

Supercharged JavaScript Graphics

Supercharged JavaScript Graphics

Raffaele Cecco

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Supercharged JavaScript Graphics
by Raffaele Cecco

Copyright © 2011 Raffaele Cecco. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Holly Bauer
Copyeditor: Rachel Monaghan
Proofreader: Genevieve d'Entremont

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The image of a maned sheep and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39363-2

[LSI]

1309979968

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. Code Reuse and Optimization . 1
Keeping It Fast 4
What and When to Optimize 5
Homespun Code Profiling 7
Optimizing JavaScript 8

Lookup Tables 8
Bitwise Operators, Integers, and Binary Numbers 12

Optimizing jQuery and DOM Interaction 19
Optimizing CSS Style Changes 20
Optimizing DOM Insertion 23

Other Resources 23

2. DHTML Essentials . 25
Creating DHTML Sprites 25

Image Animation 26
Encapsulation and Drawing Abstraction (aka Hiding Stuff) 28
Minimizing DOM Insertion and Deletion 28
The Sprite Code 28
A Simple Sprite Application 30
A More Dynamic Sprite Application 32

Converting into a jQuery Plug-in 35
Timers, Speed, and Frame Rate 38

Using setInterval and setTimeout 38
Timer Accuracy 40
Achieving Consistent Speed 41

Internet Explorer 6 Background Image Caching 45

3. Scrolling . 47
CSS-Only Scrolling Effects 47

v

Scrolling with JavaScript 51
Background Image Scrolling 51
Tile-Based Image Scrolling 53

4. Advanced UI . 69
HTML5 Forms 69
Using JavaScript UI Libraries 71

Using jQuery UI for Enhanced Web Interfaces 71
Heavy Duty UI with Ext JS 75

Creating UI Elements from Scratch 78
Creating a 3D Carousel 79

5. Introduction to JavaScript Games . 91
Game Objects Overview 92
The Game Code 94

Game-Wide Variables 94
Reading Keys 95
Moving Everything 97
A Simple Animator 98
Collision Detection 99
Aliens 104
The Player 110
Shields 113
Mystery Saucer 114
The Game 115
Putting It All Together 119

6. HTML5 Canvas . 123
Canvas Support 124
Bitmaps, Vectors, or Both? 124
Canvas Limitations 125
Canvas Versus SVG 125
Canvas Versus Adobe Flash 126
Canvas Exporters 127
Canvas Drawing Basics 129

The Canvas Element 129
The Drawing Context 129
Drawing Rectangles 130
Drawing Paths with Lines and Curves 130
Drawing Bitmap Images 138
Colors, Strokes, and Fills 140

Animating with Canvas 144
Canvas and Recursive Drawing 147

vi | Table of Contents

Canvas Tree Page Layout 149
Replacing DHTML Sprites with Canvas Sprites 149

The New CanvasSprite Object 150
Other Code Changes 151

A Graphical Chat Application with Canvas and WebSockets 151
The WebSockets Advantage 152
WebSockets Support and Security 153
The Chat Application 154

7. Vectors for Games and Simulations . 167
Operations on Vectors 170

Addition and Subtraction 170
Scaling 171
Normalization 171
Rotation 171
Dot Product 172

Creating a JavaScript Vector Object 173
A Cannon Simulation Using Vectors 174

Simulation-Wide Variables 175
The Cannonball 176
The Cannon 176
The Background 178
The Main Loop 179
Page Layout 179

Rocket Simulation 180
The Game Object 181
The Obstacle Object 182
The Rocket Object 183
Background 186
Collision Detection and Response 186
Page Code 189
Possible Improvements and Modifications 190

8. Google Visualizations . 193
Limitations 194
Chart Glossary 196
Image Charts 197

Data Formats and Chart Resolution 199
Using Dynamic Data 203
Summary 207

Interactive Charts 207
Interactive Charts Events 211

Table of Contents | vii

9. Reaching the Small Screen with jQuery Mobile . 215
jQuery Mobile 216
TilePic: A Mobile-Friendly Web Application 218

TilePic Game Description 218
TilePic Game Code 220

PhoneGap 230

10. Creating Android Apps with PhoneGap . 231
Installing PhoneGap 232

Installing the Java JDK 232
Installing the Android SDK 233
Installing Eclipse 234
Installing Android Development Tools 235
Installing PhoneGap 236

Creating a PhoneGap Project in Eclipse 236
Altering the App.java File 238
Altering the AndroidManifest.xml File 239
Creating and Testing a Simple Web Application 240
Testing the TilePic Application 241

Index . 243

viii | Table of Contents

Preface

Having been a video game developer for many years and being used to working with
high-performance programming languages and hardware, I initially had modest ex-
pectations of graphics programming with JavaScript. What I actually found was an
excellent and efficient programming language that is continually being leveraged with
better browsers, performance enhancements, and exciting new facilities. Combined
with features such as Canvas, JavaScript offers web developers a truly viable alternative
to plug-ins such as Adobe Flash, and features such as WebGL ensure a very bright
future for graphics programming using JavaScript and a browser.

This book is for those who have a good working knowledge of JavaScript and would
like to experiment with graphics programming that goes beyond simple hover effects
or relying purely on the animation facilities of libraries such as jQuery. Within these
pages, I cover various graphics-related subjects, including:

• Reusing and optimizing code, including inheritance techniques and performance
tips

• Taking advantage of the surprising graphics power of regular DOM manipulation
(DHTML)

• Using the Canvas element for additional graphics power

• Creating video games

• Using math for creative graphics and animation

• Presenting your data in creative ways with the Google Visualizations API and Goo-
gle Chart Tools

• Using jQuery effectively and developing graphically oriented jQuery plug-ins

• Creating graphically rich web applications suitable for mobile devices using jQuery
Mobile

• Using PhoneGap to create native Android applications from your web applications

This fast-paced book will give you a broad kick-start into various graphics techniques,
hopefully whetting your appetite for further exploration of the subjects covered.

Experiment and have fun!

ix

Audience and Assumptions
Readers of this book should have a good working knowledge of creating websites and
web applications—and in particular, the use of JavaScript.

I like jQuery because it speeds up development, and many of the code samples include
this library by default. In general, any external libraries and associated files are included
from a reliable content delivery network such as Google’s, thus avoiding the need for
you to copy files to your own web space.

Math has been kept to a minimum, although some of the examples use basic vectors
and trigonometry.

Organization
The book is fast paced, with the first graphics programming examples appearing in
Chapter 1.

In the subsequent chapters, I cover a variety of graphics-oriented topics, focusing pri-
marily on subjects that can add impressive visual impact and interactivity to your web
applications.

No book about interactive graphics would be complete without a discussion of video
games. We’ll explore this subject in depth by developing a full video game application,
as well as examining features that are useful for games projects, such as sprites and
scrolling.

The topics covered in each chapter can be summarized as follows:

Chapter 1, Code Reuse and Optimization
Covers JavaScript object-oriented programming techniques as well as code opti-
mizations (including jQuery optimizations) that are useful where performance
is important in graphics-based applications. We’ll also discuss the little-used Java-
Script binary operators and how you can use them for optimization.

Chapter 2
Shows how regular DOM manipulation (DHTML) can be used for fast-moving
graphics. We’ll develop a sprite system (useful for games and other effects) and see
how it works within the context of a jQuery plug-in.

Chapter 3, Scrolling
Covers basic CSS scrolling techniques, including parallax effects. We’ll then move
on to JavaScript-controlled scrolling and finally to a fast, tile-based parallax scroll-
ing system. I’ll introduce you to the powerful Tiled map editor, showing you how
to create tile-based maps.

x | Preface

Chapter 4, Advanced UI
Includes coverage of the user interface libraries jQuery UI and Ext JS. We’ll explore
the differing approaches of the two libraries and their respective suitabilities for
various types of applications. In addition to using existing UI libraries, we’ll build
a 3D carousel from scratch.

Chapter 5, Introduction to JavaScript Games
Demonstrates how to build fun and playable games without resorting to external
plug-ins such as Flash. Subjects covered include collision detection and object
handling. We’ll also develop a full retro-style arcade game to illustrate in action
the techniques we’ve discussed.

Chapter 6, HTML5 Canvas
Examines the Canvas element in depth, with numerous examples—including how
to develop a graphical chat application using Canvas and WebSockets. Canvas
topics include an introduction to basic drawing, strokes, fills, gradients, recursive
drawing, bitmaps, and animation.

Chapter 7, Vectors for Games and Simulations
Covers the myriad uses for 2D vectors in graphical applications and games, proving
that a little bit of math can go a long way. Code examples include cannon and
rocket simulations with realistic movement.

Chapter 8, Google Visualizations
Explores Google Chart Tools, an expansive resource of data visualization tools that
can put an exciting spin on most kinds of data. From bar charts to Google-O-Meter
gauges, this chapter covers the implementation of both static and interactive charts
and other graphical visualizations in your applications. It includes the crucial topic
of formatting your data in the correct way for Chart Tools to use.

Chapter 9, Reaching the Small Screen with jQuery Mobile
Describes jQuery Mobile, a framework built on top of jQuery to provide a unified
user interface to mobile-targeted web applications. jQuery Mobile turns regular
HTML pages into an interactive and animated mobile experience. This chapter
covers the development of a graphical sliding puzzle game specifically geared to
the jQuery UI and mobile devices.

Chapter 10, Creating Android Apps with PhoneGap
Want to create a native mobile application using your usual web development
skills? PhoneGap comes to the rescue. This chapter explains how to install and
configure PhoneGap to create native Android applications. After we walk through
installation and configuration, we’ll convert the sliding puzzle game we developed
in Chapter 9 into a native app ready for deployment to mobile devices.

Preface | xi

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Indicates computer code in a broad sense, including commands, arrays, elements,
statements, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events,
event handlers, XML tags, HTML tags, macros, the contents of files, and the output
from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Websites and pages are mentioned in this book to help you locate online information
that might be useful. Normally I specify both the address (URL) and the name (title,
heading) of a page. Some addresses are relatively complicated, so you can probably
locate the pages more easily by using your favorite search engine to find a page by its
name, typically by entering it inside quotation marks. This method may also help if
you can’t find the page by its address; it may have simply moved elsewhere, so the name
could still work.

Using Code Examples
This book contains many code snippets and examples, along with several complete
and substantial applications. Some of these will be laborious to enter manually, so I
would recommend copying the code from the book’s code repository. Larger portions
of code may be interspersed with regular copy text. This helps provide a fluid narrative
through the code, rather than requiring you to constantly cross-reference code to text
in different locations.

xii | Preface

Where an example HTML page is featured, most of the examples use the HTML5
doctype:

<!DOCTYPE html>

For convenience, any CSS styles used in the examples are embedded within the HTML
of the page. This is not necessarily the approach that you should take with production
web applications, as external style sheets are recommended. However, within the con-
text of a book, it makes sense to keep things together where possible. You can find the
code examples here:

http://www.professorcloud.com/supercharged

Target Browsers
Most of the example code in this book will work on reasonably up-to-date browsers,
such as:

• Firefox 3.6x+

• Safari 4.0x+

• Opera 10.x+

• Chrome 5.x+

• Internet Explorer 8+

In fact, some of the examples work even in IE6 and IE7, although I don’t recommend
using these browsers.

The examples were fully tested on Windows machines using XP, Vista, and Windows
7, and partially tested on iOS. In theory, the examples should also work on Linux
versions of the supported browsers.

Use of the Canvas tag is limited to browsers that support it, so for Internet Explorer,
this means version 9 only (for native support without any additional plug-ins or
libraries).

A handful of the examples require a specialized environment to work, such as a mobile
development environment (PhoneGap), server language (PHP), or a specific browser.
Where this is the case, I cover setting up and configuring the environment.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are

Preface | xiii

http://www.professorcloud.com/supercharged

available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449393632

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
It takes a lot more than an author to get a book to print, so I’d like to thank the following
people:

• Simon St.Laurent, who was nothing but enthusiastic, encouraging, and helpful
throughout the development of this book.

• All those who contributed time and expertise to review the book—especially
Shelley Powers, who provided lots of insightful comments and suggestions.

xiv | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449393632
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

• My copyeditor, Rachel Monaghan, and others in the production staff who
smoothed out the last push to this book’s completion.

• The generous community of developers who freely share their work, hints, and tips
to help move the Web forward.

• My wife and daughter, Rebecca and Sofia, who were worried that my laptop had
become a permanent appendage.

Preface | xv

CHAPTER 1

Code Reuse and Optimization

JavaScript has an undeservedly dubious reputation. Many people have written about
its limitations as an object-oriented programming (OOP) language, even questioning
whether JavaScript is an OOP language at all (it is). Despite JavaScript’s apparent syn-
tactic resemblance to class-based OOP languages like C++ and Java, there is no
Class statement (or equivalent) in JavaScript, nor any obvious way to implement pop-
ular OOP methodologies such as inheritance (code reuse) and encapsulation. Java-
Script is also very loosely typed, with no compiler, and hence offers very few errors or
warnings when things are likely to go wrong. The language is too forgiving in almost
all instances, a trait that gives unsuspecting programmers a huge amount of freedom
on one hand, and a mile of rope with which to hang themselves on the other.

Programmers coming from more classic and strictly defined languages can be frustrated
by JavaScript’s blissful ignorance of virtually every programming faux pas imaginable:
global functions and variables are the default behavior, and missing semicolons are
perfectly acceptable (remember the rope mentioned in the previous paragraph?). Of
course, any frustration is probably due to a misunderstanding of what JavaScript is and
how it works. Writing JavaScript applications is much easier if programmers first accept
a couple of foundational truths:

• JavaScript is not a class-based language.

• Class-based OOP is not a prerequisite for writing good code.

Some programmers have attempted to mimic the class-based nature of languages like
C++ in JavaScript, but this is analogous to pushing a square peg into a round hole: it
can be done (sort of), but the end result can feel contrived.

No programming language is perfect, and one could argue that the perceived superiority
of certain programming languages (or indeed, the perceived superiority of OOP itself)
is a good example of the emperor’s new clothes.*In my experience, software written in
C++, Java, or PHP generates no fewer bugs or problems than projects created with

* http://en.wikipedia.org/wiki/Emperor%27s_new_clothes

1

http://en.wikipedia.org/wiki/Emperor%27s_new_clothes

JavaScript. In fact (cautiously sticking my neck out), I might suggest that due to Java-
Script’s flexible and expressive nature, you can develop projects in it more quickly than
in other languages.

Luckily, most of JavaScript’s shortcomings can be mitigated, not by forcibly contorting
it into the ungainly imitation of another language, but by taking advantage of its in-
herent flexibility while avoiding the troublesome bits. The class-based nature of other
languages can be prone to unwieldy class hierarchies and verbose clumsiness. Java-
Script offers other inheritance patterns that are equally useful, but lighter-weight.

If there are many ways to skin a cat, there are probably even more ways to perform
inheritance in JavaScript, given its flexible nature. The following code uses prototypal
inheritance to create a Pet object and then a Cat object that inherits from it. This kind
of inheritance pattern is often found in JavaScript tutorials and might be regarded as a
“classic” JavaScript technique:

// Define a Pet object. Pass it a name and number of legs.
var Pet = function (name, legs) {
 this.name = name; // Save the name and legs values.
 this.legs = legs;
};

// Create a method that shows the Pet's name and number of legs.
Pet.prototype.getDetails = function () {
 return this.name + ' has ' + this.legs + ' legs';
};

// Define a Cat object, inheriting from Pet.
var Cat = function (name) {
 Pet.call(this, name, 4); // Call the parent object's constructor.
};

// This line performs the inheritance from Pet.
Cat.prototype = new Pet();

// Augment Cat with an action method.
Cat.prototype.action = function () {
 return 'Catch a bird';
};

// Create an instance of Cat in petCat.
var petCat = new Cat('Felix');

var details = petCat.getDetails(); // 'Felix has 4 legs'.
var action = petCat.action(); // 'Catch a bird'.
petCat.name = 'Sylvester'; // Change petCat's name.
petCat.legs = 7; // Change petCat's number of legs!!!
details = petCat.getDetails(); // 'Sylvester has 7 legs'.

The preceding code works, but it’s not particularly elegant. The use of the new statement
makes sense if you’re accustomed to other OOP languages like C++ or Java, but the
prototype keyword makes things more verbose, and there is no privacy; notice how

2 | Chapter 1: Code Reuse and Optimization

petCat has its legs property changed to a bizarre value of 7. This method of inheritance
offers no protection from outside interference, a shortcoming that may be significant
in more complex projects with several programmers.

Another option is not to use prototype or new at all and instead take advantage
of JavaScript’s ability to absorb and augment instances of objects using functional
inheritance:

// Define a pet object. Pass it a name and number of legs.
var pet = function (name, legs) {
 // Create an object literal (that). Include a name property for public use
 // and a getDetails() function. Legs will remain private.
 // Any local variables defined here or passed to pet as arguments will remain
 // private, but still be accessible from functions defined below.
 var that = {
 name: name,
 getDetails: function () {
 // Due to JavaScript's scoping rules, the legs variable
 // will be available in here (a closure) despite being
 // inaccessible from outside the pet object.
 return that.name + ' has ' + legs + ' legs';
 }
 };
 return that;
};

// Define a cat object, inheriting from pet.
var cat = function (name) {
 var that = pet(name, 4); // Inherit from pet.
 // Augment cat with an action method.
 that.action = function () {
 return 'Catch a bird';
 };
 return that;
};

// Create an instance of cat in petCat2.
var petCat2 = cat('Felix');

details = petCat2.getDetails(); // 'Felix has 4 legs'.
action = petCat2.action(); // 'Catch a bird'.
petCat2.name = 'Sylvester'; // We can change the name.
petCat2.legs = 7; // But not the number of legs!
details = petCat2.getDetails(); // 'Sylvester has 4 legs'.

There is no funny prototype business here, and everything is nicely encapsulated. More
importantly, the legs variable is private. Our attempt to change a nonexistent public
legs property from outside cat simply results in an unused public legs property being
created. The real legs value is tucked safely away in the closure created by the get
Details() method of pet. A closure preserves the local variables of a function—in this
case, pet()—after the function has finished executing.

Code Reuse and Optimization | 3

In reality, there is no “right” way of performing inheritance with JavaScript. Personally,
I find functional inheritance a very natural way for JavaScript to do things. You and
your application may prefer other methods. Look up “JavaScript inheritance” in Google
for many online resources.

One benefit of using prototypal inheritance is efficient use of memory;
an object’s prototype properties and methods are stored only once, re-
gardless of how many times it is inherited from.

Functional inheritance does not have this advantage; each new instance
will create duplicate properties and methods. This may be an issue if
you are creating many instances (probably thousands) of large objects
and are worried about memory consumption. One solution is to store
any large properties or methods in an object and pass this as an argument
to the constructor functions. All instances can then utilize the one object
resource rather than creating their own versions.

Keeping It Fast
The concept of “fast-moving JavaScript graphics” may seem like an oxymoron.

Truth be told, although the combination of JavaScript and a web browser is unlikely
to produce the most cutting-edge arcade software (at least for the time being), there is
plenty of scope for creating slick, fast-moving, and graphically rich applications, in-
cluding games. The tools available are certainly not the quickest, but they are free,
flexible, and easy to work with.

As an interpreted language, JavaScript does not benefit from the many compile-time
optimizations that apply to languages like C++. While modern browsers have improved
their JavaScript performance enormously, there is still room to enhance the execution
speed of applications. It is up to you, the programmer, to decide which algorithms to
use, which code to improve, and how to manipulate the DOM in efficient ways. No
robot optimizer can do this for you.

A JavaScript application that only processes the occasional mouse click or makes the
odd AJAX call will probably not need optimization unless the code is horrendously
bad. The nature of applications covered in this book requires efficient code to give the
user a satisfactory experience—moving graphics don’t look good if they are slow and
jerky.

The rest of this chapter does not examine the improvement of page load times from
the server; rather, it deals with the optimization of running code that executes after the
server resources have loaded. More specifically, it covers optimizations that will be
useful in JavaScript graphics programming.

4 | Chapter 1: Code Reuse and Optimization

What and When to Optimize
Of equal importance to optimization is knowing when not to do it. Premature optimi-
zation can lead to cryptic code and bugs. There is little point in optimizing areas of an
application that are seldom executed. It’s a good idea to use the Pareto principle, or
80–20 rule: 20% of the code will use 80% of the CPU cycles. Concentrate on this 20%,
10%, or 5%, and ignore the rest. Fewer bugs will be introduced, the majority of code
will remain legible, and your sanity will be preserved.

Using profiling tools like Firebug will quickly give you a broad understanding of which
functions are taking the most time to execute. It’s up to you to rummage around these
functions and decide which code to optimize. Unfortunately, the Firebug profiler is
available only in Firefox. Other browsers also have profilers, although this is not nec-
essarily the case on older versions of the browser software.

Figure 1-1 shows the Firebug profiler in action. In the Console menu, select Profile to
start profiling, and then select Profile again to stop profiling. Firebug will then display
a breakdown of all the JavaScript functions called between the start and end points.
The information is displayed as follows:

Function
The name of the function called

Percent
Percentage of total time spent in the function

Call
How many times the function was called

Own time
Time spent within a function, excluding calls to other functions

Time
Total time spent within a function, including calls to other functions

Average
Average of Own times

Min
Fastest execution time of function

Max
Slowest execution time of function

File
The JavaScript file in which the function is located

What and When to Optimize | 5

Figure 1-1. Firebug profiler in action

Being able to create your own profiling tests that work on all browsers can speed up
development and provide profiling capabilities where none exist. Then it is simply a
matter of loading the same test page into each browser and reading the results. This is
also a good way of quickly checking micro-optimizations within functions. Creating
your own profiling tests is discussed in the upcoming section “Homespun Code Profil-
ing” on page 7.

Debuggers like Firebug can skew timing results significantly. Always
ensure that debuggers are turned off before performing your own timing
tests.

“Optimization” is a rather broad term, as there are several aspects to a web application
that can be optimized in different ways:

The algorithms
Does the application use the most efficient methods for processing its data? No
amount of code optimization will fix a poor algorithm. In fact, having the correct

6 | Chapter 1: Code Reuse and Optimization

algorithm is one of the most important factors in ensuring that an application runs
quickly, along with the efficiency of DOM manipulation.

Sometimes a slow, easy-to-program algorithm is perfectly adequate if the applica-
tion makes few demands. In situations where performance is beginning to suffer,
however, you may need to explore the algorithm being used.

Examining the many different algorithms for common computer science problems
such as searching and sorting is beyond the scope of this book, but these subjects
are very well documented both in print and online. Even more esoteric problems
relating to 3D graphics, physics, and collision detection for games are covered in
numerous books.

The JavaScript
Examine the nitty-gritty parts of the code that are called very frequently. Executing
a small optimization thousands of times in quick succession can reap benefits in
certain key areas of your application.

The DOM and jQuery
DOM plus jQuery can equal a brilliantly convenient way of manipulating web
pages. It can also be a performance disaster area if you fail to observe a few simple
rules. DOM searching and manipulation are inherently slow and should be mini-
mized where possible.

Homespun Code Profiling
The browser environment is not conducive to running accurate code profiling. Inac-
curate small-interval timers, demands from events, sporadic garbage collection, and
other things going on in the system all conspire to skew results. Typically, JavaScript
code can be profiled like this:

var startTime = new Date().getTime();
// Run some test code here.
var timeElapsed = new Date().getTime() - startTime;

Although this approach would work under perfect conditions, for reasons already sta-
ted, it will not yield accurate results, especially where the test code executes in a few
milliseconds.

A better approach is to ensure that the tests run for a longer period of time—say, 1,000
milliseconds—and to judge performance based on the number of iterations achieved
within that time. Run the tests several times so you can perform statistical calculations
such as mean and median.

To ensure longer-running tests, use this code:

// Credit: based on code by John Resig.

var startTime = new Date().getTime();
for (var iters = 0; timeElapsed < 1000; iters++) {
 // Run some test code here.

Homespun Code Profiling | 7

 timeElapsed = new Date().getTime() - startTime;
}
// iters = number of iterations achieved in 1000 milliseconds.

Regardless of the system’s performance, the tests will run for the same amount of time.
Very fast systems will simply achieve more iterations. In practice, this method returns
nicely consistent results.

The profiling tests in this chapter run each test five times, for 1,000 milliseconds each.
The median number of iterations is then used as the final result.

Optimizing JavaScript
Strictly speaking, many optimizations that can be applied to JavaScript can be applied
to any language. Going down to the CPU level, the rule is the same: minimize work. In
JavaScript, the CPU-level work is so abstracted from the programmer that it can be
difficult to ascertain how much work is actually going on. If you use a few tried-and-
tested methods, it is a safe bet that your code will benefit, although only performing
empirical tests will prove this conclusively.

Lookup Tables
Computationally expensive calculations can have their values precalculated and stored
in a lookup table. You can then quickly pull the values out of the lookup table using a
simple integer index. As long as accessing a value from the lookup table is a cheaper
operation than calculating the value from scratch, an application will benefit from bet-
ter performance. JavaScript’s trigonometry functions are a good example of where you
can use lookup tables to speed things up. In this section, the Math.sin() function will
be superseded by a lookup table, and we’ll build an animated graphical application to
utilize it.

The Math.sin() function accepts a single argument: an angle, measured in radians. It
returns a value between −1 and 1. The angle argument has an effective range of 0 to
2π radians, or about 6.28318. This is not very useful for indexing into a lookup table,
as the range of just six possible integer values is too small. The solution is to dispense
with radians completely and allow the lookup table to accept integer indexes of
between 0 and 4,095. This granularity should be enough for most applications, but you
can make it finer by specifying a larger steps argument:

var fastSin = function (steps) {
 var table = [],
 ang = 0,
 angStep = (Math.PI * 2) / steps;
 do {
 table.push(Math.sin(ang));
 ang += angStep;
 } while (ang < Math.PI * 2);

8 | Chapter 1: Code Reuse and Optimization

 return table;
};

The fastSin() function divides 2π radians into the number of steps specified in the
argument, and stores the sin values for each step in an array, which is returned.

Testing the JavaScript Math.sin() against a lookup table yields the results shown in
Figure 1-2.

Figure 1-2. Math.sin() versus lookup table performance. Bigger is better.

Across most browsers, there appears to be an approximately 20% increase in perform-
ance, with an even more pronounced improvement in Google Chrome. If the calculated
values within the lookup table had come from a more complex function than
Math.sin(), then the performance gains would be even more significant; the speed of
accessing the lookup table remains constant regardless of the initial work required to
fill in the values.

The following application uses the fastSin() lookup table to create a hypnotic anima-
ted display. Figure 1-3 shows the output.

<!DOCTYPE html>
<html>

 <head>
 <title>
 Fast Sine Demonstration
 </title>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <style type="text/css">
 #draw-target {
 width:480px; height:320px;

Optimizing JavaScript | 9

 background-color:#000; position:relative;
 }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 (function() {
 var fastSin = function(steps) {
 var table = [],
 ang = 0,
 angStep = (Math.PI * 2) / steps;
 do {
 table.push(Math.sin(ang));
 ang += angStep;
 } while (ang < Math.PI * 2);
 return table;
 };

Figure 1-3. Sine lookup table used in an animated application

The fastSin() function is called, and the created sine lookup table is referenced in
sinTable[].

 var sinTable = fastSin(4096),
 $drawTarget = $('#draw-target'),
 divs = '',
 i, bars, x = 0;

10 | Chapter 1: Code Reuse and Optimization

The drawGraph() function draws a sine wave by updating the height and position of
numerous one-pixel-wide divs. Table 1-1 shows the arguments.

 var drawGraph = function(ang, freq, height) {
 var height2 = height * 2;
 for (var i = 0; i < 480; i++) {
 bars[i].style.top =
 160 - height + sinTable[(ang + (i * freq)) & 4095]
 * height + 'px';
 bars[i].style.height = height2 + 'px';
 }
 };

Table 1-1. Arguments passed to drawGraph()

Argument Description

ang The start angle for the sine wave.

freq The frequency of the sine wave. Defines the “tightness” of the wave.

height The height (amplitude) of the wave; also affects the thickness of the lines drawn.

The following loop creates 480 one-pixel vertical div elements. The divs are then ap-
pended to $drawTarget. All the divs are then referenced in the bars[] array for use in
drawGraph().

 for (i = 0; i < 480; i++) {
 divs +=
 '<div style = "position:absolute;width:1px;height:40px;'
 + 'background-color:#0d0; top:0px; left: '
 + i + 'px;"></div>';
 }
 $drawTarget.append(divs);
 bars = $drawTarget.children();

setInterval() repeatedly calls drawGraph() with continuously changing parameters to
create an animated effect:

 setInterval(function() {
 drawGraph(x * 50, 32 - (sinTable[(x * 20) & 4095] * 16),
 50 - (sinTable[(x * 10) & 4095] * 20));
 x++;
 }, 20);
 })();

 });
 </script>
 </head>

 <body>
 <div id="draw-target">
 </div>
 </body>

</html>

Optimizing JavaScript | 11

Bitwise Operators, Integers, and Binary Numbers
In JavaScript, all numbers are represented in a floating-point format. In contrast to
languages such as C++ and Java, int and float types are not explicitly declared. This
is a surprising omission, and a legacy of JavaScript’s early years as a simple language
intended for web designers and amateurs. JavaScript’s single number type does help
you avoid many numeric type errors. However, integers are fast, CPU-friendly, and the
preferred choice for many programming tasks in other languages.

JavaScript’s number representation is defined in the ECMAScript
Language Specification as “double-precision 64-bit format IEEE 754
values as specified in the IEEE Standard for Binary Floating-Point Arith-
metic.” This gives a (somewhat huge) range of large numbers
(±1.7976931348623157 × 10308) or small numbers (±5 × 10−324). Be-
ware, though: floating-point numbers are subject to rounding errors;
for example, alert(0.1 + 0.2) displays 0.30000000000000004, not 0.3
as expected!

However, a closer look at the ECMAScript Standard reveals that JavaScript has several
internal operations defined to deal with integers:

ToInteger
Converts to an integer

ToInt32
Converts to a signed 32-bit integer

ToUint32
Converts to an unsigned 32-bit integer

ToUint16
Converts to an unsigned 16-bit integer

You cannot use these operations directly; rather, they are called under the hood to
convert numbers into an appropriate integer type for JavaScript’s rarely used bitwise
operators. Though sometimes incorrectly dismissed as slow and irrelevant to web pro-
gramming, some of these operators possess quirky abilities that can be useful for
optimization.

Bitwise operators convert numbers into 32-bit integers, with a numeri-
cal range of −2,147,483,648 to 2,147,483,647. Numbers outside this
range will be adjusted to fit.

A quick recap of binary numbers

During the halcyon days of computing, when 16 KB of RAM was considered a lot,
binary numbers were a programmer’s staple diet. The sort of low-level programming

12 | Chapter 1: Code Reuse and Optimization

used for the computers of the day required a good understanding of binary and hexa-
decimal notation. Binary numbers are rarely used in web programming, but they still
have their place in areas such as hardware drivers and networking.

Everyone is familiar with the base-10 number system. In the first row of Table 1-2, each
column from right to left represents an increasing power of 10. By multiplying the
numbers in the second row by their corresponding power of 10 and then adding all the
results (or products) together, we end up with a final number:

(3 × 1,000) + (9 × 1) = 3,009

Table 1-2. Base-10 number system

10,000 1,000 100 10 1

0 3 0 0 9

The principle is exactly the same for base-2, or binary, numbers. However, instead of
the columns increasing in powers of 10, they increase in powers of 2. The only digits
required in the second row are either 0 or 1, also known as a bit. The simple on-
off nature of binary numbers is perfect for emulating in digital electronic circuits.
Table 1-3 shows the binary representation of the base-10 number 69:

(1 × 64) + (1 × 4) + (1 × 1) = 69

Table 1-3. The 8-bit binary representation of base-10 number 69

128 64 32 16 8 4 2 1

0 1 0 0 0 1 0 1

How can a binary number be negated (sign change)? A system called twos comple-
ment is used as follows:

1. Invert each bit in the binary number, so 01000101 becomes 10111010.

2. Add 1, so 10111010 becomes 10111011 (−69).

The topmost bit acts as a sign, where 0 means positive and 1 means negative. Go
through the same procedure again, and we are back to +69.

JavaScript’s bitwise operators

JavaScript’s bitwise operators act on the binary digits, or bits, within an integer number.

This performs a binary AND on the operands, where the resultant bit
will be set only if the equivalent bit is set in both operands. So, 0x0007 & 0x0003 gives
0x0003. This can be a very fast way of checking whether an object possesses a desired
set of attributes or flags. Table 1-4 shows the available flags for a pet object. For ex-
ample, a small, old, brown dog would have a flags value of 64 + 16 + 8 + 2 = 90.

Bitwise AND (x & y).

Optimizing JavaScript | 13

Table 1-4. Binary flags of a pet object

Big Small Young Old Brown White Dog Cat

128 64 32 16 8 4 2 1

Searching for pets with certain flags is simply a case of performing a bitwise AND with
a search value. The following code searches for any pet that is big, young, and white
(it may be either a cat or dog, as this is not specified):

var searchFlags = 128 + 32 + 4;
var pets = []; // This is an array full of pet objects.
var numPets = pets.length;
for (var i = 0; i < numPets; i++) {
 if (searchFlags & pets[i].flags === searchFlags) {
 /* Found a Match! Do something. */
 }
}

With a total of 32 bits available in an integer to represent various flags, this can be much
faster than checking flags stored as separate properties or other types of conditional
testing; for example:

var search = ['big','young','white'};
var pets = []; // This is an array full of pet objects.
var numPets = pets.length;
for (var i = 0; i < numPets; i++) {
 // The following inner loop makes things much slower.
 for(var c=0;c<search.length;c++) {
 // Check if the property exists in the pet object.
 if (pets[i][search[c]] == undefined) break;
 }
 if(c == search.length) {
 /* Found a Match! Do something. */
 }
}

The & operator can also act in a similar way to the modulus operator (%), which returns
the remainder after division. The following code will ensure that the variable value is
always between 0 and 7:

value &= 7; // Equivalent to value % 8;

The equivalence to the % operator works only if the value after the & is 1, or a power of
2 less 1 (1, 3, 7, 15, 31...).

This performs a binary OR on the operators, where the resultant bit will
be set if the equivalent bit is set in either operand. So, 0x0007 | 0x0003 gives 0x0007.
Effectively, it merges the bits together.

