As mentioned earlier in this chapter, although the X of Ajax stands
for XML, almost any kind of data can be served via the XHR object.
The most common formats are HTML, JSON, XML, and plain
text. The preceding example was a very simple demonstration of
using plain text. More complex text formats, such as CSV (comma
separated values) text files, can also be used and parsed out with
JavaScript’s String object methods.

However, because HTML, JSON, and XML are the most popular Ajax
file formats, we’ll take a look at each of them, starting with HTML.

Creating a Simple Catalog

A simple way to use Ajax is to store (or generate) data on the server
as HTML fragments that can be added into a page. An HTML frag-
ment, as its name suggests, is a term I use for an HTML file (or
HTML that is generated by the middleware on your server) that
is not a complete page but simply some HTML elements that are
intended to be added to an existing page—they can’t really “stand
alone.” I’ll demonstrate using HTML fragments in a multipage
catalog example.

In this example, I’ll create a simple catalog that has an index page
and three product pages. I’ll again use my beloved guitars for con-
tent, as Figure 5.7 illustrates.

In this three-column layout, only the content within the area with
the blue border in the center column changes; the header, sidebars,
footer, and the tabs in the center column are the same for every
page. Consequently, I can use the same code file for these unchang-
ing areas and just update the content area. I’ll start by making the
page work using just HTML and PHP, and then I’ll layer on the Ajax
functionality for JavaScript-empowered users.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5150

FI G U R E 5 .7 The overview page of the guitar catalog example.

Using PHP Templates

In this section, I’ll use a PHP template, which is a term for a PHP
script that contains the common elements of the page. Although the
PHP script requested will be the same one every time, it will include
the correct piece of HTML for the content area according to the
link the user clicks. The content area will automatically load with
the Overview HTML fragment, which loads the page with all three
guitars shown in Figure 5.7 when the page is first requested. Clicking
the guitar names in the tabs will load an HTML fragment specific to
that instrument.

ptg

A JA X 151

 I’ll briefly explain the PHP functionality so you have an understand-
ing of how to get the page working with a regular “round-trip” before
enhancing it with Ajax.

The name of the PHP script is guitar_ajax_demo.php, and it is
mostly made up of HTML. When requested, this PHP script will
write out the HTML it contains and resolve some PHP statements
into HTML that it will also write into the page. It will then serve this
complete HTML page back to the browser.

TH E P H P C O D E

Here is the mix of HTML and PHP contained in the PHP script.
When requested, the PHP script simply outputs an HTML page and
sends it to the requesting browser. Any HTML within the script is
added to the page output as is. Any code between the <?php and ?>
tags is PHP and will be replaced with the HTML to which it resolves.
PHP is never sent to the browser, only the HTML that the PHP script
generates.

Here is the PHP script edited down to just the relevant bits. The PHP,
which will all be evaluated to HTML, is highlighted.

<div id=”nav”>

<div id=”nav_inner”>

<ul class=”guitar_links”>

<a class=”overview” href=”guitar_catalog_ajax_
 html.php?request=overview”>Overview

<a class=”tiger” href=”guitar_catalog_ajax_html.
 php?request=tiger”>Tiger

<a class=”jasmine” href=”guitar_catalog_ajax_
 html.php?request=jasmine”>Jasmine

<a class=”sunny” href=”guitar_catalog_ajax_html
 php?request=sunny”>Sunny

</div>

</div>

<div id=”content”>

<div id=”content_inner” class=”clearfi x”>

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5152

 <?php ($_GET[‘request’]) ? $guitarName=($_
 GET[‘request’]) : $guitarName=’overview’; ?>

<ul id=”tabs” class=”guitar_links clearfi x rounded”>

<li class=”rounded <?php if ($guitarName==’overview’)
 {echo ‘choice’;} ?>”><a href=”guitar_catalog_ajax_
 html.php?request=overview”>Overview

<li class=”rounded <?php if ($guitarName==’tiger’)
 {echo ‘choice’;} ?>”><a href=”guitar_catalog_ajax_
 html.php?request=tiger”>Tiger

<li class=”rounded <?php if ($guitarName==’jasmine’)
 {echo ‘choice’;} ?>”><a href=”guitar_catalog_ajax_
 html.php?request=jasmine”>Jasmine

<li class=”rounded <?php if ($guitarName==’sunny’)
 {echo ‘choice’;} ?>”><a href=”guitar_catalog_ajax_
 html.php?request=sunny”>Sunny

<div id=”guitar_display” class=”clearfi x”>

<?php include ‘html_frags/’. $guitarName .’_desc_frag.
 html’; ?>

</div>

</div>

</div>

When the page is requested, the first piece of PHP code that runs is

<?php ($_GET[‘request’]) ? $guitarName=($_GET[‘request’]) :
$guitarName=’overview’; ?>

PHP’s $_GET array contains the data from a URL query string, which
are the optional sets of name/value pairs that follow a ? after the
URL itself. This highlighted code checks to see if the query string
has added a request property to the array: To be more precise, it
checks if the request property is set. Because the initial request for
the page has no query string and is simply

guitar_catalog_ajax_html.php

the dynamic data is added here

C O D E 5 . 6 guitar_catalog.php

if the $_GET array’s “request”
variable is set, use its value, else
use “overview”

clearfix class in CSS file makes
element enclose child floated ele-
ments–see Stylin’ with CSS, Second
Edition, page 119 for details

ptg

A JA X 153

then ($_GET[‘request’]) resolves to false and the $guitarName
variable value defaults to overview. (Note the use of the ternary
if statement.)

I N C LU D I N G TH E H TM L FR AG M E NT I N TH E PAG E

The key piece of PHP is inside the guitar_display div (which
is otherwise empty) in the content area of the page, which looks
like this:

<div id=”guitar_display”>

<?php

include ‘html_frags/’. $guitarName .’_desc_frag.html’;

?>

</div>

Because $guitarName has defaulted to overview (as I showed earlier
in the code), the highlighted PHP resolves to overview and PHP
then interprets the line as

include ‘html_frags/overview_desc_frag.html’;

PHP then includes the HTML fragment that contains the markup for
the Overview page in place of this code, and it is thereby added into
the guitar_display div. The HTML fragment files for each guitar
look like this:

<div id=”picture_box” class=”equal”> <img src=”images/
jasmine_200w.jpg” alt=”Takamine Jasmine E40SC guitar” />

 </div>

<div id=”info_box” class=”equal”>

<div id=”info_box_inner”>

<h4>Jasmine</h4>

Model: ES40C

Made by: Takamine

Year: 1991

<h5>About this guitar</h5>

<p>Bright highs...(more text here).</p>

C O D E 5 .7 jasmine_desc_frag.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5154

<p>Comes fi tted with...(more text here).</p>

<p>The iMix controls...(more text here).</p>

 <p><a href=”http://www.thewho.net/whotabs/equipment/
 guitar/equip-takamine.html#eg40sc”>Pete Townsend

likes Takamine Ex40 series guitars too!</p>

 </div>

</div>

Each HTML fragment file has been carefully named: The filenames
are only slightly different for each file. Therefore, all I have to do is
add the $guitarName value into the otherwise identical URL string
to get the correct filename.

G E N E R ATI N G TH E LI N K S

Because the URLs of the tabs all reference the current page, when a
tab is clicked, the page will reload itself. Let’s assume the user clicks
the tab labeled Tiger, whose URL is

guitar_catalog_ajax_html.php?request=tiger

As the page is processed on the server, PHP again checks the $_GET
array. Now the $guitarName variable—which takes its value from
the query string—is set to tiger. The PHP statement within the
guitar_display div resolves to

include ‘html_frags/tiger_desc_frag.html’;

PHP then includes the HTML fragment contained in the file right
here in the page, and the information about the “Tiger” guitar is
displayed. By using the value passed in the string from the link, PHP
can generate the correct URL for the PHP include, as shown
in Figure 5.8.

MAK I N G TH E TA B S H I G H LI G H T

The other aspect of the page controlled by PHP is the highlighting
of the tabs along the top of the content area. See the sidebar “Stylin’
the Tabs” for details on how these tabs are created. The “active” tab
that relates to the currently displayed content is highlighted by add-
ing the class choice to the appropriate tab’s li. Adding this class to
the correct tab is achieved by the following PHP on each link. Here’s
the code for the Overview tab.

<li class=”<?php if ($guitarName===’overview’){echo
‘choice’;} ?>”>

ptg

A JA X 155

FI G U R E 5 . 8 The “Tiger” guitar HTML
fragment is now included in the page.

The highlighted PHP uses the $guitarName variable to determine
whether to resolve itself to the class name or to nothing.

An Ajax-ready Page

The few pieces of PHP code in the previous sections create a
dynamic page where the content area updates to reflect the link
clicked by the user, and the tabs update to indicate the currently
displayed page.

Stylin’ the Tabs

The tabs across the top of the content in the catalog example are the primary way that users will select the content they
want to view. However, they are not just for navigating but also for orientation. Appropriately styled tabs can tell the
user: “You are here.” This is achieved by having a special visual state for the tab that relates to the currently displayed
content. Each tab in this design is simply a styled li element of an unordered list. By using relative positioning in the
CSS, I am able to move the tabs so their bottom borders align with the top border of the guitar_display div. I then
define a CSS class named choice, which when added to a tab (an li tag) will set the tab’s background color and its bot-
tom border color to match the color of the content area. This results in a strong visual association between the content
and the related tab: The tab actually looks like it is part of the content area.

Because this tab styling is already set up in the CSS, I simply code the PHP so that the choice class is added to the li of
a tab when it is clicked.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5156

This little catalog is ripe for enhancement with Ajax because only
a small part of the page needs to update each time, and yet cur-
rently, a complete new page must be generated and served for every
request. So let’s now layer on the Ajax so that only part of the page
updates without any page refresh at all.

Adding Ajax Functionality to the Catalog

To add Ajax functionality to the catalog, I’ll link two script files to
the page in the head tag.

<script type=”text/javascript” src=”javascript/ajax_function.
js”></script>

<script type=”text/javascript” src=”../../js_lib/scriptin_
helpers.js”></script>

These scripts link the Ajax function script and the helper functions
to the page, respectively. Now I don’t have to add the functions
contained in these directly in the page but can use them as if they
were in the page. This helps to keep the main script short and
less cluttered.

Except for linking the JavaScript files, I don’t need to make any
changes to this PHP page to “Ajax-ify” it.

AD D I N G E V E NT LI S TE N E R S

I can now start coding the JavaScript. In earlier examples, I added
the JavaScript into the page with the HTML, but in a real-world proj-
ect the JavaScript belongs in a separate linked file; I’ll use a separate
file here. I’ve linked a file called guitar_ajax_html.js. to the PHP
file along with the ajax_function.js and scriptin_helpers.js
files I previously added. This currently empty file will hold the Ajax-
related JavaScript that loads the HTML fragments into the page and
updates the tabs when the user clicks a link.

I have two sets of links that do the same thing on this page: the
sidebar links and the tabs. I’ll begin by writing an onload event that
calls a function to add an identical event listener to the ul element
of both sets of links: I can readily identify these uls because each
one has the guitar_links class. My strategy is that every link will
call the same function—linkClicked. This function will get the gui-
tar name from the query string of the URL that will then be used to
assemble the URL, which requests the related HTML fragment.

 The scriptin_helpers.js file is

added so I can use one of its func-

tions called cancelClick(). You

will learn what this function does

during this exercise.

ptg

A JA X 157

I’ll do all this in one big step here, since you’ve already seen how to
implement event listeners several times.

guitarLinks={

init:function(){

 guitarLinks.addListeners();

},

addListeners:function() {

var theLists = document.getElementsByTagName(‘ul’);

for (i=0; i < theLists.length; i++) {

 if (theLists[i].className.search(“guitar_links”)!==-1)
{

 addEvent(theLists[i], ‘click’, guitarLinks.
 linkClicked);

}

}

},

linkClicked:function(e) {

 alert (“link clicked”);

 cancelClick(e);

}

}

window.onload=guitarLinks.init;

There are just a couple of items in this code that you haven’t
seen before.

Because in one case I have more than one class on the ul tags (there
is a clearfi x class to force the ul to wrap the list elements—see the
Aslett Clearing Method in the text_n_colors.css file, that I have also
linked to the page.), I must do more than just check for a simple
match on the class attribute: I use the search property of the String
object (first highlighted line of Code 5.5) to search for the name of
the class I’m looking for—guitar_links—anywhere within the class
attribute’s value. Even if there is more than one class, this code can
still determine if the one I am looking for, or at least if the string
“guitar_links,” is present.

C O D E 5 . 8 guitar_ajax.js

get all the unordered lists

calls JS helper to cancel href click

If the ul’s class attribute contains
“guitar_links”

a temporary test to see if the
function is called by the event

then add an event listener to that ul

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5158

The second item I want to point out is a call to a new helper
function (second highlighted line of Code 5.5) that’s named
cancelClick, which I call at the end of the linkClicked function.
The cancelClick function is in the linked scriptin_helper.js file.
Let me explain what this function does and why I need to call it
here. Earlier, I showed you that if you call a function from a link,
you might have code that looks like this:

<a href=”somePage.html” onclick=”someFunction(); return
false;”>A Link

In this case, return false cancels the click that would normally
trigger the href—without it, somePage.html would load after the
someFunction completes. The cancelClick function does the
same thing for event listeners: It stops the click going to the ele-
ment after JavaScript has handled it. As a point of interest, it calls
e.preventDefault() on W3C browsers and window.event.
returnValue = false; on Windows browsers, which stops the
href from being fired on the respective browsers. These cross-
browser differences are conveniently abstracted away by the
cancelClick function.

A JA X AN D C AN C E LI N G C LI C K S

The technique of canceling clicks to links after Ajax handles the
request is key to providing progressive enhancement in your pages.
Let’s first consider the most likely case where JavaScript is supported
by the browser, and Ajax is therefore enabled. If a user clicks a link
that triggers an Ajax call to fetch data from the server, I don’t want
the click to also trigger the link’s href, because this would then fetch
the content a second time by refreshing the page on a round-trip.
Instead, when the link is clicked, the JavaScript function runs, trig-
gers the Ajax request, and then cancels the click to the link’s href.

However, if JavaScript is not supported, the JavaScript does not
run, and the link acts normally; the href is triggered, and the page
request is fulfilled in the traditional round-trip manner. Once you
understand this concept, you can make your pages work with or
without JavaScript.

G E T TI N G TH E R E Q U E S TE D FI LE

With event listeners now attached to the links triggering the
linkClicked function, the next step is to have this function deter-
mine which link was clicked and initiate an Ajax call to get the
appropriate HTML fragment file. I need to get the guitar name,

ptg

A JA X 159

which is the value of the name/value pair in the URL query string,
and use it to assemble the URL.

linkClicked:function(e) {

var evt = e || window.event;

guitarLinks.evtTarget = evt.target || evt.srcElement

theURL=(guitarLinks.evtTarget.getAttribute(‘href’));

theQuery=theURL.split(“=”)

guitarLinks.guitarName=(theQuery[1]);

guitarLinks.readFile();

guitarLinks.setTab()

cancelClick(e);

},

readFile:function () {

 ajaxRequest(‘html_frags/’+ guitarLinks.guitarName +’_
 desc_frag.html’,guitarLinks.cbReadFile);

}

cbReadFile:function (theData) {

var theDisplay = document.getElementById(‘guitar_
 display’);

 theDisplay.innerHTML = theData;

}

When the user clicks the link, I need the name of the guitar so I can
use it in the name of the file I want to request. That name is at the
end of the URL; here’s how I get it. After adding the usual couple of
lines of cross-browser event object code, I first get the target link’s
href value and put it in a variable called theURL (first highlighted
line). For example, if the user had clicked the Tiger tab, the theURL
value would be

guitar_catalog_ajax_html.php?request=tiger

I then use the split method of the string object to break the string
into two array elements using the = as the delimiter. The second
element of this array then holds the name of the guitar, and I store
this in the guitarName variable. I can now call the readFile function
(second highlighted line), which is almost identical to the readFile

set up cross-browser event obj
names

split it into two array elements
using the = sign as delimiter

get the entire URL e.g., guitar_cata-
log_ajax_html.php?request=tiger

determines the target of the click
and calls readFile and setTab
functions

get the second element e.g., tiger

call the readFile function

call the set tabs function

calls JS helper to cancel href click

callback function

data is added to page

makes the call to the Ajax helper
function

 assembles filename using guitar
name parameter

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5160

function in the first Ajax example earlier in this chapter. I don’t need
to pass guitarName to this function as an argument, because this
variable is in scope for the readFile function: It’s part of the same
object literal. I simply use the guitarName variable when I assemble
the URL to make the Ajax call. The callback function then displays
the returned HTML fragment in the page.

H I G H LI G H TI N G TH E TA B S W ITH JAVA S C R I P T

At this point, although the tabs can be clicked and the correct con-
tent loads, the related tab does not highlight. I’ll now show you how
to do that.

As you saw when I made the pages work with PHP, a tab is high-
lighted by adding the choice class to it. PHP adds this class to the
Overview tab when the page first loads, but because all subsequent
content loading will now be done by JavaScript, JavaScript also
needs to be able to manage the tabs.

This class must be added to the parent li of the appropriate a tag—
the link that was clicked—and has to be removed from the tab that
is currently highlighted. Here’s how that’s done.

 linkClicked:function(e) {

var evt = e || window.event;

guitarLinks.evtTarget = evt.target || evt.srcElement;

guitarLinks.guitarName=(guitarLinks.evtTarget.
 className);

guitarLinks.readFile();

guitarLinks.setTab()

cancelClick(e);

},

 setTab:function() {

var theTabBar=document.getElementById(‘tabs’);

var theItems=theTabBar.getElementsByTagName(‘li’);

var itemCount=theItems.length;

for (i=0; i<itemCount; i++) {

 theItems[i].className=””;

 }

loop through the li’s

clear any class names off the tabs

store the number of them

get the li’s

gets the tab bar ul

sets the tab bar highlight

call the setTab function

ptg

A JA X 161

 guitarLinks.evtTarget.parentNode.className=’choice’;

 guitarLinks.evtTarget.blur();

},

// readFile function follows here

I’ve added a new function called setTab. In that function, I get the
tab bar ul and then loop through each li, removing any classes
as I go. Now all I need to do is highlight the tab that was clicked. I
already have the event target—the a link that was clicked. I simply
move up to its parent, the li, and add the choice class onto it. Note
that I call the setTab function immediately after the Ajax call for the
content, so that the tab updates while the request is being fulfilled.

An Accessible Catalog
In Chapter 1, I discussed three levels of accessibility: functional,
styled, and enhanced. In the catalog exercise I just showed you, all
three levels are available.

If the user has a modern browser and JavaScript is enabled, the user
will see fully styled pages, and content will be updated via Ajax with-
out page refreshes. This is the most enhanced user experience.

If JavaScript is not supported, the user will still view styled pages but
the content will be delivered via round-trip page refreshes.

If neither JavaScript nor CSS are supported, the page will have the
browser’s default styling, but it will still function and the user will
still be able to view the content.

You can observe these different levels by using the Firefox Web
Developer Toolbar. First, use the page in a modern browser to expe-
rience the fully enhanced page. Second, use the toolbar to disable
JavaScript, reload, and use the page again to see it fall back to the
round-trip model. Third, disable the CSS and refresh again (also
select Persist Features in the Options menu so the CSS remains dis-
abled between refreshes). Now the page takes on a plain appearance
but is still functional and useable.

If you view the source of the page during any of these tests, you
will only see HTML. There is absolutely no CSS or JavaScript in the
page’s markup. Both the CSS and JavaScript are in external files
and will add styling and behavior respectively to the page if these
technologies are supported, but there will be no adverse effects and

set the hilite on parent li of target
link

Ajax is a problem for screen read-

ers because they take a snapshot of

the DOM when the page first loads

and store it in a buffer (a block of

memory) that is used to read the

page. The problem is that if the

page is updated with Ajax, the buf-

fer’s snapshot is then out of date.

To learn how to update the buffer

after each Ajax transaction in the

most popular screen reader JAWS,

see Gez Lemon’s Juicy Studio site

at http://juicystudio.com/article/

improving-ajax-applications-for-

jaws-users.php.

http://juicystudio.com/article/improving-ajax-applications-for-jaws-users.php
http://juicystudio.com/article/improving-ajax-applications-for-jaws-users.php
http://juicystudio.com/article/improving-ajax-applications-for-jaws-users.php

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5162

no errors if they are not. As long as the user has an HTML capable
device, this content will be accessible.

Working with JSON
JSON is a way of storing data in the same structure as the object
literal format. It uses property/value pairs, (a map—see “Maps”
sidebar), which are formatted like this:

{“property”:”value”, “property”:”value”, “property”:”value”}

where values can be strings, arrays, or objects, making it a simple
but very flexible format.

Here is how the HTML markup for one of the guitars that you saw
earlier looks in JSON.

{

“guitar_name”:”Tiger”,

“model”:”Hollowbody II”,

 “manufacturer”:”Paul Reed Smith”,

“year”:”2008”,

 “description”: [

“The perfect balance…”,

 “The tonal variety and pure quality…”,

“Rich grained wood…”

],

“link”: {

 “url”:”http://prsguitars.com/hollowbody2/index.html”,

 “text”:”About this guitar”

},

“image”:

 {

 “url”:”images/tiger_240w.jpg”,

“alt”:”Paul Reed Smith Hollowbody 2 guitar”

 }

}

C O D E 5 . 9 json/tiger.json

 This JSON file could be one long line,

but as you can see, I have formatted

it to make it as readable as possible.

ptg

A JA X 163

As you can see, JSON is very lightweight compared to a tag format
like HTML or XML. A JSON file can be one-third or less the file size
of its XML equivalent.

Besides its simple and easy-to-understand format, the major ben-
efit of data in JSON format is that it can be instantly transformed
into a JavaScript object ready for use, as you are about to see. This
is in strong contrast to XML where each element of the data must
be parsed out of its tag and then added into generated HTML ele-
ments—a slow and tedious programming procedure.

These benefits are driving the adoption of JSON over the more
established XML format in online applications. Many syndicators of
content such as Yahoo! and Google now make their data feeds (RSS,
for example) available in JSON as well as XML. In time, XML may
be less widely used because data feeds are increasingly being con-
sumed by JavaScript, and it is so much easier to do that with JSON.

E VALUATI N G J S O N

JavaScript’s eval method converts any string in JavaScript syntax,
including JSON, into executable JavaScript. In JSON, eval creates an
object from the data, which can then be accessed in the same way
as the data in any JavaScript object. While this is convenient, it is
also insecure, because malicious code can be passed in place of an
expected file, evaluated as JavaScript, and then executed. Douglas
Crockford, who devised the JSON format, has written a useful func-
tion called json.js that does the same job as eval but rejects any
code that is not correctly formatted as JSON, making it almost
impossible to pass malicious code through this function. While
eval is a quick and easy way to turn JSON or any string data into
JavaScript, it is much safer to evaluate JSON with the json.js func-
tion, as I do in the examples that follow.

Maps

In JavaScript, sets of property/value pairs within a set of curly braces create a map. Maps, which are referred to as hash
tables in languages like C++, are the basic data structure of JavaScript and you will often encounter the term map when
you read about JavaScript; it simply means a set of property/value pairs. If you study Code 5.9, you will see it is simply a
map, where the values are four strings, an array, and two maps.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5164

The Guitar Catalog Using JSON

Because JSON is now a widely accepted data standard, let’s look
at how to deal with the guitar data as JSON instead of HTML. It is
very simple to modify the guitar catalog to use JSON instead of the
HTML fragments that I used in the previous example. Using the Ajax
object I showed earlier in the chapter, you can fetch a JSON file from
the server and have it delivered to a callback function in exactly the
same way as I fetched text and HTML in the previous examples.

Once you have the JSON data, it’s easy to convert it to a JavaScript
object. Then you can use JavaScript to write out the required HTML
elements, adding the JSON data from the object into them as you
go, and add these assembled HTML elements into the page.

To use JSON as the data format, the only JavaScript I need to modify
from the HTML example is the callback function and the requested
filename.

After the JSON data is requested and arrives in the callback handler,
the first step is to convert it to a JavaScript object using the json.js
function.

cbReadFile:function (json) {

 var jsonParsed = JSON.parse(json);

var theDisplay = document.getElementById(“guitar_
 display”);

var html = guitarLinks.guitarToHTML(jsonParsed) ;

theDisplay.innerHTML= html;

 return;

 },

The two important steps (highlighted) are to convert the JSON
returned from the Ajax call into a JavaScript object, and then pass
this object to the guitarToHTML function, which will do the work of
assembling page-ready markup.

display the generated HTML

convert the JSON data to a
JavaScript object–using JSON object
in json.js file (linked to page)

receives the JSON from
Ajax function

code continues in next
code fragment

C O D E 5 .10 part of guitars_ajax_
jason.js

the html var is set to the result of
the guitarToHTML function

ptg

A JA X 165

guitarToHTML:function(json){

var tags = ‘’;

tags = ‘<div id=”picture_box” class=”equal”>\n’;

tags += ‘<img src=” ‘ + (json[‘image’][‘url’]) +’”
 alt=”’+(json[‘image’][‘alt’])+’”> </div>\n’;

tags += ‘<div id=”info_box” class=”equal”>\n<div id=”info_
 box_inner”>\n’;

tags += ‘<h4>’+(json[“guitar_name”])+’</h4>\n’;

tags += ‘\n’;

tags += ‘Model: ’+(json[“model”])+’</
 li>\n’;

tags += ‘Made by: ’+(json[“manufacturer”])+’</
 strong>\n’;

tags += ‘Year: ’+(json[“year”])+’</
 li>\n’;

tags += ‘\n’;

tags += ‘<h5>About this guitar</h5>\n’;

var description = json[‘description’];

for(var i = 0; i < description.length; i++){

tags += ‘<p>’ + description[i] + ‘</p>\n’;

tags += ‘<p>’ +
json[‘link’][‘text’] + ‘</p>\n’;

 tags += ‘</div>\n</div>’;

 }

 return tags;

 }

}

I’ve highlighted one of the elements that evaluates to data from the
JSON object:

loop through the variable number
of description text elements

 if it’s the first one, add the ‘first’
class to hide the left border on the
column

variable to hold the HTML elements
as they are built

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5166

(json[‘image’][‘url’])

This evaluates to

images/tiger_240w.jpg

because it reads the url property from the image property of the
json object. Check the JSON code I showed in Code 5.9 to see this
data in the JSON file.

By concatenating these kinds of elements with strings of HTML
(between the highlighted single quotes) like this:

‘<img src=”’+(json[‘image’][‘url’])+’” alt=”’+(json[‘image’]
[‘alt’])+’”>\n’;

the code produces a string of HTML like this:

<img src=”images/tiger_240w.jpg” alt=”Paul Reed Smith
Hollowbody 2 guitar”>

Note the use of single quotes (highlighted) and double quotes right
next to each other in this example. The single quotes delimit the
strings, separating the strings that don’t get evaluated from the
JavaScript that does. However, the double quotes are part of the
string: You can see them enclosing the attribute values in the evalu-
ated version. It can be very tricky getting the placement of these
single and double quotes exactly right, but remembering that they
serve completely different purposes makes it easier. The fact that
the object properties also use single quotes—a third use of quota-
tion marks in this line—can add to the confusion, so you really need
to keep track of what you are doing as you write code like this. View
Generated Source with the Web Developer toolbar to visually check
that the output is correctly formatted HTML.

Note also the \n within the last string of the line. This adds a line
break into the source code to make it easier to read when you view
the source code in the browser. Without line breaks, all the tags
generated by the preceding code would appear in a single line.
Doing this only formats the source code—it doesn’t affect the
onscreen appearance.

You can see that I am using a variable named tags to store each
HTML element as I create it rather than writing it line by line into
the page as I go. JavaScript is rather slow at adding to the DOM,
and if you add a large number of elements individually, it can affect
performance. Instead, I use the shorthand += operator to add the

ptg

A JA X 167

elements to the tags variable and then do a single write to the DOM
when I have everything assembled in that variable. To help you
understand the += operator, the code tags+=”hello” is simply the
shorter version of tags=tags+”hello”.

Once all of the required HTML elements are in the tags variable, I
return this data to the callback function where it is stored in a vari-
able called html. I then write the data to the element with the ID
guitar_display like this:

var theDisplay = document.getElementById(“guitar_display”);

theDisplay.innerHTML=html;

Note that I do this by setting the element’s innerHTML property,
because the variable contains a string. This code would not work

theDisplay.appendChild(html);

because html does not reference an object.

While all this might seem like a lot of work to add a few lines of
HTML for this example, in a real-world Web site application a JSON
feed parser like this might handle dozens of identically formatted
feeds for thousands of users for years to come. In a circumstance
like that, it isn’t such a bad investment of your time.

You will have to remind yourself of this fact frequently if you try to
write a similar feed parser using XML. It is very time-consuming
and tedious, so I’ve decided because of space limitations to just
show you a brief example of how this is done. I have included a
complete example of parsing this same data for the guitar catalog
from an XML file called guitar_ajax_xml.html in the downloadable
examples.

Using XML
 An XML file looks a lot like HTML except the tags usually have

names that describe their content. XML’s purpose is to be a data
exchange system so data can be moved between disparate systems.
The X (Extensible) portion of the acronym refers to the fact that you
can extend the language by creating your own tag names to accu-
rately describe and structure your content.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5168

Here’s the equivalent XML for the previous JSON example.

<?xml version=”1.0” encoding=”utf-8”?>

<guitar>

 <guitar_name>Sunny</guitar_name>

 <model>Roland GR202</model>

 <manufacturer>Ibanez</manufacturer>

 <year>1983</year>

 <description>

 <title>About this guitar</title>

 <detail>This Stratocaster-like guitar…</detail>

<detail>This setup was used…</detail>

 <link>http://www.joness.com/gr300/GR-100.htm</link>

 </description>

 

</guitar>

There are two approaches you can take to converting XML to HTML
for use in your pages: parse it as an object and convert the XML ele-
ments to HTML elements or convert the XML to JSON and parse it
out. Neither is easy, but I have provided you with some code in the
download files as examples, including helper functions, to make it
as simple as I can. Because I parsed the JSON as strings in the pre-
ceding example, I’ll parse the XML as objects. Get ready for some
fairly intense DOM scripting.

TH E R E S P O N S E X M L P R O PE RT Y

When you request XML from the server, the XMLHttpRequest object
stores the returned data in the responseXML property, not the
responseText property where data from a request for text data, such
as HTML or JSON, is stored. So when you request XML with Ajax,

C O D E 5 .11 xml_dom_parsing/
sunny.xml

ptg

A JA X 169

you need to pass your callback function the responseXML property
of the XMLHttpRequest object. Doing this requires a simple modi-
fication to the Ajax object code: You simply change the property
name responseText to responseXML.

if (ajaxObj.readyState == 4 && ajaxObj.status == 200) {

 cbFunc(ajaxObj.responseXML);

}

Then you can request an XML file in the same way that I showed
you for text and JSON in earlier examples.

ajaxFile = {

readFile:function () {

 ajaxRequest(‘sunny_cws.xml’,ajaxFile.cbReadFile);

 },

 cbReadFile:function (theData) {

// XML parsing code goes here, see next page

 }

}

Once you have the XML as an object in a variable, you can begin to
parse out the data. You use exactly the same methods to parse XML
as you do to manipulate the DOM—its tags are in the same kind of
nested structure. The difference is that the top level of the DOM is
document; the top level of the XML is the name of the parameter you
use to receive the XML into your callback function—in this case,
theData (highlighted).

In the next example, the HTML I create from the XML data will
exactly match the HTML in the HTML fragment file jasmine_desc_
frag.html that I used in the earlier example. Therefore, you might
want to look at that file, or just refer to page 153 for the required
outcome of this exercise.

As I mentioned, because the XML parsing code is long and complex,
I will simply show you some of the key techniques for doing this and
refer you to the code in Ch5_examples/XML_DOM_parsing/gui-
tar_ajax_xml.html to see the full example.

makes the call to the Ajax function

pass the data to the callback
function

if true, then the request data
has arrived

XML now in theData variable
ready to parse

C O D E 5 .12 xml_dom_parsing/
guitar_ajax_xml.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5170

OV E RV I E W O F X M L PAR S I N G

The first step when parsing this XML is to create an array in which
to store the HTML tags as I build them.

var tagArray=[];

Now I can start building HTML elements that contain data from
the XML. Here is the code to parse out a top level XML element and
convert it into an HTML element—in this case, an h4 tag with the
guitar name as its text.

var theEl=theData.getElementsByTagName(‘guitar_name’)[0];

var theHtmlObj=xmlHelp.XMLTagAsHTMLTag(‘h4’,theEl);

tagArray.push(theHtmlObj);

Now I have an HTML element in tagArray that looks like this:

<h4>Sunny</h4>

In the preceding code you can see the call to a helper function
called XMLTagAsHTML (highlighted). I wrote this function to convert
XML tags into HTML tags; this function, and another that I will use
in this example called addTextInElement, are contained in an object
literal called XMLhelp. The XMLTagAsHTML function looks like this:

XMLTagAsHTMLTag:function (elName,XMLTagObj) {

theText=XMLTagObj.fi rstChild.nodeValue;

newEl = document.createElement(elName);

newEl.appendChild(document.createTextNode(theText));

return newEl;

}

The code comments are fairly self-explanatory, but in short, this
function extracts the text from the text node of the passed-in XML
element object. It then creates an HTML element of type specified
by the passed-in element name and adds the text into it. The brand-
new element, newEl, is returned to the calling code. In the main
block of code, I use the push array method to add the new element
onto the end of tagArray. In this case, it’s the array’s first item, but
I’ll add others in the same manner as I create them. I use this helper
function for virtually every tag in the XML file: It saves a lot of
repetitious coding.

 creates new element of specified
type

 extracts the text from the specified
XML element

add each element to this array

add obj to array

adds the text into the element

function returns specified text
of XML tag in the specified HTML
element

C O D E 5 .13 xml_dom_parsing/
guitar_ajax_xml.html (cont.)

ptg

A JA X 171

I next create an unordered list with the guitar’s model, name, manu-
facturer, and year as list items. Here’s how I do that.

var theList=document.createElement(‘ul’);

var listItem=xmlHelp.addTextInElement(‘li’, ‘Model: ‘);

var theEl=theData.getElementsByTagName(‘model’)[0];

var theHtmlObj=xmlHelp.XMLTagAsHTMLTag(‘strong’,theEl);

listItem.appendChild(theHtmlObj);

listItem1=theList.appendChild(listItem);

The code results in the variable theList containing

Model: Roland GR202

In the preceding code is a call to a helper function, addTextIn
Element (highlighted); that function looks like this:

addTextInElement:function (elName,textRef) {

newEl = document.createElement(elName);

newEl.appendChild(document.createTextNode(textRef));

return newEl;

}

I pass this function an element name and a string of text (that
you will note in this case ends with a space), and the function
returns a newly created HTML element of the specified type with
the text inside it. After the highlighted function call is made,
listItem contains

Model:

Next, I need to add a strong tag containing the guitar model name
into this element, right between the space at the end of the text and
the closing . To do this, I extract the model name text from the
XML element, and then call the XMLTagAsHTMLTag function, passing
the required arguments: the element to be created and the text to be
added. The function returns

Roland GR202

I then simply append this element as a child into the li element
that’s in the theList variable; it is conveniently appended right after

create a strong tag with the
element’s text in it

returns an obj node–use
appendChild(node) to insert

add the strong tag into the li tag
after the li’s text

create an li with text in it

get the XML tag with the data

the container for the list items

add list item into the ul

adds text into new element

creates new element

C O D E 5 .14 xml_dom_parsing/
guitar_ajax_xml.html (cont.)

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5172

the text that is already in that element. The variable called list-
Item1 now contains

Model: Roland GR202

I repeat this process for the other two list items I need to create,
adding them into variables called listItem2 and listItem3. Then I
add the three of them into the ul element I created earlier, like this:

theList.appendChild(listItem1);

theList.appendChild(listItem2);

theList.appendChild(listItem3);

tagArray.push(theList);

Finally, I add the completed ul with its three child li elements into
the tag array (highlighted) ready to be added to the page. The fin-
ished list looks like this:

Model: Roland GR202

Made by: Ibanez

 Year: 1983

I think this is enough to give you a flavor of what’s involved in pars-
ing XML. It’s certainly an exercise in patience and attention to detail.

If you need to use XML in a project, the complete code example
guitar_ajax_xml.html that I provide as part of the download code
for this chapter will be a useful guide for you. My advice, if you have
the choice, is to use JSON for third-party data feeds. Within your
own site, code your middleware—such as PHP or .NET—to gener-
ate HTML on the server side using the data from your data sources,
such as a database. Then use Ajax to bring it into the browser and
add it directly into an element in the page using elementName.
innerHTML(theHTML).

Using Sajax—the Simple Ajax Framework
Many Ajax frameworks are available. I’ll now show you one of the
simplest. In Chapter 1, I created a PHP page with a form that vali-
dated an email address. Now I’ll show you how to enhance it with

The Author Carousel project in

Chapter 7 shows how to use Ajax

to call a PHP script that reads a file,

generates HTML from its data, and

returns HTML to the Ajax request.

C O D E 5 .15 xml_dom_parsing/
guitar_ajax_xml.html (cont.)

ptg

A JA X 173

Ajax, so that the email address can be validated without submitting
the form. You may remember that I broke out the function that
validated the email address so that I could later call that function
with Ajax without running the rest of the PHP code. That is what I’ll
do now.

Calling a function on the server is more complex than simply
requesting a file, which is what I have done so far. To call the valida-
tion function, I’ll use a framework called Sajax (Simple Ajax). It has
a very interesting capability: It can run server-side functions as if
they were on your local computer, as well as do the standard request
for file data. Sajax comes in several versions including PHP, Ruby,
Python, Perl, Cold Fusion, and others.

The Sajax framework is a small JavaScript file that you link to your
page. Then all you have to do is add a few lines of Sajax-related serv-
er-side code (PHP in this case) to your page and list in that code the
names of the functions you want to access. You can then call those
functions at any time. Whatever they return appears in your stated
callback handler in the same manner as the files I requested earlier.

You may want to refer to simple_form_step2.php on page 15 as I
show you the modifications you need to make to enable an Ajax call
to the email validation function. I’ll just show enough of that origi-
nal Chapter 1 file to allow you to see where the additional code goes.

Here is how the start of the file looks with the Sajax-related pieces
in place.

<?php

include “php_includes/form_functions.php”;

include “sajax/Sajax.php”;

if ($_POST) {

$email = $_POST[‘email’];

$valid = verifyEmail($email);

if ($valid) {

 writeToFile($email);

$msg= ‘Thanks for signing up! Please visit our members only area.’;

 } else {

if the email passed validation

calls the verifyEmail function–
$valid is set to 1 if email is valid,
0 if not

pass email to writeToFile function
to record it in a text file

this code runs only if the form
was submitted–specifically, if
there is anything from the form
in the POST array

move the email address from the
POST array to a variable

the email is invalid, so tell the user

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5174

$msg = ‘Please type a valid email address.’;

 }

}

// code required to instantiate Sajax

$sajax_request_type = “GET”;

 sajax_init();

 sajax_export(“verifyEmail”);

 sajax_handle_client_request();

?>

<script>

<?

 sajax_show_javascript();

?>

validation = {

validateEmail:function (button_click) {

 document.getElementById(“msg”).innerHTML = “sending…”;

 theEmail=document.getElementById(“email”).value;

 x_verifyEmail(theEmail,validation.validateEmail_cb);

 },

validateEmail_cb:function (valid) {

 if (valid) {

var msg = ‘Valid email address’

 } else {

var msg=’Please type a valid email address’;

 }

document.getElementById(“msg”).innerHTML = msg +” - data
 tested via Ajax”;

 },

}

</script>

end if POST

 get text from field

the $msg will get written into the
markup as PHP generates the page

add comma-delimited names of
functions to be called by Sajax here

appropriate message is added to
page

adds Sajax-related JavaScript
into page

send text and callback name
to verifyEmail PHP function via
Sajax–note x_ to indicate call goes
via Sajax

C O D E 5 .16 sajax_demo/simple_
form_ajax.php

ptg

A JA X 175

Notice that if you compare this code with the Chapter 1 code on
page 15, the PHP is unchanged. If JavaScript is not present, the form
will still be processed with a regular round-trip.

Also notice that for testing purposes, the text “data tested via Ajax”
is tacked onto the generated message in the last line of the callback
handler. If that text appears in the page, you know the Ajax works
and the page did not make a round-trip.

H O W TO U S E TH E S A JA X FR A M E W O R K

The Sajax-related code is highlighted in the preceding code block.
The Sajax framework file is first added to the page with an include,
right after the include that adds the validation function, which is
also in a separate file. Then after the PHP shown in Chapter 1 are
four additional lines that set up the Sajax functionality. These must
be copied verbatim into any page that uses Sajax. The line that is
worth noting here is sajax_export, which is a function whose argu-
ments are the names of the PHP functions to be accessed with Sajax.
In this case, I need to access only one function—validateEmail,
but I could add as many PHP function names as I wished, separated
by commas. Then within the script tag is a PHP function called
sajax_show_javascript, which adds some Sajax-related JavaScript
into the page. Every Sajax-enabled page requires these elements.
Once they are in place, I simply request the function I want to run.

To do this, I create a JavaScript function validateEmail to make the
Ajax call and, as always with Ajax interactions, I also create the cor-
responding callback function, in this case called cbValidateEmail.
I have grouped these two related functions within an object literal
called validation. The important line here is the one that makes
the Ajax request

x_verifyEmail(theEmail,validation.validateEmail_cb);

Note that the PHP function I want to call is called verifyEmail,
so the name I must use is x_verifyEmail (highlighted). I have to
prepend x_ to the function name so that Sajax recognizes that it
must handle the request. You can see that there are also two argu-
ments I pass: the email address that I want the function to validate
and the callback handler that Sajax will call after the request has
been fulfilled. I can add as many comma-separated arguments for
Sajax to pass to the PHP function as I wish, but the last argument
must be the name of the callback function.

Finally, to set the whole process in motion, I add an inline event
handler to the field (normally, I’d do this more correctly with an

Because you have to first trigger

a JavaScript function that in turn

triggers the Ajax call to the PHP

function, you will often end up,

as I do here, with two very simi-

lar function names. In this case,

the JavaScript function is named

validateEmail, and it calls the

PHP function on the server named

verifymail. You could give them

both the same name, since one is

JavaScript and one is PHP, but I find

that too confusing.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 5176

event listener, but I want to remain focused on the Sajax code here.)
that triggers the validateEmail function, which in turn calls the
verifyEmail PHP function on the server when the field is blurred.

<input id=”email” name=”email” type=”text” size=”24”
value=”<?php echo $email;?>” onblur=”validation.
validateEmail()” />

Now when I click away from the field, the Sajax call passes the email
address to the PHP function validateEmail on the server, which
looks like this:

function verifyEmail ($testString) {

return (eregi(“^([[:alnum:]]|_|\.|-)+@
 ([[:alnum:]]|\.|-)+(\.)([a-z]{2,6})$”, $testString));

}

The email address gets matched against this regular expression pat-
tern, and back comes 1 or 0 to the callback function, depending on
whether the email matches the pattern or not. Based on this true/
false response, the appropriate message is added to the page. See
Figures 5.9 and 5.10.

FI G U R E 5 . 9 The Ajax callback func-
tion generates an error message
when the PHP function on the server
determines the email is invalid.

FI G U R E 5 .10 The callback handler
generates a message confirming that
the email address is valid.

checks for a well-formed email
address–i.e., in format
someTextAndNumbers@
someTextAndNumbers.2-6
characters

returns 1 (TRUE) if email
well formatted

ptg

A JA X 177

This is a basic example of Sajax in action, but Sajax is a great little
framework that does one thing—accessing server functions from
the browser—really well. It’s easy to take an example like this and
modify it for your own purposes. The capability to run server-side
functions opens a world of possibilities—such as validating forms
on the client and again on the server when the form is submitted (as
you must for security reasons) using the same set of validation func-
tions. This reduces the amount of code you need to write and means
you only have to maintain this code in one place.

Perhaps the most exiting possibility that a framework like Sajax
offers is that you can query a database using server-side functions
without round-tripping the page. For example, if users of your site
have to choose a unique user name during the registration process,
you can call a server-side function that checks the database for the
existence of that name as soon as the user finishes typing a name
choice and clicks away from the field.

Summary
This chapter gave you an introduction to Ajax and the different
formats of data that it enables you to bring into the browser. In the
next chapter, I’ll explore more advanced coding techniques and look
at other frameworks that provide sophisticated interactions for the
user interface.

ptg

C H A P T E R 6

Frameworks

ptg

179S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

I N TH I S C HAP TE R , I D I S C U S S JAVA S C R I P T FR A M E -

W O R K S , also known as libraries, and how they can speed

the development process. There are both technical and busi-

ness considerations in deciding if a framework is necessary

and if so which one to use. In a single chapter, I can only give

you a taste of how each of the frameworks I demonstrate

works, but you will see some simple but practical examples

that can help you understand the benefits that frameworks

offer, and determine which framework is right for

your needs.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6180

About Frameworks

A framework is a collection of tightly integrated helper functions
that abstract away many of JavaScript’s complexities and help you
build your application quickly. Most are free and are often devel-
oped by the Open Source community. Some, most notably jQuery
and Prototype, are a single library file of core functionality that
can extended by a large number of plug-ins built by developers all
over the world that provide almost every capability your applica-
tion might need. However, it’s important to test any plug-in that
you want to use to ensure that it can really do what you want and
doesn’t interact adversely with other areas of your code. Then there
are frameworks, like Yahoo! User Interface (YUI), that are built on a
large base of core functionality, which is extended with numerous
specialized modules. The great advantage of YUI is that the modules
are all developed by the same team and designed to work together.

Advantages of Frameworks

Using a framework can provide many benefits. A framework typi-
cally does the following:

• Makes common programming tasks easy. A couple of exam-
ples of basic capabilities offered by frameworks include:

Selecting DOM elements more economically by eliminating •
the need to repeatedly type document.getElementById

Easily adding and removing element classes•

• Simplifies Ajax implementation. Most libraries provide a sim-
plified method of making Ajax requests, with built-in error and
slow-response handling. They also include special Ajax features
like automatic timed requests that you might use in an applica-
tion, such as chat, where the browser needs to be synched fre-
quently with data on the server.

• Provides interface component libraries. Coding interface
components, aka widgets, especially those such as tree menus
and accordions that also have an animation aspect to them,
can be time-consuming and present significant cross-browser
incompatibilities. Both the Prototype and jQuery librar-
ies offer add-on libraries of interface components—such as
Scriptaculous and jQuery UI respectively—that enable you to
invoke complex interface components rapidly from basic HTML

Danny Douglas compares the

features of a number of the

popular frameworks in this article

on his Web site at www.danny-

douglass.com/post/2008/04/

Comparing-Popular-JavaScript-

Frameworks.aspx.

www.dannydouglass.com/post/2008/04/Comparing-Popular-JavaScript-Frameworks.aspx
www.dannydouglass.com/post/2008/04/Comparing-Popular-JavaScript-Frameworks.aspx
www.dannydouglass.com/post/2008/04/Comparing-Popular-JavaScript-Frameworks.aspx
www.dannydouglass.com/post/2008/04/Comparing-Popular-JavaScript-Frameworks.aspx

ptg

FR A M E W O R K S 181

markup. Adobe’s Spry framework also has an extensive selection
of interface components.

• Eliminates cross-browser issues. Framework developers invest
a lot of time ensuring that their code works correctly across
a wide variety of browsers. You can think of a framework as a
large-scale Façade design pattern implementation—you talk to
the framework and it deals with the browser differences. This
benefit alone makes a compelling case for using a framework.

Considerations When Using a Framework

Frameworks are hyped as the solution to many programming issues,
and indeed they are. However, you need to remember that a frame-
work is a specialized layer of code that runs on top of JavaScript.
This means that before you decide to use a framework for your next
project, you should consider the following points.

YO U Q U I C K LY G E T LO C K E D I N

Once you start to build an application, and its functionality depends
on a particular framework, it’s not easy to back out. If your chosen
framework is not supported in the future, you may have a tough
time reengineering your site. Part of the reason I picked these four
frameworks is that they are well supported and widely adopted.

IT ’ S AN OTH E R L AN G UAG E TO LE AR N

While frameworks follow JavaScript-like syntax, part of the attrac-
tion of frameworks is that they provide simplified coding (for
example, jQuery’s $ namespace—more on namespaces next) and
enhanced capabilities (for example, Prototype’s excellent implemen-
tation of classes, aka polymorphism).

With these features come new programming techniques that must
be mastered, and using jQuery’s powerful chaining capability, which
I will also show in this chapter, is a good example. This need for
framework-specific knowledge doesn’t just affect you: If you want to
hire an extra programmer for your team, that person needs to know
both JavaScript and the framework you are using. Creating a test
project to hone your skills and investigating the availability of
programmers who know your framework of choice can be time
well spent.

Learn about advanced object-

oriented programming techniques

at www.digital-web.com/articles/

objectifying_javascript. This article

builds on concepts such as object

literals and the use of new in con-

structor functions. Also, follow the

links at the bottom of the article to

more articles on object-oriented

JavaScript.

For a checklist of questions you

might want to consider before

deciding on a particular frame-

work, see Brian Reindel’s blog

article at http://blog.reindel.

com/2007/10/30/how-to-choose-

a-javascript-framework.

www.digital-web.com/articles/objectifying_javascript
www.digital-web.com/articles/objectifying_javascript
http://blog.reindel.com/2007/10/30/how-to-choose-a-javascript-framework
http://blog.reindel.com/2007/10/30/how-to-choose-a-javascript-framework
http://blog.reindel.com/2007/10/30/how-to-choose-a-javascript-framework

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6182

Most of the considerations I list here are business issues. However,
there is a related technical issue that I want to cover before I start
showing some examples of frameworks in action, and that issue is
namespacing.

Namespacing

A namespace is a container that provides scope context for items
within it. Let me explain what that means and why it matters to you.

You may remember that earlier I stated that JavaScript only has two
kinds of scope for variables—global, meaning accessible from every-
where, and function/object level, meaning only accessible from
within the function or object where they are declared.

If you create a function like this

function myFunction { some code };

or a variable like this

myVariable=”Hello”;

both these entities are now in the global namespace: They share
the same scope, which in this case means accessible by the entire
codebase.

Programming languages use namespaces to avoid conflicts with
similarly named libraries and functions. If, during development,
a team member uses a function name that you have already used,
some hard-to-debug problems could be introduced.

Let’s say you write a function that adds an option to a select box
after retrieving the options from your database via an Ajax request.
This function has parameters for the select box element and the
value and text for the option, which will add each option as you pass
the data to it, like this

function addOption(element, value, txt){

var option = new Option(txt, value);

element.options[element.options.length] = option;

}

This addOption function would by default be defined globally, or
more specifically, within the global namespace.

within a function but var is
not stated

not within an object literal

ptg

FR A M E W O R K S 183

What if a third-party library that you are using also happens to
define an addOption function within the global scope? Suddenly,
those menus in the forms that the library is rendering for you don’t
work any longer. This is because when there are two functions in
the same namespace with the same name, whichever function loads
last is the one that’s used for all scripts. It’s very easy to accidentally
override the functionality of the library by defining a function in
global scope with the same name, especially if a number of people
are working on a project and creating arbitrary function names as
they go.

Namespacing fixes this problem by scoping functions within con-
structs that avoid naming conflicts. You achieve namespacing in
JavaScript by placing the functions within an object literal.

var thirdPartyLib = {

addOption : function(elementName, value, txt){

var selectBox = document.
 getElementById(elementName);

var option = new Option(txt, value);

 selectBox.options[selectBox.options.length] =
 option;

}

}

var CWS = {

addOption : function(element, value, txt){

var option = new Option(txt, value);

 element.options[element.options.length] =
 option;

}

}

You then invoke the functions with the fully qualified name,
like this:

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6184

CWS.addOption(document.getElementById(“theSelect”), “Lennon”,
“All you need is love”);

thirdPartyLib.addOption(“theSelect”, “McCartney”, “Let it
be”);

As you can see from this example, both functions can now safely
use the same function name because the functions’ container—
the namespace—prevents conflicts with the other identically
named function.

Function names like addClass or removeElement are very common
and are potential namespace problems. Rather than dream up abso-
lutely ridiculous names that aren’t likely to be found anywhere else,
such as aCleverLittleFunctionThatAddsTwoNumbersTogether,
all you need to do is namespace your scripts.

The object literals I have used in earlier chapters provide this ben-
efit, but understanding namespacing gives you additional insight
into the best ways to organize and strengthen your code.

Pseudo-global Variables
Generally, for the reasons I’ve illustrated, it’s good practice to avoid
having variables and functions in the global namespace, but if you
must, minimize your footprint to the smallest number of references
possible. Frameworks generally need to be in the global namespace
to offer the widest access from your code, and minimize their
impact there with a single large object that contains their entire
functionality. An alternative, if you actually do want to create vari-
ables that can be available to your entire application, is that you
can use this same namespacing technique to create pseudo-global
variables. You can treat them as global variables, although they are
not really in the global namespace but in one of your own making.
To remind yourself and others who work on your code why you are
doing this, create a namespace that is clearly used for this purpose,
so that it’s obvious. The convention of capitalizing the variable name
helps in this regard, as in this style:

var APPGLOBALS = {

 ‘property1’: ‘value’,

‘property2’: appGlobalFunction:function { return: true; }

}

For further discussion of namespac-

ing, read Robert Nyman’s blog

article at http://robertnyman.

com/2008/10/29/javascript-

namespacing-an-alternative-to-

javascript-inheritance.

example function call within the
third-party library

this is the function call you want to
make to your function

http://robertnyman.com/2008/10/29/javascript-namespacing-an-alternative-to-javascript-inheritance
http://robertnyman.com/2008/10/29/javascript-namespacing-an-alternative-to-javascript-inheritance
http://robertnyman.com/2008/10/29/javascript-namespacing-an-alternative-to-javascript-inheritance
http://robertnyman.com/2008/10/29/javascript-namespacing-an-alternative-to-javascript-inheritance

ptg

FR A M E W O R K S 185

Then, of course, you can reference a property like this:

APPGLOBALS.property1

Understanding and using namespacing is good defensive program-
ming that increases the robustness of your code.

Let’s now look at some frameworks. It would be impossible to show
all the available frameworks, so I’ve picked four of the larger and
well-known ones that I have used on different projects to give you a
good grounding in how they work and how they differ.

The four frameworks are jQuery, the Yahoo! User Interface (YUI),
Prototype, and Adobe Spry. The overall goal of each framework is
to provide consistent and predictable functionality that’s easy to
use. Each framework goes about the solution in similar yet subtly
different ways.

In each case, the framework is a file or a number of JavaScript files
that each have to be linked to your page using a script tag. You can
see in the source of each example the files required to implement
the interaction illustrated.

I’ll give you a nice easy introduction to these four frameworks by
showing how each one implements Ajax.

Downloading the Frameworks

The following list contains the sites where you can download the code for the four frameworks I illustrate in the
chapter. I also include these libraries in the downloads so that the examples actually work but I advise you to obtain
copies from these sites to ensure that you are working with the latest versions:

YUI.• http://developer.yahoo.com/yui

Prototype.• http://www.prototypejs.org

For Prototype-based UI components, you also need Scriptaculous

Scriptaculous.• http://script.aculo.us

jQuery.• http://jquery.com

For some useful jQuery-based UI components, you also need jQuery UI

jQuery UI.• http://jqueryui.com

Adobe Spry.• http://labs.adobe.com/technologies/spry/home.html

When it comes to JavaScript,

Douglas Crockford is the Supreme

Being. The page at www.scripttags.

com/tag/crockford/namespace

provides a link to YUI architect Eric

Miraglia’s explanation of Crockford’s

Module pattern. This article, while

perhaps complex, is a natural con-

tinuation of this chapter’s rather

superficial look at namespacing.

This Web page (note that the URL

is actually a tag search rather than a

link to a specific page) also contains

links to a wealth of other JavaScript-

related information, including

videos of Crockford’s lectures on

JavaScript—which are essential

viewing.

www.scripttags.com/tag/crockford/namespaceprovides
www.scripttags.com/tag/crockford/namespaceprovides
www.scripttags.com/tag/crockford/namespaceprovides
http://developer.yahoo.com/yui
http://www.prototypejs.org
http://script.aculo.us
http://jquery.com
http://jqueryui.com
http://labs.adobe.com/technologies/spry/home.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6186

Ajax Implementation in Four Frameworks
As you will see, Ajax coding is a lot easier with a framework than
trying to write an Ajax wrapper that can cope with all the different
browsers it might encounter. In the four frameworks I’ll show here,
and most others, cross-browser issues are abstracted away and you
don’t have to think about them.