This performs a binary exclusive OR on the operators, where the re-
sultant bit will be set if only one of the equivalent bits is set in either operand. So, 0x0000
^ 0x0001 gives 0x0001, and 0x0001 ^ 0x0001 gives 0x0000. This can act as a shorthand
way of toggling a variable:

Bitwise OR (x | y).

Bitwise XOR (x ^ y).

14 | Chapter 1: Code Reuse and Optimization

toggle ^= 1;

Each time toggle ̂ = 1; is executed, the toggle value will flip between 1 and 0 (assuming
it is 1 or 0 to start with). Here is the equivalent code using if-else:

if (toggle) {
 toggle = 0;
}else {
 toggle = 1;
}

or using the ternary operator (?):

toggle = toggle ? 0:1;

This performs a ones complement, or inversion of all bits. So, in binary,
11100111 would become 00011000. If the number in question is a signed integer
(where the topmost bit represents the sign), then the ~ operator is equivalent to chang-
ing the sign and subtracting 1.

This performs a binary shift left by a specified number of bits. All
bits are moved to the left, the topmost bit is lost, and a 0 is fed into the bottommost
bit. This is the equivalent of an unsigned integer multiplication of x by 2^numBits. Here
are some examples:

y = 5 << 1; // y = 10; Equivalent to Math.floor(5 * (2^1)).
y = 5 << 2; // y = 20; Equivalent to Math.floor(5 * (2^2)).
y = 5 << 3; // y = 40; Equivalent to Math.floor(5 * (2^3)).

Tests reveal no performance benefit over using the standard multiply operator (*).

This performs a binary shift right by a specified number
of bits. All bits are moved to the right, with the exception of the topmost bit, which is
preserved as the sign. The bottommost bit is lost. This is the equivalent of a signed
integer division of x by 2^numBits. Here are some examples:

y = 10 >> 1; // y = 5; Equivalent to Math.floor(5 / (2^1)).
y = 10 >> 2; // y = 2; Equivalent to Math.floor(5 / (2^2)).
y = 10 >> 3; // y = 1; Equivalent to Math.floor(5 / (2^3)).

Tests reveal no performance benefit over using the standard divide operator (/).

The following code looks pretty useless:

x = y >> 0;

However, it forces JavaScript to call its internal integer conversion functions, resulting
in the fractional parts of the number being lost. Effectively, it is performing a fast
Math.floor() operation. Figure 1-4 shows that for Internet Explorer 8, Google Chrome,
and Safari 5.0, there is a speed increase.

Rarely used, this is similar to the >> operator, but the top-
most bit (sign bit) is not preserved and is set to 0. The bottommost bit is lost. For
positive numbers, this is the same as the >> operator. For negative numbers, however,
the result is a positive number. Here are some examples:

Bitwise NOT (~x).

Shift left (x << numBits).

Shift right with sign (x >> numBits).

Shift right with zero fill (x >>> y).

Optimizing JavaScript | 15

y = 10 >>> 1; // y = 5;
y = −10 >>> 2; // y = 1073741821;
y = −10 >>> 3; // y = 536870910;

Figure 1-4. Math.floor() versus bitshift. Bigger is better.

Loop unrolling: An inconvenient truth

Looping in any programming language adds a certain amount of overhead beyond the
code within the loop. Loops usually maintain a counter and/or check for the termina-
tion condition, both of which take time.

Removing the loop overhead provides some performance benefits. A typical JavaScript
loop looks like this:

for (var i = 0; i < 8; i++) {
 /*** do something here **/
}

By executing this instead, you can completely eliminate the loop overhead:

/*** do something here ***/
/*** do something here ***/
/*** do something here ***/
/*** do something here ***/
/*** do something here ***/
/*** do something here ***/
/*** do something here ***/
/*** do something here ***/

However, with a loop of just eight iterations, the improvement is not worth the effort.
Assuming do something here is a simple statement (e.g., x++), removing the loop might
execute the code 300% faster, but this is at the microsecond level; 0.000003 seconds
versus 0.000001 seconds is not going to make a noticeable difference. If do something

16 | Chapter 1: Code Reuse and Optimization

here is a big and slow function call, then the figures read more like 0.100003 seconds
versus 0.100001 seconds. Again, too small an improvement to be worthwhile.

There are two factors that determine whether loop unrolling will provide a tangible
benefit:

• The number of iterations. In practice, many iterations (probably thousands) are
needed to make a difference.

• The proportion of time the inner loop code takes versus the loop overhead. Com-
plex inner loop code that is many times slower to execute than the loop overhead
will show a smaller improvement. This is because most of the time is being spent
inside the inner loop code, not the loop overhead.

It is not practical to entirely unroll loops that require hundreds or thousands of itera-
tions. The solution is to use a technique that is a variation of Duff’s device. This works
by performing partial unrolling of a loop. For example, a loop of 1,000 iterations can
be broken into 125 iterations of code that is unrolled eight times:

// Credit: from Jeff Greenberg's site via an anonymous donor.
var testVal = 0;
var n = iterations % 8
while (n--)
{
 testVal++;
}

n = parseInt(iterations / 8);
while (n--)
{
 testVal++;
 testVal++;
 testVal++;
 testVal++;
 testVal++;
 testVal++;
 testVal++;
 testVal++;
 }
}

The first while loop takes into account situations where the number of iterations is
not divisible by the number of unrolled code lines. For example, 1,004 iterations re-
quires a loop of 4 normal iterations (1004 % 8), followed by 125 unrolled iterations of
8 each (parseInt(1004 / 8)). Here is a slightly improved version:

var testVal = 0;
var n = iterations >> 3; // Same as: parseInt(iterations / 8).
while(n--){
 testVal++;
 testVal++;
 testVal++;
 testVal++;
 testVal++;

Optimizing JavaScript | 17

 testVal++;
 testVal++;
 testVal++;
}
n = iterations - testVal; // testVal has kept a tally, so do the remainder here.
while(n--) {
 testVal++;
}

Duff’s device refers to a specific C-language optimization for unrolling
loops that was developed by Tom Duff in 1983. He does not claim credit
for loop unrolling as a general principle. Loop unrolling is common
practice in assembly language, where tiny optimizations can make a
difference in areas such as large memory copies and clears. Optimizing
compilers may also perform automatic loop unrolling.

For loops of 10,000 iterations with trivial code, this returns significant performance
gains. Figure 1-5 shows the results. Should we now optimize all our loops like this? No,
not yet. The test is unrealistic: it is unlikely that incrementing a local variable is all we
want to do within a loop.

Figure 1-5. Unrolled loop with trivial inner loop code (10,000 iterations). Great results, but don’t get
too excited. Bigger is better.

A better test involves iterating through an array and calling a function with the array
contents. This is much more along the lines of what will happen inside real applications:

// Initialize 10000 items.
var items = [];
for (var i = 0; i < 10000; i++) {
 items.push(Math.random());
}

18 | Chapter 1: Code Reuse and Optimization

// A function to do some useful work.
var processItem = function (x) {
 return Math.sin(x) * 10;
};

// The slow way.
var slowFunc = function () {
 var len = items.length;
 for (var i = 0; i < len; i++) {
 processItem(items[i]);
 }
};

// The 'fast' way.
var fastFunc = function () {
 var idx = 0;
 var i = items.length >> 3;
 while (i--) {
 processItem(items[idx++]);
 processItem(items[idx++]);
 processItem(items[idx++]);
 processItem(items[idx++]);
 processItem(items[idx++]);
 processItem(items[idx++]);
 processItem(items[idx++]);
 processItem(items[idx++]);
 }
 i = items.length - idx;
 while (i--) {
 processItem(items[idx++]);
 }
};

Figure 1-6 shows the improvement. Ouch. The real work within the loops has made
the loop unrolling benefit a drop in the ocean. It is somewhat akin to ordering the 4,000-
calorie Mega Burger Meal and hoping the diet soda will make things less fattening.
Considering the 10,000 iterations, this is a disappointing set of results.

The moral of this story is that JavaScript loops are actually rather efficient, and you
need to place micro-optimizations within the context of real application behavior to
realistically test their benefits.

Optimizing jQuery and DOM Interaction
jQuery is an extensively used JavaScript library and provides a concise, convenient, and
flexible way of accessing and manipulating elements within the DOM. It is designed
to mitigate cross-browser issues, allowing you to concentrate on core application
development rather than fiddling with browser quirks. jQuery is built around a selector
engine, which allows you to find DOM elements using familiar CSS-style selector

Optimizing jQuery and DOM Interaction | 19

statements. For instance, the following code returns a jQuery object (a kind of array)
containing all image elements with a CSS class of big:

$images = jQuery('img.big');

or the jQuery shorthand notation way:

$images = $('img.big');

The $images variable is just that, a normal variable. The preceding $ is simply a reminder
that it references a jQuery object.

There is one caveat to jQuery’s power: an apparently small and innocuous jQuery
statement can do a lot of work behind the scenes. This might not be significant if a
small number of elements is being accessed only occasionally. However, if many ele-
ments are being accessed on a continuous basis—for example, in a highly animated
page—there can be serious performance implications.

Optimizing CSS Style Changes
A fundamental part of creating JavaScript graphics using DHTML is being able to
quickly manipulate the CSS style properties of DOM elements. In jQuery, you can do
this like so:

$('#element1').css('color','#f00');

This would find the element whose id is element1 and change its CSS color style to red.

Scratching beneath the surface, there is a lot going on here:

Figure 1-6. Unrolled loop with nontrivial inner loop code (10,000 iterations). A disappointing turnout.
Bigger is better.

20 | Chapter 1: Code Reuse and Optimization

• Make a function call to jQuery and ask it to search the DOM for an element with
id of element1. Apart from doing the search itself, this involves performing regular
expression tests to determine the type of search required.

• Return the list of items found (in this case, one item) as a special jQuery array
object.

• Make a function call to the jQuery css() function. This performs various checks
such as determining whether it is reading or writing a style, whether it is being
passed a string argument or object literal, and more. It finally updates the style of
the element itself.

Performing this type of work many times in succession will be slow, regardless of how
efficient jQuery is under the hood:

$('#element1').css('color','#f00'); // Make red.
$('#element1').css('color','#0f0'); // Make green.
$('#element1').css('color','#00f'); // Make blue.
$('#element1').css('left,'100px'); // Move a bit.

Each of the preceding lines performs a search for the element with id of element1.
Not good.

A faster method is to specify a context within which jQuery should search for elements.
By default, jQuery begins its searches from the document root, or the topmost level
within the DOM hierarchy. In many instances, starting from the root level is unneces-
sary and makes jQuery do more searching than is required. When you specify a context,
jQuery has less searching to do and will return its results in less time.

The following example searches for all elements with a CSS class of alien, beginning
the search within the DOM element referenced in container (the context):

$aliens = $('.alien', container); // Search within a specific DOM element.

The context parameter type is flexible and could have been another jQuery object or
CSS selector:

// Start search within the elements of the jQuery object, $container.
$aliens = $('.alien', $container);

// Look for an element with id of 'container' and start the search there.
$aliens = $('.alien', '#container');

Make sure that searching for the context is not slower than searching for the elements
within it! It is better to reference the context DOM element directly where possible.

Ideally, once elements have been found, you should not search for them again at all.
We can cache (reuse) the search results instead:

var $elem = $('#element1'); // Cache the search results.
$elem.css('color','#f00'); // Make red.
$elem.css('color','#0f0'); // Make green.
$elem.css('color','#00f'); // Make blue.
$elme.css('left,'100px'); // Move a bit.

Optimizing jQuery and DOM Interaction | 21

This still leaves the jQuery css() function call, which is doing more work than is nec-
essary for our purposes. We can dereference the jQuery search results right down to
the actual style object of the DOM element:

// Get the first element ([0]) from the jQuery search results and store
// a reference to the style object of that element in elemStyle.

var elemStyle = $('#element1')[0].style;

// It is now quicker to manipulate the CSS styles of the element.
// jQuery is not being used at all here:

elemStyle.color = '#f00'; // Make red.
elemStyle.color = '#0f0'; // Make green.
elemStyle.color = '#00f'; // Make blue.
elemStyle.left = '100px'; // Move a bit.

Figure 1-7 shows the performance results of setting a CSS style for one DOM element
via an uncached jQuery.css(), a cached jQuery.css(), or a direct write to the style
object of the DOM element. The differences would be even more significant in more
complex pages with slower CSS selectors—for example, $('.some-css-class').

Where speed is of the essence, manipulating an element’s properties directly will be
faster than going through jQuery. For example, the jQuery.html() method can be con-
siderably slower than using an element’s innerHTML object directly.

Figure 1-7. Speed comparison of using uncached jQuery, cached jQuery, and direct write to update
an element’s CSS style. Bigger is better.

Do the results in Figure 1-7 imply that we shouldn’t be using jQuery at all? Not so;
jQuery is far too good a library to reject, and it is understandably slow in certain cir-
cumstances. The rule is to be wary of how jQuery is used in time-critical areas of your
application. This will usually be a small percentage of the total code. The majority of

22 | Chapter 1: Code Reuse and Optimization

your application can and should use jQuery for quicker development, convenience,
and fewer cross-browser issues.

Optimizing DOM Insertion
If you need to add a large number of elements into the DOM in your application, there
can be performance implications. The DOM is a complex data structure that prefers
being left alone. Of course, this is not really feasible in dynamic web pages, so you need
an efficient way of inserting elements.

You can insert an element into the DOM with jQuery like this:

$('#element1').append('<p>element to insert</p>');

This is perfectly adequate for a few elements, but when you need to add hundreds or
thousands of elements, inserting them individually can be too slow.

A better way is to build up all the intended elements into one big string and insert them
simultaneously as a single unit. For each element, this prevents the overhead of the
jQuery call and the various internal tests it performs:

var elements = '';

// First build up a string containing all the elements.
for (var i = 0; i < 1000; i++) {
 elements += '<p>This is element ' + i + '</p>';
}

// They can now be inserted all at once.
$('#element1').append(elements);

Other Resources
Here’s some suggested reading for those wanting to expand their knowledge of Java-
Script:

• JavaScript: The Definitive Guide by David Flanagan (O’Reilly; http://oreilly.com/
catalog/9780596101992)

• JavaScript: The Good Parts by Douglas Crockford (O’Reilly; http://oreilly.com/cat
alog/9780596517748)

Other Resources | 23

http://oreilly.com/catalog/9780596101992
http://oreilly.com/catalog/9780596101992
http://oreilly.com/catalog/9780596517748
http://oreilly.com/catalog/9780596517748

CHAPTER 2

DHTML Essentials

DHTML seems like a curiously old-fashioned term these days, especially within the
context of more modern browser facilities such as HTML5 Canvas, SVG, and Flash.
However, rather like the tortoise and the hare,* DHTML will always be the more reliable
(if slower) contender when the other, more exciting methods are not guaranteed to be
available.

Actually, in many cases you don’t need anything other than DHTML; the use of other
methods can often be attributed simply to developer “wants” rather than “needs.”
Casual games, image zooms, and many other effects are perfectly feasible without re-
sorting to the “power tools.” Libraries like jQuery can make implementation even
easier. A little thought and delicate manipulation of the DOM will ensure that DHTML
graphics can move quickly and smoothly.

In this chapter, we’ll develop a fast sprite system using vanilla JavaScript and DHTML.
For the sake of compatibility, we’ll avoid the latest bleeding-edge developments in the
language and instead focus on the effective use of core JavaScript.

Creating DHTML Sprites
In computer graphics, sprites are two-dimensional bitmap objects that can be moved
around under software control. Until the advent of three-dimensional polygon graph-
ics, video game consoles used sprites almost exclusively for generating their moving
characters. Mobile devices have prompted a resurgence in the use of sprite-like graphics
for casual games and other user interface effects. You can emulate sprite functionality
by using DHTML. In the following section, we’ll create a DHTMLSprite object for use in
a variety of applications. Although there are newer and faster methods of creating
sprite-like effects (such as the HTML5 Canvas element), regular DHTML provides solid
cross-browser compatibility and in many situations is a perfectly viable alternative to
using plug-ins such as Adobe Flash.

* http://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare

25

http://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare

Sprites in this context are subtly different from CSS sprites, a popular
web design technique. CSS sprites refer to altering only the CSS back-
ground position of an HTML element, thus allowing the element to
show a small portion of a larger background image for the purpose of
animation effects. In computer graphics parlance, this is known as dy-
namic texture coordinates. For our purposes, a sprite maintains its orig-
inal meaning of a movable graphic object, although we will use the CSS
sprite technique to change its image.

DHTMLSprite should be versatile enough to use in a variety of applications, and offer the
following capabilities:

• Change its image (animation) with a simple function call and image index.

• Manage its own DOM element internally.

• Hide and show itself without altering the DOM.

• Remove its DOM element and perform any cleanup.

Image Animation
Sprites would be pretty boring without animation, so we need a neat method of chang-
ing the image used for the sprite. Although using an img element for sprite drawing
seems like an obvious choice, it involves loading a different image file for each anima-
tion frame. There is a more efficient way to handle multiple sprite images while also
reducing the number of image files required.

The CSS background-position property allows HTML elements (a div, in this case) to
show a small portion of a larger image. A single container image can therefore act as a
repository for numerous smaller sprite images. To use these sprite images, we must
define the horizontal and vertical pixel offsets of the background-position property
within the div, as well as the width and height. Unfortunately, this can be a fiddly and
nonintuitive way of animating. It would be much better if we could reference the sprite
images with a simple index number. For example, in Figure 2-1, the five sprite images
that make up a cog animation are represented by indexes 0, 1, 2, 3, and 4. The first box
sprite image is represented by index 5, and so on.

We need to convert the index number into pixel offsets within the container image.
One option is to manually create a table that references the sprite image index numbers
to the pixel offsets required. Although this is a valid solution, it would be very tedious
to enter the offsets manually and keep the table updated if the sprite images changed
position. A more elegant solution is to calculate the offsets.

Converting from an index number to horizontal and vertical pixel offsets involves some
simple arithmetic. In Figure 2-1, the container image is 256 pixels wide, and each sprite
image within it (ignoring the small ones at the bottom) is 64 pixels square. The pixel
offsets can be calculated in JavaScript like this:

26 | Chapter 2: DHTML Essentials

// This code is unoptimized, but illustrates the calculations required.
var vertOffset = -Math.floor (index * 64 / 256) * 64; // 64 is the sprite height.
var horizOffset = -(index * 64 % 256); // 64 is the sprite width.

Notice how the values calculated are negated. Imagine that the div element is a fixed,
64-pixel-square aperture above the first cog image (index = 0). To show the next cog
image (index = 1), the container image must be moved to the left by 64 pixels (negative
horizontal offset). If the index were set to the last cog image (index = 4), the container
image would need to move up by 64 pixels (negative vertical offset).

Figure 2-1. Animation images embedded into a single container image; each dotted grid square
represents 32 pixels

How are sprites of different sizes handled? In Figure 2-1, there are some smaller 32-
pixel sprite images at the bottom of the container image. The calculation to determine
the pixel offsets is the same as before, but we use the required sprite size of 32 pixels
instead:

// This code is unoptimized, but illustrates the calculations required.
var vertOffset = -Math.floor (index * 32 / 256) * 32; // 32 is the sprite height.
var horizOffset = -(index * 32 % 256); // 32 is the sprite width.

The index numbers also need to take into account that the sprite sizes are now 32
pixels. The first 32-pixel sprite image in Figure 2-1 (the first small black circle) has an
index of 32. As long as sprite images appear in the container image at pixel boundaries
that are a multiple of their size, they can be accessed using the indexing calculations.

The container image in Figure 2-1 is a 32-bit PNG file, which allows
millions of colors and an alpha channel for smooth transparency. Un-
fortunately, 32-bit PNGs don’t work very well in IE6, because the trans-
parent areas become an opaque gray. One solution is to save the image
as an 8-bit palletized PNG. In IE6, this will display correctly, although
any semitransparent areas will disappear completely and show a coarser
edge.

Creating DHTML Sprites | 27

Encapsulation and Drawing Abstraction (aka Hiding Stuff)
Hiding all the DOM manipulation shenanigans within DHTMLSprite and away from the
application using it allows for cleaner and more maintainable code; the application can
focus on logic rather than the mechanics of drawing. Converting the application to use
another sprite drawing method such as the HTML5 Canvas element or SVG becomes
simpler. Alternatively, the application could choose an appropriate drawing method
based on the browser’s capabilities.

Minimizing DOM Insertion and Deletion
Repeatedly adding, removing, and destroying DOM elements can have detrimental
effects on performance, as well as forcing JavaScript’s garbage collector to work over-
time. To mitigate these undesirable effects, maintain a list of initialized but hidden
sprites. When a sprite is required, you can take it from the list and make it visible
without actually inserting anything into the DOM. When the sprite is no longer needed,
you can hide it and place it back on the list. Providing a show and hide method within
DHTMLSprite will allow an application to implement this technique if required.

If a DHTMLSprite is to be removed permanently, it should remove its own DOM element
and perform any other associated cleanup.

The Sprite Code
Rather than passing several separate arguments to the sprite, we pass all setup param-
eters inside a single object called params. As well as making the order of parameters
noncritical, this also allows other objects inheriting from DHTMLSprite to simply add
their own setup parameters inside params. Any object using params can ignore param-
eters not relevant to it. Table 2-1 shows the parameters passed within the params object.

var DHTMLSprite = function (params) {

Table 2-1. DHTMLSprite object parameters

Parameter Description

images Path to the images file

imagesWidth Pixel width of the images file

width Pixel width of sprite

height Pixel height of sprite

$drawTarget The parent element into which the sprite will append its own div element

Here we make local variable copies of the params properties. Accessing the parameters
via local variables is quicker than accessing them as properties of the params object.
Local variables defined like this are private and can be accessed only from methods
within DHTMLSprite.

28 | Chapter 2: DHTML Essentials

 var width = params.width,
 height = params.height,
 imagesWidth = params.imagesWidth,

Next, we append a sprite div element to the DOM element specified in params.$draw
Target. A reference to this sprite div is stored in $element. The preceding $ symbol in
the variable and property names serves as a reminder that they refer to jQuery objects.
A direct reference to the style attribute of the sprite div is stored in elemStyle to opti-
mize the updating of its CSS properties.

 $element = params.$drawTarget.append('<div/>').find(':last'),
 elemStyle = $element[0].style,
 // Store a local reference to the Math.floor function for faster access.
 mathFloor = Math.floor;

Now we set up some initial CSS properties for the sprite div element. As we do this
only once (when DHTMLSprite is initialized), it is reasonable to use the convenient jQuery
css() function, even though this might not be the fastest way to change the properties.

 $element.css({
 position: 'absolute',
 width: width,
 height: height,
 backgroundImage: 'url(' + params.images + ')'
 });

Here we create and store a DHTMLSprite object instance in that. It contains all the sprite
methods. Notice how that’s methods refer to the local variables defined earlier. The
that object has created a closure and has permanent access to variables defined within
the context of the outer DHTMLSprite function.

 var that = {

The draw method simply updates the position of the sprite div element:

 draw: function (x, y) {
 elemStyle.left = x + 'px';
 elemStyle.top = y + 'px';
 },

The changeImage() method changes the sprite image displayed. The calculation to con-
vert an index number to pixel offsets is the same as described earlier, but with some
optimizations:

• Instead of Math.floor(), the local mathFloor() variable reference to the function is
called.

• index is multiplied only once in the calculation.

 changeImage: function (index) {
 index *= width;
 var vOffset = -mathFloor(index / imagesWidth) * height;
 var hOffset = -index % imagesWidth;
 elemStyle.backgroundPosition = hOffset + 'px ' + vOffset + 'px';
 },

Creating DHTML Sprites | 29

Next, we define simple methods to hide, show, and remove the sprite div element:

 show: function () {
 elemStyle.display = 'block';
 },
 hide: function () {
 elemStyle.display = 'none';
 },
 destroy: function () {
 $element.remove();
 }
 };
 // Return the instance of DHTMLSprite.
 return that;
};

A Simple Sprite Application
Here is a basic HTML page that initializes two sprites and draws them:

<!DOCTYPE html>
<html>
 <head>
 <title>
 Sprite Demonstration
 </title>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <style type="text/css">
 #draw-target {
 width:480px;
 height:320px;
 background-color: #ccf;
 position:relative;
 }
 </style>
 <script type="text/javascript">
 var DHTMLSprite = function(params) {
 /*** DHTMLSprite code removed for conciseness ***/
 };

 $(document).ready(function() {

Here we create an object containing the initialization parameters required to create a
sprite:

 var params = {
 images: '/images/cogs.png',
 imagesWidth: 256,
 width: 64,
 height: 64,
 $drawTarget: $('#draw-target')
 };

30 | Chapter 2: DHTML Essentials

Two sprites are created. Because both sprites are identical in size and use the same
drawing area in the DOM, we don’t need to change any of the parameters. The first
sprite uses the default image index value of 0, while we set the second one’s image index
to 5.

 var sprite1 = DHTMLSprite(params),
 sprite2 = DHTMLSprite(params);
 sprite2.changeImage(5);

Finally, the two sprites are drawn. Figure 2-2 shows the output.

 sprite1.draw(64, 64);
 sprite2.draw(352, 192);
 });
 </script>
 </head>
 <body>
 <div id="draw-target">
 </div>
 </body>
</html>

Figure 2-2. Two sprites being drawn

We aren’t demanding much of the sprites in this application. Having no movement or
animation is rather dull, so let’s spice things up a little in the next example.

Creating DHTML Sprites | 31

A More Dynamic Sprite Application
The following application demonstrates a sprite’s raison d’être: animation and move-
ment. Earlier, we drew two sprites at fixed positions, with no additional means to
control their movement. In this example, we’ll define a new object: a bouncySprite,
which—as its name implies—creates a DHTMLSprite that bounces around the page. One
way to achieve this would be for bouncySprite to create a DHTMLSprite and treat it as a
separate entity that it controls. A neater solution would be for bouncySprite to inherit
all the abilities of DHTMLSprite and augment itself with additional abilities. JavaScript
is very comfortable with this kind of inheritance and augmentation:

var bouncySprite = function (params) {

Setup parameters are stored in local variables for speed. At this point, the params object
will also contain parameters for the DHTMLSprite, but these are not relevant to bouncy
Sprite. Table 2-2 shows the parameters passed.

var x = params.x,
 y = params.y,
 xDir = params.xDir,
 yDir = params.yDir,
 maxX = params.maxX,
 maxY = params.maxY,

Table 2-2. bouncySprite object parameters

Parameter Description

x Pixel x position

y Pixel y position

xDir The x movement direction

yDir The y movement direction

maxX Maximum x position

maxY Maximum y position

animIndex stores the current animation image index:

 animIndex = 0,

We create and reference a DHTMLSprite in that. The params object contains its setup
parameters.

 that = DHTMLSprite(params);

Here we augment the DHTMLSprite instance referenced in that with a moveAndDraw
method, effectively creating a bouncySprite instance instead:

 that.moveAndDraw = function () {

Move the x and y positions of the sprite by adding the xDir and yDir variables:

32 | Chapter 2: DHTML Essentials

 x += xDir;
 y += yDir;

The animIndex variable is either incremented or decremented depending on the hori-
zontal direction of movement. We then keep it within a range, −4 to +4, using the
modulus operator (%). If animIndex is negative, it is corrected and given its equivalent
positive animation index.

 animIndex += xDir > 0 ? 1 : −1;
 animIndex %= 5;
 animIndex += animIndex < 0 ? 5 : 0;

Next, we check whether the bouncySprite has passed the extents defined by maxX and
maxY. If it has, the direction of movement along the relevant axis is negated, thus causing
the bouncySprite to “bounce.”

 if ((xDir < 0 && x < 0) || (xDir > 0 && x >= maxX)) {
 xDir = -xDir;
 }
 if ((yDir < 0 && y < 0) || (yDir > 0 && y >= maxY)) {
 yDir = -yDir;
 }

The bouncySprite’s animation index is updated and drawn at its new position:

 that.changeImage(animIndex);
 that.draw(x, y);
 };

The bouncySprite instance, referenced in that, is returned for the application to use:

 return that;
};

Now that we’ve defined the bouncySprite object, we could initialize a handful of them
into separate variables and call their moveAndDraw() methods individually under the
control of a setInterval() or setTimeout() loop. A better solution, however, is to create
another object that can initialize and handle any number of bouncySprites. This object
will be called bouncyBoss. bouncyBoss is passed two parameters, as shown in Table 2-3.

var bouncyBoss = function (numBouncy, $drawTarget) {

Table 2-3. bouncyBoss object parameters

Parameter Description

numBouncy The number of bouncySprites to initialize

$drawTarget The parent element into which the bouncySprites will be appended

The requisite number of bouncySprite objects is created and pushed into an array
(bouncys). Each bouncySprite is given a random starting position and movement di-
rection (xDir and yDir). The maximum extents of $drawTarget are also passed.

 var bouncys = [];
 for (var i = 0; i < numBouncy; i++) {

Creating DHTML Sprites | 33

 bouncys.push(bouncySprite({
 images: '/images/cogs.png',
 imagesWidth: 256,
 width: 64,
 height: 64,
 $drawTarget: $drawTarget,
 x: Math.random() * ($drawTarget.width() - 64),
 y: Math.random() * ($drawTarget.height() - 64),
 xDir: Math.random() * 4 - 2,
 yDir: Math.random() * 4 - 2,
 maxX: $drawTarget.width() - 64,
 maxY: $drawTarget.height() - 64
 }));
 }

Now we define a moveAll method, which calls the moveAndDraw method of each bouncy
Sprite in the bouncys array. After moving everything, it creates a setTimeout to call itself
again, thus creating a continuous loop.

 var moveAll = function () {
 var len = bouncys.length;
 for (var i = 0; i < len; i++) {
 bouncys[i].moveAndDraw();
 }
 setTimeout(moveAll, 10);
 }
 // Call the moveAll() function to start.
 moveAll();
};

The page layout for using the new bouncyBoss object is as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>
 Sprite Demonstration
 </title>
 <style type="text/css">
 #draw-target {
 width:480px;
 height:320px;
 background-color:#ccf;
 position:relative;
 }
 </style>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.js">
 </script>
 <script type="text/javascript">
 var DHTMLSprite = function(params) {
 /*** DHTMLSprite code removed for conciseness ***/
 };
 var bouncySprite = function(params) {
 /*** bouncySprite code removed for conciseness ***/
 };

34 | Chapter 2: DHTML Essentials

 var bouncyBoss = function(numBouncy, $drawTarget) {
 /*** bouncyBoss code removed for conciseness ***/
 };
 $(document).ready(function() {

A single call to bouncyBoss creates 50 bouncySprite objects and continually calls their
moveAndDraw methods. Figure 2-3 shows the output.

 bouncyBoss(50, $('#draw-target'));
 });
 </script>
 </head>
 <body>
 <div id="draw-target">
 </div>
 </body>
</html>

Figure 2-3. Multiple sprite instances being drawn and animated

Converting into a jQuery Plug-in
Converting the bouncy sprite application into a jQuery plug-in adds functionality that
takes advantage of jQuery’s ability to easily search for DOM elements via CSS selectors
and return them as a list for further processing. The plug-in will search for any specified

Converting into a jQuery Plug-in | 35

elements and attach multiple bouncySprite instances to them via the bouncyBoss object.
It will also allow you to change the background color of the elements being attached
to and the number of bouncySprite instances being attached.

Although converting the bouncy sprite application into a flexible jQuery plug-in may
sound like a substantial job, there’s actually less work involved than you might expect.
Because of the modular and self-contained way in which the DHTMLSprite, bouncy
Sprite, and bouncyBoss objects were developed, they will slip unobtrusively into a
jQuery plug-in structure.

The initial solitary semicolon may seem odd (it is not a typo), but it protects against
problems arising from cases where the code preceding the plug-in does not end with a
semicolon as expected. Normally, this is not an issue, as JavaScript will identify the
plug-in code after a line break as a new statement. However, if the preceding code and
the plug-in were minified, the whitespace—including line breaks—would probably be
removed. The plug-in would subsequently fail due to the lack of an identifying break
between it and the preceding code.

; // Initial solitary semicolon.

Here, we define an anonymous function. This will wrap all the plug-in code into a nice,
self-contained context that won’t clash with anything outside it. The $ is simply an
argument that will be passed in; in this case, it’s the global jQuery object itself (see the
last line of the plug-in). Now, instead of calling jQuery(), you can use the shorthand
method of calling jQuery, $(), throughout the plug-in. Passing the jQuery object like
this may seem like a waste of time, as it is already defined globally. However, it ensures
that any alien code outside the plug-in that redefines the $ variable (for example, an-
other JavaScript library) will not prevent the plug-in from using the shorthand method
of calling jQuery.

(function ($) {

You augment jQuery’s abilities by storing a reference to the plug-in within jQuery’s
fn property. There is a chance that a namespace collision may occur due to another
plug-in already being defined with exactly the same name. You can avoid this in most
cases by being imaginative with the plug-in name. For instance, “zoom” is probably
not a good choice, whereas “cloudZoom” is less likely to clash

 $.fn.bouncyPlugin = function (option) {

We insert the code for DHTMLSprite, bouncySprite, and bouncyBoss here. There is no
need to modify them in any way. Because they are stored as local variables, they remain
private to the plug-in.

 var DHTMLSprite = function (params) {
 /*** DHTMLSprite code removed for conciseness ***/
 };
 var bouncySprite = function (params) {
 /*** bouncySprite code removed for conciseness ***/
 };
 var bouncyBoss = function (numBouncy, $drawTarget) {

36 | Chapter 2: DHTML Essentials

 /*** bouncyBoss code removed for conciseness ***/
 };

The plug-in can use options defined as properties of the option object argument. This
is a flexible way of passing options to a plug-in, as it allows all, some, or no options to
be passed. The jQuery extend function merges the option properties with default option
properties defined in the $.fn.bouncyPlugin.defaults object. The option properties
have priority where they exist; the default properties are used where they do not. Be-
cause default options are public, an application can change them for the plug-in by
creating a new defaults object in $.fn.bouncyPlugin.defaults.

 option = $.extend({}, $.fn.bouncyPlugin.defaults, option);

The plug-in iterates through the list of DOM elements found. For each element, it
executes an anonymous function. Within the function, this refers to the current ele-
ment in the list. A jQuery object is created from this and stored in $drawTarget. The
background color defined in option is applied to $drawTarget, as is a new instance of
bouncyBoss:

 return this.each(function () {
 var $drawTarget = $(this);
 $drawTarget.css('background-color', option.bgColor);
 bouncyBoss(option.numBouncy, $drawTarget);
 });
 };
 $.fn.bouncyPlugin.defaults = {
 bgColor: '#f00',
 numBouncy: 10
 };
})(jQuery);

Here is the plug-in in situ in an HTML page. Figure 2-4 shows the output:

<!DOCTYPE html>
<html>
 <head>
 <title>
 Sprite Demonstration
 </title>
 <style type="text/css">
 .draw-target {
 width:320px;
 height:256px;
 position:relative;
 float:left;
 margin:5px;
 }
 </style>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.js">
 </script>
 <script type="text/javascript">

We insert the plug-in here:

Converting into a jQuery Plug-in | 37

 ;(function($) {
 $.fn.bouncyPlugin = function(option) {
 /*** bouncyPlugin code removed for conciseness ***/
 };
 })(jQuery);

When the page is ready, the plug-in is called on the desired elements—in this case,
anything with a CSS class of draw-target.

 $(document).ready(function() {
 $('.draw-target').bouncyPlugin({
 numBouncy: 20,
 bgColor: '#8ff'
 });
 });
 </script>
 </head>
 <body>

Next, we define four div elements with a class of draw-target:

 <div class="draw-target">
 </div>
 <div class="draw-target">
 </div>
 <div class="draw-target">
 </div>
 <div class="draw-target">
 </div>
 </body>
</html>

For more in-depth scrutiny of jQuery, including creating plug-ins, see jQuery
Cookbook by jQuery Community Experts (O’Reilly; http://oreilly.com/catalog/
9780596159788).

Timers, Speed, and Frame Rate
This section deals with programming issues related to throttling graphical updates in
JavaScript to give the user an optimal experience. We want graphics that have smooth
and fluid movement, and that are neither too quick nor too slow. The performance of
the user’s computer will influence how fast moving graphics are updated. I’ll also dis-
cuss a solution for reducing these apparent speed variations on different machines.

Using setInterval and setTimeout
JavaScript’s setInterval() and setTimeout() functions allow you to call JavaScript code
at regular intervals. Applications that require regular graphical updates, such as arcade
games, would be difficult, if not impossible, to write without them.

You can call a function repeatedly by passing it as a callback to setInterval():

38 | Chapter 2: DHTML Essentials

http://oreilly.com/catalog/9780596159788
http://oreilly.com/catalog/9780596159788

// This is a callback function.
var bigFunction = function() {
 // Do something...
 // This code needs to be called regularly.
 // It takes 20ms to execute
};

// setInterval will attempt to call bigFunction() every 50 milliseconds.
setInterval(bigFunction, 50);

Notice that bigFunction() takes 20 milliseconds (ms) to execute. What happens if a
smaller interval is used instead?

setInterval(bigFunction, 15);

It might seem that the 20ms bigFunction() will be called again before the first
callback has even returned. In reality, the new callback will be queued until after the
first callback has finished.

Figure 2-4. Multiple instances of the bouncyBoss object created through a jQuery plug-in

Timers, Speed, and Frame Rate | 39

What happens if the delay is reduced further?

setInterval(bigFunction, 5);

It would be reasonable to expect each setInterval() callback to be queued several times
while the first callback executes. In fact, the usual behavior is that only one queued
callback to bigFunction() will ever be active. Will the queued callback happen imme-
diately after the first callback has finished? Possibly, but not necessarily; other events
and code running in the browser can force setInterval() callbacks to be delayed or
dropped altogether. Callbacks may even occur back to back, at less than the interval
specified, if JavaScript sees a window of opportunity to flush the queue.

The important lesson here is that while setInterval() works at millisecond resolution,
there is no guarantee that callbacks will be executed at the intervals specified.

setTimeout() calls a function, once only, after a specified delay. You might think of it
as setInterval()’s more predictable friend.

setTimeout(bigFunction,50);

This will call bigFunction(), once only, after a delay of 50ms. As with setInterval(),
the delay should be regarded only as a guide.

You can also use setTimeout() to call a function continuously, but with less unpre-
dictable behavior than setInterval():

// This is a callback function.
var bigFunction = function() {
 // Do something...
 // This code needs to be called regularly.
 // It takes 20ms to execute
 setTimeout(bigFunction, 10);
};

Whenever bigFunction() finishes, it sets up another setTimeout() with itself as the
callback.

In this example, even though the timeout specified is less than the time it takes for
bigFunction() to execute, the setTimeout() callback will execute only after
bigFunction() has finished. In effect, the frequency of execution will be similar to the
following alternative code, which uses setInterval():

 setInterval(bigFunction, 20+10);

Timer Accuracy
Browsers running under Windows have to cope with coarse-grained timers. For ex-
ample, the underlying operating system timer used in Windows XP offers a 15ms ac-
curacy. This means that JavaScript functions such as Date(), setInterval(), and set
Timeout() will not give reliable results when the timings in question are less than 15ms
or so. One browser to buck this trend is Google Chrome, which offers 1ms accuracy
by switching Windows into an accurate timer mode.

40 | Chapter 2: DHTML Essentials

To learn more about the topic of JavaScript timers, read the following
online articles:

• http://ejohn.org/blog/how-javascript-timers-work/

• http://ejohn.org/blog/javascript-in-chrome/

The upshot is that an application should not rely on timings under 15ms, or about 1/64
of a second. Is this a major problem? In most instances, no; it’s unlikely that such a
time-sensitive application would (or should) be running under JavaScript within a
browser. Animations might run a little slower or faster than expected, and applications
like games might not give a perfectly consistent frame rate. If one were pedantic enough
to scrutinize the cumulative effects of these inaccuracies over a period of time, there
would be a noticeable deviation. However, under normal usage conditions, such as
playing a game or watching a menu fade in, the deviations would be imperceptible.

One area that you should approach with caution, though, is the use of Date() to profile
code performance. The following example will yield inaccurate results if the code exe-
cuted terminates too quickly:

var startTime = new Date().getTime();
/*** Execute some code here that takes less than 15 milliseconds ***/
var endTime = new Date().getTime();
var elapsedTime = endTime - startTime;

A better solution is to execute the code repeatedly over a longer period of time—say,
one second—and then work out the speed of execution from the number of iterations
achieved within that time.

Achieving Consistent Speed
One problem with the sprite implementation shown earlier—or, more specifically, the
code that moves the sprites—is that different browsers will yield an inconsistent speed
of animation and movement, or frame rate. For instance, on a 2.8Ghz PC, a fast browser
like Opera or Google Chrome will happily move a hundred sprites at 50 frames per
second (FPS), whereas Firefox might manage 30 FPS, and Internet Explorer 8 just 25
FPS. Add different hardware into the mix, and you’ll see even more frame-rate incon-
sistencies.

This may not be an issue for cosmetic animations and effects, but for applications like
games where a consistent speed of movement is important to playability, these varia-
tions are a problem.

To combat this issue, you must modify the calculations used to move and animate the
sprites to take into account different frame rates, thus giving an apparently consistent
speed in different hardware and software environments. For example, a sprite moving
across the screen in two-pixel steps at 30 FPS will appear to move at the same speed as
a sprite moving across the screen in one-pixel steps at 60 FPS. The main discernible

Timers, Speed, and Frame Rate | 41

http://ejohn.org/blog/how-javascript-timers-work/
http://ejohn.org/blog/javascript-in-chrome/

difference between the two will be that the 30 FPS sprite does not move quite as
smoothly as the 60 FPS sprite. However, they will still appear to traverse the screen at
the same rate.

A time coefficient must be calculated and used in the movement and animation code.
Table 2-4 shows the sort of results required.

Table 2-4. Example time coefficients

Goal FPS Actual FPS Time coefficient

60 30 2

60 15 4

30 40 0.75

50 50 1

It’s fairly obvious that you calculate the time coefficient by dividing the goal FPS by the
actual FPS achieved.

You calculate the actual FPS by making note of the current time in milliseconds, using
the JavaScript Date object (the start time). You then execute all the application logic
and take the time again (the end time). Here is the code:

actualFPS = 1000 / (endTime - startTime);

If the demands made on the CPU are too much, the frame rate may become unaccept-
ably slow. A sprite moving across the screen in 10-pixel steps at 6 FPS will look very
jerky, which is certainly not suitable for arcade games. As a useful rule of thumb,
Table 2-5 gives an idea of frame rates and perceived movement smoothness.

Table 2-5. FPS and perceived movement smoothness

Frames per second Perceived smoothness

Less than 15 Rather jerky

15–20 Just acceptable

20–30 Reasonably smooth

30–40 Smooth

40+ Very smooth

This is not to say that a low frame rate of 10 FPS is useless. For animated puzzle-style
games like Tetris, this might be quite acceptable.

Now we create a timeInfo object, which provides all the functionality required to keep
animated applications moving at a consistent speed. It is passed a goalFPS parameter,
which is the FPS we would like to achieve if possible. If that FPS is not possible, the
function adjusts the movement speed so it at least appears that things are running at

42 | Chapter 2: DHTML Essentials

the goalFPS. The function also returns various other pieces of useful time-related
information.

The function returns an object, which contains a getInfo() method. The getInfo()
method returns an object containing the useful properties shown in Table 2-6.

var timeInfo = function (goalFPS) {
 var oldTime, paused = true,
 interCount = 0,
 totalFPS = 0;
 totalCoeff = 0;
 return {
 getInfo: function () {

Table 2-6. Object properties returned from timeInfo.getInfo()

Property Description

elapsed The number of milliseconds since the last call to getInfo()

coeff The coefficient to be used in movement and animation calculations

FPS The FPS achieved since the last call to getInfo()

averageFPS The average FPS achieved since the first call to getInfo()

averageCoeff The average coefficient

The paused variable indicates that getInfo() is being called for the first time, either at
the beginning of the application or after a deliberate pause in the application. It ensures
that values passed back by getInfo() are benign after a long pause, and will not explode
any calculations due to a very large coefficient being returned.

 if (paused === true) {
 paused = false;
 oldTime = +new Date();
 return {
 elapsed: 0,
 coeff: 0,
 FPS: 0,
 averageFPS: 0,
 averageCoeff: 0
 };
 }

We calculate the elapsed time by taking the time recorded in oldTime (from the previous
call to getInfo()) and subtracting it from the new time. Then, we use the elapsed time
to calculate the frame rate. The +new Date() statement is equivalent to new Date().get
Time();:

 var newTime = +new Date(); // get time in milliseconds
 var elapsed = newTime - oldTime;
 oldTime = newTime;
 var FPS = 1000 / elapsed;
 iterCount++;
 totalFPS += FPS;

Timers, Speed, and Frame Rate | 43

 var coeff = goalFPS / FPS;
 totalCoeff += coeff;

An object is returned with useful information properties. Refer back to Table 2-6.

 return {
 elapsed: elapsed,
 coeff: goalFPS / FPS,
 FPS: FPS,
 averageFPS: totalFPS / iterCount,
 averageCoeff: totalCoeff / interCount
 };
 },

Next, we define a pause() method. This should be called before the application is de-
liberately paused for any reason.

 pause: function () {
 paused = true;
 }
 };
};

We can modify the original bouncySprite and bouncyBoss code to use the timeInfo
object:

var bouncySprite = function (params) {
 var x = params.x,
 y = params.y,
 xDir = params.xDir,
 yDir = params.yDir,
 maxX = params.maxX,
 maxY = params.maxY,
 animIndex = 0,
 that = DHTMLSprite(params);
 that.moveAndDraw = function (tCoeff) {

 x += xDir * tCoeff;
 y += yDir * tCoeff;
 animIndex += xDir > 0 ? 1 * tCoeff : −1 * tCoeff;
 var animIndex2 = (animIndex % 5) >> 0;
 animIndex2 += animIndex2 < 0 ? 5 : 0;

 if ((xDir < 0 && x < 0) || (xDir > 0 && x >= maxX)) {
 xDir = -xDir;
 }
 if ((yDir < 0 && y < 0) || (yDir > 0 && y >= maxY)) {
 yDir = -yDir;
 }
 that.changeImage(animIndex2);
 that.draw(x, y);
 };
 return that;
};

44 | Chapter 2: DHTML Essentials

The moveAndDraw method now accepts a time coefficient as an argument. The calcula-
tions are similar to before, but also use the coefficient. The changeImage() function
expects an integer value, but this will not necessarily be the case, as animIndex is affected
by the coefficient and may yield noninteger values. To resolve this, we make a copy of
animIndex in animIndex2, which is adjusted to be an integer value and then passed to
changeImage():

var bouncyBoss = function (numBouncy, $drawTarget) {
 var bouncys = [],
 timer = timeInfo(40);
 for (var i = 0; i < numBouncy; i++) {
 bouncys.push(bouncySprite({
 images: '/images/cogs.png',
 imagesWidth: 256,
 width: 64,
 height: 64,
 $drawTarget: $drawTarget,
 x: Math.random() * ($drawTarget.width() - 64),
 y: Math.random() * ($drawTarget.height() - 64),
 xDir: Math.random() * 4 - 2,
 yDir: Math.random() * 4 - 2,
 maxX: $drawTarget.width() - 64,
 maxY: $drawTarget.height() - 64
 }));
 }
 var moveAll = function () {
 var timeData = timer.getInfo();
 var len = bouncys.length;
 for (var i = 0; i < len; i++) {
 bouncys[i].moveAndDraw(timeData.coeff);
 }
 setTimeout(moveAll, 10);
 }
 moveAll();
};

The bouncyBoss object now creates an instance of timeInfo (stored in timer) with a 40
FPS goal. moveAll() calls timeInfo.getInfo() at every iteration to get the time coeffi-
cient and passes this to the moveAndDraw() method of each bouncySprite instance. Notice
how only one instance of timeInfo is required, as it makes sense for each instance of
bouncySprite to use the same coefficient for any particular iteration.

Internet Explorer 6 Background Image Caching
Still acting like the cantankerous old relative who won’t go away, Internet Explorer 6
(IE6) doesn’t always deal well with perfectly valid cross-browser code. Specifically, IE6
has issues with background images whereby they are not cached as they should be.
This means that every time a background image is accessed multiple times, rather than
reading a locally cached copy of the image from memory, IE6 retrieves it from the server
again. This obviously hampers performance significantly if background images are

Internet Explorer 6 Background Image Caching | 45

being used for animation. If IE6 compatibility is important to you, use this simple
workaround for the problem:

// IE6 background image caching fix.
// Include this JavaScript at the top of your page.
try {
 document.execCommand("BackgroundImageCache", false, true);
} catch(e) {}

46 | Chapter 2: DHTML Essentials

CHAPTER 3

Scrolling

Browser scrolling is the typically mundane action of moving scroll bars up and down
or left and right. You use scrolling to move a viewport over content that is too long to
view in its entirety within the confines of the browser window or designated browser
element. In this chapter, we will examine more graphically creative uses of scrolling,
initially from a purely CSS perspective, and then move on to more advanced scrolling
effects that JavaScript makes possible.

Why even bother covering CSS scrolling in a book about JavaScript graphics? One
reason is to highlight the limitations of using just CSS versus programmed effects in
JavaScript. In addition, you can add some nice touches with just CSS, and those are
worth investigating.

CSS-Only Scrolling Effects
CSS can provide some basic control of scrolling content, which you can use to good
effect. In the atmospheric Retro Theater sample on the CSS Zen Garden website
(Figure 3-1), the main website content within the cinema screen is surrounded by
div elements that contain the cinema architecture images. As the user moves the
browser’s vertical scroll bar, the main website content within the cinema screen (the
viewport) is transformed into what appears to be black-and-white movie credits that
move vertically.

How is this effect created? Using the bottom part of the theater with the seats as an
example, the CSS reads as follows:

#extraDiv3
{
 position:fixed !important;
 position:absolute;
 bottom:0;
 left:0;
 width:100%;
 height:30% !important;
 height:110px;

47

 min-height:110px;
 max-height:318px;
 background:url('bas.png') no-repeat 50% 0%;
 z-index:4;
}

The key to the effect lies in the position:fixed CSS rule, which ensures that the div
element stays at the same place relative to the window. In this case, the div is positioned
to remain at the bottom of the window. There are a few additional rules to ensure that
the element stays within a height range.

Figure 3-2 shows a more elaborate example of CSS-only scrolling. In the Silverback
website, you will notice three overlaid layers of twigs and leaves that hang from the top
of the page. When the user resizes the browser window, these layers move at different
speeds to give a three-dimensional effect, with the layer in the foreground moving the
quickest and the farthest layer moving the slowest. This kind of effect is called parallax
scrolling and is often used in two-dimensional video games and cartoon animation. In
this instance, the entire width of the browser window is used as the viewport.

The code in Example 3-1 uses a similar technique, creating the parallax effect shown
in Figure 3-3. The effect uses three images in 256-color PNG format (Figure 3-4). Notice
how a blurred effect has been used on the frontmost grass image to further enhance the
illusion of depth.

Figure 3-1. This simple but effective use of CSS in Retro Theater by Eric Rogé creates a convincing
scrolling cinema screen effect (http://www.csszengarden.com/?cssfile=202/202.css)

48 | Chapter 3: Scrolling

http://www.csszengarden.com/?cssfile=202/202.css

The images used in Figure 3-4 are 8-bit (256-color) PNG images with
alpha. As well as having a smaller memory footprint than 32-bit images,
they will also display (albeit without their alpha pixels) on browsers that
don’t support transparent PNG images, such as IE6.

Example 3-1. CSS parallax scrolling

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>CSS Parallax</title>
 <style type="text/css">
 body {
 padding:0px;
 margin:0px;
 }

 .layer {
 position:absolute;
 width:100%;
 height:256px;
 }

Figure 3-2. Parallax scrolling effect in the twigs and leaves at the top of the page (http://silverbackapp
.com/)

CSS-Only Scrolling Effects | 49

http://silverbackapp.com/
http://silverbackapp.com/

 #back {
 background: #3BB9FF url(back1.png) 20% 0px;

 }
 #middle{
 background: transparent url(back2.png) 30% 0px ;

 }
 #front{
 background: transparent url(back3.png) 40% 0px;

 }
 </style>
</head>
<body>
 <div id = "back" class = "layer"></div>
 <div id = "middle" class = "layer"></div>
 <div id = "front" class = "layer"></div>
</body>
</html>

Figure 3-3. Parallax CSS effect with three layers

Figure 3-4. The component images of the parallax effect

50 | Chapter 3: Scrolling

The CSS in Example 3-1 defines three unique layer styles: back, middle, and front. The
key to the parallax effect is the percentage set for the horizontal background positions
for each layer. As the window changes size, the layers keep their horizontal background
position percentage relative to the window width, and hence appear to move at different
speeds. The width of the layers will expand to the full width of the window, with the
image being repeated along the layer’s length. The layers use position:absolute so they
appear one on top of the other.

Scrolling with JavaScript
Although the CSS scrolling techniques described earlier can give some nice effects, the
lack of control is frustrating: the parallax effects work only when the browser window
is resized, so there is no guarantee that the user will even see the effect. However, with
JavaScript, there are no limitations as to how and when scrolling effects can occur. In
this section, we will examine two types of JavaScript scrolling techniques: background
image scrolling and the more sophisticated tile-based image scrolling.

Background Image Scrolling
The following section recreates the CSS effect in Figure 3-3, but this time, the movement
of the mouse over the page controls the direction and speed of scrolling via JavaScript.
As the mouse moves to either the left or right of the page, the scrolling will accelerate
in the same direction, slowing to a stop as the mouse moves into the middle of the page,
or stopping completely when the mouse leaves the page altogether.

With the CSS scrolling code shown earlier in Example 3-1, the background image po-
sitions were specified as a percentage of the browser window size. In Example 3-2, the
background image positions are manipulated as pixel positions.

For convenience, jQuery is used in the example code.

Example 3-2. Simple JavaScript scrolling

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>CSS Parallax</title>
 <style type="text/css">
 body {
 padding:0px;
 margin:0px;
 }

Scrolling with JavaScript | 51

 .layer {
 position:absolute;
 height:256px;
 width:100%;
 }

 #back {
 background: #3BB9FF url(back1.png);

 }
 #middle{
 background: transparent url(back2.png);

 }
 #front{
 background: transparent url(back3.png);

 }
 </style>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.0/jquery.min.js">
 </script>

 <script type="text/javascript">
 $(function () {
 var speed = 0,
 $back = $('#back'), // Initial speed.
 $middle = $('#middle'), // Cache layers as jQuery objects.
 $front = $('#front'),
 xPos = 0, // Initial x position of background images.
 $win = $(window); // Cache jQuery reference to window.

 // Respond to mousemove events.
 $(document).mousemove(function (e) {
 var halfWidth = $win.width()/2;
 // Calculate speed based on mouse position.
 // 0 (center of screen) to 1 at edges.
 speed = e.pageX - halfWidth;
 speed /= halfWidth;
 });

 // Kill speed on mouseout.
 $(document).mouseout(function (e) {
 speed = 0;
 });

 // Every 30ms, update each layer's background image position.
 // The two front layers use a scaled-up x position to
 // create the parallax effect.
 setInterval(function () {

 // Update the background position variable.
 xPos += speed;

52 | Chapter 3: Scrolling

 // Apply it to the layers' background image positions,
 // scaled up for the front two layers so they move quicker
 // than the farthest layer.
 $back.css({
 backgroundPosition: xPos + 'px 0px'
 });
 $middle.css({
 backgroundPosition: (xPos * 2) + 'px 0px'
 });
 $front.css({
 backgroundPosition: (xPos * 3) + 'px 0px'
 });

 }, 30);

 });
 </script>

</head>
<body>
 <div id = "back" class = "layer"></div>
 <div id = "middle" class = "layer"></div>
 <div id = "front" class = "layer"></div>
</body>
</html>

The JavaScript scrolling code in Example 3-2 works as follows:

• When a mousemove event occurs, calculate a speed based on the position of the
mouse.

• When a mouseout event occurs, set the speed to 0.

• Every 30 milliseconds, take the calculated speed and add it to an x-position variable
(xPos). Apply a scaled xPos to the horizontal background image position of each
layer. The following scales are applied to each layer’s x position: ×1, ×2, and ×3.

Tile-Based Image Scrolling
One drawback of the previous scrolling example is the use of large repeating images
that are tiled across the browser window. As the background images scroll by, their
lack of variety soon becomes apparent. One solution is to use much larger images,
which must scroll a lot further before they repeat. This creates another problem, how-
ever, whereby the image size can soon get out of hand if the content is large. For ex-
ample, say the required content area was 2,048 pixels square (roughly twice the size of
a typical netbook screen). This would require a four-megapixel image—and just for a
single layer. What if we want content that is 100,000 pixels square with three parallax
layers? Obviously, this large-image–based approach is not practical when you require
large areas of scrolling graphical content.

Scrolling with JavaScript | 53

A more effective solution is to use tile-based image scrolling. A set of image tiles of
uniform size (say, 64 pixels square) is reused many times over the content area. The
content area effectively becomes a uniform grid of tiles, or a “map.” The tiles are drawn
and arranged within the map in such a way that they give the illusion of a massive,
single bitmap being used. Each tile is simply referenced by an index number, and the
definition of the map is just an array of these index numbers. So, a 2,048-pixel-square
map using 64-pixel–square tiles would require 32 × 32, or 1,024, tile indexes to be
stored. In many ways, the concept of using small repeating elements to create a much
larger whole is analogous to how a simple text file works: the text file is stored as
character indexes (ASCII code), not as a huge bitmap.

One brute-force approach to getting this technique working is to create a div element
as a “handle” and attach image elements to it, with each image element representing a
tile in the map. By moving the handle element around within a smaller viewport div,
you achieve the scrolling effect. This does actually work, but there are a couple of issues
that spoil this technique:

• You have to insert lots of tile elements (image elements) into the DOM. A large
map might need many thousands of tiles. Big DOMs can mean poor performance
and increased memory consumption as the browser struggles to handle all of the
image elements, even though they might not all be visible at once.

• Each unique image element tile requires its own bitmap to be loaded over the net-
work. For a handful of unique tiles, this isn’t a problem; for hundreds of tiles, it
can cause the page to load slowly.

The second issue is easily solved. As with the DHTML sprites covered in Chapter 2,
we can use div elements instead of image elements. divs can reference smaller portions
of a single large bitmap (or tileset) as their background image. This means fewer images
to load over the network, and the ability to easily change the image within a tile just by
changing its CSS background position.

We can significantly reduce the number of tiles required in the DOM by using the
snapping technique described in the following section.

Snapping...

We can solve the problem of having a large number of tiles in the DOM by ensuring
that only the minimum number of tiles required to fill the viewport is ever used. Fig-
ure 3-5 illustrates a viewport window that is 640 × 384 pixels in size. The grid behind
represents the visible area of the map, composed of 64-pixel-square tiles. There is a
maximum of 11 horizontal tiles and 7 vertical tiles that can possibly be displayed within
a viewport of this size—77 tiles in total. This is irrespective of the size of the map, which
can be huge. The calculation for determining the maximum number of tiles that can
be displayed along a viewport axis is as follows (axisSize and tileWidth are measured
in pixels):

numTilesAxis = Math.ceil((axisSize + tileWidth) / tileWidth);

54 | Chapter 3: Scrolling

We need a method whereby only this calculated maximum number of tiles is ever
created and manipulated, regardless of the map size.

Figure 3-5. The maximum number of 64-pixel tiles displayed on a 640 × 384 pixel viewport is 77

Imagine the scroll position is increasing rightward through the map, and hence the 77
tiles are scrolling to the left. What happens when the leftmost tiles are totally outside
the viewport? There are no more tile elements to the right of the viewport (even though
the map extends to the right), so a blank area will be displayed—this is not what we
want. The solution is to “snap” all the tiles to the right again, so that the maximum
amount of scrolling is never more than one tile in size. We can employ the same method
for all scrolling directions.

What is the map scroll position? Imagine the entire map is a single huge
bitmap. The map scroll position refers to the “pixel” in this virtual bit-
map that appears in the top-left corner of the viewport.

How is the snap position calculated? Divide the current map scroll position by the tile
width and take the negative of the remainder, as follows:

snapPos = -(scrollPosition % tileWidth);

If the tile width was 64 pixels and the horizontal scroll position increases by 8 pixels
each time (starting at 0), the snap positions would repeat as follows:

0, −8, −16, −24, −32, −40, −48, −56, 0, −8, −16, −24, −32, −40, −48, −56, etc.

Scrolling with JavaScript | 55

The snap position is then used as either the left or top position (depending on vertical
or horizontal scrolling) of the handle element that contains all the tiles. The same
calculation will work for left and right or up and down movement. Snap positions are
calculated separately for the horizontal and vertical axes.

You may have realized that merely snapping all the tiles to the right again will display
the same part of the map again and again, with a jerking motion as the scroll position
increases; you also need to change the tile bitmaps depending on the scroll position.
To select the correct bitmap, you must extract the appropriate tile index number from
the map. You calculate this as follows (remember, the map is just an array of tile index
numbers), assuming positions and sizes are specified as whole tile units (as opposed to
pixels):

index = map[(yPos * mapWidth) + xPos];

...and Wrapping

One very useful feature that you can add to tile scrolling is the ability to “wrap” a map
infinitely. Without wrapping, when the map scrolls in a particular direction across the
viewport, at some point the extreme edge of the map will come into view. There is
nothing further to be displayed in that direction, so empty space appears; in other
words, we have reached the end of the map.

With wrapping, where the extreme edge of the map is visible and the map ends, we
display the tiles from the opposite extreme edge of the map again. This allows the
scrolling to continue infinitely in any direction, giving the illusion of a map that
stretches forever. As long as the extreme edges of the map line up with each other when
displayed side by side, it all looks perfectly natural and there is no “end” to the map.

Map wrapping is perfect for situations where you need a continuous moving back-
ground effect—for example, a sky with clouds, a space background with stars and
planets, or rolling hills.

Keeping things fast

Even though we’ve drastically reduced the number of tiles using the snapping method,
a three-layer parallax scroll within a viewport of 640 × 384 pixels would still have 3 ×
77, or 231, tiles. We could reduce this number by using a larger tile size. For example,
if one of the parallax layers is a basic sky with a few clouds, we could probably use 128-
pixel tiles, thus reducing the number of tiles for that layer from 77 to 24.

Manipulating the tiles should be kept to an absolute minimum while scrolling to ensure
a rapid frame rate: precalculate as much as you can, and leave the actual scrolling code
to do as little as possible. The optimizations within the scrolling code loop include:

• No function calls, especially jQuery, as the innocuous $ function can be doing a
lot behind the scenes.

• Just basic loops and arithmetic.

56 | Chapter 3: Scrolling

• A reference to the style property of each tile is stored in an array, enabling you to
quickly change properties such as background position.

• The background position of each tile index is stored as a string in an array in the
following format: '0px 0px', '0px 64px', etc. You can then push these strings
straight into the background position property in one go instead of updating the
left and top properties separately.

• Because you only ever add the visible tiles to the DOM once during viewport setup,
the browser will not try to reflow the page content or perform any other time-
consuming actions during scrolling.

Browser reflow is the action that recalculates the positions and sizes of
all of the DOM elements when something within the page flow changes.
Absolute or fixed-position elements are taken out of the flow, and you
can manipulate them with impunity without triggering a reflow.

Tile scrolling code

The tile scrolling code is split into two main parts:

• Initialization and precalculation

• Drawing

A single instance of tileScroller handles the scrolling within a single viewport. The
setup parameters are passed in as an object with the properties shown in Table 3-1.

Table 3-1. Parameters passed to tileScroller

Property Description

$viewport Viewport element in DOM

tileWidth Width of tiles, in pixels

tileHeight Height of tiles, in pixels

wrapX Whether to wrap map horizontally

wrapY Whether to wrap map vertically

mapWidth Width of map, in tiles

mapHeight Height of map, in tiles

image URL of single tileset image that contains individual tile images

imageWidth Width of the tileset image, in pixels

imageHeight Height of tileset image, in pixels

map An array of tile index numbers

Figure 3-6 shows the scrolling code in Example 3-3 in action with three layers.

Scrolling with JavaScript | 57

Example 3-3. Three-layer tile-based scrolling

// One instance of tileScroller is required for each viewport.
var tileScroller = function (params) {

 var that = {},
 $viewport = params.$viewport,
 // Calculate maximum number of tiles that can be displayed in viewport.
 tilesAcross = Math.ceil(($viewport.innerWidth()
 + params.tileWidth) / params.tileWidth),
 tilesDown = Math.ceil(($viewport.innerHeight()
 + params.tileHeight) / params.tileHeight),

 // Create a handle element that all tiles will be attached to.
 // If this element is moved, so all the attached tiles will move.
 html = '<div class="handle" style="position:absolute;">',
 left = 0, // General counters.
 top = 0,
 tiles = [], // Stores a reference to each tile's style property.
 tileBackPos = [], // Stores the background position offset for each tile.

 mapWidthPixels = params.mapWidth * params.tileWidth,
 mapHeightPixels = params.mapHeight * params.tileHeight,
 handle, i; // General counter.

 // Attach all the tiles to the handle. This is done by creating
 // a big DOM string containing all the tiles and attaching it
 // in one jQuery call. This is faster than attaching each one individually.
 for (top = 0; top < tilesDown; top++) {
 for (left = 0; left < tilesAcross; left++) {
 html += '<div class="tile" style="position:absolute;' +
 'background-image:url(\'' + params.image + '\');' +
 'width:' + params.tileWidth + 'px;' +
 'height:' + params.tileHeight + 'px;' +
 'background-position: 0px 0px;' +
 'left:' + (left * params.tileWidth) + 'px;' +
 'top:' + (top * params.tileHeight) + 'px;' + '"/>';
 }
 }
 html += '</div>';
 // Put the whole lot in the viewport.
 $viewport.html(html);

 // Get a reference to the handle DOM element.
 handle = $('.handle', $viewport)[0];

 // For each tile in the viewport, store a reference to its
 // css style attribute for speed.
 // This will be updated with the tile's visibility status
 // when scrolling later on.
 for (i = 0; i < tilesAcross * tilesDown; i++) {
 tiles.push($('.tile', $viewport)[i].style);
 }

 // For each tile image in the large bitmap, calculate and store the
 // the pixel offsets to be used for the tiles' background image.

58 | Chapter 3: Scrolling

 // This is quicker than calculating when updating later.
 tileBackPos.push('0px 0px'); // Tile zero - special 'hidden' tile.
 for (top = 0; top < params.imageHeight; top += params.tileHeight) {
 for (left = 0; left < params.imageWidth; left += params.tileWidth) {
 tileBackPos.push(-left + 'px ' + -top + 'px');
 }
 }

 // Useful public variables.
 that.mapWidthPixels = mapWidthPixels;
 that.mapHeightPixels = mapHeightPixels;

 // The 'draw' function.
 that.draw = function (scrollX, scrollY) {
 // If wrapping, transform start positions to valid positive
 // positions within the dimensions of the map.
 // This makes the wrapping code simpler later on.
 var wrapX = params.wrapX,
 wrapY = params.wrapY;
 if (wrapX) {
 scrollX = (scrollX % mapWidthPixels);
 if (scrollX < 0) {
 scrollX += mapWidthPixels;
 }
 }
 if (wrapY) {
 scrollY = (scrollY % mapHeightPixels);
 if (scrollY < 0) {
 scrollY += mapHeightPixels;
 }
 }

 var xoff = -(scrollX % params.tileWidth),
 yoff = -(scrollY % params.tileHeight);
 // >> 0 alternative to math.floor. Number changes from a float to an int.
 handle.style.left = (xoff >> 0) + 'px';
 handle.style.top = (yoff >> 0) + 'px';

 // Convert pixel scroll positions to tile units.
 scrollX = (scrollX / params.tileWidth) >> 0;
 scrollY = (scrollY / params.tileHeight) >> 0;

 var map = params.map,
 sx, sy = scrollY, // Copies of scrollX & Y positions (tile units).
 countAcross, countDown, // Loop counts for drawing tiles.
 mapWidth = params.mapWidth, // Copy of map width (tile units).
 mapHeight = params.mapHeight, // Copy of map height (tile units).
 i, // General counter.
 tileInView = 0, // Start with top-left tile in viewport.

 tileIndex, // Tile index number taken from map.
 mapRow;
 // Main drawing loop.