I’ll start with what is now probably the most popular framework,
jQuery. To put the framework in context, I’ll start with a look at
some key jQuery concepts.

jQuery Namespace
jQuery’s entire framework is abstracted behind the $ symbol, which
is the global instance variable that contains the actual jQuery object.
As an example of this, and of jQuery’s economic style, let’s compare
using regular JavaScript and jQuery to get elements in your page. So
far you have been using this idiom:

var element = document.getElementById(‘myDiv’);

With jQuery, that is reduced to:

var element = $(‘#myDiv’);

Note that the argument, #myDiv, is a CSS expression that identifies
an element by ID—jQuery references elements with the same syn-
tax as CSS selectors. No longer having to repeatedly type document.
getElementById() is a small but very convenient benefit of
using jQuery.

C HAI N I N G

A very interesting aspect of jQuery is a technique called chaining,
where you can string a number of actions together on one line
instead of writing a separate line for each. Every jQuery command
starts with the $ factory function, which is written $(). A CSS selec-
tor in quotes goes inside the parentheses, for example, $(“ul#nav
> li”). This selects all the li elements that are children of the ul
with the ID nav. The fun begins when I tack on what I want to have
happen to these elements, like this:

$(“ul#nav > li”).addClass(‘menulink’)

Prototype also uses $ as its

namespace. If you are using

both frameworks for some

reason, you can use the alter-

nate jQuery namespace, as in

jQuery(“#myDiv”).

The jQuery framework can be down-

loaded from jquery.com. This library

can be extended with the jQuery

user interface components frame-

work, which can be downloaded at

http://jqueryui.com.

http://jqueryui.com

ptg

FR A M E W O R K S 187

Now each of the selected lis has the class of menulink. This chain-
ing capability can make complex code short and simple to write
(and read), and is part of the reason for jQuery’s wide adoption by
the development community.

J Q U E RY AN D A JA X

In the following Ajax examples, I’ll execute a simple Ajax GET
request with these four frameworks. In each example, I’ll request
the contents of a text file named “loremIpsum.html” from the server
and put the returned text into a div element named “content.” I’ll
start with jQuery.

For Ajax transactions, jQuery provides a get method, which takes
a URL as the only required argument, followed by an optional call-
back function. This optional argument is a map (property/value
pairs) that specifies the data to send to the server and the type of
data (XML, HTML, JSON, etc.) to be returned to the browser.

I’m using the optional callback argument to replace the contents
of the div with the data returned from the server, as illustrated in
Figures 6.1 and 6.2. Note that the three other frameworks illustrated
produce visually identical results to these two figures.

$(document).ready(function(){

$.get(“loremIpsum.html”,

function(data){

 $(“#content”).html(data);

}

);

});

jQuery’s Ready Event

You saw in earlier examples that the onload function has some shortcomings in that it doesn’t fire until the entire page
has loaded. This includes images and other embedded elements that might continue to load for some time after the
DOM has loaded. This means forms and links could already be firing events from user actions before the onload event
has initialized the associated listeners for these events. To overcome this problem, jQuery offers the $(document).
ready event that fires as soon as the DOM is loaded. This is illustrated in the section “jQuery and Ajax” in this chapter.
It’s an important feature that is found in other frameworks also, where the method may be named contentReady,
onAvailable, or the like, but the idea is the same; you can put your JavaScript to work as soon as the DOM is loaded.

C O D E 6 .1 ajax_jquery.html

 ready is an event fired by jQuery
after the DOM loads

and use this callback function
when the Ajax call is complete

get the div by its ID and use the
jQuery provided function to set the
data as the innerHTML property

 use Ajax to get the text of the file

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6188

FI G U R E 6 .1 The page has a button
and a text element.

FI G U R E 6 . 2 When the button is
clicked, the page is updated with text
from the server. Each of the three sub-
sequent framework Ajax examples
produces the same visual result.

Here’s an example of passing a function as a parameter, in this case,
a parameter of the $.get method. Instead of the callback trigger-
ing a function as you saw in the previous chapter, the callback is a
function and it just runs itself when the request is complete. This
technique generally works best when the callback function is short,
as is this example, and is only called by one request. If you find
that you are writing the same or a very similar function for other
requests, break out the function separately and set the callback of
each request to call that function.

Prototype

The Prototype framework uses a more object-oriented approach
where you instantiate JavaScript objects. Its Ajax object has a
request method you instantiate with a URL and options.

In this example, I instantiate the Ajax.Request object with the
URL and a map (property name/value pairs) containing parameters
for the HTTP request method, and function definitions for event
handlers.

new Ajax.Request(‘loremIpsum.html’,

{

 method:’get’,

ptg

FR A M E W O R K S 189

onSuccess: function(request){

$(“content1”).innerHTML = request.responseText;

},

onFailure: function(){ alert(‘Something went wrong...’)

 }

 });

As you saw in the Ajax example with the guitars in Chapter 4, updat-
ing the contents of a specific div is a common Ajax-related task, so
the Prototype framework provides an object named “Updater” for
that purpose. If you just want to make an Ajax query and simply
stick the result into a div, here’s a very simple way to do that: The
Updater constructor takes a div ID and a URL as arguments along
with the generic parameters map. The specified div’s contents will
be replaced with the content of the Ajax response.

new Ajax.Updater(“content2”, “loremIpsum.html”, {method:
‘get’});

This is a great example of a framework making a common task very
simple. Note that you would also want to add an onFailure function
as shown in Figure 6.2 to handle any problems.

Yahoo! User Interface (YUI)
The YUI framework is probably the most comprehensive of all. I
think of it more as an interface development platform on which
large online applications can be built; it’s best for where high levels
of robustness and accessibility are required. The downside is that
it’s more complex and verbose in its code requirements, and best
suited to large enterprise-scale projects where that robustness is
truly needed.

The YUI framework is namespaced within the YAHOO package
and provides a Connect module containing Ajax functionality. The
asyncRequest method takes a URL as an argument along with a
parameters map containing event handlers similar to Prototype’s.
Upon completion, the ayscRequest automatically calls one of two
functions, success or failure, depending on the request’s outcome.

var request = YAHOO.util.Connect.asyncRequest(“GET”,
 “loremIpsum.html”,

 {

C O D E 6 . 2 accordion_prototype.
html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6190

success:function(request){

 YAHOO.util.Dom.get(“content”).innerHTML = request.
 responseText;

},

failure: function(request){ alert(“something went
 wrong...”); }

 }

);

Adobe Spry

Like YUI, Adobe’s Spry framework leans more toward robustness
and completeness than the “keep it light, simple, and fast” approach
of jQuery and Prototype. The interface widgets and particularly the
form validation module are very strong in Spry. If you have a lot
of forms on your site and need to carefully validate that data as it
comes in, you should take a close look at Spry. The effects animation
is also very smooth in Spry. Run the jQuery and Spry accordion code
examples that I show later in the chapter to see what I mean.

Adobe’s Spry framework offers similar Ajax functionality, namespac-
ing, and arguments to YUI. Spry’s loadURL function requires the
HTTP type (get or post), a URL, a Boolean flag to define if the call
is asynchronous or synchronous, and a callback function. The Spry
framework, also like YUI, offers a utility method for getting a refer-
ence to a DOM element and setting the innerHTML property.

var request = Spry.Utils.loadURL(“GET”, “loremIpsum.html”,
true,

function(spryRequest){

 Spry.Utils.setInnerHTML(“content”, spryRequest.
 xhRequest.responseText);

}

);

Now let’s use three of these frameworks to look at a few Rich
Interface Application (RIA) components, commonly known as
widgets. I’ll feature YUI in some detail in Chapter 7, so you will see
more on YUI then.

C O D E 6 . 3 ajax_yui.html

C O D E 6 .4 ajax_spry.html

ptg

FR A M E W O R K S 191

RIA Components

RIAs are defined by the improved user interactions that they
offer over the basic HTML interface components. First, they offer
enhancements to a basic HTML interaction: search fields can be
improved by AutoComplete functionality, tables by sorting and pag-
ing capabilities, and forms by easily adding validate-as-you-go user
feedback. Second, some interactions are “new” in as much as they
cannot be achieved at any level simply with HTML—drag-and-drop
and animation are two examples.

Animations, such as grow, shake, and slide, when used appropri-
ately, can help the user better understand workflows or the state of
the data, especially when Ajax interactions are changing the content
without refreshing the page.

As with Ajax, frameworks make implementation of RIAs much
easier, and in this section, I’ll show how some of the most popular
interactions are implemented in these frameworks. First, let’s look at
Accordion.

Accordion with jQuery and Spry
An accordion is a set of sliding panels where one is always open.
Clicking a panel heading reveals the associated content, as shown
in Figures 6.3 and 6.4. This can conserve screen real estate while
showing the user that other content is available.

FI G U R E 6 . 3 Here the user is about to
click the YUI heading.

See the Adobe Spry effects demo at

http://labs.adobe.com/technolo-

gies/spry/demos/effects/index.html

for examples of grow, shake, slide,

and many other interface

animation effects.

http://labs.adobe.com/technologies/spry/demos/effects/index.html
http://labs.adobe.com/technologies/spry/demos/effects/index.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6192

FI G U R E 6 .4 When the YUI heading
is clicked, it slides upward to reveal
its content.

Another aspect of an accordion, which is a valuable aspect of this
component, is the playful feel that the user gets when she clicks and
a panel slides open to reveal new content. Engaging the user in the
interface is a great first step to engaging that user in the content. If
you run the code example, you will find that once you slide open
one panel, the desire to open all the others is almost irresistible. Of
course, playful interactions should support and not be a substitute
for meaningful content.

AC C O R D I O N W ITH J Q U E RY

Here’s how to create an accordion with jQuery. This example is illus-
trated in Figures 6.3 and 6.4.

<div id=”Accordion1” class=”accordion”>

<h3>one</h3>

<p>Lorem ipsum…</p>

<h3>two</h3>

<p>Donec eget est…</p>

<h3>three</h3>

<p>Vivamus accumsan…p>

<h3>four</h3>

<p>Pellentesque eget…</p>

</div>

ptg

FR A M E W O R K S 193

Each h3 heading is styled in the jQuery style sheet as a bar with the
heading text, and the paragraph is styled with a border and holds
the content. The paragraph boxes are collapsed to zero height by
jQuery, except for the first one, which is open by default when the
page loads. The script to make the accordion work is very simple.

<script type=”text/javascript”>

$(“#Accordion1”).accordion({ header: “h3” });

</script>

All you need to do is define which element is the header (in this
case, the h3) and the next element in the markup (in this case, the p
tag) is treated as the collapsing content area. jQuery does a good job
of providing very simple implementations of popular features. The
thinking behind many jQuery features is how simple can we make
this—even if we limit the user’s choices. In this case, the limitation
is requiring the collapsing element to follow the clickable head in
the markup. Of course, a few more lines and you could write this
from scratch so you could use a different element or be able to add

Working with jQuery UI Components

All the jQuery examples in this section are based on the jQuery UI library, which extends the basic jQuery library.
Therefore, you must have the jQuery library, the jQuery UI library, and the jQuery UI library style sheet linked to the
page to make these examples work. After you have downloaded jQuery and jQuery UI from www.jquery.com and www.
jqueryui.com respectively, you must then add the following code in the head of your page.

<link href=”jquery/jquery-ui.css” rel=”stylesheet” type=”text/css” />

<script src=”jquery/jquery-1.3.2.js” type=”text/javascript”></script>

<script src=”jquery/jquery-ui-1.7.2.min.js” type=”text/javascript”>

You may need to adjust the path names to these files, depending on where they are located on your server. The
preceding path names assume the jQuery files are in a folder called jquery at the same level as the HTML page.

Also, another way to link one of the widely used Ajax frameworks to your Web page is to use a Content Delivery
Network, such as Google or Yahoo. This means, for example, that you may link to the version of jQuery on the Google
servers instead of yours, like this:

<script type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/
jquery/1.2.6/jquery.min.js”></script>

You can also use the google.load() method as described at the Google Ajax Libraries Application Programming
Interface (API) page at http://code.google.com/apis/ajaxlibs/documentation. You may then want to follow the API
Playground link on that page to http://code.google.com/apis/ajax/playground/?exp=libraries#jquery for practical
examples of the Ajax and other Google APIs.

You can style the accordion

using any two HTML tags, not just

h3 and p.

C O D E 6 . 5 accordion_jquery.html

www.jquery.com
www.jqueryui.com
www.jqueryui.com
http://code.google.com/apis/ajaxlibs/documentation
http://code.google.com/apis/ajax/playground/?exp=libraries#jquery

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6194

other elements between the head and the collapsing element if you
needed to. If you can live with the rules of the markup, however, it’s
very simple to get this and many other interactions into your page.

If you want more than one panel open at once, you actually don’t
want to use the accordion effect. Instead, use this code fragment
provided on the jQuery UI site to open any closed panel and close
any open panel.

jQuery(document).ready(function(){

$(‘.accordion .head’).click(function() {

 $(this).next().toggle(‘slow’);

 return false;

}).next().hide();

});

AC C O R D I O N W ITH S P RY

Let’s now compare the jQuery Accordion implementation with
that of Spry. There is slightly more HTML markup (only two pan-
els shown here), although the visual result is virtually identical to
Figures 6.3 and 6.4.

<div id=”basicAccordion” class=”Accordion”>

<div class=”AccordionPanel”>

 <div class=”AccordionPanelTab”>YUI</div>

 <div class=”AccordionPanelContent”>

<p>YUI is is an extensive library…</p>

More on Chaining in jQuery

I mentioned jQuery’s chaining capability earlier and now you’ll see it in action. Let’s take this fragment of code from the
jQuery Accordion example.

$(‘.accordion .head’).click(function()

Here the click event handler is chained onto $(‘.accordion .head’), which is the “get” of the element with the
.head class within the element with the accordion class. Many methods can be chained together in this way into a
single line that would, in regular JavaScript code, each require its own line. The reason that this works is that each part
of the chain, for example, $(‘.accordion .head’), returns the jQuery object created, so effectively the next part of
the chain reads obj.click (function). Each piece of the chain resolves to an object that provides a reference for the
next piece. This enables jQuery code to be very compact and concise.

ptg

FR A M E W O R K S 195

 </div>

 </div>

<div class=”AccordionPanel”>

 <div class=”AccordionPanelTab”>Prototype</div>

 <div class=”AccordionPanelContent”>

<pPrototype and jQuery are similar in that…</p>

 </div>

 </div>

</div>

While the markup is a little more verbose, the JavaScript is only a
single line.

var basicAccordion = new Spry.Widget.
Accordion(“basicAccordion”);

You then have only to create an accordion instance with the appro-
priate ID. The additional HTML markup has the benefit of allowing
you to choose which element is the sliding panel; it doesn’t neces-
sarily have to be the first one after the panel header—as with the
provided jQuery implementation—but simply the one that has the
AccordionPanelContent class.

Highlight with Prototype and Spry
While it’s good for a user’s experience to use Ajax to add or update a
small piece of content without refreshing the page, there’s the pos-
sibility that the user won’t even notice the change. Obviously, you
have to ensure that if your code changes the page content, the user
is aware of it. The now widely accepted solution, established by
37signals in its Backpack and Basecamp applications, is to briefly
highlight the background of the changed area. The classic visual

Working with Spry Components

After you have downloaded the Spry framework from http://labs.adobe.com/technologies/spry/home.html, you must
then add the following code in the head of your page:

<script src=”spry/SpryAccordion.js” type=”text/javascript”></script>

This is the only file required for the Spry Accordion. You will need to adjust the path names to this file, depending on
where it’s located on your server.

C O D E 6 . 6 accordion_spry.html

http://labs.adobe.com/technologies/spry/home.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6196

implementation of this effect is that the new content element first
appears with a background of bright yellow, and then the color
fades away over a few seconds.

All four of the frameworks I show in this chapter have an out-of-the-
box implementation of this effect, and here I’ll illustrate how to use
the ones in Prototype and Spry. In both cases, I’ll fetch a small piece
of text with Ajax, using the same code you saw in the earlier Ajax
section, and then highlight the text as it is added to the page.

H I G H LI G H T W ITH P R OTOT Y PE

Adding a highlight with Prototype is very simple.

new Ajax.Request(‘ajax_request_text.html’,

 {

method:’get’,

onSuccess: function(request){

 $(“content”).innerHTML = request.responseText;

 new Effect.Highlight(“content”);

},

onFailure: function(request){ alert(‘Something went
 wrong…’) }

});

Only the highlighted line of code is needed for this effect, but the
effect only makes sense by first adding some text to the page from
an Ajax request; the code illustrates how to put these two things
together. See Figure 6.5.

FI G U R E 6 . 5 The text is momentarily
highlighted after being loaded into
the page from an Ajax request.

C O D E 6 .7 highlight_prototype.
html
Prototype/Scriptaculous files
used for this effect:
prototype-1.6.0.3.js
scriptaculous.js
effects.js

ptg

FR A M E W O R K S 197

H I G H LI G H T W ITH S P RY

To illustrate highlighting in Spry, I’ll again extend the earlier Ajax
example.

var request = Spry.Utils.loadURL(“GET”, “ajax_request_text.
html”, true,

function(spryRequest){

Spry.Utils.setInnerHTML(“content”, spryRequest.
 xhRequest.responseText);

var thehighlight = new Spry.Effect.Highlight(‘content’,
 {from:’#66aaff’, to:’#ffffff’});

thehighlight.start();

}

);

Spry requires just two lines of code for the highlight: one to instanti-
ate the Highlight object and another to call the start method on it.
Once you’ve instantiated this effect on a specific element, you can
call start repeatedly without reinstantiating the object.

Drag-and-drop with Prototype and jQuery
I’ve mentioned drag-and-drop a few times as a good example of an
RIA interaction, so now let’s see how easy it is to implement drag-
and-drop with both Prototype and jQuery. Here I’ll show the basics
of the implementation.

The basic notion of drag-and-drop is that elements can be dragged
using the mouse from their source location to a target location.
If the dragged element is released over the target element, it is
removed from the source location and added to the target location.
If the dragged element is released anywhere else, it remains in the
source location. See Figures 6.6 and 6.7.

C O D E 6 . 8 highlight_spry.html
Spry files used for this effect:
SpryData.js
SpryEffects.js
SpryDOMUtils.js

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6198

FI G U R E 6 . 6 An item is dragged from
the list on the left…

FI G U R E 6 .7 …and dropped into the
list on the right, which automatically
creates space to accommodate it.

I’ll demonstrate this concept with two lists and show how the ele-
ments can be sorted within the two lists and also dragged between
them. In both frameworks, the development team has abstracted
away the complexity of this interaction, meaning the code you have
to write is trivial.

D R AG - AN D - D R O P W ITH P R OTOT Y PE

To implement drag-and-drop with Prototype, you just need simple,
semantic markup like this:

<div>

<ul id=”list1”>

<li id=”item1”>Item 1

<li id=”item2”>Item 2

// etc.

</div>

<div>

ptg

FR A M E W O R K S 199

<ul id=”list2”>

<li id=”item6”>Item 6

<li id=”item7”>Item 7

// etc.

</div>

Then all you need to do is this:

Sortable.create(“list1”, { dropOnEmpty:true,
 containment:[“list1”, “list2”]});

Sortable.create(“list2”, { dropOnEmpty:true,
 containment:[“list1”, “list2”]});

This code makes both lists sortable, meaning the items can be
dragged into any order, and each list can accept elements from the
other. Each element’s dropOnEmpty Boolean property is set to true,
allowing new items to be dropped on it from another element, even
when it’s empty. In other words, even when a list’s items have all
been dropped in another location and it is then an empty list, it can
still receive new items. The property containment contains a map of
value/pair that defines the related elements to which the drag-and-
drop is limited—in this case, the two lists.

D R AG - AN D - D R O P W ITH J Q U E RY

The markup for the same effect with jQuery is

<div>

<ul id=”list1” class=”connectedSortable”>

<li id=”item1”>Item 1

<li id=”item2”>Item 2

// etc.

</div>

<div>

C O D E 6 . 9 dragdrop_prototype.
html
Files used for this effect include:
prototype-1.6.0.3.js
scriptaculous.js

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6200

<ul id=”list2” class=”connectedSortable”>

<li id=”item6”>Item 6

<li id=”item7”>Item 7

// etc.

</div>

The code is, unbelievably, even shorter than Prototype’s.

$(function(){

 $(“#list1, #list2”).sortable({

 connectWith: “.connectedSortable”

 });

});

Note that there’s a class on the ul element that is used in the con-
nectWith property to cross-reference the two lists so elements can
be dragged between them.

Tabs with jQuery and Spry
Tabs run along the top of a content area and allow users to select
from a limited number of content sections, typically four to six. The
metaphor is tabs in a ring binder or a box of recipe cards that pro-
vide divisions of major groups of content. This concept is illustrated
in Figures 6.8 and 6.9.

FI G U R E 6 . 8 When the page loads,
Tab 1 is selected by default.

C O D E 6 .10 dragdrop_jquery.html
Files used for this effect include:
jquery-ui.css
jquery-1.3.2.js
 jquery-ui-1.7.2.min.js
(In both drag-and-drop examples,
I also added a few simple inline
CSS styles to pretty up the lists.)

ptg

FR A M E W O R K S 201

FI G U R E 6 . 9 Different content loads
when another tab is clicked.

TA B S W ITH J Q U E RY

The required markup for the tabs using jQuery is a set of links
organized within an unordered list. The href of each of these links
points to its associated content div. The lists and content are in turn
contained within a div with an ID—in this case, named demo.

<div id=”demo”>

Tab One Label

Tab Two Label

Tab Three Label

<div>

<div id=”tab1”>

 <p>Tab One Content</p>

</div>

<div id=”tab2”>

 <p>Tab Two Content</p>

</div>

<div id=”tab3”>

 <p>Tab Three Content</p>

</div>

</div>

</div>

C O D E 6 .11 tabs_jquery.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 6202

The code, again, is very simple.

<script type=”text/javascript”>

$(function() {

 $(“#demo”).tabs();

});

</script>

You simply invoke the tabs method on the div that contains the tabs
and the content.

TA B S W ITH S P RY

The markup in Spry is similar in organization to jQuery except with
Spry every element requires a class. Even though it is more code, it
provides some flexibility in adding other elements—perhaps bread-
crumbs at the top of the content area—within the markup specific
to the tabs and the associated content.

<div class=”TabbedPanels” id=”TabbedPanels1”>

<ul class=”TabbedPanelsTabGroup”>

<li class=”TabbedPanelsTab”>Tab 1

<li class=”TabbedPanelsTab”>Tab 2

<li class=”TabbedPanelsTab”>Tab 3

<li class=”TabbedPanelsTab”>Tab 4

<div class=”TabbedPanelsContentGroup”>

<div class=”TabbedPanelsContent”>Tab 1 Content</div>

<div class=”TabbedPanelsContent”>Tab 2 Content</div>

<div class=”TabbedPanelsContent”>Tab 3 Content</div>

<div class=”TabbedPanelsContent”>Tab 4 Content</div>

 </div>

</div>

The JavaScript required is absolutely minimal—a single line.

var TabbedPanels1 = new Spry.Widget.
TabbedPanels(“TabbedPanels1”);

C O D E 6 .12 tabs_spry.html

Learn about the Breadcrumbs

design pattern at: http://developer.

yahoo.com/ypatterns/pattern.

php?pattern=breadcrumbs.

http://developer.yahoo.com/ypatterns/pattern.php?pattern=breadcrumbs
http://developer.yahoo.com/ypatterns/pattern.php?pattern=breadcrumbs
http://developer.yahoo.com/ypatterns/pattern.php?pattern=breadcrumbs

ptg

FR A M E W O R K S 203

Summary

In this chapter, I’ve shown some examples of four popular frame-
works. There are many other excellent frameworks that I could have
chosen. I can only recommend that you explore the examples and
documentation on each framework’s respective Web site and start to
build with them to discover which one is right for you.

I’ve only shown the most basic implementation of the various inter-
actions I’ve illustrated in this chapter rather than real-world uses.
For example, in reality, if the user sorts a list using drag-and-drop,
your code then needs to be able to determine the new order and
provide appropriate responses.

To show you more real-world use of frameworks and coding tech-
niques, in the next and final chapter, as I did in Stylin’ with CSS
(New Riders, 2008) and Codin’ for the Web (New Riders, 2007), I’ll
pull together many of the ideas you have seen so far in this book
into two simple but fully functional RIAs.

ptg

C H A P T E R 7

Two Simple Web
Applications

ptg

205S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X

TH I S FI N AL C HAP TE R FE AT U R E S T W O S I M P LE

APP LI C ATI O N S that bring together many of the ideas and

techniques that you saw in the earlier chapters. The previous

examples were written in a way that made them as simple to

understand as possible. In this chapter, where the code was

developed for me by Austin Markus and Chris Heilmann, two

respected professional programmers, we take a more prag-

matic approach and write the code as it would be developed

in business projects. This chapter’s examples differ from real

applications in the scope of their feature sets, which have

been kept to an absolute minimum while still illustrating the

concepts I want to show. To maintain the consistency of voice

throughout the chapter, I’ll continue to write “I now do this or

that...”—but understand that this includes the voices of the

contributing programmers.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7206

 The first project is a very visual interface that uses a selection of
jQuery components, whereas the second is more data driven and
built on the Yahoo! User Interface (YUI) library.

About the Projects

Unlike the preceding examples, both projects illustrated in this
chapter combine a number of interactions and processes. Both offer
progressive enhancement and work acceptably even if JavaScript is
not present.

Technically, both projects use PHP for the server-side coding
and use file-based data sources such as JSON and CSV (comma
separated value) files. This means that you can run them with
just a server that supports PHP, although in reality both could be
improved by the addition of a database. I have deliberately avoided
the use of databases for these examples because I want to keep
things simple to ensure that as many readers as possible can get the
demo code running.

Both projects also use a mix of HTML, CSS, and JavaScript on the
front-end, and while their feature sets are not extensive, both are
usable applications that are coded to professional standards.

For this reason, if you are relatively new to Web development, these
projects may seem a little daunting, but the downloadable code
is heavily commented throughout. Taking the time to study these
examples can help you improve your knowledge, better understand
how applications are assembled, and write code that is concise,
robust, and extensible in the future.

It’s not my intention to go into detail on every line of code in these
projects, but rather to discuss their features, the strategies for build-
ing them, and the areas of the code that are of particular interest.
Before you start reading this chapter, I suggest you go to the Scriptin’
Web site and play with the demos. Then, as you read, open the
related scripts for each project in a code editor. I have listed code
filenames in the margin as I discuss them so you can see the parts of
the code as I refer to them in their broader context.

Most of all, I hope you will take these projects and modify them for
your own needs. This is absolutely the best way to build your skills
and become familiar with the demonstrated techniques.

ptg

T W O S I M P LE W E B APP LI C ATI O N S 207

An Image Carousel
 The first project is called Author Carousel and provides image-based

access to information about a number of fellow New Riders’ authors
and their books. The interface is composed of a row of 11 photos.
Only three are visible at one time, but the user can scroll horizon-
tally through all the images in any of three ways: by clicking left and
right arrows onscreen, using the left and right keyboard arrows, or
using the scroll wheel of the mouse, as illustrated in Figure 7.1.

FI G U R E 7.1 A carousel is a compact
component that can contain a large
number of images.

Carousels, named after the trays that hold slides on slide projec-
tors (remember them?), have become very popular on the Web.
Carousels either slide side to side or rotate their images in a circle.
The one I’ll show slides side to side. Carousels are intuitive and fun
to use, allow many items to be viewed rapidly, and occupy very little
space in relation to the content they can contain. They also provide
a visual rather than textual interface, which is especially appropriate
for applications such as shopping and of course photo sites.

In this project, a second design pattern, Overlay, is integrated with
the carousel. If the user clicks on an item in the carousel (in this
case, an item comprises the author’s picture and the area containing
the author’s name below it), an overlay with information about that
author appears, as shown in Figure 7.2.