Scrolling with JavaScript | 59

 for (countDown = tilesDown; countDown; countDown--) {
 // Wrap vertically?
 if (wrapY) {
 if (sy >= mapHeight) {
 sy -= mapHeight;
 }
 } else
 // Otherwise, clip vertically (just make the whole row blank).
 if (sy < 0 || sy >= mapHeight) {
 for (i = tilesW; i; i--) {
 tiles[tileInView++].visibility = 'hidden';
 }
 sy++;
 continue;
 }
 // Draw a row.
 sx = scrollX,
 mapRow = sy * mapWidth;
 for (countAcross = tilesAcross; countAcross; countAcross--) {
 // Wrap horizontally?
 if (wrapX) {
 if (sx >= mapWidth) {
 sx -= mapWidth;
 }
 } else
 // Or clipping horizontally?
 if (sx < 0 || sx >= mapWidth) {
 tiles[tileInView++].visibility = 'hidden';
 sx++;
 continue;
 }
 // Get tile index no.
 tileIndex = map[mapRows + sx];
 sx++;
 // If tile index nonzero, then 'draw' it;
 if (tileIndex) {
 tiles[tileInView].visibility = 'visible';
 tiles[tileInView++].backgroundPosition = tileBackPos[tileIndex];
 }
 // otherwise, hide it.
 else {
 tiles[tileInView++].visibility = 'hidden';
 }
 }
 sy++;
 }
 };
 return that;
};

60 | Chapter 3: Scrolling

Figure 3-6. Tile scroller in action

Creating tile maps with Tiled

Manually entering all the tile indexes for a map would be laborious and error prone for
anything but the most trivial case. Luckily, there are various tile map editors available
that can make the process of designing tile maps significantly quicker. Arguably, the
best of the bunch is Tiled (http://www.mapeditor.org/; shown in Figure 3-7), an excellent
open source editor by Thorbjørn Lindeijer and other contributors. It is available for
various operating systems, including Windows, Mac, and Linux.

Figure 3-7. The Tiled tile map editor

Scrolling with JavaScript | 61

http://www.mapeditor.org/

The Tiled wiki offers a useful introduction to creating a map with Tiled, at http://sour
ceforge.net/apps/mediawiki/tiled/index.php?title=Creating_a_simple_map_with_Tiled.

Tiled allows you to create multilayered maps, and in the following examples, the layers
are used to create the parallax scrolling effect shown in Figure 3-6. The layers used are:

• Small clouds

• Big clouds

• Foreground

Only one tileset image is used in the examples that follow, although
Tiled allows you to manage multiple tileset images. Not only does this
feature help you better organize tileset images, but you could also use
it to group like-colored tiles together and then save the images as smaller
8-bit (256-color) PNGs instead of 32-bit PNGs (millions of colors). This
would reduce bandwidth, and you would hardly notice the lower color
resolution due to the shared colors among the tiles.

Tiled allows you to create orthogonal (regular rectangular grid) maps, as shown pre-
viously in Figure 3-7, or isometric maps, as shown in Figure 3-8. To create a new map
for the tile scroller, select New, and the dialog in Figure 3-9 will appear. Set the type of
map required (orthogonal), the width and height of the map (in tile units), and the
width and height of the tiles (in pixels).

Figure 3-8. Isometric map in Tiled

62 | Chapter 3: Scrolling

http://sourceforge.net/apps/mediawiki/tiled/index.php?title=Creating_a_simple_map_with_Tiled
http://sourceforge.net/apps/mediawiki/tiled/index.php?title=Creating_a_simple_map_with_Tiled

Click OK, and Tiled will automatically create a map layer called “Tile Layer 1.” You
can rename this layer by double-clicking its name in the Layers panel. You can add
more layers by selecting Layer→Add Tile Layer.

You can’t do anything useful with these layers yet, because you have no tileset images
to use. Select Map→New Tile Set, and the dialog in Figure 3-10 will appear. Choose a
name for the tileset and browse your computer’s folders for a tileset image. You can
leave the “Use transparent color” checkbox unchecked if you are not using any special
color to represent transparent areas in your tileset images.

Figure 3-10. Tileset setup dialog

When the tileset image has loaded, you can select tile-sized portions of the tileset
image and use them as a brush to place tiles in the main mapping area. By clicking and
dragging the mouse on the tileset, you can select multiple tiles in a rectangular pattern

Figure 3-9. Map setup dialog

Scrolling with JavaScript | 63

as the brush, speeding up the mapping process where multiple tiles make up a single
element in the map. For example, a building may be composed of eight tiles, and you
can select all eight at once from the tileset.

Once you’ve created the map, all that remains is to save the Tiled map file and copy it
onto the server along with the tileset image. The next section explains how the Tiled
map file can be parsed and used with the tile scroller code.

The Tiled file —format is XML (see Example 3-4), although the file
extension used is .tmx. XML format files have a number of benefits:

• They are human readable, making it easy to study the data.

• They are easy to edit with a simple text editor.

• Most programming languages and libraries have XML parsing utilities.

Example 3-4. Tiled file format

<?xml version="1.0" encoding="UTF-8" ?>
<map version="1.0" orientation="orthogonal" width="32" height="16" tilewidth="64"
tileheight="64">
 <tileset firstgid="1" name="tiles2" tilewidth="64" tileheight="64">
 <image source="tiles2.png" width="512" height="320" />
 </tileset>
 <layer name="smallclouds" width="32" height="16">
 <data encoding="csv">
 0,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,7,8,0, ...
 <!-- Rest of data deliberately omitted -->
 </data>
 </layer>
 <layer name="bigclouds" width="32" height="16">
 <data encoding="csv">
 0,0,0,0,0,0,0,0,4,5,6,0, ...
 <!-- Rest of data deliberately omitted -->
 </data>
 </layer>
 <layer name="foreground" width="32" height="16">
 <data encoding="csv">
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ...
 <!-- Rest of data deliberately omitted -->
 </data>
 </layer>
</map>

Tiled can save the map data (<data> tag in the XML file) in the following formats:

• Base64 encoded

• Base64 gzip (compressed)

• Base64 zlib (compressed)

• CSV (comma-separated values)

Tiled file format.

64 | Chapter 3: Scrolling

jQuery allows you to effortlessly parse XML data, a process that takes place in the
loadMap() function (Example 3-5) via the jQuery ajax() command.

For JavaScript, it’s simplest to use CSV, as you can put the values directly into a Java-
Script array by using the split() function on the data. Using any of the other formats
would require you to add code to decompress the data and base64-decode it. However,
compression may be desirable if the maps are very large—CSV data is not particularly
compact but will suffice for these examples.

To save the map data as CSV, set the following preferences in Tiled:

Edit→Preferences→Saving and Loading→Store the tile layer data as→CSV

One thing to look out for when you’re parsing XML files in JavaScript is that the raw
data is treated as strings, not numerical values. This means that pulling out two appa-
rently numeric values and adding them together would produce the results shown here:

var val1 = '64', val2 = '64';// String values as stored in XML file.
var total = val1 + val2; // = string '6464', not number 128.

In other words, we end up with string concatenation, not numeric addition.

To ensure that values taken from the XML file are treated as numerical values instead
of strings, place a plus sign (+) in front of them:

var val1 = '64', val2 = '64';// Values as stored in XML file.
var total = +val1 + +val2; // = number 128 as desired.

This is a shorthand way of doing the following:

var val1 = '64', val2 = '64';// Values as stored in XML file.
var total = parseInt(val1) + parseInt(val2); // = number 128 as desired.

In the following loadMap() function (Example 3-5), a Tiled map file with multiple layers
is loaded via ajax() and parsed. After working out the required parameters from the
Tiled file, it initializes tileScroller objects for each layer and creates the required
viewports in the DOM. Once all the map layers and viewports have been set up, a
callback is executed. Typically, this callback contains code to control the scrolling in
each viewport.

Example 3-5. Loading a Tiled map via ajax()

var loadMap = function(xmlFile,$viewports,callback) {
 var tileScrollers = []; // Array of tileScroller instances for each viewport.
 $.ajax({
 type: "GET",
 url: xmlFile,
 dataType: "xml",
 // Success function called when map has loaded.
 success: function(xml) {
 // Get references to image and map information.
 var $imageInfo = $(xml).find('image'),
 $mapInfo = $(xml).find('map'),
 i;
 // For each layer, create a tileScroller object.

Scrolling with JavaScript | 65

 $(xml).find('layer').each(function() {
 // Setup parameters to pass to tileScroller.
 // The + operator before some values is to ensure
 // they are treated as numerics instead of strings.
 var params = {
 tileWidth: +$mapInfo.attr('tilewidth'),
 tileHeight:+$mapInfo.attr('tileheight'),
 wrapX:true,
 wrapY:true,
 mapWidth:+$mapInfo.attr('width'),
 mapHeight:+$mapInfo.attr('height'),
 image:$imageInfo.attr('source'),
 imageWidth: +$imageInfo.attr('width'),
 imageHeight: +$imageInfo.attr('height')
 },
 // Get the actual map data as an array of strings.
 mapText = $(this).find('data').text().split(','),
 // Create a viewport.
 $viewport = $('<div>');
 $viewport.attr({
 'id':$(this).attr('name')
 }).css({
 'width':'100%',
 'height':'100%',
 'position':'absolute',
 'overflow':'hidden'
 });
 // Attach viewport to viewports wrapper.
 $viewports.append($viewport);
 // Store viewport in parameters.
 params.$viewport = $viewport;
 // Create a map array and store in parameters.
 params.map = [];
 // Convert previous text array map into numeric array.
 for(i=0;i<mapText.length;i++) {
 params.map.push(+mapText[i]);
 }
 // Create a tileScroller and save reference.
 tileScrollers.push(tileScroller(params));
 });
 // Call callback when map loaded, passing array
 // of tileScrollers as parameter.
 callback(tileScrollers);
 }
 });
};

Tile scroller page layout

The actual HTML page for the tile scrolling (Example 3-6) contains a call to load
Map(), which initializes all the viewports and contains code for moving each scrolling
layer at different speeds (parallax effect) when the mouse moves. We accomplish this
via a setInterval call of 30 milliseconds. Notice the viewports div CSS at the top of the

66 | Chapter 3: Scrolling

page, which defines the size of the viewports, and the div itself at the end of the page.
This is where all the viewports created in loadMap() will be inserted.

Example 3-6. Tile-scrolling page code

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>JavaScript Tile Map Scrolling</title>
 <style type="text/css">
 body {
 padding:0px;
 margin:0px;
 }
 #viewports {
 position:absolute;
 border:4px solid #000;
 background-color:#3090C7;
 width:640px;
 height:384px;
 }

 </style>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.0/jquery.min.js">
 </script>

 <script type="text/javascript">
 $(function () {

 var tileScroller = function (params) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var loadMap = function(xmlFile,$viewports,callback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 // Call the loadMap function. The callback passed
 // is a function that scrolls each viewport at different speeds according
 // to mouse movement.
 loadMap("map1.tmx", $('#viewports'), function (tileScrollers) {

 var ts1 = tileScrollers[0], // Get the three tileScrollers.
 ts2 = tileScrollers[1],
 ts3 = tileScrollers[2],
 scrollX = 0, // Current scroll position.
 scrollY = 0,
 xSpeed = 0, // Current scroll speed.
 ySpeed = 0,
 // Width and height of viewports.
 viewWidth = $('#viewports').innerWidth(),
 viewHeight = $('#viewports').innerHeight();

Scrolling with JavaScript | 67

 // As mouse is moved around viewports,
 // calculate a speed to scroll by.
 $('#viewports').mousemove(function (ev) {
 xSpeed = ev.clientX - (viewWidth / 2);
 xSpeed /= (viewWidth / 2);
 xSpeed *= 10;
 ySpeed = ev.clientY - (viewHeight / 2);
 ySpeed /= (viewHeight / 2);
 ySpeed *= 10;
 });
 // Every 30 milliseconds, update the scroll positions
 // for the three tileScrollers.
 setInterval(function () {
 // Each tileScroller is given a different scroll position
 // for a parralax effect.
 ts1.draw(scrollX / 3, scrollY / 3);
 ts2.draw(scrollX / 2, scrollY / 2);
 ts3.draw(scrollX, scrollY);
 // Update scroll position.
 scrollX += xSpeed;
 scrollY += ySpeed;
 // Stop scrolling at edges of map.
 // This code can be removed to test the wrapping.
 if (scrollX < 0) {
 scrollX = 0;
 }
 if (scrollX > ts3.mapWidthPixels - viewWidth) {
 scrollX = ts3.mapWidthPixels - viewWidth;
 }
 if (scrollY < 0) {
 scrollY = 0;
 }
 if (scrollY > ts3.mapHeightPixels - viewHeight) {
 scrollY = ts3.mapHeightPixels - viewHeight;
 }
 }, 30);
 });

 });
 </script>

</head>
<body>
 <!-- This div will contain the three viewports -->
 <div id="viewports"></div>
</body>
</html>

68 | Chapter 3: Scrolling

CHAPTER 4

Advanced UI

Graphics aren’t just about pretty pictures. By giving users more attractive and inter-
esting interface elements, you enable them to interact with your pages more effectively.
In this chapter, we’ll discover how to mitigate the limitations of HTML form elements
by using libraries or custom-coded elements to improve the user experience in your
applications.

HTML5 Forms
HTML5 introduces a number of new form elements that offer increased functionality,
taking some of the load off the web designer in terms of form validation and specialized
widget rendering. These features enable a richer browsing experience with (in theory)
no additional client-side programming required.

Of course, while having validation on the client side is convenient, it’s
easy to create a spoof form that sends invalid data to a server. All form
inputs should also be validated on the server side to avoid the security
ramifications of malicious or junk data being processed.

The new HTML5 inputs include the following types:

• email

• tel

• url

• number

• range

• search

• color

• date

• week

69

• month

• time

• datetime

• datetime-local

Implementing these new input types is no different than implementing existing input
types like hidden, text, or password:

<input type='date'>

Although these HTML5 facilities are a step in the right direction for cross-browser rich
form elements, there are some limitations:

• Browser support is patchy, to say the least, with unsupported elements being re-
placed by regular <input> tags.

• Appearance and behavior will vary from browser to browser. This is important if
you require a consistent look and feel for a website.

Figure 4-1 shows how an HTML5 date input element looks in Opera, Chrome, and
Firefox. Opera shows a full calendar with various bells and whistles, whereas Chrome
keeps things basic with just up and down buttons to increase or decrease the date.
Firefox shows nothing but a regular input.

Figure 4-1. From top to bottom, HTML5 date selector inputs in Opera, Chrome, and Firefox

70 | Chapter 4: Advanced UI

Opera’s is obviously the best attempt at a date input (although the presentation is
less than inspiring), while Chrome’s looks like an afterthought. This kind of inconsis-
tency is frustrating, and until these new HTML5 inputs produce reasonably consistent
results on a cross-browser basis, we have to rely on JavaScript to create the results we
want. In reality, this is not a bad thing, as JavaScript offers more exciting possibilities
than the standard browser offerings.

The next section investigates popular JavaScript user interface libraries, which you can
use to create highly functional web applications that look just like (or even better than!)
traditional native desktop applications. Even if it is not possible to store a user’s ap-
plication data on a remote server, some modern browsers such as Google Chrome offer
local database storage facilities as a viable alternative. You will need to keep an eye on
the latest developments in this area, as support for local storage is not standardized and
will be patchy.

Using JavaScript UI Libraries
While HTML5 rich input elements might currently be a little too raw to use reliably,
we can use JavaScript to provide attractive and consistent results across browsers. There
are two approaches to doing this: use an existing JavaScript user interface library, or
create user interface widgets from scratch.

In this section, I will give you a brief overview of two of the most popular JavaScript
user interface libraries, jQuery UI and Ext JS. Some people may see these two libraries
as competing products (and there is invariably some overlap), but take a closer look
and you’ll see that they are (arguably) quite different in their intended uses. For exam-
ple, if you were developing an ecommerce web application, you might find the lighter
jQuery UI suitable for the frontend, customer-facing side, and Ext JS suitable for the
complex backend, administration side. One big difference between the two, and an
indicator of where these projects are going, is the size of the full zipped downloads
(including samples and documentation): jQuery UI weighs in at a lightweight 1 MB,
whereas Ext JS is a meaty 13 MB.

Using jQuery UI for Enhanced Web Interfaces
The jQuery UI library is built on top of jQuery to provide additional user interface
elements. Certainly, anyone using jQuery is well advised to investigate jQuery UI, as a
large chunk of the code—jQuery itself—will already be loaded on the page. You can
find jQuery UI at http://www.jqueryui.com.

Figure 4-2 shows various jQuery UI elements styled with one of the attractive 24 themes
available. In this example, we are using the Start theme. With a few minor variations,
all of these elements will display correctly and consistently on virtually all browsers.

Using JavaScript UI Libraries | 71

http://www.jqueryui.com

Figure 4-2. jQuery UI elements

jQuery UI currently features the following user interface elements:

• Accordion

• Autocomplete

• Button

• Datepicker

• Dialog

• Progressbar

• Slider

• Tabs

This is not a vast selection, but the widgets are attractive and stable, and additional
widgets are in the pipeline. The library is easy to use, relatively lightweight, and suitable
for most basic form-related and page layout tasks. To gain a realistic expectation of the

72 | Chapter 4: Advanced UI

library, think about it as offering an enhanced website experience rather than a heavy-
duty application experience.

As well as user interface widgets, jQuery UI provides useful lower-level interactions
that you can apply to arbitrary DOM elements:

Draggable
Move elements around with the mouse.

Droppable
Generate an event when one element is dropped on another.

Resizable
Resize elements by dragging the edges and corners.

Selectable
Click to highlight single or multiple elements.

Sortable
Reorder elements by dragging them.

You can use these to create your own specialized widgets.

Loading and using jQuery UI

Installing and using jQuery UI is straightforward, with a just few JavaScript and CSS
includes at the top of the page. All of the required files—jQuery, jQuery UI, and
CSS themes with related imagery—can be conveniently loaded from the Google content
delivery network (CDN), although you can install everything on your own web server
if desired.

Example 4-1 shows how to set up a basic jQuery UI page with a single date picker
widget. Figure 4-3 shows the output.

Example 4-1. Basic jQuery UI setup

<!DOCTYPE html>
<html>
<head>
 <title>jQuery UI</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <!-- jQuery UI font sizes are relative to document's,
 so set a base size here. -->
 <style type="text/css">
 body {
 font-size: 12px;
 font-family: sans-serif
 }
 </style>

 <!-- Load the jQuery UI style sheet. -->
 <link rel="stylesheet" href="
 http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.11/themes/start/jquery-ui.css"

Using JavaScript UI Libraries | 73

 type="text/css" media="all" />

 <!-- Load jQuery. -->
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js"
 type="text/javascript"></script>

 <!-- Load jQuery UI. -->
 <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.11/jquery-ui.min.js"
 type="text/javascript"></script>

 <script>
 // On DOM loaded, initialize a date picker widget on the input element
 // with id of 'datepicker'.
 $(function() {
 $("#datepicker").datepicker();
 });
 </script>

</head>
<body>
 <!-- The following input element will be turned into a date picker. -->
 <p>Enter Date: <input type="text" id="datepicker"></p>
</body>
</html>

Figure 4-3. jQuery UI date input

Theming jQuery UI

It’s easy to use one of the other jQuery UI themes if the Start theme doesn’t suit your
needs. On the line that loads the jQuery UI CSS style sheet file, change the /start/ part
of the path to one of the other theme names; for example:

...ajax/libs/jqueryui/1.8.11/themes/ui-lightness/jquery-ui.css

or:

...ajax/libs/jqueryui/1.8.11/themes/le-frog/jquery-ui.css

74 | Chapter 4: Advanced UI

Where a theme name contains a space—for example, UI Lightness—substitute a
hyphen instead and convert the name to lowercase: ui-lightness.

For a full list of the 24 available standard themes, visit http://jqueryui.com/themeroller/.

As mentioned previously, in addition to linking directly to the themes via Google’s
CDN, you can download the themes and store them on your own server if desired.

As well as the standard themes, the Page Themes page also contains a ThemeRoller
application (Figure 4-4), which allows you to modify existing themes or create new
ones from scratch. You can then download and use these custom themes instead of the
standard ones. Note that the jQuery UI font sizes are relative to the page’s base font
size, so it’s worth setting up a default font size for the page; otherwise, fonts may appear
too large.

Figure 4-4. jQuery UI ThemeRoller

Heavy Duty UI with Ext JS
In contrast to jQuery UI, Ext JS offers a full-on, heavy-duty user interface system. It
offers a seemingly endless array of user interface functionality built into a more rigidly
defined application framework. Ext JS enables the development of web applications
that are virtually indistinguishable from native operating system GUI applications.
It’s suitable for complex backend administration interfaces (e.g., ecommerce

Using JavaScript UI Libraries | 75

http://jqueryui.com/themeroller/

administration) or elaborate frontend web applications (e.g., an art package). The flip
side is that using Ext JS might be like cracking a nut with a sledgehammer if all you
want is a couple of extra widgets and some tabbed content. Take a look at jQuery UI
if your requirements are lighter.

You can find Ext JS on the Sencha website: http://www.sencha.com.

It is almost pointless to list the full functionality of Ext JS, as there is very little it doesn’t
do. Some examples on the Sencha website go way beyond basic widgets and include
applications such as entire web desktops, complex data grids, and forum browsers.
There are layout managers to split up and organize UI page content, as well as facilities
to bind various widgets to remote data sources. Some unexpected Ext JS features in-
clude Google Maps and chart windows (Figure 4-5 and Figure 4-6).

Figure 4-5. Ext JS maps

Figure 4-6. Ext JS charts

76 | Chapter 4: Advanced UI

http://www.sencha.com

Loading and using Ext JS

Like the jQuery UI, loading the resources for Ext JS is straightforward, with the con-
venience of a content delivery network version of the required CSS and JavaScript files.
These files are hosted on the Cachefly network, but you can install them on your own
server if desired.

Although you can use Ext JS to manipulate DOM elements directly like jQuery, the
Ext JS “way” is naturally more biased toward creating objects and having them magi-
cally appear on the page. In many regards, working with Ext JS is more akin to tradi-
tional, non-DOM-based application development. This method of working may have
some benefits in terms of readability in larger projects. Ultimately, whether you prefer
the Ext JS or jQuery way is largely a matter of personal taste.

Example 4-2 creates a window object (not to be confused with the standard DOM
window) and attaches a date widget, a spacer object, and a slider widget (Figure 4-7).

Example 4-2. Basic Ext JS setup

<!DOCTYPE html>
<html>
<head>
 <title>Ext JS</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <!-- Load the Ext JS CSS. -->
 <link rel="stylesheet" type="text/css"
 href="http://extjs.cachefly.net/ext-3.3.1/resources/css/ext-all.css" />

 <!-- Load the Ext JS base JavaScript. -->
 <script type="text/javascript"
 src="http://extjs.cachefly.net/ext-3.3.1/adapter/ext/ext-base.js">
 </script>

 <!-- Load the rest of Ext JS. -->
 <script type="text/javascript"
 src="http://extjs.cachefly.net/ext-3.3.1/ext-all.js">
 </script>

 <script type="text/javascript">

 // Tell Ext JS where to find a transparent gif image
 // (used for rendering various elements).

 Ext.BLANK_IMAGE_URL =
 'http://extjs.cachefly.net/ext-3.0.0/resources/images/default/s.gif';

 // Ext JS onReady is called when the DOM has loaded,
 // similar to jQuery's $(function(){}).
 Ext.onReady(
 function(){

 // Create a DateField object.
 var dateField = new Ext.form.DateField({

Using JavaScript UI Libraries | 77

 fieldLabel: 'Date Widget',
 emptyText:'Enter date...',
 format:'Y-m-d',
 width: 128
 }),

 // Create a Slider object.
 slider = new Ext.Slider({
 width: 280,
 minValue: 0,
 maxValue: 100,
 plugins: new Ext.slider.Tip()
 }),

 // Create a Spacer object.
 space = new Ext.Spacer({
 height:64
 }),

 // Create a Window object to attach all of the above.
 win = new Ext.Window({
 title: 'Ext JS Demo',
 bodyStyle:'padding: 10px',
 width:320,
 height:280,
 items:[dateField, space, slider],
 layout:'form'
 });

 // Show the window.
 win.show();
 }
);
 </script>
</head>
 <body>
 </body>
</html>

Creating UI Elements from Scratch
Using existing UI libraries makes perfect sense in many applications, but there are times
when only a completely custom-coded widget will do. Frameworks like jQuery make
this sort of thing a lot easier to develop, and you can tweak the element’s appearance
and behavior in a completely free manner without having to worry about it “fitting in”
with a UI framework.

78 | Chapter 4: Advanced UI

You can also employ some of the techniques used in the sprites and games sections of
this book to create dynamic widgets; for example:

• Absolutely positioned DOM elements (position: absolute) for free-roaming
widget elements

• Timers for animation (setInterval(), setTimeout())

• Background image position manipulation to reveal limited portions of a larger bit-
map image

jQuery does have some animation facilities, as you’ll see in the TilePic game in Chap-
ter 9, but writing customized animation code gives you the flexibility to apply more
interesting effects. The following section describes how to create a 3D carousel widget
that uses custom animation to scale and move elements in elliptical paths.

Creating a 3D Carousel
In this section, we will develop a carousel widget plug-in from scratch using jQuery. It
takes a bunch of regular HTML images on a page (Figure 4-8) and transforms them
into a spinning carousel widget with a 3D scaling effect (Figure 4-9).

Figure 4-7. Ext JS window object, date picker, and slider (partially obscured)

Creating UI Elements from Scratch | 79

Figure 4-9. Regular images converted into a 3D spinning carousel

Figure 4-8. Regular images, ripe for converting into a carousel

80 | Chapter 4: Advanced UI

Why would we want to do this?

• It looks nice and adds visual interest.

• Groups of images can take up less space.

• It allows a varying number of images to occupy the same space.

Carousel specifications

When developing a user interface element like this, we need to take into account the
diversity of target browsers and circumstances under which the page may be viewed.
For example:

• What happens if JavaScript is turned off?

• What happens if a text-only screen reader is being used?

• What happens on older browsers like IE6?

The user should be presented with the regular images (or text equivalents from alt
tags) if the carousel cannot be initialized. It is up to the carousel plug-in to take these
normal images and turn them into something more interesting if the browser environ-
ment facilitates this. It’s unacceptable for the images to simply disappear in their en-
tirety if the carousel cannot be initialized. Also, the page’s HTML should not have to
be compromised in terms of WC3 validation or semantics in order to use the carousel.

Although it’s not one of our deliberate goals, the carousel should work with older
browsers such as IE6/7. Although the popularity of these insecure browsers is (thank-
fully) declining, there is still a substantial minority of people using them. According to
Microsoft’s IE6 Countdown website (http://www.theie6countdown.com), a site de-
signed to discourage use of IE6, 11.4% of Internet users were using IE6 as of April 2011.

Although the carousel works with IE6, the PNG images used in the fol-
lowing example do not render correctly. If this is an issue, the simple
fix is to instead use JPEG images, which render correctly on all browsers.

There should be no limit to the number of carousels that can be visible on the page.
This means that we’ll need to develop the widget with nice encapsulated code that can
be instanced an unlimited number of times. Implementing the carousel as a jQuery
plug-in makes it easy to initialize multiple carousels. We just need to wrap the carousel
images in elements that jQuery can identify, and apply the plug-in call to them. For
example, the following code initializes a carousel on all wrapping elements with a CSS
class of carousel3d:

$('.carousel3d').Carousel();

Creating UI Elements from Scratch | 81

http://www.theie6countdown.com

These additional specifications will also improve the look and feel of the carousel:

• All images should retain their attributes and any event-based functionality attached
to them.

• Links surrounding the images should not be affected by the carousel.

• The appearance of the carousel should be flexible in terms of the overall dimensions
and scaling of the carousel items.

• The carousel will automatically evenly space a variable number of elements.

• The carousel elements should neatly fade in when their images load, avoiding any
flickering or jerking effects as the DOM is changed.

• When the user hovers his mouse over carousel items, the carousel will stop spin-
ning, and start again when he moves the mouse away. This will make it easier to
select items.

Carousel image loading

For the carousel to be initialized correctly, we must know the width and height of the
image items in order to perform all the calculations related to carousel item positions
and scaling. In an ideal world, we’d know the sizes of all images being used in the
carousel before they’re loaded. In practice, this won’t necessarily be the case, but we
can find the size of an image once it has loaded by reading its width and height prop-
erties.

However, detecting when an image has loaded is a more frustrating task than you might
expect. It is not as simple as attaching a load event to an image and acting when the
event occurs. Unfortunately, image load events are inconsistent across different brows-
ers. Browsers may or may not trigger the load event for image loading, and if they do,
they may not trigger the event when the image is loaded from the browser cache instead
of the network. One fail-safe way of ensuring that images have been loaded is to listen
for the window load event. When this event is fired, it means that all the page assets
have been loaded. The drawback of this method is that the entire page must be loaded
before the user can start interacting with the contents.

It might seem wasteful to trigger the loading of images that are already specified within
image elements in the DOM. In fact, there is very little overhead involved, as the images
will be obtained from the browser cache if they have been loaded previously.

The following loadImage() function facilitates image-loading initialization and detec-
tion. It takes into account the various browser idiosyncrasies, enabling image loading
to be initialized and executing a callback function when the image has arrived either
from the network or browser cache. The function works with existing image elements
already in the DOM, or with image elements created with new Image(). loadImage()
expects an image element, the source URL of the image, and a callback function as
arguments.

82 | Chapter 4: Advanced UI

// Function to execute a callback when an image has been loaded,
// either from the network or from the browser cache.

var loadImage = function ($image, src, callback) {

 // Bind the load event BEFORE setting the src.
 $image.bind("load", function (evt) {

 // Image has loaded, so unbind event and call callback.
 $image.unbind("load");
 callback($image);

 }).each(function () {
 // For Gecko-based browsers, check the complete property,
 // and trigger the event manually if image loaded.
 if ($image[0].complete) {
 $image.trigger("load");
 }
 });
 // For Webkit browsers, the following line ensures load event fires if
 // image src is the same as last image src. This is done by setting
 // the src to an empty string initially.
 if ($.browser.webkit) {
 $image.attr('src', '');
 }
 $image.attr('src', src);
};

Notice how the event is bound before the image source is set. This prevents a load event
from being triggered for instantly loaded cached images before the event handler has
been set up.

Carousel item objects

The carousel is composed of several carousel items that spin around a central point,
shrinking into the distance to create a 3D effect. Each carousel item is treated as an
individual object instance, created via the createItem() function. This function per-
forms various tasks related to handling a single carousel item:

• It triggers the initial image loading (via loadImage()) for the item (the image may
already be in the browser cache).

• Once the image has loaded, it fades in, and saves the width and height (orgWidth,
orgHeight) for the scaling calculations in the update() function.

• The update() function alters the item’s position, scale, and z depth according to
the item’s rotation angle.

// Create a single carousel item.
var createItem = function ($image, angle, options) {
 var loaded = false, // Flag to indicate image has loaded.
 orgWidth, // Original, unscaled width of image.
 orgHeight, // Original, unscaled height of image.
 $originDiv, // Image is attached to this div.

Creating UI Elements from Scratch | 83

 // A range used in the scale calculation to ensure
 // the frontmost item has a scale of 1,
 // and the farthest item has a scale as defined
 // in options.minScale.
 sizeRange = (1 - options.minScale) * 0.5,

 // An object to store the public update function.
 that;

 // Make image invisible and
 // set its positioning to absolute.
 $image.css({
 opacity: 0,
 position: 'absolute'
 });
 // Create a div element ($originDiv). The image
 // will be attached to it.
 $originDiv = $image.wrap('<div style="position:absolute;">').parent();

 that = {
 update: function (ang) {
 var sinVal, scale, x, y;

 // Rotate the item.
 ang += angle;

 // Calculate scale.
 sinVal = Math.sin(ang);
 scale = ((sinVal + 1) * sizeRange) + options.minScale;

 // Calculate position and zIndex of origin div.
 x = ((Math.cos(ang) * options.radiusX) * scale) + options.width / 2;
 y = ((sinVal * options.radiusY) * scale) + options.height / 2;
 $originDiv.css({
 left: (x >> 0) + 'px',
 top: (y >> 0) + 'px',
 zIndex: (scale * 100) >> 0
 });
 // If image has loaded, update its dimensions according to
 // the calculated scale.
 // Position it relative to the origin div, so the
 // origin div is in the center.
 if (loaded) {
 $image.css({
 width: (orgWidth * scale) + 'px',
 height: (orgHeight * scale) + 'px',
 top: ((-orgHeight * scale) / 2) + 'px',
 left: ((-orgWidth * scale) / 2) + 'px'
 });
 }
 }
 };

 // Load the image and set the callback function.

84 | Chapter 4: Advanced UI

 loadImage($image, $image.attr('src'), function ($image) {
 loaded = true;
 // Save the image width and height for the scaling calculations.
 orgWidth = $image.width();
 orgHeight = $image.height();
 // Make the item fade-in.
 $image.animate({
 opacity: 1
 }, 1000);

 });
 return that;
};

The image element passed to the createItem() function is the original one from the
DOM. Apart from some minor CSS changes and being attached to a “handle” div
element, the image element retains any events attached to it, and any wrapping anchor
elements will still work.

The carousel object

The carousel object is the “brains” of the carousel, performing various initialization
and processing tasks to handle the individual carousel items:

• It iterates through all the image children of a wrapping element, initializing a car-
ousel item for each image. It stores a reference to each carousel item in the
items[] array.

• It listens for mouseover and mouseout events that bubble up from the carousel
items. When it detects a mouseover event on an image, the carousel pauses. When
it detects a mouseout event, the carousel restarts after a small delay; the delay pre-
vents sudden stop-start behavior as the user moves her mouse over the gaps be-
tween carousel items.

Finally, we create a setInterval() loop that updates a carousel rotation value and
passes this to each carousel item by calling its update() function. The carousel performs
this action every 30ms (or as specified in the options in the frameRate property). The
default value of 30ms ensures smooth animation. Larger values will be less smooth but
tax the CPU less; they may be suitable if the page contains several carousels.

// Create a carousel.
var createCarousel = function ($wrap, options) {
 var items = [],
 rot = 0,
 pause = false,
 unpauseTimeout = 0,
 // Now calculate the amount to rotate per frameRate tick.
 rotAmount = (Math.PI * 2) * (options.frameRate/options.rotRate),
 $images = $('img', $wrap),
 // Calculate the angular spacing between items.
 spacing = (Math.PI / $images.length) * 2,
 // This is the angle of the first item at

Creating UI Elements from Scratch | 85

 // the front of the carousel.
 angle = Math.PI / 2,
 i;

 // Create a function that is called when the mouse moves over
 // or out of an item.
 $wrap.bind('mouseover mouseout', function (evt) {
 // Has the event been triggered on an image? Return if not.
 if (!$(evt.target).is('img')) {
 return;
 }

 // If mouseover, then pause the carousel.
 if (evt.type === 'mouseover') {
 // Stop the unpause timeout if it's running.
 clearTimeout(unpauseTimeout);
 // Indicate carousel is paused.
 pause = true;
 } else {
 // If mouseout, restart carousel, but after a small
 // delay to avoid jerking movements as the mouse moves
 // between items.
 unpauseTimeout = setTimeout(function () {
 pause = false;
 }, 200);
 }

 });

 // This loop runs through the list of images and creates
 // a carousel item for each one.
 for (i = 0; i < $images.length; i++) {
 var image = $images[i];
 var item = createItem($(image), angle, options);
 items.push(item);
 angle += spacing;
 }

 // The setInterval will rotate all items in the carousel
 // every 30ms, unless the carousel is paused.
 setInterval(function () {
 if (!pause) {
 rot += rotAmount;
 }
 for (i = 0; i < items.length; i++) {
 items[i].update(rot);
 }
 }, options.frameRate);
};

86 | Chapter 4: Advanced UI

The jQuery plug-in part

We initialize carousels via a standard jQuery plug-in function. This allows carousels to
be initialized on any selector in the usual way. We could define the HTML layout of a
five-element carousel and three-element carousel like this:

<div class="carousel" ><!-- This is the wrapping element -->

</div>

<div class="carousel" ><!-- This is the wrapping element -->

</div>

Notice the use of a wrapping div to define which elements are actually part of the
carousel. In this example, we’ve applied the CSS class carousel to identify the wrapping
elements, but you could use any other combination of selectors. You could wrap the
individual image elements with link anchor elements, or bind events to them. Links
and events will continue to work when the images become part of a carousel.

To initialize the two carousels, we make a standard jQuery plug-in call:

$('.carousel').Carousel();

Or with options:

$('.carousel').Carousel({option1:value1, option2:value2...});

Here is the plug-in code:

// This is the jQuery plug-in part. It iterates through
// the list of DOM elements that wrap groups of images.
// These groups of images are turned into carousels.
$.fn.Carousel = function(options) {
 this.each(function() {
 // User options are merged with default options.
 options = $.extend({}, $.fn.Carousel.defaults, options);
 // Each wrapping element is given relative positioning
 // (so the absolute positioning of the carousel items works),
 // and the width and height are set as specified in the options.
 $(this).css({
 position:'relative',
 width: options.width+'px',
 height: options.height +'px'
 });
 createCarousel($(this),options);
 });
};

Creating UI Elements from Scratch | 87

We also define a set of default options. You can override these when initializing the
carousel.

// These are the default options.
$.fn.Carousel.defaults = {
 radiusX:230, // Horizontal radius.
 radiusY:80, // Vertical radius.
 width:512, // Width of wrapping element.
 height:300, // Height of wrapping element.
 frameRate: 30, // Frame rate in milliseconds.
 rotRate: 5000, // Time it takes for carousel to make one complete rotation.
 minScale:0.60 // This is the smallest scale applied to the farthest item.
};

Carousel page layout

The following page layout (Example 4-3) defines a single carousel with nine carousel
items. For demonstration purposes, one of the items is a link (the Leonardo da Vinci
self-portrait), and one has a click event bound to it (the Mona Lisa).

Example 4-3. Two carousels set up on a page

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Carousel</title>
 <style type="text/css">
 img { border:none;}
 </style>
 <script
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js">
 </script>

 <script type="text/javascript">

 // Start of jQuery carousel plug-in.
 (function($) {

 // Function to execute a callback when an image has been loaded,
 // either from the network or from the browser cache.
 var loadImage = function ($image, src, callback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 // Create a single carousel item.
 var createItem = function ($image, angle, options) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };
 // Create a carousel.
 var createCarousel = function ($wrap, options) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 // This is the jQuery plug-in part. It iterates through

88 | Chapter 4: Advanced UI

 // the list of DOM elements that wrap groups of images.
 // These groups of images are turned into carousels.
 $.fn.Carousel = function(options) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 // These are the default options.
 $.fn.Carousel.defaults = {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };
 })(jQuery);
 // End of jQuery carousel plug-in.

 $(function(){
 // Create a carousel on all wrapping elements
 // with a class of .carousel.
 $('.carousel').Carousel({
 width:512, height:300, // Set wrapping element size.
 radiusX:220,radiusY:70, // Set carousel radii.
 minScale:0.6 // Set min scale of rearmost item.

 });

 // Bind a click event to one of the pictures (Mona Lisa)
 // to show events are preserved after images become
 // carousel items.
 $('#pic2').bind('click', function() {
 alert('Pic 2 clicked!');
 });
 });
 </script>

</head>
<body>

 <div class="carousel" ><!-- This is the wrapping element -->
 <a href="http://en.wikipedia.org/wiki/Self-portrait_(Leonardo_da_Vinci)"
 target="_blank">

 </div>

</body>
</html>

Creating UI Elements from Scratch | 89

Try adjusting the code to include additional carousels with varying numbers of ele-
ments. Add more click functionality to some of the other images, or create links out of
them.

The days of web applications looking like an inadequate homage to fancy native desk-
top applications is long gone. With all the tools currently available, there is no reason
why a modern web application cannot look even better than its desktop equivalent.
Indeed, with ever-improving browsers, JavaScript performance, and libraries, cloud-
based web applications are a viable alternative to traditional native applications in many
situations. And with the web-based approach, users get the added benefit of being able
to keep their software up to date without any client installation and update hassles.

90 | Chapter 4: Advanced UI

CHAPTER 5

Introduction to JavaScript Games

On May 22, 2010, Google released its own version of the retro-classic, dot-chomping
game Pac-Man. The game, developed to celebrate Pac-Man’s 30th anniversary, ap-
peared in place of the usual Google logo on the search engine’s home page (Fig-
ure 5-1). Many people initially assumed that this fun remake was created with HTML5,
but a closer inspection revealed that it used nothing more than regular DHTML (ex-
cluding the sound). Continuing with the retro-classic theme, in this chapter we will
develop our own DHTML game: Orbit Assault, a variation of the legendary Space In-
vaders (Figure 5-2).

Figure 5-1. Pac-Man was a surprise addition to Google’s home page

Actually creating an entire game from scratch might seem like heavy going, but it’s the
best way to introduce many of the concepts involved in game development.

But why limit ourselves to DHTML? Why not jump straight into using something more
powerful, like HTML5 Canvas? Think of it as high-altitude training: if we can create
something good with just DHTML, we are equipped to create something even better
using Canvas.

Space Invaders was released in 1978 by the Japanese Taito Corporation, and was de-
veloped by Tomohiro Nishikado. He not only designed and programmed the game,

91

but also created the hardware on which it ran. Regarded as an icon of the video games
industry, the compulsive and addictive game is still fun today.

To ensure that our DHTML Orbit Assault game is equally fun to play for a good pro-
portion of Internet users, we’ll set the following requirements:

• It should work on popular browsers on different hardware.

• Within reason, we should aim for a consistent speed, regardless of browser or
hardware.

• We should preserve the best characteristics of the original Space Invaders game,
including trickier elements like destructible shields.

We’ve done some of the work already: we will use the DHTMLSprite and timeInfo objects
developed in Chapter 2.

Game Objects Overview
Orbit Assault uses six key game objects to create its addictive gameplay. The following
descriptions offer some insight into the behavioral characteristics of these objects and
how they interact. Figure 5-3 shows the sprite images used by the objects.

Figure 5-2. Orbit Assault, an arcade game—DHTML style

92 | Chapter 5: Introduction to JavaScript Games

Figure 5-3. Orbit Assault uses 32-pixel-square sprites arranged in a single bitmap

Alien invaders
Probably the most memorable characteristic of the original Space Invaders is the
hypnotic choreography of the aliens as they traverse the screen. Arranged in a grid
of 5 rows and 11 columns, the aliens move horizontally until one of them touches
the edge of the play area. At this point, they all descend slightly and reverse their
horizontal direction. If any of the aliens reaches the bottom of the play area, the
game ends.

To destroy the aliens, the player fires laser bolts from his tank. The lowest alien in
each column can drop bombs, which the player must dodge while trying to elim-
inate each row of aliens. The topmost aliens are the smallest and award 40 points
when hit. The next two rows are slightly wider and award 20 points, while the
largest aliens on the bottom two rows award 10 points.

As the player eliminates each wave of 55 aliens, the next wave begins lower than
the one previous. One gameplay tip is to destroy the aliens on the extreme edges
first, as this extends the time before an alien reaches the extents of the play area,
making all the aliens descend.

The original Space Invaders hardware was too slow to move all 55 aliens simulta-
neously, so each alien was moved in turn every game cycle (about 1/60 of a second).
This is the reason for the characteristic shimmering effect of the alien group’s
movement, and it also produces an ingenious gameplay mechanic: the fewer aliens
there are, the faster they move. This is merely a side effect of each alien’s turn to
move becoming more frequent as other aliens are gradually eliminated. The final
solitary alien moves very quickly, as it does not have to wait for its turn at all.

One common mistake in Space Invaders remakes is having all the aliens move si-
multaneously as a solid group. This requires additional code to speed up the aliens
depending on how many remain, and it also loses one of the most recognizable
aspects of the original game.

Game Objects Overview | 93

Alien bombs
The lowest alien in each column can drop bombs on the player, although in practice
only one alien bomb is usually visible at a time. The alien bombs can be destroyed
by laser bolts fired from the player’s tank. Alien bombs will damage the player’s
protective shields piece by piece.

Shields
The player’s tank is protected by four shields, although these gradually erode as
they are damaged by both alien bombs and the tank’s laser. The shields are a
double-edged sword: while they provide cover, they can also prevent the player’s
laser from hitting the aliens. One gameplay tip is to blast a narrow hole through
the shields that will allow the tank’s laser to pass through but still offer protection.

The shields in the original game were destroyed in small and irregular pixel stages,
and this can be tricky to emulate using DHTML. In our version of the game, each
shield is split into 48 separate elements, which provides a fine enough destruction
resolution to provide an authentic feel, but is still sensible in terms of CPU
utilization.

Player’s tank
The tank moves horizontally under the player’s control and can be destroyed by a
single hit from an alien bomb. It can fire single laser bolts at the aliens, and its
movement extents are limited to just beyond the left and right shields. The player
starts with four available tanks, and an additional one is awarded every 5,000
points.

Tank’s laser
The tank shoots vertical laser bolts that will damage the protective shields, destroy
aliens, and intercept alien bombs. Only one laser bolt can be deployed at a time,
which makes the game more challenging: a missed shot that travels to the top of
the play area results in a costly delay before the player can fire another.

Mystery saucer
At random intervals, a flying saucer appears above the aliens and moves horizon-
tally across the play area. Should the tank’s laser manage to hit the saucer, the
player is awarded a random bonus score of 50, 100, or 150 points.

The Game Code
This section examines the entire code for the game, deconstructing all the game ele-
ments and covering them in detail.

Game-Wide Variables
Here, the various game variables are defined; for clarity and convenience, the unchang-
ing constants appear in all uppercase. $drawTarget refers to the play area, which is
defined as a div element within the page:

94 | Chapter 5: Introduction to JavaScript Games

var PLAYER = 1,
 LASER = 2,
 ALIEN = 4,
 ALIEN_BOMB = 8,
 SHIELD = 16,
 SAUCER = 32,
 TOP_OF_SCREEN = 64,
 TANK_Y = 352 - 16,
 SHIELD_Y = TANK_Y - 56,
 SCREEN_WIDTH = 480,
 SCREEN_HEIGHT = 384,
 ALIEN_COLUMNS = 11,
 ALIEN_ROWS = 5,
 SYS_process,
 SYS_collisionManager,
 SYS_timeInfo,
 SYS_spriteParams = {
 width: 32,
 height: 32,
 imagesWidth: 256,
 images: '/images/invaders.png',
 $drawTarget: $('#draw-target')
 };

Reading Keys
jQuery makes reading keyboard input in JavaScript relatively easy. By listening for
keydown and keyup events bound to the page (document), and reading the which property
of the passed event{} object after the keyboard event is triggered, we can determine
which keys have been pressed or released. Orbit Assault requires checking for three
keys—left, right, and fire:

var keys = function () {

The keyMap{} object maps event key codes to the name of the game button we are
interested in. In this case, key Z is the left button, key X is the right button, and key M
is the fire button. We can change these to any other desired keys (see Table 5-1):

 var keyMap = {
 '90': 'left',
 '88': 'right',
 '77': 'fire'
 },

Table 5-1. JavaScript key codes

Button Code Button Code Button Code

Backspace 8 Tab 9 Enter 13

Shift 16 Ctrl 17 Old 18

Pause/Break 19 Caps Lock 20 Escape 27

Page Up 33 Page Down 34 End 35

The Game Code | 95

Button Code Button Code Button Code

Home 36 Left arrow 37 Up arrow 38

Right arrow 39 Down arrow 40 Insert 45

Delete 46 0 48 1 49

2 50 3 51 4 52

5 53 6 54 7 55

8 56 9 57 a 65

b 66 c 67 d 68

e 69 f 70 g 71

h 72 i 73 j 74

k 75 l 76 m 77

n 78 o 79 p 80

q 81 r 82 s 83

t 84 u 85 v 86

w 87 x 88 y 89

z 90 Left window 91 Right window 92

Select 93 Numeric pad 0 96 Numeric pad 1 97

Numeric pad 2 98 Numeric pad 3 99 Numeric pad 4 100

Numeric pad 5 101 Numeric pad 6 102 Numeric pad 7 103

Numeric pad 8 104 Numeric pad 9 105 Multiply 106

Add 107 Subtract 109 Decimal point 110

Divide 111 F1 112 F2 113

F3 114 F4 115 F5 116

F6 117 F7 118 F8 119

F9 120 F10 121 F11 122

F12 123 Num Lock 144 Scroll Lock 145

Semicolon 186 Equals sign 187 Comma 188

Dash 189 Period 190 Forward slash 191

Grave accent 192 Open bracket 219 Backslash 220

Close bracket 221 Single quote 222

The kInfo{} object contains the three game button states, stored as 1 for pressed and
0 for released. You can check the returned kInfo{} object (referenced in the game-wide
SYS_keys variable) at any time for the game button status:

 kInfo = {
 'left': 0,
 'right': 0,

96 | Chapter 5: Introduction to JavaScript Games

 'fire': 0
 },
 key;

The keydown and keyup events are bound to the page (document). When a keyboard event
is triggered, we perform a check to see whether the key pressed is in keyMap{}. If it is,
the appropriate game button state is set in kInfo{}. The return false statement pre-
vents the keyboard events from bubbling up to the browser itself (for the keys defined
in keyMap{} only) and doing annoying things like scrolling the page (if cursor keys have
been used) or going to the end of the page (if space bar has been used).

 $(document).bind('keydown keyup', function (event) {
 key = '' + event.which;
 if (keyMap[key] !== undefined) {
 kInfo[keyMap[key]] = event.type === 'keydown' ? 1 : 0;
 return false;
 }
 });

The kInfo{} object is returned and will be referenced in the game-wide SYS_keys object.

 return kInfo;
}();

Moving Everything
Despite their differing natures, the moving objects within the game all have one thing
in common—they need to perform certain actions every game cycle:

• Perform logic like checking whether they have been hit

• Update their visual and collision positions

• Change their current image if appropriate

We can take advantage of these shared requirements by giving the moving objects a
move() method and adding them to a common “process” list. Moving all the game
objects is simply a matter of traversing the process list and calling the move() method
for each one.

Removing objects is even easier: an object can just set its own removed flag, and it will
be eliminated when the process list is traversed again. We create a processor object that
handles all this functionality. A game-wide processor is referenced in SYS_processor:

var processor = function () {

We maintain two lists—processList[] for objects that need to be moved, and added
Items[] for any new objects that are created while processList[] is being traversed:

 var processList = [],
 addedItems = [];

The add() method adds new objects to the process list. Their move() methods will be
called from the process() method:

The Game Code | 97

 return {
 add: function (process) {
 addedItems.push(process);
 },

The process() method traverses the current processList[], makes a note of any objects
that have not been flagged as removed, and places them in newProcessList[]. This
means that items flagged as removed will be “lost” in the next traversal. Finally, we
create a new processList[] from newProcessList[] plus addedItems[], and reset
addedItems[] so it’s ready for any new objects.

Notice that no new objects are removed or added to processList[] while it is being
traversed. This makes handling the traversal loop much simpler:

 process: function () {
 var newProcessList = [],
 len = processList.length;
 for (var i = 0; i < len; i++) {
 if (!processList[i].removed) {
 processList[i].move();
 newProcessList.push(processList[i]);
 }
 }
 processList = newProcessList.concat(addedItems);
 addedItems = [];
 }
 };
};

A Simple Animator
This general-purpose animation effect object is useful for generating spot effects like
explosions. The imageList parameter is passed in as an array of image numbers to
animate through, although in Orbit Assault, the animations are composed only of single
images. The timeout parameter is the time, in milliseconds, before the animation
expires:

var animEffect = function (x, y, imageList, timeout) {
 var imageIndex = 0,
 that = DHTMLSprite(SYS_spriteParams);

We define a timeout to remove the effect after the specified time:

 setTimeout(function(){
 that.removed = true;
 that.destroy();
 }, timeout);

The move() method updates the image number, cycling back to the beginning when it
reaches the end of the image list:

 that.move = function () {
 that.changeImage(imageList[imageIndex]);
 imageIndex++;

98 | Chapter 5: Introduction to JavaScript Games

 if (imageIndex === imageList.length) {
 imageIndex = 0;
 }
 that.draw(x, y);
 };

The animation effect adds itself to the process list:

 SYS_process.add(that);
};

Collision Detection
A game like Orbit Assault needs only simple rectangle overlap tests to determine
whether two objects are touching, but there are numerous combinations of game ob-
jects that can collide with each other:

• Laser against aliens

• Laser against saucer

• Laser against shields

• Alien bombs against tank

• Alien bombs against shields

Writing specific collision-detection functions for each combination would work, but
this is a cumbersome solution. A better option is to develop a more generalized collision
system that can work for all combinations, and could even be used in other types of
games.

Another concern is the number of collision tests performed every cycle. One optimi-
zation is to ensure that collisions are one-way: if object A is tested against object B,
there is no point in testing object B against object A. If we maintain two sets of binary
flags, colliderFlag and collideeFlags, game objects can quickly determine whether
they should be checking against each other at all. Table 5-2 illustrates how we might
set up the collision flags for three objects. In this example, the laser will check against
the saucer and shield, as it has their colliderFlag values in its collideeFlags. The saucer
and shield will check against nothing, as they have 0 in their collideeFlags.

Table 5-2. Collision flags

 Laser Saucer Shield

colliderFlag 1 2 4

collideeFlags 2 + 4 0 0

A quick way of checking the flags is to perform a binary AND:

doCheck = objectA.collideeFlag & objectB.colliderFlag;

A nonzero result means a check should be made.

The Game Code | 99

However, even with this improvement, there are still a lot of tests to perform:

• The tank’s laser bolt could be checking against the following game objects:

— 4 shields of 48 elements each

— Alien bomb

— Saucer

— 55 aliens

Total = 249 objects

• The alien bombs could be checking against the following elements:

— 4 barriers of 48 elements each

— Tank

Total = 193 objects

Performing a total of 442 collision tests per cycle is not good. This scenario could
become exponentially worse if the collision system were used in another game with
more lasers, bombs, and aliens, possibly resulting in thousands of tests being per-
formed.

We can further reduce the number of tests by eliminating redundant checks between
objects that cannot possibly be colliding. A neat way of doing this is to create a grid,
where each grid square contains a list of objects occupying it. An object needs to check
collisions only against other objects in the same grid square, or any immediately sur-
rounding grid squares (a total of nine squares). As long as the largest objects fit within
a single grid square, this technique will work. In Orbit Assault, the grid square size is
32 pixels. Figure 5-4 illustrates how we can eliminate obviously noncolliding objects
from checking by using this method. Only the five aliens on the left have any chance
of touching the tank, and they will be checked; the three aliens on the right will be
ignored.

Figure 5-4. Game objects partitioned into a grid for collision detection purposes

100 | Chapter 5: Introduction to JavaScript Games

This kind of object partitioning within a simple collision test is called broad-phase
collision detection, and it is still a key element in maintaining speed in modern arcade
games. You can employ more sophisticated methods, such as data trees (for optimized
searching and sorting of objects), but the goal of eliminating redundant tests remains
the same. Typically, a modern 3D game will perform broad-phase collision detection
before applying more sophisticated geometric tests against objects.

Orbit Assault uses a collision manager object, which returns collider objects. Game
objects use these collider objects to give them collision abilities. We reference a game-
wide collision manager in SYS_collisionManager as follows:

var collisionManager = function () {

Next, we declare variables, including the grid itself and listIndex, which is used as a
unique identifier for each collider object placed in the grid. checkList maintains a list
of collider objects that need to check for collisions against others, while we use check
ListIndex as a unique identifier for the collider objects within checkList. gridWidth and
gridHeight define the size of the grid, with each unit representing a 32-pixel-square area:

 var listIndex = 0,
 grid = [],
 checkListIndex = 0,
 checkList = {},
 gridWidth = 15,
 gridHeight = 12;

The grid is initialized with empty objects in each grid square. These grid objects will
hold the list of collider objects in each grid square, with each collider object referenced
as a property of the grid object. We name the properties via the unique listIndex
variable. Why not use an array instead of an object? Unlike an array, it’s easy to remove
properties of an object (our collider objects) without affecting the indexing of the re-
maining properties within it. This is very handy when collider objects are continually
being added or removed as they move around the grid:

 for (var i = 0; i < gridWidth * gridHeight; i++) {
 grid.push({});
 }

The getGridList() function accepts x and y pixel coordinates and returns the grid
object that corresponds to those coordinates. It returns undefined if the coordinates
are outside the bounds of the grid:

 var getGridList = function (x, y) {
 var idx = (Math.floor(y / 32) * gridWidth) + Math.floor(x / 32);
 if (grid[idx] === undefined) {
 return;
 }
 return grid[idx];
 };

The Game Code | 101

The newCollider() function is called by game objects that need to collide with others.
It accepts colliderFlag and collideeFlags to determine which other game objects (if
any) to check against. The game object’s width and height in pixels, as well as a callback
that will be called when a collision is detected, are also passed.

Here we calculate the game object’s half-width and half-height, which will be used in
the collision-detection functions later on:

 return {
 newCollider: function(colliderFlag, collideeFlags, width, height, callback){
 var list, indexStr = '' + listIndex++,
 checkIndex;
 var colliderObj = {
 halfWidth: width / 2,
 halfHeight: height / 2,
 centerX: 0,
 centerY: 0,
 colliderFlag: colliderFlag,
 collideeFlags: collideeFlags,

The update() method allows a game object to update its collider object’s position. We
calculate the center point of the game object and store it in the centerX and centerY
properties. The collider object is removed from its old position grid list and placed in
a new position grid list:

 update: function (x, y) {
 colliderObj.centerX = x + 16;
 colliderObj.centerY = y + 32 - colliderObj.halfHeight;
 if (list) {
 delete list[indexStr];
 }
 list = getGridList(colliderObj.centerX, colliderObj.centerY);
 if (list) {
 list[indexStr] = colliderObj;
 }
 },

The remove() method removes the collider object from the collisionManager grid:

 remove: function () {
 if (collideeFlags) {
 delete checkList[checkIndex];
 }
 if (list) { // list could be undefined if item was off-screen
 delete list[indexStr];
 }
 },

Next, the callBack() method fires the callback as specified in the original arguments
passed to newCollider():

 callback: function () {
 callback();
 },

102 | Chapter 5: Introduction to JavaScript Games

The checkCollisions() function runs through the collider objects in a grid square,
performing various checks to see whether a collision has occurred. It first has to ensure
that the collider object is not testing against itself, and then it checks the collision flags.
Only then does it actually perform the rectangle tests to see whether the two collider
objects are touching. It does this by checking the distance between the center points of
the two objects in the x- and y-axes. If the distance is greater than the sum of their half-
widths or half-heights, they are not touching:

 checkCollisions: function (offsetX, offsetY) {
 var list = getGridList(colliderObj.centerX + offsetX,
 colliderObj.centerY + offsetY);
 if (!list) {
 return;
 }
 var idx, collideeObj;
 for (idx in list) {
 if (list.hasOwnProperty(idx) &&
 idx !== indexStr &&
 (colliderObj.collideeFlags & list[idx].colliderFlag)) {
 collideeObj = list[idx];
 if(Math.abs(colliderObj.centerX - collideeObj.centerX) >
 (colliderObj.halfWidth + collideeObj.halfWidth)) {
 continue;
 }
 if(Math.abs(colliderObj.centerY - collideeObj.centerY) >
 (colliderObj.halfHeight + collideeObj.halfHeight)) {
 continue;
 }
 collideeObj.callback(colliderObj.colliderFlag);
 callback(collideeObj.colliderFlag);
 return true;
 }
 }
 return false;
 }
 };

If the collider object has a nonzero set of collideeFlags, it is added to the checkList
for collision testing. Finally, the collider object is returned:

 if (collideeFlags) {
 checkIndex = '' + checkListIndex++;
 checkList[checkIndex] = colliderObj;
 }
 return colliderObj;
 },

checkCollisions() is the main collisionManager collision method. It tests all the rele-
vant collider objects against one another (as defined by the collision flags) by calling
their own checkCollisions() methods:

 checkCollisions: function () {
 var idx, colliderObj;
 for (idx in checkList) {

The Game Code | 103

 if (checkList.hasOwnProperty(idx)) {
 colliderObj = checkList[idx];
 for (var y = −32; y <= 32; y += 32) {
 for (var x = −32; x <= 32; x += 32) {
 if (colliderObj.checkCollisions(x, y)) {
 break;
 }
 }
 }
 }
 }
 }
 };
};

Aliens
The aliens are probably the single most complex elements in the game. This section
covers the various facets of their behavior, such as bomb-dropping logic, choreo-
graphed movement, and reactive speed.

Alien bombs

Alien bombs drop randomly from any one of the lowest aliens in each column. The
starting position of the alien bomb (x, y) and a callback (called when the bomb is
removed for any reason) are passed in as parameters. Finally, we set the bomb’s image
number:

var alienBomb = function (x, y, removedCallback) {
 var that = DHTMLSprite(SYS_spriteParams),
 collider;
 that.changeImage(19);

The remove() method is called when anything collides with the bomb. It creates an
animated effect (a small explosion), as well as removing the bomb itself and also calling
the removedCallback() that was passed in as a parameter:

 that.remove = function () {
 animEffect(x, y + 8, [18], 250, null);
 that.destroy();
 collider.remove();
 that.removed = true;
 removedCallback();
 };

The bomb is added to the collision system. Notice how a bomb checks only against
shields, not the player; it is the player’s tank itself that checks against alien bombs:

 collider = SYS_collisionManager.newCollider(ALIEN_BOMB, SHIELD,
 6, 12, that.remove);

104 | Chapter 5: Introduction to JavaScript Games

The move() method simply moves the bomb downward while updating the collision
object and checking whether its position has passed the vertical level of the tank:

 that.move = function () {
 y += 3.5 * SYS_timeInfo.coeff;
 that.draw(x, y);
 collider.update(x, y);
 if (y >= TANK_Y) {
 that.remove();
 }
 };

The alien bomb adds itself to the process list:

 SYS_process.add(that);
};

Alien invaders

Each alien invader is pretty dumb. It does nothing more than maintain a sprite for
drawing and accept marching orders from a high-level aliensManager object to move.

The alien object accepts x and y pixel coordinates and an image number. A point value
and hit callback are also passed. The canFire property, which determines whether an
alien can drop bombs, is initially set to false:

var alien = function (x, y, frame, points, hitCallback) {
 var animFlag = 0,
 that = DHTMLSprite(SYS_spriteParams),
 collider, collisionWidth = 16;
 that.canFire = false;

The remove() method is called when the alien is hit. If the alien has been hit by a shield,
then remove() immediately returns. If the alien has been hit by the player tank’s laser,
it creates an explosion animation effect and sets its own remove property. Finally, the
hitCallback() is called:

 that.remove = function (colliderFlag) {
 if (colliderFlag & SHIELD) {
 return;
 }
 animEffect(x, y, [8], 250, null);
 that.destroy();
 collider.remove();
 that.removed = true;
 hitCallback(points);
 };

The width of the alien for collision purposes adjusts to match the dimensions of the
image frame used:

 if (frame === 2) {
 collisionWidth = 22;
 }
 else if (frame === 4) {

The Game Code | 105

 collisionWidth = 25;
 }

Here we create a collider object and perform an initial update to set the collider object’s
position:

 collider = SYS_collisionManager.newCollider(ALIEN, 0, collisionWidth, 16,
 that.remove);
 collider.update(x, y);

The move() method accepts two movement arguments (dx and dy) that determine the
direction of movement. The sprite image is animated, and the alien’s x and y positions
are updated:

 that.move = function (dx, dy) {
 that.changeImage(frame + animFlag);
 animFlag ^= 1;
 x += dx;
 y += dy;

Next, we perform a test on the alien’s vertical position to see whether it lies on or near
the shields. If it does, a new collider object replaces the old one, but this time it tests
against the shields so the alien can destroy them on contact. By performing the vertical
position test, we ensure that only aliens near the shields will bother checking for them,
thus minimizing the workload:

 if (!collider.collideeFlags && y >= SHIELD_Y - 16) {
 collider.remove();
 collider = SYS_collisionManager.newCollider(ALIEN, SHIELD,
 collisionWidth, 16, that.remove);
 }

The collider object’s position is updated, as is the sprite’s position. Now we test whether
either of the play area’s horizontal extents has been exceeded. If one has, the alien
returns true; otherwise, it returns false:

 collider.update(x, y);
 that.draw(x, y);
 if ((dx > 0 && x >= SCREEN_WIDTH - 32 - 16) || (dx < 0 && x <= 16)) {
 return true;
 }
 return false;
 };

The getXY() method returns the alien’s x and y pixel positions:

 that.getXY = function () {
 return {
 x: x,
 y: y
 };
 };

The alien object instance is returned:

106 | Chapter 5: Introduction to JavaScript Games

 return that;
};

Aliens manager

The aliensManager object is a far more interesting beast than the aliens themselves. It
choreographs the aliens to move in that classic way and decides which one will drop
bombs.

aliensManager is passed two parameters: a callback to send messages back to the main
game controlling object, and the starting y position of the first alien row. We set up
various variables (including the main aliens list) and define a hit function (hitFunc())
to be called whenever an alien is hit by the player’s laser bolt:

var aliensManager = function (gameCallback, startY) {
 var aliensList = [],
 aliensFireList = [],
 paused = false,
 moveIndex,
 dx = 4,
 dy = 0,
 images = [0, 2, 2, 4, 4],
 changeDir = false,
 waitFire = false,
 scores = [40, 20, 20, 10, 10],
 that,
 hitFunc = function (points) {
 if (!paused) {
 that.pauseAliens(150);
 }
 gameCallback({
 message: 'alienKilled',
 score: points
 });
 };

Here we initialize all the aliens and set up their image numbers, scores, and hit callbacks.
We set the canFire property for the initial lowest row of aliens to true, ready to drop
bombs. Finally, we set the index of the first alien to be moved to the bottom-right alien
in the aliens list:

 for (var y = 0; y < ALIEN_ROWS; y++) {
 for (var x = 0; x < ALIEN_COLUMNS; x++) {
 var anAlien = alien((x * 32) + 16, (y * 32) + startY,
 images[y], scores[y], hitFunc);
 aliensList.push(anAlien);
 if (y == ALIEN_ROWS - 1) {
 aliensList[aliensList.length - 1].canFire = true;
 }
 }
 }
 moveIndex = aliensList.length - 1;

The Game Code | 107

Next, we create an instance of aliensManager (that):

 that = {

The pause() method allows the entire group of aliens to remain static for a set amount
of time; it will be called when an alien or the player is hit:

 pauseAliens: function (pauseTime) {
 paused = true;
 setTimeout(function () {
 paused = false;
 }, pauseTime);
 },

The move() method performs the main alien-controlling logic and is called each game
cycle. It moves only a single alien (the one indexed by moveIndex) per cycle. If the aliens
are paused, it immediately returns. If no aliens remain, aliensManger is flagged for re-
moval, and a message is sent to the main game indicating that all the aliens have been
cleared:

 move: function () {
 if (paused) {
 return;
 }
 if (!aliensList.length) {
 that.removed = true;
 gameCallback({
 message: 'allAliensKilled'
 });
 return;
 }

If the current alien has been flagged for removal, we perform a search for the lowest
alien in the same column. The canFire property for the lowest alien (if one is found) is
set to true so it can now drop bombs. Finally, the alien flagged for removal is removed
from the aliens list (the moveIndex is adjusted accordingly to point to the next valid
alien):

 var anAlien = aliensList[moveIndex];
 if (anAlien.removed) {
 for (var i = aliensList.length - 1; i >= 0; i--) {
 if (aliensList[i].getXY().x === anAlien.getXY().x &&
 i !== moveIndex) {
 if (i < moveIndex) {
 aliensList[i].canFire = true;
 }
 break;
 }
 }
 aliensList.splice(moveIndex, 1);
 moveIndex--;
 if (moveIndex === −1) {
 moveIndex = aliensList.length - 1;
 }

108 | Chapter 5: Introduction to JavaScript Games

 return;
 }

If the current alien’s canFire property is true, it is added to a list of possible bomb-
dropping aliens (aliensFireList). One of these aliens will be randomly selected later
for dropping bombs:

 if (anAlien.canFire) {
 aliensFireList.push(anAlien);
 }

If the aliens are dropping down a line, there should be no horizontal movement. The
current alien is moved. If the alien returns true, the horizontal extents have been
reached, and we set a flag (changeDir) to indicate that all aliens must descend lower in
the play area and change horizontal direction:

 var dx2 = dy ? 0 : dx;
 if (anAlien.move(dx2, dy)) {
 changeDir = true;
 }

If the current alien has reached the same vertical level as the player’s tank, then it’s
game over:

 if (anAlien.getXY().y >= TANK_Y) {
 gameCallback({
 message: 'aliensAtBottom'
 });
 return;
 }

The current moveIndex is decremented to index the next alien. If all the aliens have been
moved, the following events take place: moveIndex is reset back to the last alien; if the
aliens have reached the horizontal extents (changeDir == true), the horizontal move-
ment direction (dx) is flipped, and the next movement of aliens will be downward
(dy); if no alien bomb is currently active (waitFire == false), an alien from the firing
list will be randomly selected to drop a bomb.

 moveIndex--;
 if (moveIndex === −1) {
 moveIndex = aliensList.length - 1;
 dy = 0;
 var coeff = SYS_timeInfo.averageCoeff;
 dx = 4 * (dx < 0 ? -coeff : coeff);
 if (changeDir === true) {
 dx = -dx;
 changeDir = false;
 dy = 16;
 }
 if (!waitFire) {
 var fireAlien = aliensFireList[Math.floor(Math.random() *
 (aliensFireList.length))];
 var xy = fireAlien.getXY();
 alienBomb(xy.x, xy.y, function () {
 waitFire = false;

The Game Code | 109

 });
 aliensFireList = [];
 waitFire = true;
 }
 }
 }
 };

Here, the alienManager object instance is added to the process list, and the instance is
returned in that:

 SYS_process.add(that);
 return that;
};

The Player
This section covers the relatively simple behavior of the player’s tank and the laser bolt
that it fires.