The overlay can be closed by clicking its close box, pressing Escape,
or clicking anywhere outside of it.

Learn more about the Carousel

design pattern at the Yahoo! Design

Pattern Library at http://developer.

yahoo.com/ypatterns/pattern.

php?pattern=carousel.

http://developer.yahoo.com/ypatterns/pattern.php?pattern=carousel
http://developer.yahoo.com/ypatterns/pattern.php?pattern=carousel
http://developer.yahoo.com/ypatterns/pattern.php?pattern=carousel

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7208

FI G U R E 7. 2 The overlay zooms out
of the clicked image and displays
over the carousel.

A Location Finder with AutoComplete

The second project, named Location Finder, is search-based. Many
sites offer a search feature, and it’s very helpful if the field into which
the user types her search has AutoComplete. As you have probably
noticed, when you search on Google, the AutoComplete Control
adds a drop-down menu containing possible matches to the entered
text as soon as you start to type. This happens because the browser
is passing the entered string to the server via Ajax each time you
release a key, and matching results are being returned for display.

AutoComplete has two important advantages for the user. First, the
user may not need to type the entire search phrase. If the desired
search term appears in the drop-down menu after a few characters
are entered, the user can simply select the choice without typing
it in full. Second, as Google Search illustrates, with additional pro-
gramming the control can offer useful matches that expand on what
the user typed or offer corrections for mistyped words. An accept-
able alternative can then be offered instead of a search that yields
disappointing results.

In the case of the Location Finder project you will see in this chap-
ter, the user is able to find the locations of Yahoo! offices around the
world. Just typing a single character will display a list of matches,
and as the user types more the search becomes more refined. If the
user types ”Fra”, for example, suggestions will include the offices in
San Francisco and Paris, France, as shown in Figure 7.3.

The Overlay design pattern is modal;

that is, once the overlay opens,

the user can only interact with the

content of the overlay and can

only regain access to the rest of the

page by closing it. Be sure this is the

desired interaction before using

overlays in your work. If you just

want to show information when

the user rolls over an element and

remove that information when the

user rolls off it, then you need the

Tooltip pattern.

ptg

T W O S I M P LE W E B APP LI C ATI O N S 209

FI G U R E 7. 3 Typing the letters “Fra”
in the search field returns results
France and San Francisco as results in
the drop-down menu.

 Once the user selects an office, the address and a map are displayed,
as shown in Figure 7.4. The map is loaded using a query to the
Yahoo! Maps API.

FI G U R E 7.4 Selecting Paris from the
drop-down menu displays the full
details of the location and map.

It’s a simple example of a “mash-up” where the page’s data comes
from different sources, not just a single server. Let’s look at these
two applications in more detail, starting with the Carousel example.

Building the Author Carousel
The business objective of Author Carousel project is to display
information about the Voices That Matter authors in an engaging
and easy-to-access way. In any project, once that business need

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7210

has been determined and the project gets a go-ahead, one of the
first questions is, “Where will the data come from?” In this case, I
received the author data in a spreadsheet from the publisher and
simply created a JSON file format to represent it.

Because this is a demonstration and there was only data on 11
authors, I first created a JSON file that represented the data for one
author. I then copied and renamed it for each author, and cut and
pasted the data into the JSON files from the spreadsheet.

Here’s what one of the JSON files for this project looks like:

{

“fi rst_name”:”Kelly”,

“last_name”:”Goto”,

“photo”:

 {

“url”:”images/headshot/goto100.jpg”,

“alt”:”Kelly Goto”

},

“book”:

 {

“title”:”Web ReDesign 2.0”,

“description”:”Workfl ow that Works”,

“co-author”:”Emily Cotler”,

“buy_link”:”http://www.peachpit.com/store/product.
aspx?isbn=0321534921”

 },

“bio”:

 [

{“para”:”As an evangelist for…(text removed here)…
 usability, and design ethnography.”},

{“para”:”Kelly is…(text removed here)…editor of
 gotomobile.com…(text removed here). “}

]

}

If the project had larger scale,

I would have created an online form

for the authors to enter their data

and then developed some code to

write that information into

a database.

C O D E 7.1 json/goto.json (you can
see all the JSON files in this folder)

ptg

T W O S I M P LE W E B APP LI C ATI O N S 211

As you can see, the values of the properties of this file are simple
text strings in the case of the author name properties, name/value
pairs in the case of the image and book properties, and an array for
the bio property. The reason I use an array for the bio information
is that the number of paragraphs changes from author to author, so
I need to be able to get a length count on these elements and then
write out as many as I find. Now that I have the data in a useable
format, I’ll move on to getting the basic interface working.

I decided to build this project in jQuery, not only because it is
simple to write and very widely used, but also because an excellent
implementation of the core functionality required for the carousel
is available in a jQuery add-on library called jQuery Tools.

jQuery Tools is similar in concept to jQuery UI in that it runs on top
of jQuery and, at less than 6K of code minified, offers considerable
functionality for its size. In jQuery Tools, the carousel is known as
Scrollable, and there is an excellent demo at http://flowplayer.org/
tools/demos/scrollable/visual.html.

Styling the Carousel
I’ll start explaining the code by showing you the key markup for the
carousel elements.

<div class=”scrollable”>

<div id=”thumbs” class=””>

<div class=”thumbContainer”>

 <img class=”person_pic” alt=”Dan Brown”
 src=”images/headshot/brown100.jpg”>

<h3 class=”person_name”>

 Dan Brown

</h3>

</div>

<div class=”thumbContainer”>

// next carousel item goes in here

 </div>

You can find the jQuery Tools library

at http://flowplayer.org/tools/index.

html.

C O D E 7. 2 Generated source code
of index.php

end carousel item

a carousel item

http://flowplayer.org/tools/index.html
http://flowplayer.org/tools/index.html
http://flowplayer.org/tools/demos/scrollable/visual.html
http://flowplayer.org/tools/demos/scrollable/visual.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7212

Tips on Integrating Online Examples into Your Work

If you are a newcomer to JavaScript and frameworks, it’s often easiest to take a demo like the jQuery Tools site’s
Carousel example as the foundation of your page and modify it to look like the other pages in your site rather than
trying to add the framework’s functionality into an existing page. In other words, the first step toward building your
own carousel is to take that demo, or the one that I have provided in the download files for this book, and get it
working on your server. Once you’ve done that, you can start modifying it with your own content and styling
it to your desired look.

In the case of the jQuery Tool’s Carousel demo, here is what you would do:

1. Go to http://flowplayer.org/tools/demos/scrollable/visual.htmand View Source using the browser’s View
menu (don’t View Generated Source using the Web Developer toolbar in this case—you want to get the
original source code before the JavaScript code modifies it). Copy and paste the source code into a new
blank HTML file. Copy the file onto your server. You will be pleased to find that is all you have to do to
get the demo running. The reason this is so easy is that all the scripts and images are served from the
Flowplayer.org servers; you can see the URLs in the source code. However, you do not want to use these
URLs in your final version: Flowplayer.org is only serving all this content for a limited time as it estab-
lishes the product, and it’s simply not wise to rely on any third party for linked content except through an
established content distribution network (CDN) such as Google or Yahoo!.

2. The next rather tedious step is to start grabbing the served content and moving it onto your own server so
you can link to your own copies, modifying the URLs appropriately as you go. You have to work through
the markup and get the content associated with each link, script, or image tag.

The first file in the demo markup is the jQuery Tools library, which also contains the base jQuery library.
You can download this file from the jQuery Tools downloads. Put it in a folder called jQuery. Now you can
modify the link to it to read something like (in the case of my site) http://www.scriptinwithajax.com/code/
Ch7_examples/vtm_carousel_small/jquery/jquery.tools.min.js.

3. Because other elements like the CSS and graphics are not available for download, you need to get a little
more creative. Simply cut and paste the URL of the required element into the address bar of the browser
and load it. Next, in the case of text such as CSS, just copy and paste it into a file and save it, or in the case
of a graphic, right-click on it (Control-click on Mac) and use the menu’s Save As command to save it to an
appropriate folder. Then modify the path in the code to reflect the new location. (Of course, if you use the
example I provide, this work has been done for you.)

Some of the graphic elements are available for download on the jQuery Tools site, but it’s not worth
copying down the content images for the carousel because you’ll be changing them out for your own,
so you would leave them linked to the demo site for now. Often, I simply create a graphic placeholder,
usually just a colored rectangle, of the right size to use until I have my own images ready.

4. After you have all the graphic and code elements on your server and have updated all paths so every-
thing is functional again, back up the project folder so you can pick up again from here if things fall apart
(and sometimes they do—it even happened to me once!). Then you can start modifying the demo file to
your own needs.

http://www.scriptinwithajax.com/code/Ch7_examples/vtm_carousel_small/jquery/jquery.tools.min.js
http://www.scriptinwithajax.com/code/Ch7_examples/vtm_carousel_small/jquery/jquery.tools.min.js
http://flowplayer.org/tools/demos/scrollable/visual.htm

ptg

T W O S I M P LE W E B APP LI C ATI O N S 213

<!-- 9 more carousel items here

 </div>

</div>

I’ll now show you how this markup is styled to create the onscreen
carousel.

The two primary HTML elements of the carousel (highlighted) are
div.scrollable and div#thumbs. In the CSS, the width of div.
scrollable is set to 300 pixels, exactly wide enough to display three
carousel items; the width of its child element div#thumbs is always
just wide enough to contain all the carousel items. You’ll see how
the width of div#thumbs is determined in a moment.

If you look at the CSS file carousel.css, you will observe that div.
scrollable is the positioning context for div#thumbs; the for-
mer’s position property is set to relative, and the latter’s position
property is set to absolute. This means that when the user scrolls
the carousel, div#thumbs moves with respect to div.scrollable.
The individual items within div#thumbs, each in a div called div.
thumbContainer, move as one unit. This relationship is illustrated in
Figure 7.5.

FI G U R E 7. 5 The div.scrollable

element acts as a mask through
which a part of the strip of images is
viewed. The div.thumbContainer
divs are spaced apart in this diagram
for clarity, but in reality there is no
horizontal space between them.

The result of this CSS styling is that div.scrollable becomes a
mask behind which div#thumbs slides from left to right, and in
this way only three items are visible at any given time. To better
understand what is happening, temporarily remove the CSS style
position:relative from div.scrollable to see div#thumbs pop
out of the div.scrollable mask. It will then position itself relative
to the default positioning context body, and you will see the entire
strip of all 11 items.

An interesting aspect of the CSS comes from the fact that
div#thumbs must be given a width that is great enough to enclose all
the div.thumbContainer items. In the jQuery Tools demo, I noticed
that the width had been set at 10000 ems, presumably by someone
who assumed that this would accommodate any potential content.
I decided to be more precise and set the #thumbs element width to

The CSS for this project is contained

in two files: carousel.css, which

has all the CSS except the rules spe-

cific to the overlay. The overlay rules

are in overlay.css.

The name “thumbs” is shorthand for

“thumbnails,” which is a term for a

set of small images such as the ones

in the carousel.

div#thumbs div.scrollable div.thumbContainer

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7214

the exact required width. I did this by placing this rule in a style tag
in the index.php page:

#thumbs {

width: <?php print (count($JSONFileNameArray)*100).
 ’px’;?>;

}

This code takes the number of files in the JSON folder (each file
causes one .thumbContainer item to be generated), multiplies it
by 100 —the width of each .thumbContainer element—and sets the
width of #thumbs to that value. This is a great example of when you
might want to occasionally add a style into the markup instead of
into the linked style sheet. The CSS rule can now include the PHP
$JSONFileNameArray variable, which is then used to calculate the
width property of the #thumbs div. When author data files are added
(or removed), the #thumbs div adjusts to the correct new width.

Managing the Scrollbar

As you will have discovered if you have played with the online demo,
the carousel can be scrolled in three ways: by clicking the arrow
controls, clicking on an image that is not in the center, or by press-
ing the keyboard arrows. These controls won’t work if JavaScript is
not enabled, so to ensure that everyone will be able to access the
content, I first build the carousel with a regular horizontal scrollbar,
as shown in Figure 7.6. I ensure the scrollbar shows by initially set-
ting the CSS of the horizontal overflow of div.scrollable to auto,
like this:

div.scrollable {overfl ow-x:auto;}

Actually, because the very wide div#thumbs is wider than its fixed-
width parent .scrollable, div.scrollable is already in a state of
overflow, and automatically displays a scrollbar unless there are so
few images they are all visible at once. I really set this CSS style to
remind me that it is showing, and to make absolutely certain that
the scrollbar shows—if it’s not there, the carousel cannot be used
without JavaScript. Now the user can scroll the images with a regu-
lar scrollbar if JavaScript is not available.

Overflow is actually quite a com-

plex aspect of CSS. It is well worth

understanding its nuances because

it comes into play in determining not

only what happens to content that

is too big for its container, but also

is a neat way of forcing elements to

enclose floated child elements. You

can learn more at the CSS Tricks site

at http://css-tricks.com/the-css-

overflow-property.

http://css-tricks.com/the-css-overflow-property
http://css-tricks.com/the-css-overflow-property

ptg

T W O S I M P LE W E B APP LI C ATI O N S 215

FI G U R E 7. 6 The scrollbar displays
when JavaScript is unavailable, so
the user can view all the elements in
the carousel.

This scrollbar will be hidden when JavaScript is active by having
jQuery set this overfl ow-x property to hidden.

The PHP Backend

Now that the interface is usable without JavaScript, I need to write
some PHP to get the carousel’s functionality—generating the con-
tent for the carousel and displaying the author’s info when the user
clicks an image—to work without JavaScript, too. Then I’ll layer on
the JavaScript interactions. PHP has three important roles in this
project:

1. It reads the JSON files from the server.

2. It writes out the required HTML elements for each item (author
photo and name) of the carousel using the JSON data and then
serves up the initial page.

3. When the user clicks on an item and the request for the over-
lay data is made by Ajax, the PHP script will simply serve the
requested JSON data to the browser where it will be processed
by the Ajax callback function and displayed in the overlay.

If the request is not made via Ajax, because JavaScript is not
available, PHP writes the JSON into HTML elements and serves
a new page as a regular round-trip. In this case, the selected
author’s information will be displayed in a div below the carou-
sel. You’ll see how PHP determines whether or not the request
was made via Ajax later in the chapter. Let’s first look at the PHP
that generates the initial page in more detail.

This example requires PHP5 because

it uses PHP5’s new and improved file

reading capabilities.

To get the carousel built to this point,

I used some hard-coded HTML

markup to add a few items to the

carousel. This allowed me to get the

interface working and also to refine

the markup and style it with CSS,

before I began writing the PHP code

to generate the markup dynamically

from the author data in the JSON

files.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7216

R E AD I N G TH E J S O N DATA

Using files stored on the server is a simple way to provide data to
an Ajax-enabled page. In this example, PHP will scan the folder
to determine the number of files, read them, and then add the
required information into the page. PHP needs what’s called a fully
qualified path to do this. A fully qualified path for a file lists every
folder from the Web server root all the way down to the folder con-
taining the file in question; in this case a folder called json. Such a
path might look like this:

/root/html/code/examples/vtm_carousel/json

Let’s see what it takes to build a fully qualified path to the
JSON files.

$JSONFolderName=’json’;

$sep=’/’;

$basename=”index.php”;

These three lines are hard-coded variables:

1. The name of the folder containing the JSON files

2. The correct path element delimiter symbol. This symbol is the
slash that goes between the elements of the file path name, as
in json/filename.json. The reason this needs to be stored in
a variable is that it is either a backslash / or a forward slash \
depending on whether the PHP server is running on Linux or
Windows, respectively. So note that when you see the variable
$sep, it contains a slash.

3. The name of the file that contains the PHP script. The folder
with the JSON file is located at the same level as the PHP script,
so I will first ascertain the name of the folder containing the
script, and then append the name of the JSON folder onto it.

$JSONPath=dirname($_SERVER[‘SCRIPT_FILENAME’]).$sep.$JSON
FolderName;

Now that I have the path to where the files are stored, I can pass that
path to a function that will build a list of the names of those files
in an array. This array can then be used to supply the correct data
when the user clicks an element of the carousel.

$JSONFileNameArray=makeJSONFileNameArray($JSONPath);

Here’s the function that gets called:

function makeJSONFileNameArray($JSONPath){

C O D E 7. 3 vtm_carousel/index.php

Many sites use basename($_

SERVER[‘PHP_SELF’]); to obtain the

name of the PHP script; by obtaining

the filename this way, if the script’s

filename later changes, the code will

not break. However, this is a security

hazard because it is vulnerable to

XSS (cross-site scripting) attacks.

See the MC2 Design site at www.

mc2design.com/blog/php_self-safe-

alternatives for information on XSS

attacks and how to prevent them.

Unix folder separator–use “\”
for Windows

the name of the folder where the
JSON files live

the name of the script

072209_scriptin_ch7.indd 216 7/24/09 1:48:01 PM

www.mc2design.com/blog/php_self-safe-alternatives
www.mc2design.com/blog/php_self-safe-alternatives
www.mc2design.com/blog/php_self-safe-alternatives

ptg

T W O S I M P LE W E B APP LI C ATI O N S 217

$JSONFileNameArray=scandir($JSONPath);

unset($JSONFileNameArray[array_search(‘.’,
 $JSONFileNameArray)]);

unset($JSONFileNameArray[array_search(‘..’,
 $JSONFileNameArray)]);

$JSONFileNameArray=array_values($JSONFileNameArray);

return $JSONFileNameArray;

}

In this function, I use the PHP5 scandir method to put the names of
all files in the target folder into an array. Next, I delete the files that
start with one or two dots (which are references to the current folder
and the folder above). Two empty elements remain, so I reenumer-
ate the array to eliminate them, and return the array of filenames.

W R ITI N G O U T TH E H TM L

Now I can write the items—the authors’ photos and names—into
the carousel markup by iterating over the list of files. Inside the
thumbs div, I write a div called thumb_container that contains the
markup for each author’s information.

<div class=”scrollable”>

<div id=”thumbs” class=””>

 <?php

foreach ($JSONFileNameArray as $index => $fi leName){

 $authorInfo=readJSONFile($JSONPath.$sep.$fi leName);

print ‘

<div class=”thumbContainer”>

<a href=”?index=’.$index.’” class=”linkToSite”
 rel=”’.$index.’”>

<img class=”person_pic” alt=”’.$authorInfo[‘photo’]
[‘alt’].’” src=”’.$authorInfo[‘photo’][‘url’].’” />

<h3 class=”person_name”>

<a href=”?index=’.$index.’” class=”linkToSite”
 rel=”’.$index.’”>

C O D E 7.4 vtm_carousel/index.
php (cont.)

C O D E 7. 5 vtm_carousel/index.
php (cont.)

 scandir reads the filenames from
the folder–PHP5 ONLY

reenumerate the array so you start
at 0, not 2

get rid of the . and .. paths–current
dir and dir above current,
respectively

write out the HTML elements of
each author’s image and name for
the carousel

 read each file

 loop through the files

the href provides the index number
on a round-trip, the rel attribute
provides the index ref for an Ajax
request

the image and text container for
each author element

the container for the sliding
“thumbs” div

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7218

 ‘.$authorInfo[‘fi rst_name’].’ ‘.$authorInfo[‘last_
 name’].’

</h3>

</div>

‘;

}?>

</div>

</div>

I then iterate over the $JSONFileNameArray. For each filename in the
array, I read the JSON file (first highlight) by calling the readJSON-
File function, which looks like this:

function readJSONFile($JSONfi leNameAndPath){

$fi leHandle = fopen($JSONfi leNameAndPath, “r”);

$JSONData = fread($fi leHandle, fi lesize
 ($JSONfi leNameAndPath));

fclose($fi leHandle);

return json_decode($JSONData, TRUE);

I then write the author’s name, image, and the current numerical
index of the array (thereby adding a reference to the author’s JSON
file) into the markup template that follows, and this is added to the
PHP output. After looping through all the files, each thumb_con-
tainer div contains something like this:

<div class=”thumbContainer”>

<div class=”thumb_inner”>

 <img class=”person_pic” alt=”Curt Cloninger”
 src=”images/headshot/cloninger100.jpg”>

<h3 class=”person_name”>

 Curt Cloninger

</h3>

</div>

</div>

C O D E 7. 6 vtm_carousel/index.
php (cont.)

C O D E 7.7 vtm_carousel/index.
php (cont.)

ptg

T W O S I M P LE W E B APP LI C ATI O N S 219

I’ve highlighted an interesting and key part of the previous block
of PHP code, which is the link around the image that makes it
clickable.

href=”?index=’.$index.’”

The output, (assuming we are writing out the third file in the
$authorInfo array) looks like this:

href=”?index=2”

What happens here is that ‘.$index.’ (highlighted) resolves to the
numerical index of the $authorInfo array for the file that is cur-
rently being read. The URL begins with a question mark, meaning
a query string; because there is no page name preceding this query
string, the current page is implied—in this case, it’s the equivalent of

href=”index.php?index=2”

When an item is clicked, it will pass this query string reference back
to the server with the request, so the related file can be retrieved.
Note that I also add the numerical value of the array into the rel
attribute of the links. I’ll use this reference when we retrieve the
JSON using Ajax, which I will show later.

The code shown so far simply displays the page in the browser. Now
I’ll show you the code that runs when the user clicks on an image
that serves up the detailed information about the selected author.

R E S P O N D I N G TO A C LI C K

When an author’s image or an author’s name text (which also has
a similar link wrapped around it) is clicked, the index.php page
loads again, only this time the reference to that author’s JSON file is
passed with the request in the query string. The query string might
look like this:

?index=4

All that’s now needed is some PHP code to get the correct file and
use its data to write out the complete information about that par-
ticular author. That code looks like this:

if(ctype_digit($_GET[‘index’])&&($_GET[‘index’]>=0 &&
$_GET[‘index’]<=count($JSONFileNameArray))){

$fi leHandle = fopen($JSONPath.$sep.$JSONFileNameArray
 [$_GET[‘index’]], “r”);

$JSONData = fread($fi leHandle, fi lesize($JSONPath.$sep.
 $JSONFileNameArray[$_GET[‘index’]]));

The reason that I wrote the numeri-

cal value of the array into the href

instead of the filename is because

using the filename is insecure.

Filenames in query strings can be

easily replaced with malicious code

that then gets passed into the script

and possibly executed. By using a

number instead of a text string,

I can test for a number and reject

anything else.

 open the file

validation of the index value

 read the file

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7220

fclose($fi leHandle);

if(($_GET[‘ajax’]==’true’)){

 die($JSONData);

} else {

$dataArray=json_decode($JSONData, TRUE);

$overlayHTML = ‘’;

$overlayHTML .= ‘<div id=”author_info”>’;

$overlayHTML .= ‘<img src=” ‘ . ($dataArray[‘photo’]
 [‘url’]) .’” alt=”’.($dataArray[‘photo’][‘alt’]).’”>
 ’.”\n”;

$overlayHTML .= ‘<h1>’;

$overlayHTML .= ‘’.($dataArray[“fi rst_name”]).
 ’ ‘;

$overlayHTML .= ‘’.($dataArray[“last_name”]).
 ’’;

$overlayHTML .= ‘</h1>’.”\n”;

$overlayHTML .= ‘<h2>Book</h2>’;

$overlayHTML .= ‘<h3>’ . $dataArray[‘book’][‘title’].
 ‘</h3>’.”\n”;

$overlayHTML .= ‘<p class=”description”>’
. $dataArray[‘book’][‘description’] . ‘
</p>’.”\n”;

if ($dataArray[‘book’][‘co-author’]) {

$overlayHTML .= ‘<p class=”description”>
 Co-author: ‘ . $dataArray[‘book’]
 [‘co-author’] . ‘</p>’.”\n”;

}

$overlayHTML .= ‘<p class=”description”><a href=”’ .
 $dataArray[‘book’][‘buy_link’] . ‘” target=
 ”_blank”>’;

$overlayHTML .= ‘Buy this book</p>’.”\n”;

 $overlayHTML .= ‘<h2>Bio</h2>’;

 $bio = $dataArray[‘bio’];

if so, return the content to the Ajax
request and stop the script

not an Ajax request, so build
requested content using PHP

note space at end of line–appears
between first and last name

was the request made by Ajax?

 close the file

C O D E 7. 8 vtm_carousel/index.
php (cont.)

ptg

T W O S I M P LE W E B APP LI C ATI O N S 221

 foreach($bio as $bioPara){

$overlayHTML .= ‘<p class=”bio”>’ . $bioPara[‘para’]
 . ‘</p>’.”\n”;

}

$overlayHTML.= ‘</div>’;

}

}

When the page request is submitted, the numerical value is stored
in the $_GET array with the property name of index. In the first line
of the preceding code

if(ctype_digit($_GET[‘index’])&&($_GET[‘index’]>=0 && $_GET[‘
index’]<=count($JSONFileNameArray)))

you can see I then do three tests to check that index contains the
right kind of data: Is it a number?; is it a number greater than 0?; is
it a number equal to or less than the number of files in the folder? If
not, we don’t proceed. This test prevents malicious code from get-
ting passed in through the query string.

The next step is to concatenate the folder path (which I assembled
previously) with the appropriate slash and the filename that corre-
sponds to the index value passed from the query string.

This gives me the full path of the file, which I store in the $JSONdata
variable.

$JSONData = fread($fi leHandle, fi lesize($JSONPath.$sep.
$JSONFileNameArray[$_GET[‘index’]]));

The highlighted part of the previous code block is an if state-
ment—it begins with

if(($_GET[‘ajax’]===’true’)){

This statement detects if the request was made by an Ajax request
or a regular page request. When there is an Ajax request (we’ll look
at that part of the code in detail next), I will pass a query string
with the name/value pair ajax=true in it. Each time a request is
made, PHP will test for the presence of an element named ajax in
the $_GET array to determine if the request was made by Ajax, or is a
regular page request that must be served by PHP.

In anticipation of an Ajax request, I test here for a $_GET array prop-
erty name of ajax. If it’s present, then the die method is called: This

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7222

method will simply pass the data in the json variable back to the
requesting Ajax call, and as its name suggests, stop the script.

If the ajax property is not set, it’s a regular page request, and PHP
must supply the data in a new page. In such a case, the else part of
the if statement runs. This creates a number of HTML elements in
a variable called overlayHTML, adding the appropriate JSON data
into each one.

This variable contains the same HTML elements that would be dis-
played in the overlay if Ajax was handling the request. However, if
PHP generates the HTML (because JavaScript is not present), these
HTML elements won’t appear in the overlay but instead in a div that
will be displayed below the carousel—the overlay can’t work without
JavaScript.

The way I use PHP to assemble the HTML elements here is similar
to the way I used JavaScript to assemble the HTML elements when
using JSON in the guitar example in Chapter 5. The only real differ-
ence is that in PHP a . (period), not a +, is used to concatenate the
HTML and the JSON data when assembling the HTML elements.

As I mentioned, without JavaScript I can’t use the overlay to display
the HTML elements generated by PHP, so I need to add a div into
the markup that I use for this purpose. Farther down the PHP script,
in the HTML markup, you will see the line

if ($overlayHTML) {print ‘<div id=”overlay_content_noJS”>’
.$overlayHTML . ‘</div>’;}

where I test for the existence of the overlayHTML variable. This vari-
able only exists if I wrote out the HTML with PHP, so if it’s present,
I need to add a div—with the contents of the overlayHTML variable
inside it—into the page after the carousel markup. You can see how
this looks in Figure 7.7.

I now have a page that works with just HTML and PHP. Let’s look at
the Ajax implementation next.

Layering on the JavaScript

The first step to adding the JavaScript that enables the fully func-
tional carousel, complete with its Ajax-powered overlay, is to link the
required jQuery files. This is done by adding the following script tags
into the head of the document:

You can see the code to this point in

the file index_php_only.php.

ptg

T W O S I M P LE W E B APP LI C ATI O N S 223

FI G U R E 7.7 When JavaScript is not
available, the content is displayed
below the carousel.

<script src=”jquery/jquery-1.3.2.js” type=”text/
 javascript”></script>

<script src=”jquery/jquery.tools.min.js” type=”text/
 javascript”></script>

<script src=”jquery/jquery.mousewheel.js” type=”text/
 javascript”></script>

<script src=”jquery/jquery-corners-0.3/jquery.corners.min.js”
 type=”text/javascript”></script>

With the jQuery library, jQuery Tools, and the mouse wheel and
rounded corners plug-ins all linked to the page, you’re all set to take
a rather basic PHP application into the modern age. Let’s start with
something easy and add rounded corners to the header and the
main content area.

R O U N D E D C O R N E R S

In my book Stylin’ with CSS, Second Edition, I illustrated how to use
a helper function called Nifty Corners to create rounded corners on
elements. Most modern Web sites use rounded corners on elements
with borders because they help to break up the boxy look of the
regular rectangular border. Besides, rounded corners just look cool
and help give any page a stylish look.

Download the Rounded Corners

plug-in and view the documenta-

tion at DaveTurnbull’s site at www.

atblabs.com/jquery.corners.html.

load jQuery Tools

load mousewheel plug-in

load rounded corners plug-in

load jQuery library

C O D E 7. 9 vtm_carousel/index.
php (cont.)

www.atblabs.com/jquery.corners.html
www.atblabs.com/jquery.corners.html

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7224

Today, I use the jQuery Rounded Corner plug-in written by Dave
Turnbull, because it offers better support for margins and padding
on the rounded element. It’s simple to use, works reliably across a
variety of browsers, and requires only the addition of one class to
any element that you want to display with rounded corners.

I linked the Rounded Corner plug-in to the page earlier, so now I
just need a little jQuery to tell the plug-in the class name that I will
use for elements that need rounded corners. I first add the rounded
class to each element that I want to have rounded corners, like this:

<div id=”people_display” class=”rounded clearfi x”>

jQuery adds the rounded corners with a single line of code that runs
when the DOM is loaded.

$(document).ready(function(){

 $(‘.rounded’).corners(‘12px’);

}

Now both the main content div and footer div have rounded
corners, as you can see in Figure 7.8.

FI G U R E 7. 8 As soon as the DOM is
loaded, jQuery adds the rounded
corners.

In Figure 7.8, the scrollbar is still visible. In the next step, I’ll remove
it and add some navigation options that are more user friendly.

Implementing the Carousel Interactions
In the PHP-only version, I needed a scrollbar on the carousel so the
user could move through the content.

The clearfix class that is also on this

element invokes the Aslett Clearing

technique that forces this div to

enclose floated elements, not the

default behavior. You can see the

clearfix code in the carousel.css

file and read about it on page 119 of

my book Stylin’ with CSS, Second
Edition.

adds rounded corners with 12
pixel radius to all elements with
“rounded” class

function called when DOM is ready.

C O D E 7.10 vtm_carousel/index.
php (cont.)

ptg

T W O S I M P LE W E B APP LI C ATI O N S 225

In the JavaScript-powered version, the user will be able to move the
carousel using a variety of navigation options, so the scrollbar can
be removed.

If JavaScript is present, I’ll have it hide the scrollbar at the same time
as I invoke the rounded corners.

$(document).ready(function(){

 $(‘.rounded’).corners(‘12px’);

 $(“div.scrollable”).css(“overfl ow-x”,”hidden”);

This highlighted code simply overrides the related settings in the
style sheet.

I M P LE M E NTI N G TH E S C R O LLI N G FU N C TI O N ALIT Y

The carousel will have a number of interactions associated with
it; scrolling will be possible by using the mouse wheel, onscreen
arrows, or clicking. Clicking on any image will move it to the center
position if it’s not there already and pop up the overlay with the
author’s description in it. The first step is getting the carousel
to scroll.

$(“div.scrollable”).scrollable({

size: 3,

items: ‘#thumbs’,

hoverClass: ‘hover’

});

In this code that invokes the jQuery Tools Scrollable component, I
get the containing element for the scrollable elements—the div with
the class scrollable—and assign the scrollable method to it. I also
pass this object a configuration object with three properties. These
properties define:

• The size of the visible part of the carousel in terms of number
of images that are visible at any given moment. This informa-
tion lets the Scrollable component keep track of the position
of the carousel so a clicked item can be brought to the center.
It also allows the component to calculate ”paging“ moves; that
is, moving the carousel to the next set of three images. Paging
is functionality that I have not enabled in this project, but it’s
simple to implement—check the jQuery Tools documentation
for details.

hides the scrollbar–not needed if
JS is available

the class added when the mouse
hovers

the container for the scrolling
elements

the number of visible thumbs–you
must alter the widths of the con-
tainer in the css if you change this

C O D E 7.12 vtm_carousel/index.
php (cont.)

C O D E 7.11 vtm_carousel/index.
php (cont.)

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7226

• The nested element, which is a div with the ID thumbs, that
contains all the individual items of the carousel.

•. The class that will be added to a scrollable item when the
mouse moves over it so CSS rules can be invoked to highlight
it. You can see this in action when you move the mouse over an
author’s name and the background changes color.

I M P LE M E NTI N G TH E M O U S E W H E E L FU N C TI O N ALIT Y

Enabling the user to scroll the carousel from the mouse wheel (and
even my Mac has one these days!) allows very fast movement of the
carousel, which is useful if it contains a large number of elements.
With jQuery Tools, mouse wheel functionality for the carousel is
simple to implement. As long as I use the class name scrollable
for the carousel’s main containing div (as I do here), I can simply
add the jQuery mouse wheel plug-in to my page with a script tag
as I did earlier, and the mouse wheel then scrolls the carousel (if
you also have the mouse over the carousel) without any further
coding. This is because control of a div named scrollable via the
mousewheel.js code is already built into the jQuery Tools Scrollable
component.

I M P LE M E NTI N G TH E N AV I G ATI O N AR R O W B U T TO N S

Two arrows below the carousel also enable the user to scroll. The
navigation arrows markup is simply two links with the classes
prev and next, respectively. The size, position, and background
graphics—the arrow icons—are all controlled from the CSS in the
style sheet called carousel.css. I’ll make two comments on these
navigation arrows.

The first comment is about the way the rollover effect, which turns
the arrows from blue to a tan color when the mouse moves over it,
is implemented using a technique called image spriting—see the
sidebar, “About Image Sprites.” Both states (sprites) of each arrow,
normal and hovered, are in one file, as shown in Figure 7.9.

The graphic in Figure 7.9 is used as the background for the left
arrow’s a link. The link’s height and width are exactly the same as
one of the arrows, so the other arrow doesn’t show onscreen. The
CSS :hover setting for the links simply moves the hovered link’s
graphic up 35 pixels when the user mouses over it, bringing the
hovered state of the graphic into view.

ptg

T W O S I M P LE W E B APP LI C ATI O N S 227

FI G U R E 7. 9 Both visual states of the
left arrow control are on one graphic.

div#carousel_wrapper a.prev:hover, div#carousel_wrapper
 a.next:hover{

 background-position:0px -35px;

}

Visually, the arrow simply changes color. When the mouse moves off
the arrow, the initial position is restored; visually, the arrow simply
returns to its original color.

Displaying one of the sprites simply requires sizing an HTML ele-
ment to the size of the sprites to be displayed, and then adding the
image file as a background image with CSS. You must also set the
x and y background-position coordinates of the image so that the
desired sprite shows through. Once an image file is cached on the
user’s machine, there is no delay waiting for rollover state graphics
to download when the user mouses over a graphical button. The
CSS hover coordinates simply reposition the image file so the “hover
state” sprite is positioned behind the HTML element. Of course, set-
ting the coordinates of the sprites can be done with JavaScript too,
which offers some interesting animation possibilities.

My second comment is about the automatic control of the display
of the arrows. Notice that when the page first loads, the left arrow is
not displayed. This is because the carousel is initially fully scrolled

About Image Sprites

The technique of downloading a single graphic containing several images and displaying them individually by placing
them behind a masking element is known as “image spriting.” This is now a very popular technique for implementing roll-
overs, because numerous image “sprites“—a term used for the small graphics used for button backgrounds and icons—
can be placed in one image file. Downloading all these graphics in one file decreases the number of HTTP requests to the
server, resulting in improved performance of your site.

Learn about the application of this and other Web site performance enhancing techniques by watching Nicole Sullivan’s
video Design Fast Websites at www.yuiblog.com/blog/2008/12/23/video-sullivan.

You can upload sprites images to SpriteGen at http://spritegen.website-performance.org and you will get back a large
graphic with all the sprites laid out on it at coordinate intervals you can specify. Sweet.

The checkerboard background of

this Adobe Fireworks screenshot

indicates the transparent areas of

the graphic.

C O D E 7.13 vtm_carousel/index.
php (cont.)

www.yuiblog.com/blog/2008/12/23/video-sullivan
http://spritegen.website-performance.org

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7228

to the left so the user could not scroll left if he wanted to. As soon he
scrolls to the right, the left arrow appears, because left scrolling is
now possible. In the same way, the right arrow is also removed when
the carousel is fully scrolled to the right. This user-friendly behavior
is implemented automatically by jQuery Tools. All you have to do is
simply follow the naming convention for the links by giving them a
class of prev and next, respectively, to invoke this functionality.

Implementing the Overlay

In the PHP-only version of the carousel that I showed in the first
part of this project, you saw that a click on an image resulted in the
related information being added into a div farther down the page.
With JavaScript enabled, the information can be presented in an
overlay that displays on top of the carousel. This makes for a much
more visually pleasing and user-friendly presentation, and elimi-
nates the possibility that the user will have to scroll to read
the information.

A S S O C IATI N G TH E OV E R L AY W ITH A M O U S E C LI C K

The overlay functionality is provided by another jQuery Tools’ com-
ponent called Overlay. I already have the jQuery Tools library added
to the page, so it’s just a matter of invoking the overlay’s behavior.

var api = $(“div.overlay”).overlay({oneInstance: false, api:
true, onClose:function () {

 $(‘#author_info’).remove();

 }

});

Like the code that invoked the scrolling, this code specifies the
element that will be used as the overlay—a div with the class
overlay. However, the difference here is that the overlay method in
this case takes a configuration object of name/value pairs that affect
how the overlay functions. In this object, I set three properties of the
Overlay component:

1. Multiple instances of the overlay are allowed (even though I am
only using one in this example).

2. The overlay method will return a reference to the jQuery Tools
API so I can call its methods.

3. The onClose method will call a function that will remove the
overlay’s contents when the overlay is closed, so that content

C O D E 7.14 vtm_carousel/index.
php (cont.)

ptg

T W O S I M P LE W E B APP LI C ATI O N S 229

does not accumulate in the div between requests. Without this,
every selected author’s information would remain in the div.

With the overlay behavior primed and ready, I now need to have the
overlay display when an image is clicked.

$(‘.thumbContainer’).bind(“click”, function(){

var authorIndex=$(this).children(‘div.thumb_inner’).
 children(‘a’).attr(‘rel’);

$.getJSON(“?index=”+authorIndex+”&ajax=true”,
 function(JSONData){

// code to display the JSON data goes here

}

Instead of attaching event listeners to every element in each item’s
container to detect a click, I use event delegation and let the click
bubble up to the containing element thumb_container. The first line
of the preceding code attaches a click event listener to each #thum-
bContainer element (the div that wraps around each author’s image
and name area in the carousel) and assigns an anonymous function
that will run when a container is clicked.

This function gets the container’s link and reads its rel attribute
value. This is the index number for this author’s location in the JSON
array. You may remember that PHP wrote this number into each
link’s rel attribute when building the initial page. Because jQuery
correctly binds the this keyword to the element that receives an
event, (something JavaScript can have problems with), I am able to
use this as a reference to the clicked element instead of having to
dig into the event object to determine which element got the click.

Once I have the numerical value of the rel attribute—the all-
important reference to the clicked person’s data—I make an Ajax
call to the server, passing the index value in a name/value pair
named index in the same way as I did before when JavaScript was
not present. This Ajax call triggers the same script (the PHP script
index.php) that originally loaded the page.

However, because I also pass a second name/value pair—ajax=
true—with the request, the PHP behavior is different. In the if
statement that I added after the code that reads the JSON file, PHP
will detect the presence of the ajax element in the $_GET array.
Here’s that bit of code again:

Normally, a jQuery method returns

a reference to the jQuery object;

that’s what makes jQuery’s chain-

ing capability possible. By invoking

the jQuery Tools component’s API,

a reference to that API is returned

instead and I can then call any of its

methods. Listings of the methods of

each component’s API can be found

on the respective components demo

pages that are listed at www.flow-

player.org/tools.

add event listeners to the thumb-
nail containers and assign event
function

get the index of the author from the
link’s rel attribute

C O D E 7.15 vtm_carousel/index.
php (cont.)

www.flowplayer.org/tools
www.flowplayer.org/tools

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7230

if(($_GET[‘ajax’]==’true’)){

die($JSONData);

 }else{

// code here to build HTML elements with PHP

}

Because an element named ajax is now present in the $_GET array,
PHP no longer writes out the JSON and returns an HTML page.
Because the request was made by Ajax, PHP simply returns the
requested file’s JSON data to the browser and terminates the script
(highlighted code). This if statement is the key to making this
page accessible to users who do not have JavaScript enabled in
their browser.

Parsing the JSON with JavaScript

With the JSON now returned to the browser, it’s time to build the
required HTML. Because I want to show you as much JavaScript
as possible, instead of just returning the fully constituted HTML
from the PHP script (which I could do by moving the if statement
in the preceding code to the end of the PHP code that writes out
the HTML and returning the HTML instead of the JSON), I’ll bring
the JSON into the browser. Now I can show how to build the HTML
with JavaScript, too. In reality, it’s a little redundant, but it’s a useful
exercise that builds on the parsing of the JSON you saw in the earlier
guitar exercise. Here’s the entire code that detects the user click, gets
the JSON via an Ajax call (first highlighted code below), and then
builds the HTML elements.

$(‘.thumbContainer’).bind(“click”, function(){

var authorIndex=$(this).children(‘div.thumb_inner’).
 children(‘a’).attr(‘rel’);

$.getJSON(“?index=”+authorIndex+”&ajax=true”,
function(JSONData){

tags = ‘ ‘;

tags += ‘<div id=”author_info”>’;

tags += ‘<img src=” ‘ + (JSONData[‘photo’][‘url’]) +’”
 alt=”’+(JSONData[‘photo’][‘alt’])+’”> \n’;

 tags += ‘<h1>’;

initialize variable with empty string

if so, return the content to the Ajax
request and stop the script

not an Ajax request, so build
requested content using PHP

was the request made by Ajax?

C O D E 7.16 vtm_carousel/index.
php (cont.)

ptg

T W O S I M P LE W E B APP LI C ATI O N S 231

tags += ‘’+(JSONData[“fi rst_name”])+’ ‘;

tags += ‘’+(JSONData[“last_name”])+’’;

tags += ‘</h1>\n’;

tags += ‘<h2>Book</h2>’;

tags += ‘<h3>’ + JSONData[‘book’][‘title’] + ‘</h3>\n’;

tags += ‘<p class=”description”>’ +
 JSONData[‘book’][‘description’] + ‘
 </p>\n’;

if (JSONData[‘book’][‘co-author’]) {

tags += ‘<p class=”description”>Co-author: ‘ +
 JSONData[‘book’][‘co-author’] + ‘</p>\n’;

 }

tags += ‘<p class=”description”><a href=”’ +
 JSONData[‘book’][‘buy_link’] + ‘” target=”_blank”>’;

tags += ‘Buy this book</p>\n’;

tags += ‘<h2>Bio</h2>’;

 var bio = JSONData[‘bio’];

for(var i = 0; i < bio.length; i++){

tags += ‘<p class=”bio”>’ + bio[i][‘para’] +
 ‘</p>\n’;

}

tags += ‘</div>’;

// insert the assembled html into the page after the
 overlay’s close box div

$(“.close”).after(tags);

});

api.load();

return false;

});

});

pop up the overlay

C O D E 7.17 vtm_carousel/index.
php (cont.)

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7232

As you can see, after requesting the JSON file, which is automatically
evaluated into JavaScript by jQuery as part of the getJSON method,
I can immediately start to write out a list of HTML tags. I start by
opening a div called author_info, so I can have a hook to style the
elements it will contain. As I write out each tag, I include the appro-
priate data from the JSON file. Notice in the second highlighted
piece of code that I put the bio property value—an array—into a
variable. Because the number of elements in this array might vary,
I then use the array’s length property to loop through it as many
times as there are elements in the array and write each element’s
data into a paragraph tag.

Once I have all the elements in the tags variable, I get the div with
the close class. The Overlay component automatically adds a div
with this class as the first element inside the specified overlay con-
tainer div when it is initialized. The purpose of this close div is to
hold a graphic that the user can click to close the overlay—more on
this in a moment. After getting this element, I can use the jQuery
after method to add the new HTML elements immediately after it
inside the overlay container div.

Finally, I use the Overlay API (last highlight), which I have already
referenced in the api variable, to open the overlay using its load
method. The overlay then animates out from the clicked picture,
and the information about the requested author is displayed, as
shown in Figure 7.10. I then return false to prevent the href of the
link from triggering a regular page request.

FI G U R E 7.10 The overlay displays
the requested information.

It was very easy to create this pars-

ing code by simply taking the cor-

responding PHP code and replacing

the PHP . delimiters with JavaScript

+ delimiters.

ptg

T W O S I M P LE W E B APP LI C ATI O N S 233

The Ajax request, the building of the HTML from the JSON, and
the opening of the overlay usually happens in a matter of a second
or two, even though it’s taken several pages here to describe how
it works.

Clicking the close button, pressing Escape, or clicking outside of the
overlay causes the overlay to close, so the user can make another
choice. Again, as long as the close button graphic is within (or the
background element of) an element with the class close, this func-
tionality is automatically provided by the Overlay component.

This covers the key functionality of the Author Carousel project.
Now I’ll show you the AutoComplete example that uses the YUI
framework and Yahoo! Maps.

AutoComplete and Maps with the
Yahoo! API

Without a doubt the most comprehensive JavaScript library in exis-
tence is the Yahoo! User Interface (YUI), which is a layered frame-
work of components for just about every task that your interface
might need to handle. At its foundation is the YUI Global Core,
which is required for all components, the DOM collection for man-
aging the DOM, and the Event utility, which simplifies the man-
agement of events. On top of this foundation, you can run a wide
variety of interface widgets—from data tables and calendars to slid-
ers and a text editor—and a variety of utilities for animation, cookie
management, and much more. There are also development tools to
help you as you write your application and a set of CSS tools to help
you lay out and style your pages.

In this project, I will use the AutoComplete widget to enhance a
search form to help users find Yahoo! offices around the world.
AutoComplete is well suited to a multi-element data set like this,
where the user might know only the street, city, or country where
the office is located. By typing any of these bits of information, the
AutoComplete can search the data and provide suggestions to help
the user make the right choice.

You will also see how to use the Yahoo! Loader utility, which auto-
matically loads the correct supporting files for each YUI widget,
and the Yahoo! Maps API, which will display a map of the selected
location.

Learn more about YUI at http://

developer.yahoo.com/yui. Scroll

down this page to the Get Started

section, which has a wealth of infor-

mation to help you get YUI working

in your projects.

http://developer.yahoo.com/yui
http://developer.yahoo.com/yui

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7234

The Location Data

In this project, the data for the Yahoo! office locations is stored in
a CSV (comma separated values) file, also often referred to as a flat
file. Each record looks like this:

CN-Shanghai,“Room 2936 Lippo Plaza,No. 222 Huai Hai Zhong
Road,Shanghai,200021,China”,City,31.2477092743,121.472618103,21
51849,Shanghai,China

The values in each record are

office name

the mailing address (a string with sub-elements)

the WOEID (WhereOnEarth ID) type (suburb, city, etc)

the WOEID

the longitude

the latitude

city name

country name

This data will be used to supply matches for the AutoComplete
display and for the full display of search results, including use of
the longitude and latitude data to display a map of the selected
location.

The Project Template—index.php

An interesting aspect of this project is that although there are three
pages that can be displayed, they are all generated from a single
PHP “template” script that acts as a container to load other scripts.
This project has a script to read the JSON files, another to display
the search form, and another to display the search results; all are
included in the index.php page as needed. As you will see, the logic
coded within the template page determines the condition under
which a particular script is included.

This kind of modular page strategy enables key functionality to be
added into pages as needed and logically divides the codebase into
discrete and easily managed blocks. If a certain aspect of the design
changes—perhaps a database will be used instead of JSON files—
all that’s required is to update that one script that reads in the data
and then every page that includes that script is updated too. You

C O D E 7.18 locations.csv

 If you want to quickly find the exact

longitude and latitude coordinates of

a street address, visit GPSVisualizer

at www.gpsvisualizer.com/geocod-

ing.html. To integrate this capability

into an application, use the Yahoo!

Maps API at developer.yahoo.com/

maps.

www.gpsvisualizer.com/geocoding.html
www.gpsvisualizer.com/geocoding.html

ptg

T W O S I M P LE W E B APP LI C ATI O N S 235

can compare such a write-once, use-many approach to the use of
functions, which can be called from many places within the code.
In short, if a section of code must be present in many pages, write it
in its own script and include it in each page that needs it. Headers,
footers, and navigation elements that appear in every page are also
obvious “include” candidates. The benefits of such an approach are
clear even from a small project like this and are an essential design
strategy for building larger applications.

I’ll start by showing you the code for this template—the index.php
script—whose logic determines when to include the other scripts.

<?php

 include(‘getlocations.php’);

?>

<?php

 if(!isset($_GET[‘showlocation’])){

$header = ‘Our Offi ces - fi nd a location’;

 }

 if(isset($_GET[‘location’])){

$header = ‘Our Offi ces - pick a location’;

 }

 if(isset($_GET[‘showlocation’])){

$header = ‘Our Offi ces - ‘.$current[‘city’].’ - ‘
 .$current[‘country’];

 }

?>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html;
 charset=UTF-8”>

 <title><?php echo $header;?></title>

true if the form was submitted on
a regular round trip so the form
reloads with the search results list
below

 true if the page is first loading,
so show the search form–
note the ! NOT operator

include a script that reads the
location data from the CSV file

if true, the search results detail is
displayed

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7236

<link rel=”stylesheet” href=”http://yui.yahooapis.
 com/2.7.0/build/reset-fonts-grids/reset-fonts-grids.css”
 type=”text/css”>

<link rel=”stylesheet” href=”http://yui.yahooapis.
 com/2.7.0/build/base/base.css” type=”text/css”>

<style type=”text/css” media=”screen”>

 .highlight {color:#069;}

</style>

</head>

<body class=”yui-skin-sam” >

<div id=”doc” class=”yui-t7”>

<div id=”hd” role=”banner”><h1><?php echo $header;?>
 </h1></div>

<div id=”bd” role=”main”>

<?php

if(!isset($_GET[‘showlocation’])){

 include(‘searchform.php’);

}

if(isset($_GET[‘location’])){

 include(‘searchresults.php’);

}

if(isset($_GET[‘showlocation’])){

 include(‘locationdetails.php’);

}

?>

 </div>

<p>An example from the book <a href=”http://www.
scriptinwithajax.com”>Scriptin’ with JavaScript and Ajax
 by Charles Wyke-Smith</p>

 </div>

</div>

C O D E 7.19 autocompete_n_maps/
index.php

if true, the search results detail
is displayed

 true if the page is first loading,
so show the search form–
note the ! NOT operator

if true, the form was submitted
on a regular round-trip so the form
reloads with the search results list
below

highlights text in the AutoComplete
results

adds Yahoo! style sheet

ptg

T W O S I M P LE W E B APP LI C ATI O N S 237

</body>

</html>

Figure 7.11 illustrates how the highlighted block in the preceding
code controls the logic of the program flow.

FI G U R E 7.11 The presence or
absence of certain elements in the
$_GET array determines which files
are included in the index.php
“template” page.

TH E LO C ATI O N S DATA — G E T LO C ATI O N S . P H P

Here is the included code for reading the CSV file that contains
the locations:

$locations = array();

$locationnames = array();

ini_set(“auto_detect_line_endings”, 1);

$current_row = 1;

$handle = fopen(“locations.csv”,”r”);

while(($data = fgetcsv($handle,10000,”,”))!== false){

$number_of_fi elds = count($data);

if($current_row == 1){

for($c=0; $c < $number_of_fi elds; $c++){

 $header_array[$c] = $data[$c];

 }

} else {

for($c=0; $c < $number_of_fi elds; $c++){

 $data_array[$header_array[$c]] = $data[$c];

 }

this array holds each location
record as an element–this data is
used when displaying the search
results

this array holds the name of each
location–this data is used in the
AutoComplete drop-down list
results

 open the file

get data rows

get header row

get CSV data

<?php
include(‘getlocations.php’);
if(!isset($_GET[‘showlocation’])){
 include(‘searchform.php’);
}
if(isset($_GET[‘location’])){
 include(‘searchresults.php’);
}
if(isset($_GET[‘showlocation’])){
 include(‘locationdetails.php’);
}
?>

Location data always loads.

Only set if user selects from
search results. If not set, load
the search form.

Set if non-Ajax form submis-
sion. If set, display the search
results under the search form.

Set if user selects from search
results. If set, display results
page.

PROGRAM FLOW LOGIC OF LOCATION FINDER

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7238

 $locations[] = $data_array;

$locationnames[] = $data_array[‘Offi ce’] . ‘ - ‘ .

$data_array[‘city’] . ‘ - ‘ .

 $data_array[‘country’];

}

$current_row++;

}

fclose($handle);

This code first reads the file from disk and then iterates the records
and creates an array called $locationnames that contains the name,
city, and country of each office. This is the data that will be used to
produce results for the AutoComplete Control.

Because this getlocations.php script is included at the very top of
the template script, any PHP script that is included farther down
can access the locations and loacationnames variables.

After loading the data from the CSV file, the code checks the $_GET
array to determine the correct text to put in the page’s title tag;
remember, the index.php template script generates all the pages the
user sees so it has to manage all aspects of the page content.

The first time the index.php is requested, the $_GET array will con-
tain nothing. However, each time the script is called again, as a
result of the user clicking an onscreen element within the generated
HTML page, the $_GET array will contain an element named either
location or showlocation.

Let’s only consider the case where the page first loads for now. In
this case, the first test in the index.php file

if(!isset($_GET[‘showlocation’])){

$header = ‘Our Offi ces - fi nd a location’;

 }

resolves to true—the $_GET array contains nothing (there is no
query string appended to the URL). This test therefore determines
showlocation is not set, and the $header variable is set to “Our
Offices - find a location”.

Next in the code is the HTML document DOCTYPE and head ele-
ments, which just get written into the page as is. The PHP in the

C O D E 7. 20 autocompete_n_maps/
getlocations.php

note the ! NOT operator

here we assemble a simple string
of office name, city, and country to
display in the AutoComplete

 close the file

ptg

T W O S I M P LE W E B APP LI C ATI O N S 239

title tag (first highlight in Code 7.4) writes the $header variable
into the tag and gives the page its correct title.

Then, I add the YUI style sheets that take care of styling the compo-
nents—this saves a lot of tedious CSS work. The style sheet called
reset-fonts-grids.css contains CSS that does three things: It
removes all the browser’s default styles, gives pleasing proportional
font sizes to all HTML text elements, and provides access to a huge
array of CSS layouts. The style sheet base.css provides a consistent
style foundation for all HTML across all the A-grade browsers, as
defined by Yahoo!.

In short, whichever browser you are using, the styles applied by its
internal CSS style sheet are “neutralized,” and new styles that have
been carefully designed for aesthetics and cross-browser consis-
tency are applied in their place.

Except for one style that I decided to add to highlight the matching
letters in the AutoComplete, I didn’t have to write any CSS for this
project. Its styling comes entirely from these two YUI style sheets.
However, I’ve kept the markup in this project to the absolute mini-
mum; the pleasing overall effect provided by these style sheets is
more apparent when working on a larger document with a variety of
HTML elements.

After writing the $header data again into an h1 tag as the page head-
ing, all that’s left to do is load one of the page content scripts for
the content I want to display. There is a block of if statements that
determines which scripts get loaded. Again, because the initial URL
is simply index.php without any query string appended and the
$_GET array is therefore empty, the first of the tests

if(!isset($_GET[‘showlocation’])){

 include(‘searchform.php’);

 }

resolves to true and the search form is loaded.