Tank

A callback is passed as a parameter to the tank object; this informs the main game object
that the tank has been hit. We declare various variables and create a DHTMLSprite in-
stance (that). We set the image number, and the tank is drawn at its starting position:

var tank = function (gameCallback) {
 var x = ((SCREEN_WIDTH / 2) - 160),
 canFire = true,
 collider,
 waitFireRelease = true,
 that = DHTMLSprite(SYS_spriteParams);
 that.changeImage(6);
 that.draw(x, TANK_Y);

The move() method first checks the left and right keys, setting the horizontal movement
amount (dx) as appropriate. We adjust the amount of movement to the frame rate for
a consistent speed on different hardware and browser combinations:

 that.move = function () {
 var dx = keys.left ? −2 : 0;
 dx = keys.right ? 2 : dx;
 x += dx * SYS_timeInfo.coeff;

Next, we constrain the updated position of the tank to the horizontal limits of the play
area:

 if (dx > 0 && x >= (SCREEN_WIDTH / 2) + 168) {
 x = (SCREEN_WIDTH / 2) + 168;
 }
 if (dx < 0 && x <= (SCREEN_WIDTH / 2) - 200) {
 x = (SCREEN_WIDTH / 2) - 200;
 }

110 | Chapter 5: Introduction to JavaScript Games

The tank is drawn at the new position, and the collider object is updated:

 that.draw(x, TANK_Y);
 collider.update(x, TANK_Y);

If the tank is able to fire (canFire), the fire key status is checked. We also check to ensure
that the player released the fire key before pressing it again; this prevents the player
from just holding down the fire key to launch lasers:

 if (canFire) {
 if (keys.fire) {
 if (!waitFireRelease) {

If all the key-press conditions have been met, a tank laser bolt is created. A callback
function is also passed, allowing the tank to fire again when the laser is removed for
any reason:

 laser(x, TANK_Y+8, function(){canFire = true;});
 canFire = false;
 waitFireRelease = true;
 }

If the player has not pressed the fire key, the waitFireRelease flag is cleared, ensuring
that the next fire-key press will fire a laser:

 } else {
 waitFireRelease = false;
 }
 }
 }; // End of move() method.

The hit() method is called when the tank is hit. It removes the collider object, removes
the sprite, and sets the tank’s removed flag. An explosion animation effect is initialized,
and the main game object is informed that the tank has been hit:

 that.hit = function () {
 collider.remove();
 that.destroy();
 that.removed = true;
 animEffect(x, TANK_Y, [8], 250, null);
 gameCallback({
 message: 'playerKilled'
 });
 };

Now we set up the collider object, and the tank instance is added to the process list:

 collider = SYS_collisionManager.newCollider(PLAYER, ALIEN_BOMB,
 30, 12, that.hit);
 SYS_process.add(that);
};

The Game Code | 111

Laser

The laser object is given an initial position (x, y) and callback for when the laser has
been removed. We create a DHTMLSprite instance as follows:

var laser = function (x, y, callback) {
 var that = DHTMLSprite(SYS_spriteParams);

The remove() method will be called when the laser collides with other objects. If the
laser has collided with the top of the screen, a shield, or an alien bomb, then a specific
animation effect (a smaller explosion sprite) is created. The laser is then removed, and
after a small delay (to further limit the speed at which the player can fire), the callback
is called.

 that.remove = function (collideeFlags) {
 if (collideeFlags & (TOP_OF_SCREEN + SHIELD + ALIEN_BOMB)) {
 animEffect(x, y, [18], 250, null);
 }
 that.destroy();
 collider.remove();
 that.removed = true;
 setTimeout(callback, 200);
 };

Here we create a collider instance, referencing the remove() method as a callback, and
the laser’s image is set:

 var collider = SYS_collisionManager.newCollider(LASER, ALIEN + ALIEN_BOMB +
 SHIELD + SAUCER, 2, 10, that.remove);
 that.changeImage(7);

The move() method simply moves the laser bolt upward while updating the collision
object. If the vertical position (y) moves off the top of the playing area, the remove()
method is called:

 that.move = function () {
 y -= 7 * SYS_timeInfo.coeff;
 that.draw(x, y);
 collider.update(x, y);
 if (y <= −8) {
 that.remove(TOP_OF_SCREEN);
 }
 };

The laser instance (that) is added to the process list:

 SYS_process.add(that);
};

112 | Chapter 5: Introduction to JavaScript Games

Shields
The shields are gradually destroyed piece by piece as the player’s laser or alien bombs
hit them. Should the aliens get low enough, they will also destroy the shields. Each
shield acts as a wrapper object for 40 “bricks.”

The position of the shield (x, y) is passed in as a parameter:

var shield = function (x, y) {

Here we define the shieldBrick object, which accepts a position (x, y) and an image
number as parameters. We initialize a DHTMLsprite using the image parameter:

 var shieldBrick = function (x, y, image) {
 var that = DHTMLSprite(SYS_spriteParams),
 collider,

The hit() function will be called if anything hits the shield brick:

 hit = function () {
 that.destroy();
 collider.remove();
 };

We initialize a collider object, using the previously defined hit() function as a callback:

 collider = SYS_collisionManager.newCollider(SHIELD, 0, 4, 8, hit);
 that.removed = false;
 that.changeImage(image);
 that.draw(x, y);
 collider.update(x, y);
 },

The brickLayout[] array defines the arrangement and image numbers of the shield
Bricks required to create a single shield:

 brickLayout = [
 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5,
 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 3, 3, 3, 6, 7, 0, 0, 8, 9, 3, 3, 3,
 3, 3, 3, 0, 0, 0, 0, 0, 0, 3, 3, 3];

The brickLayout[] array is traversed, initializing a shieldBrick on a 12 × 4 basis. A 0
entry in the brickLayout[] indicates that no brick should be initialized at that position.
The positions calculated are relative to the x and y parameters passed into the shield
object.

 for (var i = 0; i < brickLayout.length; i++) {
 if (brickLayout[i]) {
 shieldBrick(x + ((i % 12) * 4), y + (Math.floor(i / 12) * 8),
 brickLayout[i] + 8);
 }
 }
};

The Game Code | 113

Mystery Saucer
When the mystery saucer is passed a callback to the main game object, a random di-
rection of movement is calculated (dx), as is the appropriate starting position (x):

var saucer = function (gameCallback) {
 var dx = (Math.floor(Math.random() * 2) * 2) - 1,
 x = 0;
 dx *= 1.25;
 if (dx < 0) {
 x = SCREEN_WIDTH - 32;
 }

We create a DHTMLSprite instance and set the appropriate image number:

 var that = DHTMLSprite(SYS_spriteParams);
 that.changeImage(20);

The remove() function is called when the saucer has reached the opposite side of the
play area:

 var remove = function () {
 that.destroy();
 collider.remove();
 that.removed = true;
 };

The collision system calls the saucer’s hit function when the player’s laser hits the
saucer. The hit function also sends a message back to the main game (along with the
position of the saucer), informing it that the saucer has been hit:

 var hit = function () {
 remove();
 gameCallback({
 message: 'saucerHit',
 x: x,
 y: 32
 });
 };

We create a collider object using the hit() function as a callback:

 var collider = SYS_collisionManager.newCollider(SAUCER, 0, 32, 14, hit);

The move() method moves the saucer in the direction held in dx, updates the collision
object, and checks for the opposite side of the play area:

 that.move = function () {
 that.draw(x, 32);
 collider.update(x, 32);
 x += dx;
 if (x < 0 || x > SCREEN_WIDTH - 32) {
 remove();
 }
 };

114 | Chapter 5: Introduction to JavaScript Games

The saucer is added to the process list:

 SYS_process.add(that);
};

The Game
All of the game objects and game logic are tied together in a high-level game object. It
performs various crucial tasks, such as calling the move() method for all the game
objects (via the process object) and running the collisions tests (via collisionMan
ager). By responding to messages from the game objects, it controls the flow of the
game—detecting when all the aliens have been hit, when the player has been hit, and
when the game is over:

var game = function () {

Here we declare various variables, including the text displayed on the title screen:

 var time,
 aliens,
 gameState = 'titleScreen',
 aliensStartY,
 lives,
 score = 0,
 highScore = 0,
 extraLifeScore = 0,
 saucerTimeout = 0,
 newTankTimeout,
 newWaveTimeout,
 gameOverFlag = false,
 startText =
 '<div class="message">' +
 '<p>ORBIT ASSAULT</p>' +
 '<p>Press FIRE to Start</p>' +
 '<p>Z = LEFT</p>' +
 '<p>X = RIGHT</p>' +
 '<p>M - FIRE</p>' +
 '<p>EXTRA TANK EVERY 5000 POINTS</p>' +
 '</div>',

The initShields() function creates four evenly spaced shields:

 initShields = function () {
 for (var x = 0; x < 4; x++) {
 shield((SCREEN_WIDTH / 2) - 192 + 12 + (x * 96), SHIELD_Y);
 }
 },

The updateScores() function first checks whether an extra tank should be awarded,
which happens every 5,000 points. It updates the score and changes the high score if
the old one has been surpassed. Finally, it writes out the updated score, high score, and
number of lives text into the play area:

 updateScores = function () {
 if (score - extraLifeScore >= 5000) {

The Game Code | 115

 extraLifeScore += 5000;
 lives++;
 }
 if (!$('#score').length) {
 $("#draw-target").append('<div id="score"></div>' +
 '<div id="lives"></div><div id="highScore"></div>');
 }
 if (score > highScore) {
 highScore = score;
 }
 $('#score').text('SCORE: ' + score);
 $('#highScore').text('HIGH: ' + highScore);
 $('#lives').text('LIVES: ' + lives);
 },

The newSaucer() function initializes a new mystery saucer at random intervals between
5 and 20 seconds:

 newSaucer = function () {
 clearTimeout(saucerTimeout);
 saucerTimeout = setTimeout(function () {
 saucer(gameCallback);
 newSaucer();
 }, (Math.random() * 5000) + 15000);
 },

The init() function clears the play area of any objects and initializes a game object
processor (SYS_process), a collision manager (SYS_collisionManager), and an aliens
manager (aliens). It schedules the player’s tank to be initialized after two seconds; sets
off the random timer for the mystery saucer; and updates the score, high score, and
lives text display:

 init = function () {
 $("#draw-target").children().remove();
 SYS_process = processor();
 SYS_collisionManager = collisionManager();
 aliens = aliensManager(gameCallback, aliensStartY);
 setTimeout(function () {
 tank(gameCallback);
 }, 2000);
 initShields();
 newSaucer();
 updateScores();
 },

The gameOver() function clears any pending timers to prevent further tanks, alien
waves, or saucers from being initialized. Finally, a Game Over message is displayed,
appended to the usual title-screen text:

 gameOver = function() {
 gameOverFlag = true;
 clearTimeout(newTankTimeout);
 clearTimeout(newWaveTimeout);
 clearTimeout(saucerTimeout);

116 | Chapter 5: Introduction to JavaScript Games

 setTimeout(function () {
 $("#draw-target").children().remove();
 $("#draw-target").append('<div class="message">' +
 '<p>*** GAME OVER ***</p></div>' + startText);
 gameState = 'titleScreen';
 }, 2000);
 },

The gameCallBack() function responds to messages dispatched from game objects. A
switch-case block performs the appropriate action depending on the message received.
However, if it’s game over, the function just returns:

 gameCallback = function (messageObj) {
 if (gameOverFlag) {
 return;
 }
 switch (messageObj.message) {

When an alien has been hit, the score updates:

 case 'alienKilled':
 score += messageObj.score;
 updateScores();
 break;

When the player hits the mystery saucer, she is awarded a random score of 50, 100, or
150 points. The appropriate animation effect for the points given is displayed:

 case 'saucerHit':
 var pts = Math.floor((Math.random() * 3) + 1);
 score += pts * 50;
 updateScores();
 animEffect(messageObj.x, messageObj.y, [pts + 20], 500, null);
 break;

If the player’s tank has been hit, the aliens are paused and the number of lives is de-
cremented. If no lives remain, the game is over; otherwise, a new tank is scheduled to
reappear in two seconds:

 case 'playerKilled':
 aliens.pauseAliens(2500);
 lives--;
 updateScores();
 if (!lives) {
 gameOver();
 } else {
 newTankTimeout = setTimeout(function () {
 tank(gameCallback);
 }, 2000);
 }
 break;

When all the aliens have been hit, the next wave starts 32 pixels below the previous
one. The new wave is scheduled to start in two seconds:

 case 'allAliensKilled':
 if (aliensStartY < 160) {

The Game Code | 117

 aliensStartY += 32;
 }
 newWaveTimeout = setTimeout(function () {
 init();
 }, 2000);
 break;

If any aliens reach the bottom of the play area, it’s game over:

 case 'aliensAtBottom':
 gameOver();
 break;
 }
 },

The gameLoop() function is called every 15 milliseconds and operates in one of two
states: 'playing' or 'titleScreen'. In 'playing' state, the game objects are processed
and collisions are checked. 'titleScreen' state sits in a loop, ready to start the game if
the fire key is pressed. It would be easy to add more animation or other effects to the
'titleScreen' state if desired:

 gameLoop = function () {
 switch (gameState) {
 case 'playing':
 SYS_timeInfo = time.getInfo();
 SYS_process.process();
 SYS_collisionManager.checkCollisions();
 break;

 case 'titleScreen':

If the player presses the fire key, the scores, lives, and aliens’ start position are reset;
the game state is set to 'playing'; and a new game is initialized:

 if (keys.fire) {
 gameOverFlag = false;
 time = timeInfo(60);
 keys.fire = 0;
 lives = 3;
 score = 0;
 extraLifeScore = 0;
 aliensStartY = 64;
 gameState = 'playing';
 init();
 }
 }
 setTimeout(gameLoop, 15);
 }();

The title screen start text is displayed, and the main loop starts:

 $("#draw-target").append(startText);
 gameLoop();
}();

118 | Chapter 5: Introduction to JavaScript Games

Putting It All Together
The Orbit Assault HTML page (Example 5-1) is a simple container for the JavaScript
source code, a small amount of CSS, and the play area element (draw-target).

Example 5-1. Orbit Assault page code

<!DOCTYPE html>
<html>
<head>
<title>Orbit Assualt</title>
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
</script>
<style type="text/css">

#draw-target {
 width:480px;
 height:384px;
 background-color:#000;
 position:relative;
 color:#FFF;
 font-size:16px;
 font-family:"Courier New", Courier, monospace;
 font-weight:bold;
 letter-spacing:1px;
}
.message {
 margin-left: auto;
 margin-right: auto;
 padding-top:32px;
 text-align:center;
}
#score {
 position:absolute;
 top:8px;
 left:16px;
}
#highScore {
 position:absolute;
 top:8px;
 right:16px;
}
#lives {
 margin-left: auto;
 margin-right: auto;
 padding-top:8px;
 text-align:center;
}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 // For IE6
 try {

The Game Code | 119

 document.execCommand("BackgroundImageCache", false, true);
 } catch(err) {};

 var PLAYER = 1,
 LASER = 2,
 ALIEN = 4,
 ALIEN_BOMB = 8,
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var processor = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var collisionManager = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var DHTMLSprite = function (params) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var timeInfo = function (goalFPS) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var keys = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 }();

 var animEffect = function (x, y, imageList, timeout) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var alien = function (x, y, frame, points, hitCallback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };
 // aliens
 var aliensManager = function (gameCallback, startY) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var laser = function (x, y, callback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var alienBomb = function (x, y, removedCallback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var tank = function (gameCallback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var shield = function (x, y) {

120 | Chapter 5: Introduction to JavaScript Games

 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var saucer = function (gameCallback) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var game = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 }();

 });
</script>
</head>
<body>
 <div id="draw-target"> </div>
</body>
</html>

The Game Code | 121

CHAPTER 6

HTML5 Canvas

One of HTML5’s most tantalizing features is the Canvas element. Taking the form of
a simple rectangular area within the page (similar to a div), Canvas allows you to draw
sophisticated graphics inside it using JavaScript. It was initially developed by Apple for
rendering user interface widgets and other imagery within the Mac operating system
and by the Safari browser. Apple released its patents relating to Canvas under the World
Wide Web Consortium’s (W3C) royalty-free licensing terms. This means that Apple
provides royalty-free licensing for Canvas when it appears within the context of W3C
HTML recommendations.

This chapter covers the basics of Canvas and uses it to implement various practical
applications. A fully exhaustive coverage of the tag is beyond the scope of this book,
but if this chapter whets your appetite, you may wish to consider the following titles
to increase your knowledge:

• Canvas Pocket Reference by David Flanagan (O’Reilly; http://oreilly.com/catalog/
0636920016045)

• HTML5 Canvas by Steve Fulton and Jeff Fulton (O’Reilly; http://oreilly.com/cata
log/0636920013327)

Canvas is a low-level, immediate mode application programming interface (API):

Low level
Canvas provides a fast but fairly basic feature set. For instance, rectangles are the
only native primitive shape. However, you can augment the feature set via Java-
Script programming.

Immediate mode
Canvas drawing instructions are executed the moment they are called; unlike SVG,
Canvas has no intermediate data structure that stores a hierarchy of graphical
objects before drawing. This means that drawing operations can be layered indef-
initely with no degradation in performance—perfect for applications such as bit-
map art packages or other elaborate “layered” effects.

The following Canvas example displays a blue rectangle:

123

http://oreilly.com/catalog/0636920016045
http://oreilly.com/catalog/0636920016045
http://oreilly.com/catalog/0636920013327
http://oreilly.com/catalog/0636920013327

<!DOCTYPE html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <script>
 $(document).ready(function() {
 var a_canvas = $("#a_canvas")[0],
 ctx = a_canvas.getContext("2d");
 ctx.fillStyle = "rgb(0,0,255)";
 ctx.fillRect(50, 25, 150, 100);
 });
 </script>
</head>
<body>
 <canvas id="a_canvas">
 </canvas>
</body>
</html>

(The use of jQuery depends on personal preference.)

Canvas’s low-level nature makes it a neat and simple system to use, and its speed is
well suited to dynamic graphics applications. Anyone who has programmed bitmap
graphics on other systems will feel at home straightaway with Canvas.

Canvas Support
The Canvas element is supported in most popular browsers, including Firefox,
Chrome, Opera, and Safari. After much conjecture, on July 1, 2010, via the Internet
Explorer 9 (IE9) development blog, Microsoft announced that its latest browser would
support the Canvas element. Indeed, the company went one better and augmented its
Canvas support with hardware acceleration. This relatively low-key announcement
belies its importance: Internet Explorer still holds the lion’s share of the browser mar-
ket, and its support of Canvas provided the lynchpin needed to ensure developer use
of the element. However, IE9 works only on Windows Vista and Windows 7; it is not
supported by Windows XP (still the most popular operating system). It will be some
time before the Canvas benefits of IE9 reach all Windows users.

Bitmaps, Vectors, or Both?
Canvas has a small but well-chosen set of both vector and bitmap commands that are
suitable for a wide variety of applications. What’s the difference between the two?

Vector
Vector graphics are defined by mathematical representations of lines and curves.
You can fill vector shapes with color and/or pick out their outlines with a color
stroke. The key advantage of vector graphics is that they can be scaled to any size

124 | Chapter 6: HTML5 Canvas

with no loss of quality: edges and detail remain razor-sharp. Vectors are best suited
for imagery that contains larger areas of solid or gradient color and low detail
density—typically, charts, graphs, flags, road maps, and cartoon-style images.
Because of their mathematical nature, vectors are perfect for manipulating with
JavaScript.

Bitmap
Bitmap images (like the ubiquitous JPEG format) are defined by a grid of square
pixels in varying colors. They do not scale very well, as the image becomes blocky
(pixelated) when enlarged and fragmentary when reduced from its original size.
This is because individual pixels are either enlarged or lost. Some implementations
of Canvas may minimize these undesirable effects by applying a blur filter. Bitmaps
are best used for photographic-style imagery with significant areas of detail.

The final viewable output from Canvas is always bitmap, regardless of
how the image was generated. If you want to take advantage of sharp
vector scaling, you need to redraw the image at any new scale using
vector commands. Simply increasing the zoom using browser controls
or enlarging the canvas with CSS will give exactly the same result as
zooming a bitmap image: a blocky/blurry effect.

Canvas Limitations
There are a few limitations to using Canvas, some of which come with the low-level
territory it occupies:

• The lack of data structure for visual elements means that you must create your own
objects in JavaScript to update the positions and other attributes of nonstatic
graphical items.

• Related to the preceding point, you cannot apply events (like mouse clicks) to items
drawn within Canvas, as they do not exist as tangible entities; they are just transient
drawing operations. You must program such functionality.

• You must have a good knowledge of JavaScript to fully exploit Canvas.

Canvas Versus SVG
Some members of the web standards community had initial reservations about Apple
creating yet another standard for browser graphics. Surely, Scalable Vector Graphics
(SVG) had this base covered already? Superficially, SVG and Canvas appear to offer
similar graphics capabilities, but there is a fundamental difference: SVG is a high-level
XML-based markup language, where you draw by creating XML elements with attrib-
utes to define the image, whereas Canvas offers a drawing API that you access directly
from JavaScript.

Canvas Versus SVG | 125

You can create SVG XML manually with any text editor, or output it from a drawing
package like Adobe Illustrator or Inkscape. The following SVG example displays a blue
rectangle:

<?xml version="1.0" standalone="no" ?>
<!DOCTYPE svg PUBLIC
 "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="100%" height="100%" version="1.1" xmlns="http://www.w3.org/2000/svg">
 <rect id='a_rectangle' width="300" height="100" style="fill:rgb(0,0,255)" />
</svg>

To manipulate the rectangle via JavaScript, you need to access the a_rectangle element
and adjust its attributes as appropriate. Sound familiar? Just like with HTML, we have
to go through a DOM-like structure to define visuals. What happens if we want, for
example, 1,000 rectangles? That’s right—we have to insert 1,000 rectangle elements
into the XML. This approach is not particularly efficient or intuitive for programming-
intensive dynamic graphics.

However, SVG does offer you the ability to both draw and animate without resorting
to JavaScript at all, and you can edit it very simply using the plethora of SVG-compatible
design tools available. Now benefiting from basic support in IE9, SVG is a good solution
where vector imagery is required. Sites like Wikipedia use SVG extensively for vector
illustrations.

Canvas Versus Adobe Flash
Most web users are familiar with Adobe Flash. It powers a huge amount of online
advertising content, videos, and games. Indeed, there are many examples of entire
websites created with Flash. It is a mature plug-in dating back to 1996 and enjoys near-
ubiquitous installation on many systems. However, there are issues with Flash and
developments in HTML5 (which includes Canvas) that may herald a sea change in the
creation of rich Internet content:

• Flash is a proprietary format owned by Adobe. There is no charge for playing Flash
content, but to develop it you must purchase the appropriate authoring software.
Using a closed system like Flash to power web-based content is incongruous with
the evolution of a free and open Web.

• Flash has its roots in the desktop PC era. It is deliberately not supported in-browser
on popular mobile hardware from Apple, such as the iPod, iPhone, and iPad. Apple
relented slightly in September 2010, allowing software to be developed with Flash
and then packaged as native applications.

• Despite the availability of Flash Lite on some mobile devices and Flash 10.1 support
on Android 2.2–powered devices, mobile users are less dependent on Flash for rich
content. They can often compensate for its absence with easily downloaded native
applications (e.g., the excellent Android YouTube player application) or thousands
of native games.

126 | Chapter 6: HTML5 Canvas

• Popular websites like YouTube, Facebook, and CBS are now supplying their video
content in HTML5-compatible formats (H.264 video).

If there is one subject that provokes a lot of hot-headed reactions, it’s the HTML5 versus
Flash debate. Veteran Flash developers with a vested interest in keeping Flash alive
will naturally contest HTML5’s ability to supplant Flash. Proponents of an open Web
will argue that HTML5 renders Flash redundant.

In reality, it is unlikely that Flash will disappear anytime soon, if at all; it is too ingrained
in the Web to make a fast exit, and various aspects of HTML5 are slow to be ratified.
However, with the benefit of cross-browser support and familiar and free development
tools, only the most optimistic Flash developers would ignore HTML5. One thing that
is likely to happen sooner rather than later is the cessation of 100%-Flash websites.
With increased JavaScript performance and libraries like jQuery, along with facilities
like Canvas, there are few reasons to develop sites in this way.

Canvas Exporters
Understanding JavaScript is a prerequisite for fully utilizing Canvas, as it is wholly
controlled by the language. There is no markup-based way to access its capabilities.
However, Canvas exporters and converters are emerging that can create the JavaScript
required to render Canvas graphics created in applications. This is great news for de-
signers with limited JavaScript abilities, and great news for programmers too, as cre-
ating elaborate vector art with manually entered Canvas commands is tedious and
error-prone.

Adobe Flash CS5+ (http://www.adobe.com/products/flash.html)
Adobe’s Flash CS5+ has a Canvas exporter that allows a subset of Flash to be
exported as JavaScript Canvas source code. This will benefit developers who want
to cover both the Flash and Canvas bases. However, because this solution requires
the purchase of the Flash authoring tool, it may not be cost effective for those who
want to develop solely using Canvas.

Canvg (http://code.google.com/p/canvg/)
Canvg (Figure 6-1) is a JavaScript library that takes SVG data and draws it using
Canvas. Unfortunately, the Canvas JavaScript statements are not saved in any way,
and hence you must always include the Canvg library to draw the SVGs.

SVG-to-Canvas (http://www.professorcloud.com/svg-to-canvas/)
This online utility converts static SVG into a JavaScript Canvas function. It uses a
modified version of the Canvg library.

AI-Canvas (http://visitmix.com/labs/ai2canvas/)
This sophisticated Adobe Illustrator plug-in (Figure 6-2) converts both static draw-
ings and animations. If the plug-in encounters elements of the imagery that cannot
be converted, rather than failing, it converts those elements into simple bitmaps.

Canvas Exporters | 127

http://www.adobe.com/products/flash.html
http://code.google.com/p/canvg/
http://www.professorcloud.com/svg-to-canvas/
http://visitmix.com/labs/ai2canvas/

All the image elements are converted into Canvas JavaScript functions that can be
tweaked by hand if necessary.

Figure 6-1. Canvg in action

Figure 6-2. AI-Canvas also handles animations

128 | Chapter 6: HTML5 Canvas

Canvas Drawing Basics
The basic Canvas drawing commands are straightforward to implement and are dis-
cussed in the following sections.

The Canvas Element
Inserting a Canvas element into a web page is no different than inserting any other
HTML element:

<canvas id = 'mycanvas' width = 512 height = 384>
 Fallback content
</canvas>

If you don’t specify any width or height attributes, the default size will be 300 × 150
pixels. It is possible to change the canvas size via CSS (e.g., width:50%), but it’s not
recommended; depending on the browser implementation, the output may become
distorted or scaled. However, you can style the element with the usual borders, margins,
and background colors, although this in no way affects drawing to the canvas itself.
The coordinate system has its default origin in the top left—coordinate (0,0)—so, for
example, something drawn at coordinate (10, 15) would be positioned 10 pixels from
the left and 15 pixels from the top.

If Canvas is not available to the browser, the fallback content between the start and
end tags is displayed. Ideally, this should be the regular text or HTML representation
of the data that was to be displayed by Canvas. For example, where Canvas might have
displayed a pie chart, the fallback content would display a regular table. There are
situations where fallback content simply cannot replace Canvas; games and drawing
applications don’t have non-Canvas equivalents. In these cases, the fallback content
should display a useful message explaining to the user that Canvas is not available and
the browser should be upgraded.

Solely placing Canvas into a page gives us no functionality; it must be controlled by
JavaScript to do anything useful. You will rarely see Canvas being used without an id
attribute, as this attribute is how scripts identify it. Typically, JavaScript will get a
“handle” variable to Canvas like this:

 var canvas = document.getElementById('mycanvas');
 // Or, using jQuery:
 var canvas = $('#mycanvas')[0];

The Drawing Context
We must obtain a “drawing context” from Canvas before we can use drawing com-
mands:

var canvas = document.getElementById('mycanvas');
var ctx = canvas.getContext('2d');

Canvas Drawing Basics | 129

Although it is not an official recommendation, you’ll often see ctx used to refer to the
drawing context in example Canvas code.

There is also a 3D drawing context available that gives you access to the
currently experimental WebGL interface. WebGL is based on the
OpenGL ES 2.0 standard (a pared-down version of OpenGL) and pro-
vides 3D graphics capabilities via JavaScript. It is available in the devel-
opment versions of most browsers. OpenGL is really a set of low-level
functions that still require you to do a fair amount of work to create a
3D application.

There was some initial doubt in the web community about whether
JavaScript was capable of managing the hierarchy of objects in a more
than trivial 3D scene; regardless of whether or not the objects are being
drawn by WebGL, numerous other calculations are required to manage
a 3D application or game. However, with the ongoing improvements in
JavaScript performance, the language has inspired more confidence, and
various higher-level 3D libraries have emerged that can simplify 3D ap-
plication development. All of these libraries are built on top of WebGL:

• O3d (originally a plug-in, but now a JavaScript library)

• GLGE

• C3DL

• SpiderGL

• SceneJS

• Processing.js

Drawing Rectangles
Canvas is not overtly generous in its built-in shape-drawing offerings—in fact, we are
limited to rectangles:

// Draw a 100 by 150 pixel filled rectangle at coordinate (10,10).
ctx.fillRect(10,10,100,150);

// Draw a 100 by 150 pixel outlined rectangle at coordinate (10,10).
ctx.strokeRect(10,10,100,150);

// Clear a 100 by 150 pixel rectangle at coordinate (10,10).
ctx.clearRect(10,10,100,150);

The apparent bias toward rectangles isn’t a problem, though, because we can create all
other shapes by using paths defined by combinations of lines and curves.

Drawing Paths with Lines and Curves
A path defines a shape that can then be filled and/or stroked with an outline. Canvas
includes the following functions to perform path drawing:

130 | Chapter 6: HTML5 Canvas

Function Description

beginPath() Starts a new path

moveTo() Sets the current position of the path

lineTo() Defines a line from the current position

arc() Defines an arc (portions of a circle)

arcTo() Defines an arc from the current position

quadraticCurveTo() Defines a quadratic curve from the current position

bezierCurveTo() Defines a Bézier curve from the current position

closePath() Ends a path

stroke() Strokes a path with an outline

An important thing to note is that the drawing position where one “to” command
(lineTo(), bezierCurveTo(), etc.) ends also defines where the next “to” command’s
drawing position begins. It can be useful to think of the “to” commands as drawing
with a pencil without being able to lift it off the paper. The moveTo() command allows
you to lift the pencil off the paper and position it somewhere else before drawing again.

The following example uses lines to draw a filled triangle in the top left and a stroked
triangle in the bottom right (Figure 6-3), assuming a canvas size of 500 × 500 pixels:

 // Draw a filled triangle, top-left.
 ctx.beginPath();
 ctx.moveTo(20,20);
 ctx.lineTo(470,20);
 ctx.lineTo(20,470);
 ctx.fill();
 // Draw a stroked triangle, bottom-right.
 ctx.beginPath();
 ctx.moveTo(480,30);
 ctx.lineTo(480,480);
 ctx.lineTo(30,480);
 ctx.closePath();
 ctx.stroke();

Notice how you don’t need a closePath() command for the filled triangle, as fill()
automatically closes the path.

Canvas allows you to specify fractional pixel positions. You may find
this odd at first glance, as pixels are unit elements and obviously cannot
be subdivided. However, Canvas uses anti-aliasing techniques to give
the illusion that fractional pixel positions exist. This allows for cleaner-
looking edges and smoother movement, especially where shapes move
slowly.

Canvas Drawing Basics | 131

Figure 6-3. Filled and stroked triangles

You can use the arc() command to draw circles, or portions of circles:

arc(x, y, radius, startAngle, endAngle, anticlockwise);

The parameters are as follows:

x,y
The position of the center of the circle.

radius
The radius in pixels.

startAngle, endAngle
The drawing will “sweep” between these two angles. The angles are defined in
radians, with 2π (approximately 6.282) radians equivalent to 360 degrees.

anticlockwise
The direction in which to draw the arc.

Here are the calculations required to convert to and from radians:

var radians = degrees * Math.PI / 180;

And from radians to degrees:

132 | Chapter 6: HTML5 Canvas

var degrees = radians * 180 / Math.PI;

The following code draws two rows of circles, each starting at 0 radians and increasing
the endAngle for each circle. The top row is drawn clockwise, and the bottom is drawn
anticlockwise (Figure 6-4).

var endAngle = 0.0;
for (var x = 50; x < 500; x += 100) {
 ctx.beginPath();
 ctx.moveTo(x, 190);
 endAngle += (2 * Math.PI) / 5;
 ctx.arc(x, 190, 50, 0, endAngle, false);
 ctx.fill();
}
endAngle = 0.0;
for (x = 50; x < 500; x += 100) {
 ctx.beginPath();
 ctx.moveTo(x, 310);
 endAngle += (2 * Math.PI) / 5;
 ctx.arc(x, 310, 50, 0, endAngle, true);
 ctx.fill();
}

Figure 6-4. Arcs drawn with increasing end angle, clockwise (top row) and anticlockwise (bottom row)

If moveTo() is not used to position the start of an arc, a line will be drawn
between the last drawing position and the start of the new arc.