The Search Form Script—searchform.php
 Here’s the code in the searchform.php file that gets added to the

index.php template page when the page first loads:

<form action=”index.php” method=”get” accept-charset=”utf-8”>

 <div>

<label for=”location”>Search for location:</label>

Learn more about Yahoo!’s notion

of graded browsers at http://devel-

oper.yahoo.com/yui/articles/gbs/.

note the ! NOT operator in this test
condition

http://developer.yahoo.com/yui/articles/gbs/
http://developer.yahoo.com/yui/articles/gbs/

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7240

<div><input type=”text” id=”location” name=”location”>

 <div id=”autocomplete”></div></div>

<input type=”submit” id=”submit” value=”search”>

 </div>

</form>

<script type=”text/javascript” src=”http://yui.yahooapis.
 com/2.7.0/build/yuiloader/yuiloader-min.js”></script

<script type=”text/javascript”>

(function(){

var loader = new YAHOO.util.YUILoader({

base:’’,

require:[‘autocomplete’],

loadOptional:false,

combine:true,

fi lter:’MIN’,

allowRollup:true,

onSuccess:function(){

var locations = <?php echo json_
 encode($locationnames);?>;

var datasource = new YAHOO.util.
 LocalDataSource(locations);

var autocomplete = new YAHOO.widget.AutoComplete
 (‘location’, ‘autocomplete’,datasource);

autocomplete.queryMatchContains = true;

autocomplete.formatResult = function(resultitem,query){

var parts = resultitem[0].split(‘ - ‘);

var out = parts[1] + ‘ - ‘ + parts[2] + ‘ (‘ +
 parts[0] + ‘)’;

return out.replace(query,’<strong class=
 ”highlight”>’+query+’’);

};

instantiate the AutoComplete, tell-
ing it which field the entered data
comes from, where to write out the
results, and what datasource to use

 define the datasource for the
AutoComplete

matches query to any word in a
record, not just first word in record

format each result as it is found

use the YUI loader to load all the
required components to support
the AutoComplete Control

the AutoComplete Control has
successfully loaded

encode the location data array into
JSON ready for the AutoComplete
Control to use

ptg

T W O S I M P LE W E B APP LI C ATI O N S 241

 autocomplete.itemSelectEvent.subscribe
 (function(type,args){

var offi ce = args[2][0].split(‘ - ‘);

window.location = ‘index.php?showlocation=’ +
 offi ce[0];

});

}

});

loader.insert();

})();

</script>

This code is where the AutoComplete Control is initialized and
ready for use. Let’s break it down: First, the form is loaded.

TH E AU TO C O M P LE TE FO R M MAR K U P

This form is essentially a single field form with a label and a
Submit button, but with an important addition. There is a div
that is wrapped around the text field input that also contains a
div called autocomplete. The AutoComplete Control will use this
autocomplete div to display the drop-down list of results. More
specifically, when there are results to display, the autocomplete div
is absolutely positioned along the bottom edge of the text field into
which the user is typing, and is populated with an unordered list
containing the results.

U S I N G TH E Y U I LOAD E R

As I mentioned at the beginning of this project, YUI controls such as
AutoComplete sit on top of some base components that are shared
by many components in the YUI library. The order in which all these
components load is critical to their operation, and some widgets
require a number of components to be loaded before they can func-
tion. Fortunately, the YUI Loader prevents you from having to worry
about what’s needed when in order to support a particular widget.
Just tell the Loader the name of the widget you want to use, and it
knows how to find and load the required supporting components
directly from Yahoo!’s content distribution network. This is also a
performance boost because users around the world will get the files
from the geographically closest Yahoo! server. So, before initializing

C O D E 7. 21 autocompete_n_maps/
searchform.php

when user makes selection, imme-
diately load page with full result
set (overrides default behavior of
adding user’s selection into search
field)

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7242

the AutoComplete Control, I tell the Loader to load the required
components in a syntax like this:

var loader = new YAHOO.util.YUILoader ({ map of
properties })

The Loader object constructor can be customized with a map
of properties that is passed in as an argument when it’s instan-
tiated. The most important of these properties in this case is
require:[‘autocomplete’], which tells the loader to load the
AutoComplete Control and all its supporting components. In the
map, I also define an onSuccess function. As you might imagine
from its name, this function is triggered by the Loader’s success
event that fires once the required components are loaded. I use
this event to start the next step—initializing the AutoComplete
Control—confident that everything I need to make it work is loaded.

I N ITIALI Z I N G TH E AU TO C O M P LE TE C O NT R O L

The AutoComplete Control likes its data in JSON, so I have PHP
write the location data that it is holding in a variable called $loca-
tionnames into the page as a string of JSON right here inside the
JavaScript code:

var locations = <?php echo json_encode($locationnames);?>;

Of course, PHP does this work on the server before the page is sent
to the browser. Then, when the browser runs the JavaScript, the
JSON string is already written into the page in place of the high-
lighted PHP. If you View Generated Source using the Web Developer
toolbar, you can see all the location data within this block of code.

Now that I have the JSON location data in the locations vari-
able, I use this variable to define the data source object for the
AutoComplete Control.

var datasource = new YAHOO.util.LocalDataSource(locations);

Now I can instantiate a new AutoComplete instance. The three
required arguments are the ID of the text field into which the user
will be typing, the ID of the element that will display the results, and
the data source object.

var autocomplete = new YAHOO.widget.AutoComplete(‘location’,

‘autocomplete’,datasource);

I’ve now done what’s needed to make the AutoComplete Control
work, but I have a few small customizations I want to make to its
default behavior.

The YUI Loader manages and

optimizes the loading of YUI

components in a variety of ways

through its API. Learn more at

http://developer.yahoo.com/yui/

yuiloader.

http://developer.yahoo.com/yui/yuiloader
http://developer.yahoo.com/yui/yuiloader

ptg

T W O S I M P LE W E B APP LI C ATI O N S 243

C U S TO M I Z I N G TH E AU TO C O M P LE TE C O NT R O L’ S D E FAU LT
B E HAV I O R

By default, the AutoComplete Control only supplies matches based
on an exact match between what the user is typing and the first
letters of one of the results. In other words, if the user types Ma,
there would be a match on Madrid but not on San Mateo. Because
the user might be searching by office, city, or country name, I want
to loosen up this behavior and match anywhere within the search
results, which I do like this:

autocomplete.queryMatchContains = true;

With the queryMatchContains property set to true, as long as the
user string is contained somewhere in the location information, a
result will be displayed. Now typing Ma returns both Madrid and
San Mateo.

However, this change now means the results don’t relate directly to
the query: If the user types D, the first result would be AU-Docklands
- Melbourne - Australia (see Figure 7.12) because there’s now a
match on Docklands.

FI G U R E 7.12 Because the “looser”
search returns any result with a letter
D in it, the first five results don’t start
with the letter the user typed.

Because of this potentially confusing behavior, I want to highlight
the matching letter(s) in the result so the user understands why that
result is displaying. The AutoComplete’s API has a formatResult
method that allows you to define a function through which each
result string is processed before being added to the results display
so that you can tweak its appearance.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7244

autocomplete.formatResult = function(resultitem,query){

var parts = resultitem[0].split(‘ - ‘);

var out = parts[1] + ‘ - ‘ + parts[2] + ‘ (‘ + parts[0]
 + ‘)’;

return out.replace(query,’<strong class=
 ”highlight”>’+query+’’);

};

In this function, I wrap a strong tag with the class highlight
around the part of the result that matches the user’s query string
(highlighted). The strong tag bolds this part of the result, and for
additional clarity, I use the class to invoke a CSS style to colorize
it as well. (I also use this opportunity to organize each result’s ele-
ments into a more logical order.) As Figure 7.13 shows, the reason
these results are offered is now much clearer.

FI G U R E 7.13 The bold and colored
highlights, and the improved sorting
of the list, make the results relate bet-
ter to the users search.

Another default behavior is that selecting a result simply writes
it into the text field, and the user has to then submit the form using
the Submit button. In this project, I want the selection of a result to
immediately take the user to the full information relating to
that result.

autocomplete.itemSelectEvent.subscribe(function(type,args){

var offi ce = args[2][0].split(‘ - ‘);

window.location = ‘index.php?showlocation=’ + offi ce[0];

 });

If you highlight text with color, also

bold it as I have done here or add

some other noncolor dimension for

emphasis, so that color-blind users

can differentiate these characters.

ptg

T W O S I M P LE W E B APP LI C ATI O N S 245

Here I assign a listener function to the itemSelectEvent so that the
location method of the Window object is invoked and requests the
index.php script again. Selecting a result from the AutoComplete
Control (and I’ll again use the Madrid office as an example here)
now requests the index.php script and passes a query string with
the name/value pair. The last line of the preceding code resolves to:

window.location = ‘index.php?showlocation=ES-Madrid’

This request of the index page triggers the next step, displaying the
information and map of the selected office.

D I S P L AY I N G TH E LO C ATI O N I N FO R MATI O N —
S H O W LO C ATI O N . P H P

Let’s see what happens when the index.php script runs after the
user has made a selection (in this case, the Madrid office) from the
results drop-down list. Now the $_GET array, which stores the query
string data, contains

showlocation=”ES-Madrid”

Earlier in this example, I showed the first part of the PHP-only
script called getlocations.php that manages the reading and
parsing of the CSV file data. This script is included unconditionally
(the include is not wrapped in an if statement) at the very top of
the index.php script. The rest of the code in that file now comes
into play.

if(isset($_GET[‘showlocation’])){

$location_html = fi lter_input(INPUT_GET, ‘showlocation’,

 FILTER_SANITIZE_SPECIAL_CHARS);

foreach($locations as $loc){

if($loc[‘Offi ce’]==$location_html){

 $current = $loc;

 break;

}

}

}

This code displays the location information and map, which is
served from Yahoo! using the Yahoo! Maps API, as shown in
Figure 7.14.

true when the user makes a selec-
tion from the AutoComplete

 filter out XSS attacks

C O D E 7. 22 autocomplete_n_
maps/getlocations.php

 find the matching location in the
$locations array and put its data in
the $current variable.

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7246

This code tests if there is an element named showlocations in the
$_GET array. At this point, there is, so the value of that variable is
then sanitized by the fi lter_input method. This method removes
any characters that would only be present in injected code, such as
{ or <, so it can be safely used by the script. This step is important
because this value came directly from a form field and therefore
should be treated with suspicion. The sanitized data is then stored
in a variable called location_html.

In the for loop that follows, this variable is then compared with the
office name of each location’s record in the $locations array. When
a match is found, that entire record is copied into a variable called
$current and the process stops. Now all the information for the
selected office is in the $current variable ready to display.

FI G U R E 7.14 When a search result
is selected, the information and
map for the selected location are
displayed.

Farther down in the index.php script, the presence of the showloca-
tion element in the $_GET array also causes this code to run.

if(isset($_GET[‘showlocation’])){?>

 <?php include(‘locationdetails.php’);?>

 <?php }

ptg

T W O S I M P LE W E B APP LI C ATI O N S 247

The PHP script locationdetails.php then loads and is evaluated.
Here’s the code in that script:

<h2><?php echo $current[‘Offi ce’];?></h2>

<p><?php echo $current[‘Address’];?></p>

<p><?php echo $current[‘city’].’, ‘.$current[‘country’];?>
 </p>

<div id=”map”></div>

<script src=”http://yui.yahooapis.com/2.7.0/build/utilities/
 utilities.js”></script>

<script type=”text/javascript” src=”http://l.yimg.com/d/lib/
 map/js/api/ymapapi_3_8_2_3.js”></script>

<style type=”text/css” media=”screen”>

#map{

width:450px;

height:450px;

}

#map table,#map td{

border:none;padding:0;

}

</style>

<script type=”text/javascript”>

var YMAPPID = ‘UKjUlvvIkY5ZOCN0Z0Y9ThFW7luJ8EgWjxg-’;

var map = new YMap(document.getElementById(‘map’));

map.addZoomLong();

map.addPanControl();

var point = new YGeoPoint(

<?php echo $current[‘lat’];?>,

<?php echo $current[‘long’];?>

);

var newMarker = new YMarker(point);

newMarker.addAutoExpand(<?php echo $current[‘offi ce’];?>);

get the element that will display
the map

set central point for map using
location data

get your own ID to replace this one
at https://developer.yahoo.com/
wsregapp

 write out the office, address, and
city from the $current array

add zoom and pan controls

 show the name of the office when
users hover over the marker

set a marker at the point

C O D E 7. 23 autocompete_n_maps/
index.php

https://developer.yahoo.com/wsregapp
https://developer.yahoo.com/wsregapp

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7248

map.addOverlay(newMarker);

map.drawZoomAndCenter(point,7);

</script>

In the first three lines of this code, the information about the
selected office—its name, address, and city—are written into the
page. Next, a map of the location is loaded as a 450 pixel square
graphic. You can see from the margin notes what each line of code
does in providing the correct view and controls on the map.

Note that to use Yahoo! Maps in your own projects, you need a spe-
cial ID that you include in the request for the map. You can see the
one that I generated especially for this project in the code. You can
obtain your own ID by registering your project at https://developer.
yahoo.com/wsregapp.

Implementing Search Without JavaScript—
searchresults.php

You must provide an alternative way to present search results
in case the user does not have JavaScript enabled, as the Auto-
Complete Control will not function. In such a case, the user will
simply type a search string into the form and click the Search button
to submit the form. (The Search button is hidden when JavaScript is
active.) Because the name attribute on the text field is location, this
causes the query string location=userEnteredText to be passed to
the script and stored in the $_GET array.

In the index.php file are the following if statements:

if(!isset($_GET[‘showlocation’])){

include(‘searchform.php’);

}

if(isset($_GET[‘location’])){

include(‘searchresults.php’);

}

Both these tests evaluate to true, so both searchform.php and
searchresults.php are included in the page. Of course, search-
form.php is the search form that the user just used to submit the
request. The inclusion of the file searchresults.php causes the

Learn all about the Yahoo! Maps API

at developer.yahoo.com/maps.

You don’t have to have the longi-

tude/latitude information to display

the map using the Yahoo! Maps API.

You can simply pass in the street

address.

add marker to the map

show the map

https://developer.yahoo.com/wsregapp
https://developer.yahoo.com/wsregapp

ptg

T W O S I M P LE W E B APP LI C ATI O N S 249

search results to be displayed directly below it, as shown in Figure
7.15. Here’s the code for that file:

<?php

echo ‘’;

$location_html = fi lter_input(INPUT_GET, ‘location’,

FILTER_SANITIZE_SPECIAL_CHARS);

$needle = ‘/’.$location_html.’/msi’;

$found = false;

foreach($locations as $loc){

if(preg_match($needle,$loc[‘city’]) or

preg_match($needle,$loc[‘country’]) or

preg_match($needle,$loc[‘Address’])){

echo ‘<a href=”index.php?showlocation=’.$loc[‘Offi ce’].

‘”>’.$loc[‘city’].’ - ‘.$loc[‘country’].’’;

$found = true;

 }

}

if($found == false){

echo ‘Could not fi nd any location with that name.’;

}

echo ‘’;

?>

In this code, I first open an unordered list. Then I check the input
to ensure that no code-like characters such as { and < are getting
through. Then I compare the user-entered string with each office
location’s name, city, and country. If there is a match, I add a list
item with a link inside it. Each link’s href links to the results page
and includes the office name in its query string so the correct infor-
mation will load on the results page when the link is clicked. The
city name and country name of that office are written into the text
for the link so the user can see the location that was found. You can
see the results for a search on “Fra” in Figure 7.15.

loop through all locations and
test if the city, the country, or
the address contains the search
term–if so, add a list item with links
for each match

open an unordered list

 don’t forget to filter inputs!

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - CHAP TE R 7250

FI G U R E 7.15 When JavaScript is off,
search results are displayed below
the form after it is submitted instead
of in the AutoComplete drop-down
list as the user types.

It’s user friendly to retain the text the user entered in the form. This
allows the user to modify what was typed and try to submit the form
again. Making a form retain its contents between submissions is
called making the form “sticky.” To do this, I just set the form’s value
attribute to the value of the submitted data like this:

<input type=”text” id=”location” name=”location” value=”<?php
echo ($_GET[‘location’]); ?>”>

If the user clicks a link, the results page with the location’s infor-
mation and map are displayed in the same way as if the user had
selected from the AutoComplete menu, as shown in Figure 7.14.

AutoComplete provides a very simple and positive user experience
that belies the complexity of the coding and the data requirements
that support it. Using the YUI AutoComplete Control makes a com-
plex task somewhat easier, but as you can see, a fair amount of work
is involved. I hope the code I provided for this example will simplify
the task of creating your own implementation of this classic Web 2.0
control. At this point, we reach the end of this project and
this book.

Summary
The projects in this chapter clearly demonstrated that JavaScript is
an additional layer that enhances the foundation of a Web page—a
foundation that is created through languages such as PHP on the
server, and HTML and CSS in the browser.

The Author Carousel project showed the concept of building links
containing a small part of a data set that could later be clicked to
request the full data set; the clickable photos of each author enables
the user to request all the available information about that author.
In making this happen, you saw how PHP was used to create a script

ptg

T W O S I M P LE W E B APP LI C ATI O N S 251

that read the data records from JSON files, and built a Web page on
the server. As each link in the page was being built, references to the
data source (the index numbers of the file array) were embedded
in it. When the user clicked a link requesting the full data set, those
references were accessed and passed back to the server, and the cor-
rect data was located and sent to the browser.

The Yahoo! AutoComplete project showed how to build a number of
pages from a template page and how to build and later detect query
strings in the URL so that the server could understand the user
actions and provide appropriate responses. You also saw how third-
party content, in this case Yahoo! Maps, can be accessed through an
API and be integrated seamlessly into the page.

In both projects, JavaScript enhanced the user experience in two
important ways: by improving communication between the browser
and server, and by providing intuitive and easy-to-use interactions.

I hope that this book has helped you understand how JavaScript
works and how to write it. Most of all, I hope that you now have the
knowledge and confidence to start using JavaScript in the creation
of the next generation of online user experiences.

ptg

A P P E N D I X A

Environment

ptg

253

These appendixes are listings of the most important JavaScript objects. I have divided them into four
groups: Environment (browser related), Data (data related), Document (DOM related), and Interaction
(mouse and keyboard related).

For details on the featured methods, properties, and attributes and examples of their uses, visit:
http://w3schools.com/jsref/default.asp or
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference

These appendixes do not list the lower level document objects, such as form and anchor. Details on
these objects can also be found at the sites listed above. The author gratefully acknowledges W3Schools
(www.w3schools.com), an award-winning e-learning site, for permission to reproduce these tables.

W I N D O W O B J E C T

The Window object is the top level object in the JavaScript hierarchy.

W I N D O W O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N I E F O

alert() Displays an alert box with a message and an OK button 4 1 9

blur() Removes focus from the current window 4 1 9

clearInterval() Cancels a timeout set with setInterval() 4 1 9

clearTimeout() Cancels a timeout set with setTimeout() 4 1 9

close() Closes the current window 4 1 9

confi rm() Displays a dialog box with a message and an OK and a Cancel button 4 1 9

createPopup() Creates a pop-up window 4 No No

focus() Sets focus to the current window 4 1 9

moveBy() Moves a window relative to its current position 4 1 9

moveTo() Moves a window to the specified position 4 1 9

open() Opens a new browser window 4 1 9

print() Prints the contents of the current window 5 1 9

prompt() Displays a dialog box that prompts the user for input 4 1 9

resizeBy() Resizes a window by the specified pixels 4 1 9

resizeTo() Resizes a window to the specified width and height 4 1.5 9

scrollBy() Scrolls the content by the specified number of pixels 4 1 9

scrollTo() Scrolls the content to the specified coordinates 4 1 9

setInterval() Evaluates an expression at specified intervals 4 1 9

setTimeout() Evaluates an expression after a specified number of milliseconds 4 1 9

IE: Internet Explorer, F: Firefox, O: Opera. Table shows earliest versions of these browsers that support each item.

E N V I R O N M E NT

http://w3schools.com/jsref/default.asp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference
www.w3schools.com

ptg

254

W I N D O W O B J E C T C O LLE C TI O N S

C O LLE C TI O N D E S C R I P TI O N I E F O

frames[] Returns all named frames in the window 4 1 9

W I N D O W O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N I E F O

closed Returns whether or not a window has been closed 4 1 9

defaultStatus Sets or returns the default text in the statusbar of the window 4 No 9

document See Document object 4 1 9

history See History object 4 1 9

length Sets or returns the number of frames in the window 4 1 9

location See Location object 4 1 9

name Sets or returns the name of the window 4 1 9

opener Returns a reference to the window that created the window 4 1 9

outerHeight Sets or returns the outer height of a window No 1 No

outerWidth Sets or returns the outer width of a window No 1 No

pageXOffset Sets or returns the X position of the current page in relation to the upper left
corner of a window’s display area

No No No

pageYOffset Sets or returns the Y position of the current page in relation to the upper left
corner of a window’s display area

No No No

parent Returns the parent window 4 1 9

personalbar Sets whether or not the browser’s personal bar (or directories bar) should be
visible

scrollbars Sets whether or not the scrollbars should be visible

self Returns a reference to the current window 4 1 9

status Sets the text in the statusbar of a window 4 No 9

statusbar Sets whether or not the browser’s statusbar should be visible

toolbar Sets whether or not the browser’s tool bar is visible or not (can only be set before
the window is opened and you must have UniversalBrowserWrite privilege)

top Returns the topmost ancestor window 4 1 9

IE: Internet Explorer, F: Firefox, O: Opera.

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X A

ptg

255

H I S TO RY O B J E C T

The History object is automatically created by the JavaScript runtime engine and consists of an array of
URLs that the user has visited within a browser window. The History object is part of the Window object
and is accessed through the window.history property.

H I S TO RY O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N I E F O

length Returns the number of elements in the history list 4 1 9

H I S TO RY O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N I E F O

back() Loads the previous URL in the history list 4 1 9

forward() Loads the next URL in the history list 4 1 9

go() Loads a specific page in the history list 4 1 9

LO C ATI O N O B J E C T

The Location object is automatically created by the JavaScript runtime engine and contains informa-
tion about the current URL. Example: Send a user to a new location. The Location object is part of the
Window object and is accessed through the window.location property.

LO C ATI O N O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N I E F O

hash Sets or returns the URL from the hash sign (#) 4 1 9

host Sets or returns the hostname and port number of the current URL 4 1 9

hostname Sets or returns the hostname of the current URL 4 1 9

href Sets or returns the entire URL 4 1 9

pathname Sets or returns the path of the current URL 4 1 9

port Sets or returns the port number of the current URL 4 1 9

protocol Sets or returns the protocol of the current URL 4 1 9

search Sets or returns the URL from the question mark (?) 4 1 9

LO C ATI O N O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N I E F O

assign() Loads a new document 4 1 9

reload() Reloads the current document 4 1 9

replace() Replaces the current document with a new one 4 1 9

IE: Internet Explorer, F: Firefox, O: Opera.

E N V I R O N M E NT

ptg

256

N AV I G ATO R O B J E C T

The Navigator object is automatically created by the JavaScript runtime engine and contains informa-
tion about the client browser.

N AV I G ATO R O B J E C T C O LLE C TI O N S

C O LLE C TI O N D E S C R I P TI O N I E F O

plugins[] Returns a reference to all embedded objects in the document 4 1 9

N AV I G ATO R O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N I E F O

appCodeName Returns the code name of the browser 4 1 9

appMinorVersion Returns the minor version of the browser 4 No No

appName Returns the name of the browser 4 1 9

appVersion Returns the platform and version of the browser 4 1 9

browserLanguage Returns the current browser language 4 No 9

cookieEnabled Returns a Boolean value that specifies whether cookies are enabled in the
browser

4 1 9

cpuClass Returns the CPU class of the browser’s system 4 No No

onLine Returns a Boolean value that specifies whether the system is in offline mode 4 No No

platform Returns the operating system platform 4 1 9

systemLanguage Returns the default language used by the OS 4 No No

userAgent Returns the value of the user-agent header sent by the client to the server 4 1 9

userLanguage Returns the OS’ natural language setting 4 No 9

N AV I G ATO R O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N I E F O

javaEnabled() Specifies whether or not the browser has Java enabled 4 1 9

taintEnabled() Specifies whether or not the browser has data tainting enabled 4 1 9

IE: Internet Explorer, F: Firefox, O: Opera.

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X A

ptg

257

JAVA S C R I P T FU N C TI O N R E FE R E N C E

The top-level properties and functions can be used on all of the built-in JavaScript objects.

TO P- LE V E L FU N C TI O N S

FU N C TI O N D E S C R I P TI O N FF I E

decodeURI() Decodes an encoded URI 1 5.5

decodeURIComponent() Decodes an encoded URI component 1 5.5

encodeURI() Encodes a string as a URI 1 5.5

encodeURIComponent() Encodes a string as a URI component 1 5.5

escape() Encodes a string 1 3

eval() Evaluates a string and executes it as if it was script code 1 3

isFinite() Checks if a value is a finite number 1 4

isNaN() Checks if a value is not a number 1 3

Number() Converts an object’s value to a number 1

parseFloat() Parses a string and returns a floating point number 1 3

parseInt() Parses a string and returns an integer 1 3

String() Converts an object’s value to a string 1

unescape() Decodes a string encoded by escape() 1 3

TO P- LE V E L P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

Infi nity A numeric value that represents positive or negative infinity 1 4

NaN Indicates that a value is “Not a Number” 1 4

undefi ned Indicates that a variable has not been assigned a value 1 5.5

FF: Firefox, IE: Internet Explorer

E N V I R O N M E NT

ptg

A P P E N D I X B

Data

ptg

259

AR R AY O B J E C T

The Array object is used to store multiple values in a single variable. Syntax for creating an Array object:

var myCars=new Array(“Saab”,”Volvo”,”BMW”)

To access and to set values inside an array, you must use the index numbers as follows:

myCars[0]• is the first element

myCars[1]• is the second element

myCars[2]• is the third element

AR R AY O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

constructor Returns a reference to the array function that created the object 1 4

index Returns zero based index of the match in the string 1 4

input Returns original string against which regular expression was matched 1 4

length Sets or returns the number of elements in an array 1 4

prototype Allows you to add properties and methods to the object 1 4

AR R AY O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N FF I E

concat() Joins two or more arrays and returns the result 1 4

join()

Puts all the elements of an array into a string. The elements are separated by a
specified delimiter

1 4

pop() Removes and returns the last element of an array 1 5.5

push() Adds one or more elements to the end of an array and returns the new length 1 5.5

reverse() Reverses the order of the elements in an array 1 4

shift() Removes and returns the first element of an array 1 5.5

slice() Returns selected elements from an existing array 1 4

sort() Sorts the elements of an array 1 4

splice() Removes and adds new elements to an array 1 5.5

toSource() Represents the source code of an object 1 -

toString() Converts an array to a string and returns the result 1 4

unshift() Adds one or more elements to the beginning of an array and returns the new length 1 6

valueOf() Returns the primitive value of an Array object 1 4

FF: Firefox, IE: Internet Explorer

DATA

ptg

260

B O O LE AN O B J E C T

The Boolean object represents two values: “true” or “false.” Syntax for creating a Boolean object:

var myBool=new Boolean(value)

Note: If the value parameter is omitted, or is 0, -0, null, “”, false, undefined, or NaN, the object is set to
false. Otherwise it is set to true (even with the string “false”).

B O O LE AN O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

constructor Returns a reference to the Boolean function that created the object 1 4

prototype Allows you to add properties and methods to the object 1 4

B O O LE AN O B J E C T M E TH O D S

Method Description FF IE

toSource() Returns the source code of the object 1 -

toString() Converts a Boolean value to a string and returns the result 1 4

valueOf() Returns the primitive value of a Boolean object 1 4

FF: Firefox, IE: Internet Explorer

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X B

ptg

261

DATE O B J E C T

The Date object is used to work with dates and times. Syntax for creating a Date object:

var myDate=new Date()

Note: The Date object will automatically hold the current date and time as its initial value!