The arcTo() command is similar to the arc() command, but we specify the curve in a
different way:

arcTo(x1,y1, x2,y2, radius);

The curve is defined by two lines, the first from the current position to point (x1,y1),
and the second from point (x1,y1) to point (x2,y2). Defining a curve this way makes it

Canvas Drawing Basics | 133

easy to create rounded corners between lines. The curve will occupy the corner where
the two lines join.

The following function draws rectangles of any size (w,h) with rounded corners. The
corner radius (in radians) is defined by the parameter cr.

var drawRoundedRect = function (ctx, x, y, w, h, cr) {
 ctx.beginPath();
 ctx.moveTo(x + w / 2, y); // Start in the middle of the top edge.
 ctx.arcTo(x + w, y, x + w, y + h, cr); // Top edge and upper-right corner.
 ctx.arcTo(x + w, y + h, x, y + h, cr); // Right edge and lower-right corner.
 ctx.arcTo(x, y + h, x, y, cr); // Bottom edge and lower-left corner
 ctx.arcTo(x, y, x + w, y, cr); // Left edge and upper-left corner.
 ctx.closePath();
 ctx.stroke();
};

Figure 6-5 shows the results of calling the function with various corner radii, starting
at a corner radius of 0 radians and increasing by 2π radians for each square.

Figure 6-5. Squares drawn with rounded corners utilizing the arcTo() command

The following page code shows how drawRoundedRect() is actually called within a loop
to give the output shown in Figure 6-5:

<!DOCTYPE html>
<html>

 <head>
 <title>
 Canvas Rounded Rectangles
 </title>
 <script type="text/javascript">
 window.onload = function() {
 var canvas = document.getElementById('mycanvas');
 var ctx = canvas.getContext('2d');

 var drawRoundedRect = function(ctx, x, y, w, h, cr) {
 ctx.beginPath();
 ctx.moveTo(x + w / 2, y);
 ctx.arcTo(x + w, y, x + w, y + h, cr);
 ctx.arcTo(x + w, y + h, x, y + h, cr);
 ctx.arcTo(x, y + h, x, y, cr);
 ctx.arcTo(x, y, x + w, y, cr);
 ctx.closePath();
 ctx.stroke();

134 | Chapter 6: HTML5 Canvas

 };

 var cr = 0;
 for (x = 0; x < 500; x += 100) {
 drawRoundedRect(ctx, x + 5,
 ctx.canvas.height / 2 - 45, 90, 90, cr);
 cr += Math.PI * 2;
 }

 };
 </script>
 <style type="text/css">
 #mycanvas {border:1px solid;}
 </style>
 </head>

 <body>
 <canvas id="mycanvas" width=5 00, height=5 00>
 </canvas>
 </body>

</html>

The enticingly named quadtraticCurveTo() and bezierCurveTo() commands enable us
to draw the curves with one or two control points. The control points allow the curve
to be bent and shaped beyond the symmetrical curves of the arc() and arcTo() com-
mands. We usually find these types of curves in the vector drawing facilities of packages
such as Photoshop, Freehand, and Inkscape. Using the curves in JavaScript can be
tricky, as we get no visual feedback on the positions of the control points and the effect
they have on the curves.

The following page code displays a quadratic curve at the top, and a Bézier curve at the
bottom of a canvas (Figure 6-6). It also displays the control points, which can be drag-
ged around with the mouse. It uses the jQuery UI “draggable” functionality to move
the control points. Note how the control points are actually regular div elements rather
than Canvas paths. It is perfectly legitimate, and often useful, to combine regular DOM
elements with Canvas in this way:

<!DOCTYPE html>
<html>

 <head>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.0/jquery-ui.min.js">
 </script>
 <script type="text/javascript">
 $(function() {
 var canvas = document.getElementById('mycanvas');
 var ctx = canvas.getContext('2d');

Canvas Drawing Basics | 135

 $('.dragger').draggable({
 cursor: 'crosshair'
 });
 // Trapping the 'mousedown' event and returning false
 // prevents the text select caret from appearing.
 $('.dragger').bind("mousedown", function() {
 return false;
 });
 $('.dragger').bind("drag", function() {

 ctx.clearRect(0, 0, canvas.width, canvas.height);
 var canvasX = $(canvas).position().left,
 canvasY = $(canvas).position().top,
 cpx1, cpy1, cpx2, cpy2, $dragr = $('#dragger1');
 // The control point positions are made relative to the canvas,
 // although this calculation is not strictly necessary for
 // this demonstration, as the canvas is in the top-left of the
 // page.
 cpx1 = $dragr.position().left - canvasX;
 cpy1 = $dragr.position().top - canvasY;

 // Draw the quadratic curve (one control point).
 ctx.beginPath();
 ctx.moveTo(50, 150);
 ctx.quadraticCurveTo(cpx1, cpy1, 450, 150);
 ctx.closePath();
 ctx.stroke();

 // Get the position of the other two control points.
 $dragr = $('#dragger2');
 cpx1 = $dragr.position().left - canvasX;
 cpy1 = $dragr.position().top - canvasY;
 $dragr = $('#dragger3');
 cpx2 = $dragr.position().left - canvasX;
 cpy2 = $dragr.position().top - canvasY;

 // Draw the Bezier curve (two control points).
 ctx.beginPath();
 ctx.moveTo(50, 350);
 ctx.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, 450, 350);
 ctx.closePath();
 ctx.stroke();
 });

 // Trigger an initial drag event so the curves are drawn.
 $('.dragger').trigger("drag");

 });
 </script>
 <style type="text/css">
 .dragger {width:10px; height:10px;z-index:1}
 #mycanvas {border:1px solid;position:absolute;top:0px;}
 </style>
 </head>

136 | Chapter 6: HTML5 Canvas

 <body style="position:relative;">
 <div class="dragger" id="dragger1" style="background-color:#f00;">
 </div>
 <div class="dragger" id="dragger2" style="background-color:#0f0;">
 </div>
 <div class="dragger" id="dragger3" style="background-color:#00f;">
 </div>
 <canvas id="mycanvas" width=500, height=500>
 </canvas>
 </body>
</html>

Figure 6-6. Quadratic curve (top) with one control point; Bézier curve (bottom) with two control points

Canvas Drawing Basics | 137

Drawing Bitmap Images
We draw bitmap images via the drawImage() command. It comes in three-, five-, and
nine-parameter flavors. In all cases, the first parameter specifies an image source that
provides the pixel data for drawing. The image source can be an image loaded with
Image(), a regular tag, or even another Canvas or <video> tag. This flexibility in
specifying an image source gives you great creative potential: for example, Figure 6-7
shows a <video> tag being used as the image source for an “explode” effect on a video
stream, whereas Figure 6-8 shows a random portion of a large source bitmap being
used to create natural-looking animated nebula clouds.

If performance becomes an issue when you’re using drawImage(), it may
be beneficial to ensure that the image source is another Canvas tag. This
prevents any image conversion overhead on certain browsers. For ex-
ample, the video “explode” effect shown in Figure 6-7 copies the video
image to a Canvas element before splitting into small tiles with draw
Image().

Figure 6-7. Using a <video> tag as a bitmap image source for drawImage(); each small “exploded”
tile has a portion of video playing inside it

138 | Chapter 6: HTML5 Canvas

Figure 6-8. A random portion of a large bitmap is layered and scaled up to create a convincing
animated nebula effect (http://www.professorcloud.com/mainsite/canvas-nebula.htm)

The three-parameter version of drawImage() is the easiest to use, and simply copies the
image source to the point (x, y) on the canvas. The width and height of the bitmap are
determined by the source bitmap:

drawImage(source, x, y);

The five-parameter version allows you to specify the destination width and height,
enabling you to scale an image to the desired size:

drawImage(source, x, y, width, height);

The nine-parameter version allows you to copy a portion of the image source, where
parameters 2–5 specify a rectangle within the source image, and parameters 6–9 specify
the destination rectangle within the canvas being drawn on:

Canvas Drawing Basics | 139

http://www.professorcloud.com/mainsite/canvas-nebula.htm

drawImage(source, sx, sy, swidth, sheight, x, y, width, height);

Some browsers (specifically, Firefox and Opera) may suffer a severe
performance penalty and other strange glitches if you’re using draw
Image() with fractional pixel positions. To avoid these issues, ensure
that positions are rounded to whole integers:

Math.floor(x)

or:

(x>>0)

Colors, Strokes, and Fills
In the earlier code samples, we used the stroke() command to create a default one-
pixel black outline around shape paths. You can change the style of outline using the
lineWidth and strokeStyle properties, and specify an internal color fill using the fill
Style property. Here is a modified version of the rounded rectangle code that uses these
properties (Figure 6-9):

var drawRoundedRect = function (ctx, x, y, w, h, cr) {
 ctx.beginPath();
 ctx.moveTo(x + w / 2, y); // Start in the middle of the top edge.
 ctx.arcTo(x + w, y, x + w, y + h, cr); // Top edge and upper-right corner.
 ctx.arcTo(x + w, y + h, x, y + h, cr); // Right edge and lower-right corner.
 ctx.arcTo(x, y + h, x, y, cr); // Bottom edge and lower-left corner
 ctx.arcTo(x, y, x + w, y, cr); // Left edge and upper-left corner.
 ctx.closePath();
 ctx.strokeStyle = '#f00'; // Set stroke color to bright red.
 ctx.lineWidth = 4; // Set line width to 4 pixels.
 ctx.stroke();
 ctx.fillStyle = '#0f0'; // Here we specify a green fill.
 ctx.fill();
};

Figure 6-9. Stroking shapes with lineWidth = 4 and strokeStyle = ‘#f00’ and fillStyle = ‘#0f0’

Notice how the stroke lines appear thinner than the four pixels specified. This is because
the stroke is centered on the path and the inner two pixels are hidden by the green fill.
Simply increase the line width to get the desired result.

You can also specify colors with different levels of transparency via an alpha value.
Alpha values range from 0 (completely transparent) to 1 (completely opaque). As well
as specifying a local alpha value for the current stroke or fill command, you can use the

140 | Chapter 6: HTML5 Canvas

globalAlpha property to set an alpha value for all strokes and fills; the local alpha value
will be multiplied by the globalAlpha property.

In addition, you can draw bitmaps with varying levels of transparency via the
globalAlpha property. All the pixel alphas in the bitmap will be multiplied by the
globalAlpha property. PNG images contain an alpha channel for transparency effects,
so pixels in the image specified with an alpha of 0.5 and drawn with a globalAlpha of
0.5 will actually be drawn with an alpha of 0.25.

Drawing items with an alpha value of less than 1 involves extra work
for the browser, as it must perform additional calculations to display
the final color result for each pixel. This is true regardless of whether or
not the Canvas implementation uses hardware acceleration. When de-
signing your application, consider whether using alpha values is abso-
lutely necessary, especially when drawing speed is important.

If you specify (or calculate via globalAlpha) an alpha value of 0 (fully
transparent), the browser may still try to draw the item. This involves
unnecessary work and can be a hidden source of performance issues.
Avoid drawing many items with 0 alpha if possible.

We define colors in Canvas using CSS3 color specifiers. Any of the following statements
is valid for specifying a fill of bright red:

ctx.fillStyle = 'red'; // HTML4 color name.
ctx.fillStyle = '#f00'; // Hexadecimal RGB.
ctx.fillStyle = '#ff0000'; // Hexadecimal RRGGBB.
ctx.fillStyle = 'rgb(255, 0, 0); // Decimal integers (0-255)
ctx.fillStyle = 'rgba(255, 0, 0, 0.5); // Decimal integers with 0.5 alpha.
ctx.fillStyle = 'rgb(100%, 0%, 0%)'; // Percentages.
ctx.fillStyle = 'rgb(100%, 0%, 0%, 0.5)'; // Percentages with alpha.
ctx.fillStyle = 'hsl(0, 100%, 100%)'; // Hue, saturation, luminance (HSL).
ctx.fillStyle = 'hsl(0, 100%, 100%, 0.5)'; // HSL with alpha.

As well as flat-color fills and strokes, you can specify color gradients using the create
LinearGradient() or createRadialGradient() commands.

Creating a gradient using createLinearGradient() requires some setup:

1. Create a CanvasGradient object using createLinearGradient(). The
four parameters passed define a line along which the gradient will
be drawn.

2. Add color stops along this line, where 0 specifies the beginning of
the line and 1 specifies the end. You must have at least two color
stops to define a gradient.

3. Use the CanvasGradient object as the fill or stroke style.

Canvas Drawing Basics | 141

We add color stops with the CanvasGradient addColorStop() command. This command
accepts a value between 0 and 1, where 0 represents the beginning of the gradient and
1 represents the end. The following code defines a gradient that fades from black to
white to red:

cg.addColorStop(0, 'black');
cg.addColorStop(0.5, 'white');
cg.addColorStop(1, 'red');

The following function produces a gradient sky and grass effect (Figure 6-10):

var drawSkyAndGrass = function (ctx){
 // The gradient line is defined from the top to the bottom of the canvas.
 var cg = ctx.createLinearGradient(0, 0, 0, ctx.canvas.height);
 // Start off with sky blue at the top.
 cg.addColorStop(0, '#00BFFF');
 // Fade to white in the middle.
 cg.addColorStop(0.5, 'white');
 // Green for the top of the grass.
 cg.addColorStop(0.5, '#55dd00');
 // Fade to white at the bottom.
 cg.addColorStop(1, 'white');
 // Use the CanvasGradient object as the fill style.
 ctx.fillStyle = cg;
 // Finally, fill a rectangle the same size as the canvas.
 ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);
};

Figure 6-10. A gradient sky and grass effect created with createLinearGradient()

142 | Chapter 6: HTML5 Canvas

We call this function by passing it a Canvas context in the usual way.

What happens when the rectangle drawn is not the same size as the canvas? Fig-
ure 6-11 shows the results of drawing a rectangle that is one-quarter of the canvas size.
We do this by replacing the last line of the previous function with the following:

ctx.fillRect(0, 0, ctx.canvas.width/2, ctx.canvas.height/2);

Figure 6-11. The same gradient as Figure 6-10, but drawn with a smaller rectangle

Notice how the drawn rectangle acts like a “window” over the gradient defined in the
CanvasGradient object.

The createRadialGradient() command allows you to create a radial gradient that spans
two circles. The command accepts two circles specified with a position and radius:

ctx.createRadialGradient(circle1x, circle1y, circle1Radius,
 circle2x, circle2y, circle2Radius);

Typically, the circles’ centers are at the same position and the first circle lies inside the
second, although this is not a prerequisite for the function to work. Any area inside
the first, smaller circle is filled with the first color defined by addColorStop(); this color
fades to the extents of the larger circle into the final color defined by addColorStop().
Any area outside the larger circle is also filled with the final addColorStop() color.

The following function creates a sun using a radial gradient that fades from solid white
to transparent yellow. We can overlay this on the sky and grass gradient for a nice sunny
day effect (Figure 6-12):

Canvas Drawing Basics | 143

var drawSun = function(ctx) {
 // Create a radial gradient with a 32-pixel-radius inner circle
 // and a 64-pixel-radius outer circle. Both are positioned at (64,64).
 var radGrad = ctx.createRadialGradient(64, 64, 32, 64, 64, 64);
 // The inner circle is white and opaque.
 radGrad.addColorStop(0,'white');
 // The outer circle is yellow and fully transparent,
 // thus making the sun fade from solid white to transparent yellow.
 radGrad.addColorStop(1,'rgba(255,255,0,0)');
 ctx.fillStyle = radGrad;
 // Fill a 128-pixel-wide rectangle with the sun gradient.
 ctx.fillRect(0, 0, 128, 128);
};

Figure 6-12. A radial gradient used to create a sun effect over the sky and grass

Animating with Canvas
When using JavaScript (or a JavaScript library like jQuery), you are probably accus-
tomed to manipulating a page element’s position, size, image, or color and watching
it magically assume its new properties while forgetting its old properties, without any
additional work involved. Logically, it makes complete sense that increasing an ele-
ment’s x and y positions will move it down and right across the page. However, if we
naively try to animate a moving rectangle in Canvas assuming the same sort of behavior,
the results may not be what we expect (Figure 6-13):

<!DOCTYPE html>
<head>

144 | Chapter 6: HTML5 Canvas

 <title>
 Naive implementation of animation in Canvas.
 </title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <script>
 $(document).ready(function() {
 var a_canvas = $("#a_canvas")[0];
 var ctx = a_canvas.getContext("2d");
 for (var p = 0; p < 450; p++) {
 ctx.fillStyle = "rgb(0,0,255)";
 // Draw a rectangle
 ctx.fillRect(p, p, 50, 50);
 }
 });
 </script>
</head>
<body>
 <canvas id="a_canvas" width=500 height=5 00>
 </canvas>
</body>

</html>

Figure 6-13. Naively animating moving squares in Canvas may not give the result you expect

Animating with Canvas | 145

Remember, Canvas is a low-level and immediate mode system: each loop iteration
simply draws another rectangle on the screen, on top of the previous iteration’s rec-
tangle. This results in a big smeared shape, not a moving rectangle. We need to do a
bit more work to create an animated square that moves across the page:

1. Store an initial position for the square (x, y).

2. Clear the canvas.

3. Update the square’s position by changing x, y, or both.

4. Draw the square at the new position.

5. Wait a bit.

6. Loop back to step 2.

Fundamentally, all animated bitmap systems do something like this under the hood.
Step 2 may be optional in certain circumstances. For instance, if the background were
being completely filled with a solid color, gradient, or bitmap image, then clearing it is
moot. Step 5 is needed so the user has a chance to actually see the animation and give
the browser time to do other things; otherwise, the browser would freeze with no delay.
Typically, a delay of around 20–50 milliseconds works well for animation. The fol-
lowing page will give us an animated moving square in Canvas as expected:

<!DOCTYPE html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <script>
 $(function() {
 var a_canvas = $("#a_canvas")[0],
 ctx = a_canvas.getContext("2d"),
 p = 0;
 // We use setInterval() to create a delay between iterations.
 setInterval(function() {
 // Clear canvas.
 ctx.clearRect(0, 0, a_canvas.width, a_canvas.height);
 // Change position, and restart at top left if position reaches 451.
 if (p++ > 450) {
 p = 0
 };
 // Draw a rectangle.
 ctx.fillStyle = "rgb(0,0,255)";
 ctx.fillRect(p, p, 50, 50);
 }, 30);

 });
 </script>
</head>
<body>
 <canvas id="a_canvas" width=500 height=500>

146 | Chapter 6: HTML5 Canvas

 </canvas>
</body></html>

Canvas and Recursive Drawing
One benefit of immediate mode drawing is the lack of an intervening data structure
that we’d have to create and manipulate to keep track of drawing elements; with im-
mediate mode drawing, you can just fire and forget drawing commands, layering them
as thick as you like. This makes Canvas particularly useful for high-density, recursive
drawing functions like fractals. Recursive functions are defined as those that call them-
selves. By feeding the last set of results generated by a function back into the function
itself, we create a kind of software feedback loop. The following example calls itself
recursively 10 times:

var rescurse(value1, value2) {
 value1−−;
 value2++;
 if (value1 <= 0) return;
 recurse(value1, value2);
};
recurse(10,0);

The previous example is not particularly exciting, but it demonstrates two important
aspects of recursive functions:

• Values are adjusted within the recursive function and fed back into it.

• We need a test to break out of otherwise infinite recursive loops.

Instead of applying simple increments and decrements, what if we did something more
interesting involving a little bit of trigonometry and some random elements? Fig-
ure 6-14 shows a recursively drawn tree that uses simple Canvas-line drawing com-
mands. The natural-looking effect is a recognizable feature of recursive graphical func-
tions. Notice how the final tips of the branches look very refined and thin. This is due
to the previously discussed fractional pixel anti-aliasing.

The highly detailed and complex appearance belies the simple nature of the code:

var drawTree = function (ctx, startX, startY, length, angle, depth, branchWidth) {
 var rand = Math.random,
 newLength, newAngle, newDepth, maxBranch = 3,
 endX, endY, maxAngle = 2 * Math.PI / 4,
 subBranches, lenShrink;
 // Draw a branch, leaning either to the left or right (depending on angle).
 // First branch (the trunk) is drawn straight up (angle = 1.571 radians)
 ctx.beginPath();
 ctx.moveTo(startX, startY);
 endX = startX + length * Math.cos(angle);
 endY = startY + length * Math.sin(angle);
 ctx.lineCap = 'round';
 ctx.lineWidth = branchWidth;
 ctx.lineTo(endX, endY);

Canvas and Recursive Drawing | 147

 // If we are near the end branches, make them green to look like leaves.
 if (depth <= 2) {
 ctx.strokeStyle = 'rgb(0,' + (((rand() * 64) + 128) >> 0) + ',0)';
 }
 // Otherwise, choose a random brownish color.
 else {
 ctx.strokeStyle = 'rgb(' + (((rand() * 64) + 64) >> 0) + ',50,25)';
 }
 ctx.stroke();

 // Reduce the branch recursion level.
 newDepth = depth - 1;
 // If the recursion level has reached zero, then the branch grows no more.
 if (!newDepth) {
 return;
 }
 // Make current branch split into a random number of new branches (max 3).
 // Add in some random lengths, widths, and angles for a more natural look.
 subBranches = (rand() * (maxBranch - 1)) + 1;
 // Reduce the width of the new branches.
 branchWidth *= 0.7;
 // Recursively call drawTree for the new branches with new values.
 for (var i = 0; i < subBranches; i++) {

Figure 6-14. A recursive tree drawn with Canvas

148 | Chapter 6: HTML5 Canvas

 newAngle = angle + rand() * maxAngle - maxAngle * 0.5;
 newLength = length * (0.7 + rand() * 0.3);
 drawTree(ctx, endX, endY, newLength, newAngle, newDepth, branchWidth);
 }
};

Canvas Tree Page Layout
Play around with the initial values passed to drawTree(). You will notice how making
small changes to the initial values can give very different results. Increasing the initial
value of depth (penultimate parameter) much beyond a value of 12 is not recommended
unless you are very patient!

<!DOCTYPE html>
<html>
 <head>
 <title>
 Recursive Canvas Tree
 </title>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <script type="text/javascript">

 /*** drawTree() function goes here ***/

 $(document).ready(function() {
 var canvas = document.getElementById('mycanvas');
 var ctx = canvas.getContext('2d');
 drawTree(ctx, 320, 470, 60, -Math.PI / 2, 12, 12);
 });
 </script>
 </head>
 <body>
 <canvas id="mycanvas" width=640, height=4 80></canvas>
 </div>
 </body>
</html>

Replacing DHTML Sprites with Canvas Sprites
In the section “A More Dynamic Sprite Application” on page 32, we developed a
DHTML animated sprite system and used it to create various graphical demonstrations.
In Chapter 5, we used the same sprite system to develop a DHTML video game. We
made some effort to “hide” the mechanics of drawing the sprites within the
DHTMLSprite object in order to make the applications using it more amenable to imple-
menting a different sprite system. Here we will convert one of the demonstrations to
use a new CanvasSprite object that takes advantage of the increased performance of
the Canvas element.

Replacing DHTML Sprites with Canvas Sprites | 149

The New CanvasSprite Object
CanvasSprite is a direct replacement for the DHTMLSprite object. All parameters in the
params object passed to it are the same as before, apart from the inclusion of a Canvas
context parameter (ctx):

var CanvasSprite = function (params) {
 // The canvas drawing context is passed in the params object.
 var ctx = params.ctx,
 width = params.width,
 height = params.height,
 imagesWidth = params.imagesWidth,
 vOffset = 0,
 hOffset = 0,
 hide = false,
 // An Image object is created, and this will be used as the source
 // for the canvas drawImage function below.
 img = new Image();
 img.src = params.images;

 return {
 draw: function (x, y) {
 if (hide) {
 return;
 }
 // The canvas drawImage function allows us to extract individual
 // sprite images from a larger composite image.
 ctx.drawImage(img, hOffset, vOffset, width, height,
 x >> 0, y >> 0, width, height);
 },
 changeImage: function (index) {
 index *= width;
 vOffset = Math.floor(index / imagesWidth) * height;
 hOffset = index % imagesWidth;
 },
 show: function () {
 hide = false;
 },
 hide: function () {
 hide = true;
 },
 destroy: function () {
 return;
 }
 };
};

Notice how we use a binary shift operator (x >> 0, y >> 0) to make the
rendering positions whole integers. Firefox and Opera browsers suffer
a big performance hit when trying to render at fractional pixel positions.
This is not important for regular drawing, but for high-speed graphics,
the degradation is significant.

150 | Chapter 6: HTML5 Canvas

Other Code Changes
The other code changes required to get the CanvasSprite object working are highlighted
in the following code example in bold. You may wish to refer back to the original source
code in “A More Dynamic Sprite Application” in Chapter 2 for more details.

var bouncySprite = function(params) {
 // Other code as before goes here...
 // We are now referencing CanvasSprite instead of DHTMLSprite.
 // that = DHTMLSprite(params);
 that = CanvasSprite(params);
 // Other code as before goes here...
};

var bouncyBoss = function (numBouncy, $drawTarget, ctx) {
 var bouncys = [];

 for (var i = 0; i < numBouncy; i++) {
 bouncys.push(bouncySprite({
 // Other code as before goes here...
 maxY: $drawTarget.height() - 64,
 ctx: ctx // Pass a Canvas context as one of the parameters to bouncy
 // sprite.
 }));
 }
 var moveAll = function () {
 // The moveAll() function now clears the Canvas before drawing
 // all the sprites.
 ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
 // Other code as before goes here...
 };
 moveAll();
};

$(document).ready(function () {
 // Pass a Canvas context to bouncyBoss.
 var canvas = $('#draw-target')[0];
 bouncyBoss(80, $('#draw-target'), canvas.getContext("2d"));
});

A Graphical Chat Application with Canvas and WebSockets
Drawing pretty graphics is all very well, but in the following example, we will look at
a more practical application for Canvas: a pseudo-3D chat application (Figure 6-15).
This example will also demonstrate how to combine Canvas with other HTML5 fea-
tures like WebSockets.

A Graphical Chat Application with Canvas and WebSockets | 151

Figure 6-15. A pseudo-3D graphical chat application using HTML5 Canvas and WebSockets

The WebSockets Advantage
Canvas has enjoyed its fair share of the HTML5 limelight, and another equally exciting
(but possibly less well known) HTML5 element is WebSockets. Although this book is
about graphics, it’s worth discussing why WebSockets are significant for modern web
applications and how they can be integrated with Canvas.

The Web typically transmits its data between servers and client browsers using the
HTTP protocol, but HTTP has certain limitations (unlike shiny new WebSockets) that
make it unsuitable for high-speed, bidirectional network communication:

152 | Chapter 6: HTML5 Canvas

It’s a one-way street
The client web browser requests data from the server and the server then obliges.
The server cannot “push” information to the client without being asked for it spe-
cifically.

It carries significant overhead
HTTP data carries a lot of baggage in the form of header information. Requesting
just one byte of data can result in potentially hundreds of bytes of additional “in-
visible” header information also being sent. Among other things, the headers typ-
ically contain information about the nature of the data being transmitted, such as
content type, caching, encoding, etc.

Its connections are nonpersistent
For each HTTP request, a connection has to be negotiated, the data sent, and the
connection closed again. This is analogous to holding a telephone conversation
and having to call back after each sentence.

You can improve HTTP performance somewhat by using programming techniques
such as Comet/Long polling, which tries to simulate the persistent, bidirectional con-
nections of more efficient network sockets. Although these techniques can offer some
improvement, there is a danger that the server will not be able to service the high volume
of HTTP connections required; web server software like Apache is not particularly
efficient at handling such connections. Ultimately, you can’t make a silk purse out of
a sow’s ear: HTTP is simply too inefficient for the sort of network transmission required
for multiplayer games and other fast-communicating applications.

WebSockets address these problems by allowing genuine, persistent, and bidirectional
connections between client and server. The client can send data to the server at any
time and vice versa. Also, there is very little data overhead, because there are no headers
once the connection is established. The data is simply preceded by a 0 byte (0x00) and
terminated by 0xff.

WebSockets Support and Security
WebSockets are currently supported by Firefox 4, Google Chrome 4+, Opera 10.70+,
and Safari 5. Unfortunately, security issues surrounding the WebSockets communica-
tion protocol have prompted the developers of Firefox and Opera to disable default
WebSockets functionality, and other browser vendors may consider the same course
of action. You can find technical details of the security issues at http://www.ietf.org/
mail-archive/web/hybi/current/msg04744.html.

So, it looks like default WebSockets functionality is in a state of flux until a newer
revision of the underlying protocol abates the security concerns. However, there is no
reason not to start experimenting with WebSockets now in preparation for the protocol
revisions.

A Graphical Chat Application with Canvas and WebSockets | 153

http://www.ietf.org/mail-archive/web/hybi/current/msg04744.html
http://www.ietf.org/mail-archive/web/hybi/current/msg04744.html

Turning on WebSockets in Firefox 4 and Opera 11

Luckily, Firefox and Opera users can turn on WebSockets functionality for develop-
ment purposes.

For Firefox 4:

1. Enter about:config in the browser’s address bar.

2. Find and toggle the network.websocket.override-security-block flag.

For Opera:

1. Enter opera:config in the browser’s address bar.

2. In the Preferences Editor, open the User Prefs section and turn on Enable Web-
Sockets.

The Chat Application
Our chat application is broadly composed of four main elements:

• The socket server that runs on the web server

• Client avatars that move around and “chat”

• The chat text itself

• The text input area

When a user connects to the chat page, an avatar is automatically created for him in a
random color. The user can then move the avatar around by clicking on the page and
also enter text in the chat box. The avatar’s movement and chat text will be mirrored
to all other connected users. Effectively, everyone sees the same page, but each user
can control only his own avatar.

The socket server

The socket server is required to handle connections and transmit information between
the connected clients. It must run on a server that all clients can connect to.

The choice of programming language for the socket server could be any one of the
popular server-side languages such as PHP, Java, or Python. As a JavaScript program-
mer, you will also be pleased by the existence of node.js, a server-based implementation
of JavaScript and associated libraries that make it suitable for efficient network socket
programming.

For the chat application, I’ve chosen PHP for the socket server, as it enjoys near-
ubiquitous preinstallation on Linux-based web hosting services.

154 | Chapter 6: HTML5 Canvas

The socket server (server.php) is actually composed of two parts: a
general-purpose socket handler class (WebSocketServer), which can be
used for a variety of applications, and a chat-application-specific call-
back function (process()), which is tailored to our chat application.
Check out the book’s code repository for the PHP source code.

Thorough coverage of PHP is beyond the scope of this book, but even if you have never
used it before, the language is relatively easy to learn and there are a vast number of
online resources. If you are interested in taking a closer look at the socket server code,
there are a couple of PHP syntax idiosyncrasies worth mentioning:

• Variables are preceded by a $ symbol (not to be confused with jQuery’s use of $).

• Strings are oddly concatenated with a period symbol (.) instead of the usual ad-
dition sign (+).

The socket server performs, among other things, the following operations:

• Accepts new connections and maintains a list of connected clients

• Receives data updates from clients (chat text and position)

• Transmits data updates to all connected clients

• Removes clients from the list when connection is broken (e.g., browser closed)

Installing a web hosting environment locally

Unless you have root access to a dedicated or virtual web server, it is unlikely that you
will be able to get the socket server working. Properly configured shared web-hosting
environments will invariably have a firewall that prevents use of any communications
ports. Luckily, you can still experiment with server-side code by installing a hosting
environment on your own local machine.

Installing a web-hosting environment used to be a painful and lengthy process at the
best of times. However, the “Apache Friends” XAMPP software consolidates the re-
quired modules (Apache and PHP) into a single download that you can install in a few
minutes on Windows, Mac, and Linux systems. To download the XAMPP software,
go to http://www.apachefriends.org/en/xampp.html.

Figure 6-16 shows the XAMPP control panel. Note that PHP is not featured in the
control panel and “just works” transparently.

A Graphical Chat Application with Canvas and WebSockets | 155

http://www.apachefriends.org/en/xampp.html

Figure 6-16. With XAMPP, you can easily install a full hosting environment on your local machine

To start the socket server via XAMPP, click the Shell button on the XAMPP control
panel. This presents you with a command-line shell that you can use to run the socket
server (Figure 6-17). Enter php path-to-socket-server\server.php to run the socket
server, and then press Enter.

You’ll need to change the path to server.php to point to the location of this file on your
local machine.

The socket server is now waiting for connections from the JavaScript side of the chat
application.

Figure 6-17. Running the socket server from the XAMPP command-line shell

156 | Chapter 6: HTML5 Canvas

Finally, we need to run the actual chat web page (the JavaScript) in the browser. The
simplest way to do this is by specifying the filesystem location of the page in the browser,
for example, file:///C:/professorcloud.com/book/canvas/canvas-websockets-chat.htm.

Apache is not actually serving the chat page when we use the file:/// protocol, as the
browser is directly accessing the HTML file.

You can also test several instances of the chat web page by opening multiple browser
windows and “chatting” with yourself.

A more elaborate way to test the chat application is to serve the chat page and run the
chat server on a computer (the web server) across a network. Here are the steps in-
volved:

1. On the web server, modify the Apache httpd.conf file to include a virtual host entry
to map the web server’s IP address to the location of the chat application on the
web server. The first virtual host defined will be the default one used for the web
server’s IP address.

2. Start Apache via the XAMPP control panel.

Users of other computers on the network can connect to the chat application by
entering the web server’s IP address into a suitable browser.