DATE O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

constructor Returns a reference to the Date function that created the object 1 4

prototype Allows you to add properties and methods to the object 1 4

DATE O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N FF I E

Date() Returns today’s date and time 1 3

getDate() Returns the day of the month from a Date object (from 1-31) 1 3

getDay() Returns the day of the week from a Date object (from 0-6) 1 3

getFullYear() Returns the year, as a four-digit number, from a Date object 1 4

getHours() Returns the hour of a Date object (from 0-23) 1 3

getMilliseconds() Returns the milliseconds of a Date object (from 0-999) 1 4

getMinutes() Returns the minutes of a Date object (from 0-59) 1 3

getMonth() Returns the month from a Date object (from 0-11) 1 3

getSeconds() Returns the seconds of a Date object (from 0-59) 1 3

getTime() Returns the number of milliseconds since midnight Jan 1, 1970 1 3

getTimezoneOffset() Returns the difference in minutes between local time and Greenwich Mean Time
(GMT)

1 3

getUTCDate() Returns the day of the month from a Date object according to universal time
(from 1-31)

1 4

getUTCDay() Returns the day of the week from a Date object according to universal time
(from 0-6)

1 4

getUTCMonth() Returns the month from a Date object according to universal time (from 0-11) 1 4

FF: Firefox, IE: Internet Explorer

DATA

ptg

262

M E TH O D D E S C R I P TI O N FF I E

getUTCFullYear() Returns the four-digit year from a Date object according to universal time 1 4

getUTCHours() Returns the hour of a Date object according to universal time (from 0-23) 1 4

getUTCMinutes() Returns the minutes of a Date object according to universal time (from 0-59) 1 4

getUTCSeconds() Returns the seconds of a Date object according to universal time (from 0-59) 1 4

getUTCMilliseconds() Returns the milliseconds of a Date object according to universal time (from
0-999)

1 4

getYear() Returns the year, as a two-digit or a three/four-digit number, depending on the
browser. Use getFullYear() instead !!

1 3

parse() Takes a date string and returns the number of milliseconds since midnight of
January 1, 1970

1 3

setDate() Sets the day of the month in a Date object (from 1-31) 1 3

setFullYear() Sets the year in a Date object (four digits) 1 4

setHours() Sets the hour in a Date object (from 0-23) 1 3

setMilliseconds() Sets the milliseconds in a Date object (from 0-999) 1 4

setMinutes() Set the minutes in a Date object (from 0-59) 1 3

setMonth() Sets the month in a Date object (from 0-11) 1 3

setSeconds() Sets the seconds in a Date object (from 0-59) 1 3

setTime() Calculates a date and time by adding or subtracting a specified number of mil-
liseconds to/from midnight January 1, 1970

1 3

setUTCDate() Sets the day of the month in a Date object according to universal time (from 1-31) 1 4

setUTCMonth() Sets the month in a Date object according to universal time (from 0-11) 1 4

setUTCFullYear() Sets the year in a Date object according to universal time (four digits) 1 4

setUTCHours() Sets the hour in a Date object according to universal time (from 0-23) 1 4

setUTCMinutes() Set the minutes in a Date object according to universal time (from 0-59) 1 4

setUTCSeconds() Set the seconds in a Date object according to universal time (from 0-59) 1 4

setUTCMilliseconds() Sets the milliseconds in a Date object according to universal time (from 0-999) 1 4

setYear() Sets the year in the Date object (two or four digits). Use setFullYear() instead !! 1 3

toDateString() Returns the date portion of a Date object in readable form

toGMTString() Converts a Date object, according to Greenwich time, to a string. Use toUTC-
String() instead !!

1 3

toLocaleDateString() Converts a Date object, according to local time, to a string and returns the date
portion

1 4

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X B

ptg

263

M E TH O D D E S C R I P TI O N FF I E

toLocaleTimeString() Converts a Date object, according to local time, to a string and returns the time
portion

1 4

toLocaleString() Converts a Date object, according to local time, to a string 1 3

toSource() Represents the source code of an object 1 -

toString() Converts a Date object to a string 1 4

toTimeString() Returns the time portion of a Date object in readable form

toUTCString() Converts a Date object, according to universal time, to a string 1 4

UTC() Takes a date and returns the number of milliseconds since midnight of January 1,
1970 according to universal time

1 3

valueOf() Returns the primitive value of a Date object 1 4

FF: Firefox, IE: Internet Explorer

DATA

ptg

264

MATH O B J E C T

The Math object allows you to perform mathematical tasks.

Syntax for using properties/methods of Math:

var pi_value=Math.PI; var sqrt_value=Math.sqrt(16);

Note: Math is not a constructor. All properties and methods of Math can be called by using Math as an
object without creating it.

MATH O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

E Returns Euler’s constant (approx. 2.718) 1 3

LN2 Returns the natural logarithm of 2 (approx. 0.693) 1 3

LN10 Returns the natural logarithm of 10 (approx. 2.302) 1 3

LOG2E Returns the base-2 logarithm of E (approx. 1.442) 1 3

LOG10E Returns the base-10 logarithm of E (approx. 0.434) 1 3

PI Returns PI (approx. 3.14159) 1 3

SQRT1_2 Returns the square root of 1/2 (approx. 0.707) 1 3

SQRT2 Returns the square root of 2 (approx. 1.414) 1 3

FF: Firefox, IE: Internet Explorer

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X B

ptg

265

MATH O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N FF I E

abs(x) Returns the absolute value of a number 1 3

acos(x) Returns the arccosine of a number 1 3

asin(x) Returns the arcsine of a number 1 3

atan(x) Returns the arctangent of x as a numeric value between -PI/2 and PI/2 radians 1 3

atan2(y,x) Returns the angle theta of an (x,y) point as a numeric value between -PI and PI radians 1 3

ceil(x) Returns the value of a number rounded upwards to the nearest integer 1 3

cos(x) Returns the cosine of a number 1 3

exp(x) Returns the value of Ex 1 3

fl oor(x) Returns the value of a number rounded downwards to the nearest integer 1 3

log(x) Returns the natural logarithm (base E) of a number 1 3

max(x,y) Returns the number with the highest value of x and y 1 3

min(x,y) Returns the number with the lowest value of x and y 1 3

pow(x,y) Returns the value of x to the power of y 1 3

random() Returns a random number between 0 and 1 1 3

round(x) Rounds a number to the nearest integer 1 3

sin(x) Returns the sine of a number 1 3

sqrt(x) Returns the square root of a number 1 3

tan(x) Returns the tangent of an angle 1 3

toSource() Represents the source code of an object 1 -

valueOf() Returns the primitive value of a Math object 1 4

FF: Firefox, IE: Internet Explorer

DATA

ptg

266

R E G E X P O B J E C T

The regular expression object describes a pattern of characters.

Syntax for creating a RegExp object:

var txt=new RegExp(pattern,attributes); or var txt=/pattern/attributes;

pattern specifies the pattern of the regular expression

attributes specifies global (“g”), case-insensitive (“i”), and multiline matches (“m”)

R E G E X P O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

global Specifies if the “g” modifier is set 1 4

ignoreCase Specifies if the “i” modifier is set 1 4

input The string on which the pattern match is performed 1 4

lastIndex An integer specifying the index at which to start the next match 1 4

lastMatch The last matched characters 1 4

lastParen The last matched parenthesized substring 1 4

leftContext The substring in front of the characters most recently matched 1 4

multiline Specifies if the “m” modifier is set 1 4

prototype Allows you to add properties and methods to the object 1 4

rightContext The substring after the characters most recently matched 1 4

source The text used for pattern matching 1 4

R E G E X P O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N FF I E

compile() Change the regular expression 1 4

exec() Search a string for a specified value. Returns the found value and remembers the position 1 4

test() Search a string for a specified value. Returns true or false 1 4

FF: Firefox, IE: Internet Explorer

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X B

ptg

267

S T R I N G O B J E C T M E TH O D S THAT S U PP O RT S R E G U L AR E X P R E S S I O N S

M E TH O D D E S C R I P TI O N FF I E

search() Search a string for a specified value. Returns the position of the value 1 4

match() Search a string for a specified value. Returns an array of the found value(s) 1 4

replace() Replace characters with other characters 1 4

split() Split a string into an array of strings 1 4

R E G E X P M O D I FI E R S

M O D I FI E R D E S C R I P TI O N FF I E

i Perform case-insensitive matching 1 4

g Perform a global match. Find all matches (do not stop after the first match) 1 4

gi Perform a global case-insensitive match. Find all matches (do not stop after the first match) 1 4

m Perform multiline matching 1 4

R E G E X P M O D I FI E R S – P O S ITI O N MATC H I N G

M O D I FI E R D E S C R I P TI O N FF I E

^ Get a match at the beginning of a string 1 4

$ Get a match at the end of a string 1 4

\b Word boundary. Get a match at the beginning or end of a word in the string 1 4

\B Non-word boundary. Get a match when it is not at the beginning or end of a word in the string 1 4

?= A positive look ahead. Get a match if a string is followed by a specific string 1 4

?! A negative look ahead. Get a match if a string is not followed by a specific string 1 4

DATA

R E G E X P M O D I FI E R – C HAR AC TE R C L A S S E S

M O D I FI E R D E S C R I P TI O N FF I E

[xyz] Find any character in the specified character set 1 4

[^xyz] Find any character not in the specified character set 1 4

. (dot) Find any character except newline or line terminator 1 4

\w Find any alphanumeric character including the underscore 1 4

\W Find any non-word character 1 4

\d Find any single digit 1 4

\D Find any non-digit 1 4

\s Find any single space character 1 4

\S Find any single non-space character 1 4

ptg

268 S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X B

R E G E X P M O D I FI E R – LITE R AL S

M O D I FI E R D E S C R I P TI O N FF I E

\0 Find a NULL character 1 4

\n Find a new line character 1 4

\f Find a form feed character 1 4

\r Find a carriage return character 1 4

\t Find a tab character 1 4

\v Find a vertical tab character 1 4

\xxx Find the ASCII character expressed by the octal number xxx 1 4

\xdd Find the ASCII character expressed by the hex number dd 1 4

\uxxxx Find the ASCII character expressed by the UNICODE xxxx 1 4

R E G E X P M O D I FI E R S – R E PE TITI O N

M O D I FI E R D E S C R I P TI O N FF I E

{x} Finds the exact (x) number of the regular expression grouped together 1 4

{x,} Finds the exact (x) or more number of the regular expression grouped together 1 4

{x,y} Finds between x and y number of the regular expression grouped together 1 4

? Finds zero or one occurrence of the regular expression 1 4

* Finds zero or more occurrences of the regular expression 1 4

+ Finds one or more occurrences of the regular expression 1 4

R E G E X P M O D I FI E R S – G R O U P I N G

M O D I FI E R D E S C R I P TI O N FF I E

() Finds the group of characters inside the parentheses and stores the matched string 1 4

(?:) Finds the group of characters inside the parentheses but does not store the matched string 1 4

| Combines clauses into one regular expression and then matches any of the individual clauses.
Similar to “OR” statement

1 4

R E G E X P M O D I FI E R S – B AC K R E FE R E N C E

M O D I FI E R D E S C R I P TI O N FF I E

()\n Back reference. Uses the stored matched string. i.e. from the () modifier 1 4

FF: Firefox, IE: Internet Explorer

ptg

269

S T R I N G O B J E C T

The String object lets you work with text.

Syntax for creating a String object:

var myStr=new String(string);

S T R I N G O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

constructor A reference to the function that created the object 1 4

length Returns the number of characters in a string 1 3

prototype Allows you to add properties and methods to the object 1 4

S T R I N G O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N FF I E

anchor() Creates an HTML anchor 1 3

big() Displays a string in a big font 1 3

blink() Displays a blinking string 1

bold() Displays a string in bold 1 3

charAt() Returns the character at a specified position 1 3

charCodeAt() Returns the Unicode of the character at a specified position 1 4

concat() Joins two or more strings 1 4

fi xed() Displays a string as teletype text 1 3

fontcolor() Displays a string in a specified color 1 3

fontsize() Displays a string in a specified size 1 3

fromCharCode() Takes the specified Unicode values and returns a string 1 4

indexOf() Returns the position of the first occurrence of a specified string value in a string 1 3

italics() Displays a string in italic 1 3

lastIndexOf()

Returns the position of the last occurrence of a specified string value, searching backwards
from the specified position in a string

1 3

link() Displays a string as a hyperlink 1 3

match() Searches for a specified value in a string 1 4

replace() Replaces some characters with some other characters in a string 1 4

FF: Firefox, IE: Internet Explorer

DATA

ptg

270 S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X B

M E TH O D D E S C R I P TI O N FF I E

search() Searches a string for a specified value 1 4

slice() Extracts a part of a string and returns the extracted part in a new string 1 4

small() Displays a string in a small font 1 3

split() Splits a string into an array of strings 1 4

strike() Displays a string with a strikethrough 1 3

sub() Displays a string as subscript 1 3

substr() Extracts a specified number of characters in a string, from a start index 1 4

substring() Extracts the characters in a string between two specified indices 1 3

sup() Displays a string as superscript 1 3

toLowerCase() Displays a string in lowercase letters 1 3

toUpperCase() Displays a string in uppercase letters 1 3

toSource() Represents the source code of an object

FF: Firefox, IE: Internet Explorer

ptg

271

N U M B E R O B J E C T

The Number object is an object wrapper for primitive numeric values.

Syntax for creating a Number object:

var myNum=new Number(number);

Note: If the number parameter cannot be converted into a number, it returns NaN

N U M B E R O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N FF I E

constructor Returns a reference to the Number function that created the object 1 4

MAX_VALUE Returns the largest possible value in JavaScript 1 4

MIN_VALUE Returns the smallest possible value in JavaScript 1 4

NaN Represents “Not-a-number” value 1 4

NEGATIVE_INFINITY Represents a value that is less than MIN_VALUE 1 4

POSITIVE_INFINITY Represents a value that is greater than MAX_VALUE 1 4

prototype Allows you to add properties and methods to the object 1 4

N U M B E R O B J E C T M E TH O D S

M E TH O D D E S C R I P TI O N FF I E

toExponential() Converts the value of the object into an exponential notation 1 5.5

toFixed() Formats a number to the specified number of decimals 1 5.5

toLocaleString()

toPrecision() Converts a number into a number with a specified number of digits 1 5.5

toString() Converts the Number object into a string 1 4

valueOf() Returns the value of the Number object 1 4

FF: Firefox, IE: Internet Explorer

DATA

ptg

A P P E N D I X C

Document

ptg

273

D O C U M E NT O B J E C T

The Document object represents the entire HTML document and can be used to access all elements
in a page. The Document object is part of the Window object and is accessed through the
window.document property.

D O C U M E NT O B J E C T C O LLE C TI O N S

C O LLE C TI O N D E S C R I P TI O N I E F O W 3 C

anchors[] Returns a reference to all Anchor objects in the document 4 1 9 Yes

forms[] Returns a reference to all Form objects in the document 4 1 9 Yes

images[] Returns a reference to all Image objects in the document 4 1 9 Yes

links[] Returns a reference to all Area and Link objects in the document 4 1 9 Yes

D O C U M E NT O B J E C T P R O PE RTI E S

P R O PE RT Y D E S C R I P TI O N I E F O W 3 C

body Gives direct access to the <body> element

cookie Sets or returns all cookies associated with the current document 4 1 9 Yes

domain Returns the domain name for the current document 4 1 9 Yes

lastModifi ed Returns the date and time a document was last modified 4 1 No No

referrer Returns the URL of the document that loaded the current document 4 1 9 Yes

title Returns the title of the current document 4 1 9 Yes

URL Returns the URL of the current document 4 1 9 Yes

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

D O C U M E NT

ptg

274

D O M M E TH O D S – G E T TE R S AN D S E T TE R S

G E T TE R S FO R D O C U M E NT E LE M E NT S

C O D E PU R P O S E N OTE S

document.getElementById(‘id’) Gets the element with the ID ‘id’ myElement=document.
getElementById
(‘menu’)

getElementByTagName(‘tagname’) Gets all the elements with the tag name ‘tagname’ myLinks=getElementBy
TagName(‘a’)

G E T TE R S FO R AT T R I B U TE S AN D TE X T N O D E S

C O D E PU R P O S E N OTE S

node.nodeName Returns the name of the node (the element’s name
or #textNode)

node.nodeValue Returns the type of the node (1=element, 3=text)

node.nodeType Returns the type of the node (1=element, 3=text)

node.getAttribute(‘attribute’) Gets the value of the attribute with the name
‘attribute’

myPicAttribute=node.
getAttribute(‘alt’)

G E T TE R S FO R ADJAC E NT E LE M E NT S

C O D E PU R P O S E N OTE S

node.previousSibling Gets the previous sibling of ‘node’

node.nextSibling Gets the next sibling of ‘node’

node.nodeChildren Creates an array of all child objects of ‘node’

node.fi rstChild Gets the first child of ‘node’

node.lastChild Gets the last child of ‘node’

node.parentNode Gets the parent of ‘node’

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X C

ptg

275

S E T TE R S – C R E ATI N G , I N S E RTI N G AN D D E LE TI N G E LE M E NT S

C O D E PU R P O S E N OTE S

node.setAttribute(‘attribute’,
‘value’)

Sets the value of the attribute with the name
‘attribute’

This method is
unreliable in IE. It’s safer
in all cases to set the
object directly with obj.
property=value

document.
createElement(‘elementName’)

Creates a new element with the name ‘element-
Name’

document.createTextNode(‘Some
text’)

Creates a new text node containing the text
‘Some text’

newNode=node.cloneNode(boolean) Make clone of node in new node, including any
child nodes if boolean=TRUE

node.appendChild(newNode) Appends newNode as last child of node

node.insertBefore(newNode,
oldNode)

Inserts newNode as a new child node of node
before oldNode

node.removeChild(oldNode) Removes child oldNode from node

node.replaceChild(newNoode,
oldNode)

replaces child node newNode of node with node
newNode

element.innerHTML Reads or writes all HTML within the element as a
string, including all child elements

D O C U M E NT

ptg

A P P E N D I X D

Interaction

ptg

277

H TM L A S C I I R E FE R E N C E

ASCII is a 7-bit character set containing 128 characters. It contains the numbers from 0-9, the upper-
case and lowercase English letters from A to Z, and some special characters. The character-sets used in
modern computers, HTML, and Internet are all based on ASCII. The following table lists the 128 ASCII
characters.

A S C I I P R I NTA B LE C HAR AC TE R S

A S C I I C HAR AC TE R K E YC O D E D E S C R I P TI O N

 32 space

! 33 exclamation mark

“ 34 quotation mark

35 number sign

$ 36 dollar sign

% 37 percent sign

& 38 ampersand

‘ 39 apostrophe

(40 left parenthesis

) 41 right parenthesis

* 42 asterisk

+ 43 plus sign

, 44 comma

- 45 hyphen

. 46 period

/ 47 slash

0 48 digit 0

1 49 digit 1

2 50 digit 2

3 51 digit 3

I NTE R AC TI O N

ptg

278

A S C I I C HAR AC TE R K E YC O D E D E S C R I P TI O N

4 52 digit 4

5 53 digit 5

6 54 digit 6

7 55 digit 7

8 56 digit 8

9 57 digit 9

: 58 colon

; 59 semicolon

< 60 less-than

= 61 equals-to

> 62 greater-than

? 63 question mark

@ 64 at sign

A 65 uppercase A

B 66 uppercase B

C 67 uppercase C

D 68 uppercase D

E 69 uppercase E

F 70 uppercase F

G 71 uppercase G

H 72 uppercase H

I 73 uppercase I

J 74 uppercase J

K 75 uppercase K

L 76 uppercase L

M 77 uppercase M

N 78 uppercase N

O 79 uppercase O

P 80 uppercase P

Q 81 uppercase Q

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X D

ptg

279

A S C I I C HAR AC TE R K E YC O D E D E S C R I P TI O N

R 82 uppercase R

S 83 uppercase S

T 84 uppercase T

U 85 uppercase U

V 86 uppercase V

W 87 uppercase W

X 88 uppercase X

Y 89 uppercase Y

Z 90 uppercase Z

[91 left square bracket

\ 92 backslash

] 93 right square bracket

^ 94 caret

_ 95 underscore

` 96 grave accent

a 97 lowercase a

b 98 lowercase b

c 99 lowercase c

d 100 lowercase d

e 101 lowercase e

f 102 lowercase f

g 103 lowercase g

h 104 lowercase h

i 105 lowercase i

j 106 lowercase j

k 107 lowercase k

l 108 lowercase l

m 109 lowercase m

n 110 lowercase n

o 111 lowercase o

I NTE R AC TI O N

ptg

280

A S C I I C HAR AC TE R H TM L E NTIT Y C O D E D E S C R I P TI O N

p 112 lowercase p

q 113 lowercase q

r 114 lowercase r

s 115 lowercase s

t 116 lowercase t

u 117 lowercase u

v 118 lowercase v

w 119 lowercase w

x 120 lowercase x

y 121 lowercase y

z 122 lowercase z

{ 123 left curly brace

| 124 vertical bar

} 125 right curly brace

~ 126 tilde

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X - APPE N D I X D

ptg

281

JAVA S C R I P T E V E NT R E FE R E N C E

Events are normally used in combination with functions, and the function will not be executed before
the event occurs.

E V E NT HAN D LE R S

New to HTML 4.0 was the ability to let HTML events trigger actions in the browser, like starting a
JavaScript when a user clicks on an HTML element. Below is a list of the attributes that can be inserted
into HTML tags to define event actions.

AT T R I B U TE TH E E V E NT O C C U R S W H E N . . . FF N I E

onabort Loading of an image is interrupted 1 3 4

onblur An element loses focus 1 2 3

onchange The user changes the content of a field 1 2 3

onclick Mouse clicks an object 1 2 3

ondblclick Mouse double-clicks an object 1 4 4

onerror An error occurs when loading a document or an image 1 3 4

onfocus An element gets focus 1 2 3

onkeydown A keyboard key is pressed 1 4 3

onkeypress A keyboard key is pressed or held down 1 4 3

onkeyup A keyboard key is released 1 4 3

onload A page or an image is finished loading 1 2 3

onmousedown A mouse button is pressed 1 4 4

onmousemove The mouse is moved 1 6 3

onmouseout The mouse is moved off an element 1 4 4

onmouseover The mouse is moved over an element 1 2 3

onmouseup A mouse button is released 1 4 4

onreset The reset button is clicked 1 3 4

onresize A window or frame is resized 1 4 4

onselect Text is selected 1 2 3

onsubmit The submit button is clicked 1 2 3

onunload The user exits the page 1 2 3

FF: Firefox, N: Netscape, IE: Internet Explorer

I NTE R AC TI O N

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X282

Index
\ (backslash), 33
 ! (NOT) operator, 41, 235, 236, 238
=, ==, or === (equals) operators, 40
!== (negative version of ===), 41
: (colon), object literals, 62
&& (AND) operator, 41
|| (OR) operator, 41–42
+ (plus) operator, 42–43

A

absolute property, 213
accessibility

Americans with Disabilities Act, 6
ARIA (accessible rich interface applications)

W3C initiative, 7
catalog project, 161–162
JavaScript

availability, 5–6
and HTML and PHP, 6–7

Accessible Ajax, 7
Accordion, 191–192

jQuery, 192–194
Spry, 194–195

Adaptive Path, 134
addClass function, 91
addEvent function, 97

load event, 99–101
testing Microsoft’s attachEvent method, 95–96

addEventListener method, 94
W3C event model, 94

versus Microsoft’s event model, 95
addHighlight function, field focuses, 101–102, 104
addLoadEvent function, 98
addOption function, 182–184
addStripes function, 83
addStyle function, 76
Adobe Fireworks, 227
Adobe Spry

accordion, 194–195
highlighting, 197
tabs, 202

Adobe Spry framework, 190
downloading, 185, 195
interface components, 181

:after CSS pseudo-class, 11
Ajax, 4

Accessible Ajax, 7

advantages/disadvantages, 135
asynchronous/synchronous, 134–135
client- versus server-side applications, 5
communication with server

Ajax model, 137–138
HTTP traditional model, 137
XHR (XMLHttpRequest) object, 137

Content Delivery Network, 193
data movement, 23
JavaScript, 22–23, 135
JSON (JavaScript Object Notation), 135, 149
plain text, 135, 149
RIA components, 191
screen reader problems, 161
XHR (XMLHttpRequest) object, 139–144

communication with server, 137
HTTP status 404—Page Not Found message, 141
wrapper functions, 139–140

XML, 135, 149
ajax element, 229–230
ajax_request.html, 138
Ajax.Request object, 188, 196–197
alert JavaScript function, 27
altKey property, 103
Americans with Disabilities Act, 6
AND (&&) operator, 41
animation effects 191
anonymous functions, 53–55
API Playground link, Google Ajax Libraries API page, 193
appendChild method, 75
arguments and functions, 53
ARIA (accessible rich interface applications) W3C

initiative, 7
arrays

associative, 36–37
creating, 35
elements, 35–36
indexing, 35
sorting, 36

array syntax, 58
arrow buttons, 226, 228
Aslett Clearing technique, 157, 224
associative arrays, 36–37
Asynchronous JavaScript and XML. See Ajax
asynchronous/synchronous communication, 134–135
asyncRequest method, 189
attribute selector, 18
attachEvent method, Microsoft’s event model, 95-96

versus W3C event model, 95
Author Carousel project, 172, 209–211

JavaScript, 222–223
Nifty Corners function, 223–224

ptg

283I N D E X

jQuery Tools
Carousel, 207
downloading, 211
Overlay, 207–208, 228–230
Scrollable, 211

JSON files
author data, 210
parsing with JavaScript, 230–233
PHP functionality, 216–217

navigation
arrow buttons, 226, 228
click responses, 219–222
image sprites, 227
mouse wheel, 226
scrollbars, 214–215, 224–228

PHP functionality, 215
click responses, 219–222
JSON files, 216–217
writing HTML, 217–219

styling, 211, 213–214
$authorInfo array, 219
AutoComplete Control, 208–209, 238, 240, 241, 243–245,

250
AutoComplete project

CSV (comma separated value) text files, 234, 237–238
getlocations.php, 237–238
index.php file, 234–237
searchform.php file, 239–248
search results.php file, 248–250
showlocation.php file, 245–248
YUI Loader, 241–242

B

back method, 59
Backpack application, 37signals, 195
backslash (\), 33
Basecamp application, 37signals, 195
:before HTML tag, 11
blur events, 91–92

addEvent function, 109–110
checkHighlight function, 104–105
removeHighlight function, 101–102

body HTML tag, 10, 11
Booleans, 34
border attribute, 80
Breadcrumbs design pattern, 202
break statements, 46
browser event handlers, 91
browser events, 91
Bulletproof Ajax, 7, 69

C

C#, 21
C++, hash tables, 163
calling/callback functions, 145

state maintainence, 146–149
cancelClick function, 156, 158–159
capturing phase, events, 112
Carousel design pattern, 207, 212. See also Author Carousel

project
case sensitivity, variables, 30
case statements, 46
catalog project

accessibility, 161–162
Ajax, 155–160
highlighting tabs

JavaScript, 160–161
PHP, 154–155
relative positioning, 155

JSON, 164–167
PHP templates, 150–154

highlighting tabs, 154–155
Sajax, 172–177
XML, 167–172

cbReadFile function, 145–146
cbValidateEmail function, 175
chaining, 181, 186–187, 194
character escapes, 33
characters, text fields

limiting, 123–124
message display, 124–127

highlighting upon limits, 129
monitoring, 127–129

checkEventSource function, 115–116, 118
checkfield function, 125–128, 130
child nodes, 11

HTML, 11
choice class, 154–155, 160–161
circleMath object, 62
class attribute, 157
classes, 78
clearfix class, 152, 157, 224
click event handler, 194
click event listener, 229
click responses, 219–222
close class, 232
closure tutorial link, 67
code

indenting, 10–11, 17
malicious code, 17
refactoring, 85–87

Codin’ for the Web, 11, 203

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X284

colors
backgrounds, 102
hexadecimal (base 16) numbers, 34
highlighting

backgrounds, 114
and bold, 244

rollovers, 114, 226–227
comments, 29
comparison operators

if-then-else, 39, 222
true or false, 39

Compatibility Tables at QuirksMode Web site, 68
concatenation, 42–43
conditional loops, 47
connectWith property, 200
Content Delivery Network, 193
contentReady event, 187
counter loops, 47, 85
Crockford, Douglas, 29

JavaScript lectures, 185
Module pattern, 185

cross-site scripting attacks. See XSS
CSS (Cascading Style Sheets)

declarations, 17–18
DOM (Document Object Model) nodes, 9, 17, 22, 60
external style sheets, 18
format, 17–18
forms, 9, 20
overflow, 214
presentational styles, 18
properties, 19
relative positioning, 155

cssFloat property, 77
CSS Tricks Web site, 214
CSV (comma separated value) text files, 149, 234
ctrlKey property, 103
curly quote marks, strings, 32
$current array, 246
currentTarget property, 103

D

data types, variables
arrays, 34–37
Booleans, 34
numbers, 34
strings, 32–34
typeof operator, 35

debugging tools, elements as, 113–114
Design Fast Websites video, 227
Designing Interfaces, 97
design patterns, 97

Carousel, 207

Module, 185
Overlay, 207–208, 228–230
Tooltip, 207

Design Patterns: Elements of Reusable Object-Oriented
Software, 97

detachEvent method, Microsoft’s event model, 95
DevArticles Web site, 17
display ID, 145
displayMsg function, 125–127, 130–131
div elements

jQuery framework, 187
ID attribute, 69

Prototype framework, 189
div HTML tag, 10, 11
div.scrollable element, 213, 214–215
div.thumbContainer element, 213
div#thumbs element, 213, 214
document.getElementById, 180, 186
Document Object, 59–60
Document Object Model. See DOM
$(document).ready event versus onload function, 187
document.write method, 47
Dojo and accessiblity, 7
DOM (Document Object Model)

accessing with Document Object, 59
CSS (Cascading Style Sheets), 9, 17, 21, 60
element attributes, 75–76
HTML elements, 68–69
nodes, 6, 8, 68

hierarchy, 11
scripting 21, 68
traversing DOM, 118–119
XML, 68

dot syntax, 58
double operators, 38
double quote marks, strings, 32
Douglas, Danny, 180
doValidate function, 91, 95
do…while loops, 48
drag-and-drop, 97, 197–198

jQuery, 199–200
Prototype, 198–199

dropOnEmpty Boolean property, 199

E

elements
attributes, 74–76
classes, 76–78
creating new, 74–75
if statement, 72
text, 71–77

encapsulation, 67

ptg

285I N D E X

e.preventDefault function, 158
e parameter, 103–104
equals (=, ==, or ===) operators, 40

!== (negative version of ===), 41
Error Console, Firefox, 33, 62, 147
error messages, 33
eval method, 163
evaluation, 33
event bubbling, 95, 112, 122

event delegation, 114
mouseover events, 116, 118
W3C support, 113

event capturing, 112, 126
W3C support, 113

event delegation, 112–116
event handlers

inline, 91–93, 144
as object properties, 93
pseudo protocol, 90

event listeners
adding at page load, 99–103
event models

Microsoft, 95
W3C, 94–95

target element, 94
event object properties

Microsoft browsers, 103–104, 105–111
OR operator, 106
W3C browsers, 103–104
Web sites, 103–104

event propagation, 111
events, 55
exponentials, 34

F

Façade design pattern, 97, 181
false values

Booleans, 34
comparison operator, 39

file access, 17
filter_input method, 246
Firebug, xvi
Firefox Web Developer toolbar,xvi, 161
Firefox Error Console, 33, 62, 147
float CSS property, 77
floating-point numbers, 34, 62
focus events, 92

addEvent function, 109–110
addHighlight function, 101–102
checkHighlight function, 104–105

fonts, 19
fontWeight property, 77

for HTML tag, 8
for loops, 48–50, 84

iteration, 83
formatResult method, 243
form event handlers, 91
form events, 91
form HTML tag, 10, 11
forms

CSS (Cascading Style Sheets), 9, 20
HTML, 9
with PHP, 11–16
PHP, 9

for statements, 76
frameworks, 71

Adobe Spry, 190
downloading, 185, 195
interface components, 181

advantages, 180–181
Ajax, 138
cross-browser problems, eliminating, 181
jQuery, 71

accessiblity, 7
accordion, 192–194
Ajax, 187–188
chaining, 181, 186–187, 194
downloading framework and UI, 185
drag-and-drop, 199–200
jQuery namespace, 186
jQueryUI, 180
$ namespace, 181, 186
.ready method, 98
tabs, 201–202

Prototype, 185, 188–189
classes, 181
drag-and-drop, 198–199
highlighting, 196
$ namespace, 186
polymorphism, 181
Scriptaculous, 180, 185

Sajax (Simple Ajax Framework), catalog project, 172–177
selecting

considerations, 181–182
Web sites, 181

Web sites, 180
widgets, 180
Yahoo! User Interface (YUI), 180, 189–190

accessiblity, 7
AutoComplete Control, 208–209, 233, 238–250
DOM collection, 233
Event utility, 233
Global Core, 233
Web sites, 185, 233
Yahoo! Maps API, 209, 233–234, 245–246, 248

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X286

Yahoo! User Interface (continued)
GPSVisualizer, 234
Web site, 248

fromElement property, 103
functions

arguments, 53
callback functions, 145
calling functions, 51–53, 145
scope, 147–148
format, 50–53
function literals, 51
versus methods, 64–65
object literals, 62
parameters, 53
scope

calling functions, 147–148
namespaces, 182

state maintenance, 146–149

G

Gamma, Erich, 97
garbage collection, 51
Garrett, Jesse James, 134, 135
$_GET array, 152–153, 221, 237, 238
getElementById method, 59–60, 180

event listeners, 102
table element, 117

getElementByTagName method, 82–84
getJSON method, 232
GET method, 136, 142–143
get method, 186, 190
$.get method, 186–188
getters and setters, 69
getTheTables function, 81–83, 86
getTheTablesToStripe function, 80–81
global scope

namespaces, 182–184
variables, 31, 51, 182

pseudo-global, 184–185
Google

AutoComplete, 208
Content Delivery Network, 193

Google Ajax Libraries API page, API Playground link, 193
google.load method, 193
GPSVisualizer, 234
Guitar object

creating, 63–64
describeGuitar method, 64–65
guitarName property, 64–65
theBrand parameter, 66
theModel parameter, 66

theName parameter, 66
this keyword, 64

guitarToHTML function, 164

H

hash tables. See maps, JavaScript
.head class, 194
Heilmann, Chris, vii, 206

simpleXHR.js, 138
Helm, Richard, 97
hexadecimal (base 16) numbers, 34
hierarchial relationships, HTML, 9–10

DOM (Document Object Model), 59
highlight class, 244
highlighting, 195–196

Prototype, 196
Spry, 197
tabs

JavaScript, 160–161
PHP, 154–155
relative positioning, 155

text fields
color and bold, 244
limited characters, 129, 131

37signals, 195
zebra table rollovers, 120–122

Highlight object, 197
hilite class, 115, 161

target events, 120–122
text field limits, 129, 131

:hover pseudo-class, 226–227
href, cancel action, 158
HTML

accessibility, 161–162
Ajax, 135, 149
DOM, 8–9, 10
forms, with PHP, 11–16
versus JavaScript, accessibility, 6–7
linking CSS style sheets to, 18
Web sites

quick reference listing, 8
tutorial, 8

writing guidelines, 8–9
HTML elements, 8

attributes, 9
child nodes, 11
hierarchial relationships, 9–10
indenting code, 10–11
nested tags, 10–11
text, 9
white space, 9

ptg

287I N D E X

HTTP (HyperText Transfer Protocol)
communication with server

Ajax model, 137–138
traditional model, 137

GET method, 136
POST method, 136

I

ID attribute, 69
ID=”sign-up” HTML tag, 11
IE (Internet Explorer), Versions 6, 7, 8. See also Microsoft

browsers
DOM (Document Object Model), 68
event objects

capturing phase, 113
delegation, 113

setAttribute method, 77
white space, 69

if statements, 46
elements, checking existence, 72, 229
field updates, 128
versus switch statements, 105

if-then-else comparison, 39, 222
image property, 166
image sprites, 227
important_links class, 77
indexed arrays, 35
index property, 221
init function, 99–103
inline event handlers, 91–93, 144
innerHTML property, 60
input HTML tag, 8, 10, 11
insertAfter function, 75
instances of objects, 63–67
integers, 34
Internet Explorer. See IE
itemSelectEvent function, 244–245
iteration, 46, 49

for loops, 83

J

Java
compiling code, 21
versus JavaScript, 21

JavaScript
accessibility, 5–6

versus HTML and PHP, 6–7
Ajax transactions, 22–23
client- versus server-side applications, 5
comments, 29
DOM (Document Object Model) nodes, 9

evaluation, 33
formatting, 28
functions, 50–55
iteration, 46, 49
versus Java, 21
loops, 46–50
maps, 163
methods versus functions, 64–65
name syntax, 65
Nifty Corners function, 223–224
numbers, 34
object-oriented code, 21
objects

advantages, 58
array syntax, 58
closure, 67
dot syntax, 58
predefined, 58–60
user-defined, 58, 60–63

procedural code, 21
pseudo protocol, 90
scripting languages, 21
scripts, 28
“setness” test, 43–45
statements, 28

switch, 45–46
variables, 30–31

JAWS screen reader, 161
Johnson, Ralph, 97
jQuery framework, 71

accessiblity, 7
accordion, 192–194
Ajax, 187–188
chaining, 181, 186–187, 194
downloading framework and UI, 185
drag-and-drop, 199–200
jQuery namespace, 186
jQuery UI, 180
$ namespace, 181, 186
.ready method, 98
tabs, 201–202

jQuery object, 229
jQuery Tools

API, 229
Author Carousel project, 211
Carousel, 207
downloading, 211
Overlay, 207–208, 228–230
Scrollable, 211, 225

jQuery UI, 180, 186, 187, 193
downloading, 185

JSMin, Web site, 29

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X288

JSON (JavaScript Object Notation), 162–163
Ajax, 135, 149
Author Carousel project

author data, 210
parsing with JavaScript, 230–233
PHP functionality, 216–217

catalog project, 164–167
json.js function, 163–167
Juicy Studio Web site, 161

K

Keith, Jeremy, 7, 69
keyboard event handlers, 91
keyboard events, 91, 122–123
keyCode ASCII value, 103
keyCode property, 103
keydown events, 122–123
keypressed events, 122
keyup events, 122–123, 125–127, 130
Koch, Peter-Paul, 106

addLoadEvent function, 98
event object properties, 103

OR operator, 106
mouse coordinates, 122

L

label HTML tag, 8, 10, 11
Lemon, Gez, 161
length method, 82
li elements, 186
limitChars function, 124–127, 130–131
line breaks, 28
linkClicked function, 156–158
listItem function, 171
li tags, 154–155
load event, 81
adding event listeners, 99–103
onload event handler, 97–99
load method, 232
loadURL function, 190
local scope
functions, 147
variables, 51, 182
Location Finder project. 233
location, window method, 245
loops, 46

conditional loops, 47
counter loops, 47, 85
double operators, 38

do…while loops, 48
for loops, 48–50
while loops, 47

M

malicious code, 17
maps, JavaScript, 163
margins, 19
Markus, Austin, vii, 206
math operators, 38
MC2 Design Web site, 216
measurement units, 20
method attribute, 136
methods

versus functions, 64–65
name syntax, 65
object literals, 62
object scope, 67

Microsoft browsers. See also IE (Internet Explorer), Versions
6, 7, 8

ActiveXObject function, 140
addEvent function (W3C)

versus Microsoft’s detachEvent method, 95
testing Microsoft’s attachEvent method, 95–96

addEventListener method (W3C), versus Microsoft’s
attachEvent, 95

event object, 105–111
properties, 103–104

removeEventListener method (W3C), versus Microsoft’s
detachEvent model, 95

XHR (XMLHttpRequest) object, 138
minifying tools, 29
Miraglia, Eric, 185
Module pattern, 185
mouse coordinates, 122
mouse event handlers, 91
mouse events, 91

zebra tables, 114
mouseleave event, 115
mouseout events, 114–116

onmouseout event handlers, 91
targets, adding/removing, 120–122

mouseover events, 114–116
checkEventSource function, 118
onmouseover event handlers, 91
targets, adding/removing, 120–122

mouse wheel, 223, 226
multiline comments, 29
multiline text fields, 123–124
multiple undos, 97

ptg

289I N D E X

N

name attribute, 136
$ namespace, 181

chaining, 194
versus jQuery namespace, 186

namespaces
function name problems, 184
global scope, 182–184

pseudo-global, 184–185
$ namespace

chaining, 194
jQuery, 181, 186
Prototype, 186

Web sites, 184
nested HTML tags, 10–11
new, constructor function, 65
Nifty Corners function, 223–224
NOT (!) operator, 41, 235, 236, 238
numbers, 34
Nyman, Robert, 184

O

object literals, 37
formatting, 62–63

JSON g, 162
JSON (JavaScript Object Notation), 135
scope, 147–148
state maintenance, functions calls, 146–149
testing, 62
user-defined objects, 60–63
Web sites, 181

objects
advantages, 58
array syntax, 58
closure, 67
dot syntax, 58
encapsulation, 67
event handlers as object properties, 93
instances, 63–67

scope, 67
predefined, 58–60
scope (See local scope, variables)
user-defined, 58, 60–63

octal (base 8) numbers, 34
.odd class, 81, 83–84
onblur event handler, 91
onchange event handler, 91
onchangesstateready event handler, 143
onclick event handler, 55, 90

mouse events, 91

as object property, 93
onsubmit event handler, 147

onClose method, 228
ondblclick event handler, 91
onerror event handler, 91
onFailure function, Prototype, 189
onfocus event handler, 91
onkeydown event handler, 91
onkeypress event handler, 91
onkeyup event handler, 91
onload event, 156
onload event handler, 97–99

browser events, 91
as object property, 93
problems, 98
tables, zebra, 78, 80–83, 86

onload function versus $(document).ready event, 187
onmousedown event handler, 91
onmouseout event handler, 91
onmouseover event handler, 91
onmouseup event handler, 91
onreadystatechange event handler, 141–142, 144
onreset event handler, 91
onselect event handler, 91
onsubmit event handler

form events, 91
versus onclick event handler, 147

onSuccess function, Prototype, 242
onunload event handler, 91
open method, 140, 142–143
operators

AND (&&), 41
comparison

if-then-else, 39, 222
true or false, 39

double, 38
equals (=, ==, or ===), 40
math, 38
NOT (!), 41, 235, 236, 238
OR (||), 41–42, 106
plus (+), 42–43
typeof data type, 35

OR (||) operator, 41–42
event object properties, 106

Overlay design pattern, 207–208, 228–230
overlay method, 228

P

pan controls, 247
parameters, functions, 53
parseFlaot method, 42
parseInt method, 42–43

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X290

Persist Features, Firefox Web Developer toolbar, 161
PHP

accessibility, 7
forms, 9

incorrect field entry and user prompt, 16
processing, step-by-step

code, 13–15
tasks list, 12

scripting languages, 21
plain text, Ajax, 135, 149
plus (+) operator, 42–43
polymorphism, 181
pop method, 82
POST method, 136, 142–143
post method, 190
ppk on JavaScript, 122
predefined objects, 58

Document Object, 59–60
Window Object, 59

procedural code, 21
programming languages versus scripting languages, 21
progressive enhancement

appearance, 7
experience enhancement, 7
functionality, 7

properties
CSS (Cascading Style Sheets), 19
object literals, 62
object scope, 67

Prototype framework, 185, 188–189
classes, 181
drag-and-drop, 198–199
highlighting, 196
$ namespace, 186
polymorphism, 181
Scriptaculous, 180
downloading framework and UI, 185

Prototype property tutorial link, 65
pseudo-global scope, 184–185
pseudo protocol, 90
push method, 82

Q

queryMatchContains property, 243
Quirksmode Web site

event object properties, 103
mouse coordinates, 122

quote marks, strings, 32

R

readFile function, 144–146, 159–160
read/write file access, 17
ready event, 187
.ready method, jQuery framework, 98
readyState property, 140–144
refactoring code, 85–87
Reindel, Brian, 181
relatedTarget property, 103
relative property, 213
rel attribute, 229
removeElement function, 184
removeEventListener method, W3C event model, 95

versus Microsoft’s event model, 95
testing Microsoft’s removeEvent, 96

removeHighlight function, field blurs, 101–102, 104
request method, Ajax, Prototype 188
Resig, John, 69
responseText property, 141, 143–144, 168
responseXML property, 168–169
return keyword, 53
RIAs (Rich Interface Applications), 4

Accordion, 191–192
jQuery, 192–194
Spry, 194–195

appearance, 7
capabilities, 191
client- versus server-side applications, 5
drag-and-drop, 197–198

jQuery, 199–200
Prototype, 198–199

experience enhancement, 7
functionality, 7
highlighting, 195–196

Prototype, 196
Spry, 197

tabs, 200–201
jQuery, 201–202
Spry, 202

rollovers
color changes, 226–227
sprites, 227
zebra tables, 113–114

DOM, traversing, 118–119
event delegation, 114–116
highlights, 120–122
mouse events, 114
target elements, 116–118

Rounded Corners plug-in, 223–224

ptg

291I N D E X

S

Sajax (Simple Ajax Framework), 172–177
sajax_export function, 175
sajax_show_javascript functions, 175
scandir method, 217
scope

objects, 67
variables

global, 31, 51, 182
local, 51, 182
pseudo-global, 184–185

screen readers, 161
Scriptaculous, 180, 185
script HTML element, 27, 28

frameworks, 185
warning, 30

scripting versus programming languages, 21
scripts, 28
scrollable class, 225–226
Scrollable component, 211, 225
scrollbars, 214–215, 224–228
search property, 157
security and XSS (cross-site scripting) attacks, 17, 216, 245

filenames versus array numerical value, 219
selectors, 17–18
semicolons, 28
send method, 140–143
setAttribute method, 75, 76

Internet Explorer (Versions 6), 77
“setness” test, 43–45
setRequestHeader method, 143
setTabs function, 160
setters. See getters and setters
setUpFieldEvents function

input tags, 108–109
onload event handler, 100–101

setup method, 125
shiftKey property, 103
showLocations element, 246
sign-up form, 10
Simple Ajax Framework. See Sajax
simpleXHR.js, 138
single-line comments, 29
single quote marks, strings, 32
sliding panels. See accordion
sort method, 36, 82–84
SpriteGen Web site, 227
sprites, 227
Spry (Adobe)

accordion, 194–195
highlighting, 197
tabs, 202

srcElement property, 103
start method, 197
state maintainence, 146–149
statements, 28
straight quote marks, strings, 32
String object methods, 149
strings, 32–34
striped tables. See zebra tables
stripe_table class, 78, 81–83

removing names from table rows, 114
stripeTable object, 85–87
strong tag, 244
Stylin’ with CSS, 203

clearfix class, 152, 224
CSS and HTML, 17
division elements with IDs, 69
Nifty Corners function, 223

substring method, 127
success function, 189
Sullivan, Nicole, 227
switch statements, 45–46

versus if statements, 105
synchronous/asynchronous communication, 134–135

T

table element
getElementById method, 117
stripe_table class, 78

tables. See zebra tables
tabs, 200–201

jQuery, 201–202
Spry, 202

tags variable, 166–167, 232
target property, 103–104
tbody tag, 79, 84
textarea text field, 123–124
text fields

characters
limiting, 123–124
monitoring, 127–129

message display, 124–127
highlighting upon limits, 129

“text/javascript” HTML type attribute, 27
thead tag, 79
theField object, 128
theList variable, 172
theMaxChars property, 124–126, 130–131
theText object, 128
theURL variable, 159
37signals, highlighting, 195
this keyword, 229
thumbs/thumbnails, 213

ptg

S C R I P TI N ’ W ITH JAVA S C R I P T AN D A JA X292

Tidwell, Jenifer, 97
toElement property, 103
toFixed method, 62
toLowerCase String method, 119
Tooltip design pattern, 207
traversing DOM, 118–119
true values

Booleans, 34
comparison operators, 39

Turnbull, Dave, 223
type HTML attribute, 27, 40
typeof operator, 35
type property, 103–105

U

ul element, 156, 158–159
undo, multiple undos, 97
url property, 166
user-defined, 58
user-defined objects, 60–63

V

validateEmail function, 175–176
variables

case sensitivity, 30
data types, 31

arrays, 34–37
Booleans, 34
numbers, 34
strings, 32–34

declaring, 31
naming, 30
scope, 31

global, 31, 51
local, 51
pseudo-global, 184–185

values, 31
var keyword, 30–37
verifyEmail function, 175–176
Vlissides, John, 97

W

W3C (World Wide Web Consortium) browsers, 6
addEvent function

versus Microsoft’s detachEvent method, 95
testing Microsoft’s attachEvent method, 95–96

addEventListener method versus Microsoft’s attachEv-
ent, 95

ARIA (accessible rich interface applications) initiative, 7
DOM (Document Object Model), event listeners, 94

e.preventDefault function, 158
event objects

capturing and bubbling phases, 113
properties, 103–104

XMLHttpRequest function, 138, 140
Web Developer toolbar, xvi, 161
Web 2.0, definition, Wikipedia, 4
Web sites

accessibility (See accessibility)
Adobe Spry

downloading, 195
effects demo, 191

Ajax, 134
buffer reader updates, 161

animation effects, 191
Breadcrumbs design pattern, 202
Compatibility Tables at QuirksMode, 68
CSS Tricks, 214
Design Fast Websites video, 227
design patterns

Carousel, 207
Module, 185

event object properties, 103
frameworks, 180
downloading, 185

selecting, 181
getters and setters, 69
Google Ajax Libraries API page, API Playground link, 193
GPSVisualizer, 234
HTML

quick reference listing, 8
tutorial, 8

JavaScript lectures, 185
JAWS screen reader, 161
jQuery/jQuery UI, downloading, 185
jQuery Tools

API, 229
Carousel, 207, 212
downloading, 211
Scrollable, 211

JSMin, 29
mouse coordinates, 122
namespaces, 184
object-oriented programming, 181
Prototype, 185
Rounded Corners plug-in, 223–224
Scriptaculous, 185
security

DevArticles, 17
MC2 Design, 216

SpriteGen, 227
Spry (Adobe), 185
XHR (XMLHttpRequest) object, 142

ptg

293I N D E X

Yahoo! User Interface (YUI)
downloading, 185
Get Started section, 233
graded browsers, 239
Yahoo! Maps API, 248

while loops, 47
white space

HTML, 9
HTML text elements, 68–69

window.event property, 103, 105–111
window.location, 245
Window Object, 59
window.onLoad property, 98, 99
Windows browsers. See Microsoft browsers
Wizard, 97
World Wide Web Consortium. See W3C
write file access, 17

X

x and y mouse coordinates, 122
XHR (XMLHttpRequest) object, 22–23

Ajax, 139–144
communication with server, 137

responseXML property, 168–169
simpleXHR.js, 138
Web sites, 142

XML
Ajax, 135, 149
catalog project, 167–172
DOM (Document Object Model), 68

XMLHttpRequest object. See XHR
XMLTagAsHTMLTag function, 171
XSS (cross-site scripting) attacks, 17, 245

filenames versus array numerical value, 219

Y

Yahoo! Content Delivery Network, 193
Yahoo! Design Pattern Library, 207
Yahoo! Maps API, 209, 233–234, 245–246

Web site, 248
GPSVisualizer, 234

Yahoo! User Interface (YUI) framework, 180, 189–190
accessiblity, 7
AutoComplete Control, 208–209, 233, 238, 240, 241,

243–245, 248, 250
DOM collection, 233
Event utility, 233
Global Core, 233
Web sites

downloading, 185
Get Started section, 233

Yahoo! Maps API, 209, 233–234, 245–246, 248
GPSVisualizer, 234
Web site, 248

YUI Loader, 241–242

Z

zebra tables, 78–85
rollovers, 113–114
DOM, traversing, 118–119
event delegation, 114–116
highlights, 120–122
mouse events, 114
target elements, 116–118

zoom controls, 247

ptg

This page intentionally left blank

ptg

Designing with Web Standards,
Third Edition
Jeffrey Zeldman
ISBN: 0321616952, $49.99
480 pages, September 2009

Web Anatomy: Interaction Design
Frameworks that Work
Robert Hoekman, Jr. and Jared Spool
ISBN: 0321635027, $44.99
336 pages, September 2009

Mastering CSS with
Dreamweaver CS4
Stephanie Sullivan and Greg Rewis
ISBN: 0321605039, $49.99
368 pages, December 2008

Designing for Interaction,
Second Edition: Creating
Innovative Applications
and Devices
Dan Saffer
ISBN: 0321643399, $45.00
264 pages, August 2009

Content Strategy for the Web
Kristina Halvorson
ISBN: 0321620062, $24.99
192 pages, August 2009

Scriptin’ with JavaScript and
Ajax: A Designer’s Guide
Charles Wyke-Smith
ISBN: 0321572602, $44.99
312 pages, August 2009

Handcrafted CSS: More
Bulletproof Web Design
Dan Cederholm with Ethan Marcotte
ISBN: 0321643380, $39.99
288 pages, July 2009

Modular Web Design: Creating
Reusable Components for
User Experience Design
and Documentation
Nathan Curtis
ISBN: 0321601351, $44.99
360 pages, June 2009

Speaking in Styles: Fundamentals
of CSS for Web Designers
Jason Cranford Teague
ISBN: 0321574168, $44.99
360 pages, June 2009

For a complete list of books and videos visit:

newriders.com

VOICES THAT

 MATTER

	Contents
	Introduction
	CHAPTER 1: JAVASCRIPT COMES OF AGE
	Accessibility and Progressive Enhancement
	Three Steps to Progressive Enhancement
	1. Make It Functional
	2. Make It Look Good
	3. Enhance the Experience with JavaScript and Ajax

	Summary

	CHAPTER 2: JAVASCRIPT BASICS
	Running the Code Examples
	Hello, JavaScript

	Scripts, Statements, and Comments
	Scripts
	Statements
	Comments

	Data and Ways to Store It
	Variables
	Strings
	Numbers
	Booleans
	Arrays

	Code that Acts on Data
	Operators
	Loops and Iterating Over Data
	Functions

	Summary

	CHAPTER 3: OBJECTS AND THE DOM
	Objects
	Predefined JavaScript Objects
	User-created Objects
	Objects and Instances

	DOMinating the Document
	Getting Around the DOM
	Get, Set...DOM!
	Modifying Element Styles
	Zebra Tables
	Refactoring the Code

	Summary

	CHAPTER 4: EVENTS
	Techniques to Handle Events
	JavaScript Pseudo Protocol
	Inline Event Handler
	Handler as Object Property
	Event Listeners

	The First Event: load
	Adding Event Listeners on Page Load

	The Event Object
	The Event Object’s Type Property
	The Event Object in Microsoft Browsers

	The Secret Life of Events
	Capturing and Bubbling
	Event Delegation

	Striped Table with Rollovers
	Using an Element as a Debugging Tool
	Mouse Events
	Event Delegation
	Determining the Target Element
	Traversing the DOM
	Adding the Highlight

	The Up and Down Life of Keys
	Text Fields with Character Limits
	Setting Up the Message Display
	Monitoring the Character Count
	The Finished Code

	Summary

	CHAPTER 5: AJAX
	Understanding Ajax
	Ajax by the Letters
	Communication with the Server
	The XMLHttpRequest Object
	How to Use the XMLHttpRequest (XHR) Object
	Using the Ajax Function
	Using an Object Literal to Maintain State Through an Ajax Call
	Ajax and Data Formats

	Creating a Simple Catalog
	Using PHP Templates
	An Ajax-ready Page
	Adding Ajax Functionality to the Catalog
	An Accessible Catalog
	Working with JSON
	The Guitar Catalog Using JSON
	Using XML

	Using Sajax—the Simple Ajax Framework
	Summary

	CHAPTER 6: FRAMEWORKS
	About Frameworks
	Advantages of Frameworks
	Considerations When Using a Framework

	Namespacing
	Pseudo-global Variables
	Ajax Implementation in Four Frameworks
	jQuery Namespace
	Prototype
	Yahoo! User Interface (YUI)
	Adobe Spry

	RIA Components
	Accordion with jQuery and Spry
	Highlight with Prototype and Spry
	Drag-and-drop with Prototype and jQuery
	Tabs with jQuery and Spry

	Summary

	CHAPTER 7: TWO SIMPLE WEB APPLICATIONS
	About the Projects
	An Image Carousel
	A Location Finder with AutoComplete

	Building the Author Carousel
	Styling the Carousel
	Managing the Scrollbar
	The PHP Backend
	Layering on the JavaScript
	Implementing the Carousel Interactions
	Implementing the Overlay
	Parsing the JSON with JavaScript

	AutoComplete and Maps with the Yahoo! API
	The Location Data
	The Project Template—index.php
	The Search Form Script—searchform.php
	Implementing Search Without JavaScript—searchresults.php

	Summary

	APPENDIX: A
	APPENDIX: B
	APPENDIX: C
	APPENDIX: D
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