You can find documentation on how to set up XAMPP for hosting here:

• Windows: http://www.apachefriends.org/en/xampp-windows.html

• Mac: http://www.apachefriends.org/en/xampp-macosx.html

• Linux: http://www.apachefriends.org/en/xampp-linux.html

The camera

The camera object determines the perspective view of the chat area. It contains three
utility functions:

setFOVandYPos()
The field of view (FOV) angle and vertical position of the camera are passed in.
Calculating the camera distance from the FOV allows you to change the canvas
size without affecting the view presented (assuming the same aspect ratio is main-
tained). We use a value of 125 degrees FOV and camera y position of −128.

worldToScreen()
This calculates the canvas screen coordinates from the world coordinates passed
in. It also calculates a scale that can be applied to the avatars so they appear smaller
the farther away they are, effectively simulating perspective.

screenToWorld()
The opposite of worldToScreen(). From a position on the canvas, the equivalent
world coordinates are returned. screenToWorld() converts the mouse-click position
into a new world position for the user’s avatar. We use the toFixed() method to

A Graphical Chat Application with Canvas and WebSockets | 157

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-macosx.html
http://www.apachefriends.org/en/xampp-linux.html

prevent meaninglessly fine values from being returned; for example, a value of
188.42620390960207 takes longer to transmit over the network than 188.426.

var camera = function () {
 var camDist, camY;
 return {
 setFOVandYPos: function (angle, y) {
 camY = y;
 angle *= (Math.PI / 180);
 camDist = (ctx.canvas.width * 0.5) / Math.tan(angle * 0.5);
 },
 worldToScreen: function (x, y, z) {
 return {
 sx: (camDist * x) / z,
 sy: (camDist * (y - camY)) / z,
 scale: (camDist / z)
 };
 },
 screenToWorld: function (sx, sy) {
 sx -= ctx.canvas.width / 2;
 sy -= ctx.canvas.height / 2;
 var wz = (-camY / sy) * camDist;
 return {
 wx: (sx / camDist * wz).toFixed(3),
 wy: (sy / camDist * wz).toFixed(3),
 wz: wz.toFixed(3)
 };
 }
 };
}();

The avatars

Avatars are the graphical representation of the clients. They appear in randomly gen-
erated colors to distinguish themselves from other avatars, and we move them by click-
ing the mouse on the desired new position. They are composed of two vector shapes,
a round head and domed body. We use radial gradient fills to add depth and apply a
darker outline stroke to separate the avatar from the background.

var avatar = function (color) {
 var that = {},
 destX = 0,
 destZ = 0,
 x = 0,
 z = 0,
 textX, avatarHW = 40.5,
 avatarH = 106,
 outlineColor = color.substr(1),
 gradient1, gradient2;
 outlineColor = (parseInt(outlineColor, 16) & 0xfefefe) >> 1;
 outlineColor = '#' + outlineColor.toString(16);

 gradient1 = ctx.createRadialGradient(37.7, 55.6, 0.0, 37.7, 55.6, 46.1);
 gradient1.addColorStop(0.00, "#fff");

158 | Chapter 6: HTML5 Canvas

 gradient1.addColorStop(1.00, color);
 gradient2 = ctx.createRadialGradient(37.6, 15.3, 0.0, 37.6, 15.3, 31.1);
 gradient2.addColorStop(0.00, "#fff");
 gradient2.addColorStop(1.00, color);

 that.remove = false;

 that.setDest = function (dstX, dstZ) {
 destX = dstX;
 destZ = dstZ;
 };
 that.getZ = function () {
 return z;
 };
 that.getTextX = function () {
 return textX;
 };
 that.move = function (coeff) {

 var vx = destX - x,
 vz = destZ - z,
 dist = Math.sqrt(vx * vx + vz * vz),
 p, x1, y1;

 // Normalize (make unit length) the vector from old pos to new pos.
 if (dist) {
 vx /= dist;
 vz /= dist;
 }
 // Apply the vector capped to a maximum of 4 units.
 if (dist > 4) {
 dist = 4;
 }
 x += vx * (dist * coeff);
 z += vz * (dist * coeff);
 p = camera.worldToScreen(x - avatarHW, -avatarH, z);
 textX = p.sx + (avatarHW * p.scale) + (ctx.canvas.width / 2);

 // Draw the body.
 ctx.save();
 ctx.translate(p.sx + (ctx.canvas.width / 2), p.sy + (ctx.canvas.height / 2));
 ctx.scale(p.scale, p.scale);
 ctx.beginPath();
 ctx.moveTo(73.1, 83.6);
 ctx.bezierCurveTo(71.7, 102.1, 52.2, 105.2, 37.4, 105.2);
 ctx.bezierCurveTo(22.5, 105.2, 3.0, 102.1, 1.6, 83.6);
 ctx.bezierCurveTo(0.1, 62.7, 14.0, 35.3, 37.4, 35.3);
 ctx.bezierCurveTo(60.8, 35.3, 74.7, 62.7, 73.1, 83.6);
 ctx.closePath();
 ctx.fillStyle = gradient1;
 ctx.fill();
 ctx.lineWidth = 2.0;
 ctx.lineJoin = "miter";
 ctx.miterLimit = 4.0;
 ctx.strokeStyle = outlineColor;

A Graphical Chat Application with Canvas and WebSockets | 159

 ctx.stroke();
 // Draw the head.
 ctx.beginPath();
 ctx.moveTo(61.2, 25.3);
 ctx.bezierCurveTo(61.2, 38.4, 50.5, 49.1, 37.4, 49.1);
 ctx.bezierCurveTo(24.2, 49.1, 13.6, 38.4, 13.6, 25.3);
 ctx.bezierCurveTo(13.6, 12.1, 24.2, 1.5, 37.4, 1.5);
 ctx.bezierCurveTo(50.5, 1.5, 61.2, 12.1, 61.2, 25.3);
 ctx.closePath();
 ctx.fillStyle = gradient2;
 ctx.fill();
 ctx.strokeStyle = outlineColor;
 ctx.stroke();
 ctx.restore();
 };
 return that;
};

The chat text

The chat text appears above the avatar that has “spoken” and gradually moves up the
screen as the user enters more text. To make the text clearer and to add a speech-bubble
effect, we surround the text with a rounded rectangle filled with white. The rectangle
is stroked with a thick outline in the same color as the avatar that created it.

The textScroller object manages and draws the text generated as the avatars chat. The
addText() method adds new lines of text to the beginning of a list while deleting lines
of text that are more than five entries old. This creates a vertical scrolling effect, with
the topmost lines of text being lost as they move off the top of the canvas. The method
accepts the horizontal position of the avatar as the center position of the text, as well
as the avatar’s color.

The drawText() method iterates through the text list and draws each line of text. To
make the text stand out, we display a rounded white rectangle around the words and
apply a bold stroke in the same color as the user’s avatar. We use the Canvas measure
Text() method to calculate the width of the text, and hence the width of the rounded
rectangle.

var textScroller = function () {
 var textList = [];
 return {
 addText: function (text, x, color) {
 if (textList.length > 5) {
 textList.splice(0, 1);
 }
 textList.push({
 text: text,
 x: x,
 color: color
 });
 },
 drawText: function () {
 var y = (ctx.canvas.height / 2) - 16,

160 | Chapter 6: HTML5 Canvas

 tx, w, x1, y1, w1, i;
 ctx.font = "bold 14px sans-serif";
 ctx.fillStyle = '#000';
 for (i = textList.length - 1; i > −1; i--) {
 tx = textList[i];
 w = ctx.measureText(tx.text).width / 2;
 ctx.beginPath();
 y1 = y - 17;
 x1 = tx.x - 2; // Same as stroke width.
 w1 = w + 16;
 // Begin in middle of top.
 ctx.moveTo(x1, y1);
 // Top and upper-right corner.
 ctx.arcTo(x1 + w1, y1, x1 + w1, y1 + 24, 10);
 // Right and lower-right corner.
 ctx.arcTo(x1 + w1, y1 + 24, x1 - w1 - 10, y1 + 24, 10);
 // Bottom and lower-left corner.
 ctx.arcTo(x1 - w1, y1 + 24, x1 - w1, y1, 10);
 // Left and upper-left corner.
 ctx.arcTo(x1 - w1, y1, x1 + w1, y1, 10);
 ctx.closePath();
 ctx.fillStyle = 'white';
 ctx.fill();
 ctx.lineWidth = 2;
 ctx.strokeStyle = tx.color;
 ctx.stroke();
 ctx.fillStyle = 'black';
 ctx.fillText(tx.text, x1 - w, y);
 y -= 28;
 }
 }

 };
}();

The background

The drawBackground object draws a gradient blue sky and green floor. Both the sky and
the floor fade to white to give a three-dimensional sense of depth.

var drawBackground = function () {
 var linGrad = ctx.createLinearGradient(0, 0, 0, ctx.canvas.height);
 linGrad.addColorStop(0, '#00BFFF');
 linGrad.addColorStop(0.5, 'white');
 linGrad.addColorStop(0.5, '#55dd00');
 linGrad.addColorStop(1, 'white');
 return function () {
 ctx.fillStyle = linGrad;
 ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);
 };
}();

A Graphical Chat Application with Canvas and WebSockets | 161

Initialization

The initAndGo() function performs various setup tasks, such as establishing event han-
dlers and connecting to the server. It finally executes the loop that moves and draws
the avatars and text:

var initAndGo = function () {
 // Set the field of view and camera vertical position.
 camera.setFOVandYPos(125, −128);
 // Socket server is running on the local machine
on port 8999.
 var host = "ws://127.0.0.1:8999",
 socket, avatarList = [];
 // The send function transmits an arbitrary number of arguments to the
 // server.
 var send = function () {
 var data = '';
 for (var i = 0; i < arguments.length; i++) {
 data += arguments[i] + ',';
 }
 socket.send(data);
 };
 try {
 socket = new WebSocket(host);
 // When the socket connects, it creates a new avatar in a random color.
 // It also sets the border color around the text input area.
 socket.onopen = function (msg) {
 // Random color for avatar.
 var rColor = Math.round(0xffffff * Math.random());
 rColor = ('#0' + rColor.toString(16)).
 replace(/^#0([0-9a-f]{6})$/i, '#$1');
 send('CONNECT', rColor, 250);
 $('#text-input').css({
 border: "2px solid " + rColor,
 color: rColor
 });
 };
 socket.onmessage = function (msg) {
 if (msg.data) {
 var textData = msg.data,
 data;
 // Parse the returned socket data into a JavaScript object
 // via JSON.
 textData = textData.replace(/[\x00-\x1f]/, '');
 data = $.parseJSON(textData);
 for (var userId in data) {
 if (avatarList[userId] === undefined) {
 // Initialize a new avatar if the the userId doesn't
 // yet exist in the avatarList[].
 avatarList[userId] = avatar(data[userId].colr);
 }
 if (data[userId].pos !== undefined) {
 // Update avatar's destination x and z positions.
 var pos = data[userId].pos.split(',');
 avatarList[userId].setDest(pos[0], pos[1]);

162 | Chapter 6: HTML5 Canvas

 }
 if (data[userId].chattext !== undefined) {
 // Add chat text if present in data.
 textScroller.addText(unescape(data[userId].chattext),
 avatarList[userId].getTextX(), data[userId].colr);
 }
 if (data[userId].disconnect) {
 // Flag avatar for removal if the server says so.
 avatarList[userId].remove = true;
 }
 }
 }
 };
 } catch (ex) {
 alert('Socket error: ' + ex);
 }
 // Stop text input losing focus when clicking on canvas.
 $('#the-canvas').bind('mousedown', this, function (event) {
 return false;
 });
 // Get clicks on canvas and convert to world coordinates.
 // Send these coordinates back to the server.
 $(ctx.canvas).bind('click', function (evt) {
 var canvas, bb, mx, my, p;
 canvas = ctx.canvas;
 // Get canvas size and position
 bb = canvas.getBoundingClientRect();
 // Convert mouse event coordinates to canvas coordinates
 mx = (evt.clientX - bb.left) * (canvas.width / bb.width);
 my = (evt.clientY - bb.top) * (canvas.height / bb.height);
 // Stop avatars going too far back.
 if (my < canvas.height / 2 + 32) {
 return;
 }
 p = camera.screenToWorld(mx, my);
 send('UPDATE', p.wx, p.wz);
 });
 // Get key presses and send chat text to server if return key is pressed.
 // The text is escaped to ensure correct transmission.
 $(window).bind('keypress', function (evt) {
 if (evt.which == 13) {
 send('CHATTEXT', escape($('#text-input').val()));
 $('#text-input').val('');
 }
 });
 var oldTime = new Date().getTime();

 // The main loop is executed via setInterval at 20-millisecond intervals.
 setInterval(function () {
 var newTime = new Date().getTime(),
 elapsed = newTime - oldTime,
 i = 0,
 avatarListNew = [],
 sortList = [],
 // Work out a coefficient of movement based on elapsed time

A Graphical Chat Application with Canvas and WebSockets | 163

 // to ensure consistent speed across different browsers and hardware.
 coeff = elapsed / 20;
 oldTime = newTime;

 // Draw the background. There is no need to erase
 // the canvas first, as the background completely fills it.
 drawBackground();

 // Place non-removed avatars into sortlist ready for drawing.
 // Also place them in avatarListNew.
 for (var av in avatarList) {
 if (!avatarList[av].remove) {
 sortList[i++] = avatarListNew[av] = avatarList[av];
 }
 }

 // Sort the list into z-order.
 sortList.sort(function (a, b) {
 return b.getZ() - a.getZ();
 });

 // Move the avatars.
 for (i = 0; i < sortList.length; i++) {
 sortList[i].move(coeff);
 }

 // avatarListNew now becomes our current avatar list.
 // It does not contain removed avatars.
 avatarList = avatarListNew;

 // Finally, draw all the chat text.
 textScroller.drawText();
 }, 20);
}();

The page code

Here is the HTML page layout for the chat application, which is saved in a file called
canvas-websockets-chat.htm:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
 </script>
 <script type="text/javascript"> jQuery(function($) {
 var ctx = $('#the-canvas')[0].getContext('2d');

 var camera = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 }();
 var textScroller = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 }();

164 | Chapter 6: HTML5 Canvas

 var avatar = function (color) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };
 var drawBackground = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 }();
 var initAndGo = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 }();
 });
 </script>
 <style type="text/css">
 body {font-family: sans-serif}
 #text-input {font-size:16px;}
 #the-canvas {border:1px solid;}
 </style>
 </head>

 <body>
 <canvas id="the-canvas" width='512' height='384'>
 </canvas>
 <p>
 <label for='text-input'>
 Chat:
 </label>
 <input id='text-input' />
 </p>
 </body>
</html>

A Graphical Chat Application with Canvas and WebSockets | 165

CHAPTER 7

Vectors for Games and Simulations

Most programmers will agree that programming is a lot more fun than mathematics,
but there are certain circumstances where a little bit of math knowledge can go a long
way. As a “value added” math subject, vectors punch way above their weight in terms
of useful functionality. Mix together a few other math ingredients, and you have a
versatile vector toolkit that can be used for all sorts of applications. Don’t worry if math
isn’t your strong point; the JavaScript equivalents of equations will always be provided.
Although it can be a benefit if you understand the underlying mathematics, it is not
crucial.

Vectors are typically described as a quantity that has both a magnitude (length) and
direction. Exactly what does this mean? Some simple examples illustrate the concept
best.

• Nonvectors:

— 2 miles

— 12 inches

— 1 kilometer

• Vectors:

— 2 miles north

— 12 inches to the right

— 1 kilometer northeast

Why are vectors useful? Because they make all sorts of movement and spacial behavior
a lot easier to understand and implement in code. Vectors can be added, scaled, rotated,
and pointed at things. They also form the foundation of more sophisticated program-
ming subjects like physics simulations. Most importantly, when you get the hang of
them, they are huge amounts of fun.

The real-world distances and directions described in the preceding lists are familiar
and make sense; however, as JavaScript programmers, we are more interested in meas-
urements and directions that are relevant to our applications—not miles and inches.

167

What units of measurement should we use? In fact, the actual units of measurement
are irrelevant: as long as we stick to the same units for all calculations, we can convert
them to screen pixel positions at the end, ready for drawing.

In our real-world examples, the direction part of the vectors are specified as compass
directions and “to the right.” These values aren’t practical for JavaScript use, so we
must represent direction in some other way. A direction and length (a vector) in 2D
space (e.g., your computer screen) can be represented by horizontal (x) and vertical
(y) components. Figure 7-1 shows four different vectors on a grid with their x and y
components.

Figure 7-1. Four direction vectors with their x and y components

For this chapter’s examples, we will stick to the familiar CSS/bitmap screen coordinate
system with the origin in the top left, an x-axis increasing to the right, and a y-axis
increasing toward the bottom (aka a Cartesian coordinate system). In this example, the
vectors represent a direction and length, not a position. The positions on the grid are
arbitrary and purely for illustration purposes. However, the x and y components can
be used to represent a position, depending on how the vector is used in the application.

In Figure 7-1, the directions have been specified with x and y components, but what
about the length of the vectors? If a vector points in exactly the same direction as any
one axis, then the length is simply the length along that axis; for example, it’s fairly
obvious that vector A has a length of 5 and vector B has a length of 4. But what if the
vectors aren’t parallel to any one axis, like vectors C and B? Things aren’t quite so
obvious in this case, since neither the x or y component represents the length of the
vector.

168 | Chapter 7: Vectors for Games and Simulations

Luckily, we can use the Pythagorean theorem to calculate the length of our vector based
on the x and y components. The definition of the Pythagorean theorem is as follows:

For a right-angled triangle, the square (area) of the hypotenuse is equal to the sum of the
squares of the other two sides (Figure 7-2).

Figure 7-2. Pythagorean theorem

In Figure 7-2, the hypotenuse is the longest edge of the central triangle (in this instance,
at the bottom of the triangle), opposite the right angle at the top. The theorem works
regardless of which side the hypotenuse is on. How does all of this relate to our vectors?
Imagine that the two shorter edges of the triangle in Figure 7-2 are our x and y com-
ponents. The length of the vector squared is simply the length of the hypotenuse
squared:

length2 = x2 + y2

or in JavaScript:

lengthSquared = (x*x + y*y);

The squared length of the vector can be useful, but we might want the actual length.
We can calculate this using the square root of the squared length:

Vectors for Games and Simulations | 169

length = √(x2 + y2)

or in JavaScript:

length = Math.sqrt(x*x + y*y);

Figure 7-3 shows a vector with components x = −3 and y = 3. Plug those figures into
the Pythagorean theorem, and the length equals approximately 4.24.

length = Math.sqrt(-3*-3 + 3*3); // length = 4.24.

Figure 7-3. The Pythagorean theorem can calculate the length of a vector based on the x and y
components

Operations on Vectors
We can apply several useful operations to vectors, some of which are listed in the
following sections along with some potential applications.

Addition and Subtraction
You can add vectors to or subtract them from each other by adding or subtracting their
x and y components. This works just like regular arithmetic, so adding a vector to itself
will double its length, and subtracting a vector from itself will result in a zero vector.
Some examples include:

• Adding a gravity vector to the vector of a ball in flight so it drops realistically

• Adding the vectors of two colliding bodies together for a realistic collision response

• Adding the thrust vector of a rocket engine to a spacecraft so it moves

170 | Chapter 7: Vectors for Games and Simulations

Scaling
By multiplying the x and y components by a scale value, you can scale the length of the
vector up or down as required. Some examples include:

• Repeatedly scaling a movement vector by a value slightly less than 1 so the object
using the vector comes to rest very smoothly

• Taking the direction vector of a cannon and scaling it up to give the initial vector
of a cannonball fired from it

Normalization
Sometimes it’s useful to make a vector unit length, or in other words, make its length
one unit long. This process is called normalization, and vectors of unit length are called
unit vectors. You calculate the unit length by dividing the x and y components by the
length of the vector. Typically, we’d do this when we are interested in the direction of
a vector, but not its length. Unit vectors might represent:

• The orientation of a directional jet

• The incline of a slope

• The elevation of a cannon

Once we have the unit vector, we can scale it up to represent the thrust of the jet or the
cannonball’s initial movement.

Rotation
The ability to rotate a vector by an arbitrary angle is extremely useful, as it enables you
to point a vector in any direction you desire. Examples include:

• Making one object always point to another

• Changing the “thrust” direction of a virtual jet engine

• Changing the initial “launch” direction of a projectile based on the angle of the
object that launched it

In JavaScript math functions (and more advanced mathematics in general), angles are
specified in radians as opposed to the more familiar 360 degrees in a circle. A radian is
an arc with the same length as the circle’s radius (Figure 7-4). A circle’s circumference
can be calculated as 2πr, where r = radius. Hence, there are 2π radians in a circle
(approximately 6.282).

Operations on Vectors | 171

Figure 7-4. A radian in all its glory

Radians aren’t particularly intuitive to work with and visualize, but it’s easy to convert
to and from radians and degrees using these JavaScript functions:

// Degrees to radians.
degToRad = function(deg) {
 return deg * (Math.PI/180);
};

// Radians to degrees.
radToDeg = function(rad) {
 return rad * (180/Math.PI);
};

One other difference between radians and degrees is that 0 radians actually points along
the horizontal axis to the right. This is different from 0 degrees, which is usually as-
sumed to be pointing straight up along the vertical axis.

Dot Product
A dot product gives the cosine of the angle between two vectors, or to put it another
way, it tells us how similar in direction two vectors are. The possible values range from
−1 to 1 (assuming the vectors are unit length). Here are some examples of what the
values mean:

• Vectors pointing in the same direction: dot product = 1

• Vectors positioned at 45 degrees to each other: dot product = 0.5

• Vectors at right angles (90 degrees) to each other: dot product = 0

• Vectors pointing in the opposite direction: dot product = −1

The dot product is useful in situations where we need to know to what extent objects
are facing each other. For example, in a game, we could determine from the dot product
whether two characters could “see” each other, or whether a particular side of a shape
is pointing in a certain direction.

172 | Chapter 7: Vectors for Games and Simulations

Creating a JavaScript Vector Object
To make the most of vectors in JavaScript, we can encapsulate some of the functionality
described earlier in a reusable object, thus making the vectors easier to use in applica-
tions. We can then easily attach any additional vector-related functionality to this object
as needed.

The x and y components of the vector are actually called vx and vy in the vector object;
this makes it more obvious in the later code examples that we are dealing with vector
properties and not some other x and y values:

var vector2d = function (x, y) {

 var vec = {
 // x and y components of vector stored in vx,vy.
 vx: x,
 vy: y,

 // scale() method allows us to scale the vector
 // either up or down.
 scale: function (scale) {
 vec.vx *= scale;
 vec.vy *= scale;
 },

 // add() method adds a vector.
 add: function (vec2) {
 vec.vx += vec2.vx;
 vec.vy += vec2.vy;
 },

 // sub() method subtracts a vector.
 sub: function (vec2) {
 vec.vx -= vec2.vx;
 vec.vy -= vec2.vy;
 },

 // negate() method points the vector in the opposite direction.
 negate: function () {
 vec.vx = -vec.vx;
 vec.vy = -vec.vy;
 },

 // length() method returns the length of the vector using Pythagoras.
 length: function () {
 return Math.sqrt(vec.vx * vec.vx + vec.vy * vec.vy);
 },

 // A faster length calculation that returns the length squared.
 // Useful if all you want to know is that one vector is longer than another.
 lengthSquared: function () {
 return vec.vx * vec.vx + vec.vy * vec.vy;
 },

Creating a JavaScript Vector Object | 173

 // normalize() method turns the vector into a unit length vector
 // pointing in the same direction.
 normalize: function () {
 var len = Math.sqrt(vec.vx * vec.vx + vec.vy * vec.vy);
 if (len) {
 vec.vx /= len;
 vec.vy /= len;
 }
 // As we have already calculated the length, it might as well be
 // returned, as it may be useful.
 return len;
 },

 // Rotates the vector by an angle specified in radians.
 rotate: function (angle) {
 var vx = vec.vx,
 vy = vec.vy,
 cosVal = Math.cos(angle),
 sinVal = Math.sin(angle);
 vec.vx = vx * cosVal - vy * sinVal;
 vec.vy = vx * sinVal + vy * cosVal;
 },

 // toString() is a utility function for displaying the vector as text,
 // a useful debugging aid.
 toString: function () {
 return '(' + vec.vx.toFixed(3) + ',' + vec.vy.toFixed(3) + ')';
 }
 };
 return vec;
};

A Cannon Simulation Using Vectors
Now that we’ve defined the vector object, we can use it to develop a simple cannon
simulation (Figure 7-5). First, I should qualify the term “simulation”: our goal is not
to try to replicate with absolute realism the physics of a cannon, but rather to create a
simulation that is realistic enough for applications like games. Even the most advanced
physics in games have to suspend reality somewhat. For example, human characters
in games do not simulate physics to remain upright and walk, and aircraft in games do
not simulate all the physics of flight to remain airborne.

Strictly speaking, for accurate simulations, you should factor the time
elapsed per frame into your calculations. However, for the purposes of
this demonstration, we’ll assume a frame rate of 30 milliseconds. In
actuality, timers on certain browsers are not particularly accurate any-
way, so the lack of time calculations is no great loss.

174 | Chapter 7: Vectors for Games and Simulations

The simulation uses HTML5 Canvas to draw the graphics, although you could adapt
it to work with any number of rendering methods in the browser (SVG, CSS3, etc.).
The graphics are deliberately basic to keep the code’s focus on the use of vectors and
the calculations required.

The cannon simulation will use vectors for the following:

• To represent the aiming direction of the cannon

• To represent the movement of the cannonball (initially derived from the aiming
direction of the cannon)

Simulation-Wide Variables
Here we define a handful of simulation-wide variables at the top of the main simulation
function. Although these variables are available to all functions in the simulation, they
are wrapped in the main simulation function and do not appear in the global scope:

var gameObjects = [], // An array of game objects.
 canvas = document.getElementById('canvas'), // A reference to the Canvas.
 ctx = canvas.getContext('2d'); // A reference to the drawing context.

Figure 7-5. Simple cannon simulation using vectors and HTML5 Canvas

A Cannon Simulation Using Vectors | 175

We add every object in the simulation (apart from the background) to the game
Objects[] array. The main loop of the simulation can then iterate through this array
to move and draw all the objects.

The Cannonball
We initialize the cannonball by passing an initial x and y position and a vector of
movement. On each cycle, we add the vector to the current position, and add a gravity
value to the vector’s y component to make the ball fall as it moves along. On each cycle,
we increase the gravity value by a fixed amount to simulate gravitational acceleration.
The ball is represented by a simple filled circle.

var cannonBall = function (x, y, vector) {
 var gravity = 0,
 that = {
 x: x, // Initial x position.
 y: y, // Initial y position.
 removeMe: false, // A flag to indicate removal.

 // move() method updates position with velocity,
 // and checks for cannonball hitting the ground.
 move: function () {
 vector.vy += gravity; // Add gravity to vertical velocity.
 gravity += 0.1; // Increase gravity.
 that.x += vector.vx; // Add velocity vector to position.
 that.y += vector.vy;

 // When cannonball gets too low, flag it for removal.
 if (that.y > canvas.height - 150) {
 that.removeMe = true;
 }
 },
 // draw() method draws a filled circle, centered on the position
 // of the ball.
 draw: function () {
 ctx.beginPath();
 ctx.arc(that.x, that.y, 5, 0, Math.PI * 2, true);
 ctx.fill();
 ctx.closePath();
 }
 };
 return that;
};

The Cannon
The cannon is represented by a simple rectangular barrel mounted on a wheel, and it
pivots to always aim at the mouse pointer. To calculate the angle to the mouse pointer,
we use the Math.atan2(y,x) function. Math.atan2(y,x) returns the angle in radians be-
tween a horizontal axis and a point relative to that axis. Assuming the horizontal axis

176 | Chapter 7: Vectors for Games and Simulations

passes through the pivot point of the cannon, the relative point specified is simply the
position of the mouse pointer relative to the pivot point of the cannon:

angle = Math.atan2(mouseY - cannonY, mouseX - cannonX);

When the mouse is clicked, the cannon fires a cannonball. The cannonball is initialized
with a start position (the pivot point of the cannon) and a movement vector. We cal-
culate the movement vector from the position of the mouse pointer relative to the
position of the cannon:

vector = vector2d(mouseX - cannonX, mouseY - cannonY);

However, although this vector is aimed in the correct direction, its length is the distance
from the cannon to the mouse pointer. This is not much use, as this distance will vary:
it can’t simply be scaled up or down by a fixed amount. The solution is to normalize
the vector to a consistent unit length, and then scale it up to the desired length:

vec.normalize(); // Make it unit length.
vec.scale(25); // Scale it up to 25 units.

Here is the full cannon object:

var cannon = function (x, y) {
 var mx = 0,
 my = 0,
 angle = 0,
 that = {
 x: x,
 y: y,
 angle: 0,
 removeMe: false,

 // move() method does nothing more than angle the cannon
 // toward the mouse pointer.
 move: function () {
 // Calculate angle to mouse pointer.
 angle = Math.atan2(my - that.y, mx - that.x);
 },

 draw: function () {
 ctx.save();
 ctx.lineWidth = 2;
 // Origin will be bottom-center of barrel.
 ctx.translate(that.x, that.y);

 // Apply the rotation previously calculated in the
 // move() method.
 ctx.rotate(angle);
 // Draw a rectangular 'barrel'.
 ctx.strokeRect(0, −5, 50, 10);

 // Draw 'wheel' at bottom of cannon.
 ctx.moveTo(0, 0);
 ctx.beginPath();
 ctx.arc(0, 0, 15, 0, Math.PI * 2, true);

A Cannon Simulation Using Vectors | 177

 ctx.fill();
 ctx.closePath();
 ctx.restore();
 }
 };

 // When mouse is clicked, fire a cannonball.
 canvas.onmousedown = function (event) {
 // Create a vector from cannon postion in direction of mouse.
 var vec = vector2d(mx - that.x, my - that.y);
 vec.normalize(); // Make it unit length.
 vec.scale(25); // Scale it up to 25 units per frame.
 // Create a new cannonball, and add it to the gameObjects list.
 gameObjects.push(cannonBall(that.x, that.y, vec));
 };

 // Keep a note of the mouse position over the canvas.
 canvas.onmousemove = function (event) {
 var bb = canvas.getBoundingClientRect();
 mx = (event.clientX - bb.left);
 my = (event.clientY - bb.top);
 };

 return that;
};

The Background
The more eagle-eyed readers among you probably noticed that in Figure 7-5, the can-
nonballs appear to have a trail as they fly through the air. We achieve this effect by
making interesting use of the Canvas globalAlpha property on the background of sky
and grass. Normally, when animating with Canvas, we need to redraw the entire canvas
every frame to “erase” the previous frame’s imagery. If we don’t do this, all moving
imagery smears across the canvas and leaves a repeating trail. By specifying an alpha
value for the background, we only partially erase the previous frame. As these semi-
transparent backgrounds are layered, they eventually completely erase the imagery
from the previous frames. Think of the background as tracing paper: one or two sheets
will look transparent, but if we keep adding sheets, the pile will become opaque. The
net effect is that any moving imagery leaves a diminishing partial trail that looks like
motion blur. The smaller the alpha value used, the longer it will take for the trails to
fade.

// Draws a blue sky and grass, with the horizon in the middle of the canvas.
// Drawn as semitransparent to give the illusion of blurring on moving objects.
var drawSkyAndGrass = function (){
 ctx.save();
 // Set transparency.
 ctx.globalAlpha = 0.4;
 // Create a CanvasGradient object in linGrad.
 // The gradient line is defined from the top to the bottom of the canvas.
 var linGrad = ctx.createLinearGradient(0, 0, 0, canvas.height);
 // Start off with sky blue at the top.

178 | Chapter 7: Vectors for Games and Simulations

 linGrad.addColorStop(0, '#00BFFF');
 // Fade to white in the middle.
 linGrad.addColorStop(0.5, 'white');
 // Green for the top of the grass.
 linGrad.addColorStop(0.5, '#55dd00');
 // Fade to white at the bottom.
 linGrad.addColorStop(1, 'white');
 // Use the CanvasGradient object as the fill style.
 ctx.fillStyle = linGrad;
 // Finally, fill a rectangle the same size as the canvas.
 ctx.fillRect(0, 0, canvas.width, canvas.height);
 ctx.restore();
};

The Main Loop
We wrap the main loop in an anonymous function within a setInterval() call. The
main loop is processed every 30 milliseconds and calls the move() and draw() methods
of the simulation objects. It also creates a new list of objects that do not have their
removeMe flags set. Any objects that do have their removeMe flags set are not included in
the new list, and hence disappear from the simulation. This is what happens to the
cannonballs when they move below ground level.

Page Layout
Here is the final page layout for the cannon simulation. Note that I’ve removed some
of the function code to avoid repetition. Simply substitute in the appropriate function
in its entirety from earlier in the chapter.

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript" >
 window.onload = function() {
 var gameObjects = [],
 canvas = document.getElementById('canvas'),
 ctx = canvas.getContext('2d');

 var vector2d = function (x, y) {
 /*** Code Removed For Conciseness ****/
 };

 var cannonBall = function (x, y, vector) {
 /*** Code Removed For Conciseness ****/
 };

 var cannon = function (x, y) {
 /*** Code Removed For Conciseness ****/
 };

 var drawSkyAndGrass = function (){
 /*** Code Removed For Conciseness ****/

A Cannon Simulation Using Vectors | 179

 };

 // Add an initial cannon to the game objects list.
 gameObjects.push(cannon(50,canvas.height-150));

 // This is the main loop that moves and draws everything.

 setInterval(function() {
 drawSkyAndGrass();

 // Here, we loop through all the object in the gameObjects[]
 // Array. As each object is found, it is drawn, moved, and then
 // added to the gameObjectsFresh[] array,UNLESS it has its removeMe flag
 // set. gameObjectsFresh[] is then copied into gameObjects[] ready for
 // the next frame. gameObjects[] will now not contain any removed
 // objects, and they will disappear, as nothing references them anymore.
 gameObjectsFresh = [];
 for(var i=0;i<gameObjects.length;i++) {
 gameObjects[i].move();
 gameObjects[i].draw();
 if (gameObjects[i].removeMe === false) {
 gameObjectsFresh.push(gameObjects[i]);
 }
 }
 gameObjects = gameObjectsFresh;

 },30);
 };
</script>

</head>
 <body>
 <canvas id = "canvas" width = "640" height = "480" style="border:1px solid">
 No HTML5 Canvas detected!
 </canvas>
 </body>
</html>

Rocket Simulation
The following rocket simulation (Figure 7-6) is a more elaborate demonstration of the
use of vectors. The simulation features a steerable rocket and colorful obstacles to
avoid. The rocket rotates to face the mouse pointer, and you can apply engine thrust
in the facing direction of the rocket by holding down the left mouse button. The sim-
ulation is gravity and friction-free, so it requires dexterous use of the mouse to keep
the rocket traveling in the desired direction. The same vector object we defined earlier
in the cannon example is used throughout.

180 | Chapter 7: Vectors for Games and Simulations

The Game Object
We use functional inheritance in the rocket simulation to create both the rocket and
obstacles from a base object called gameObject, which provides common methods and
properties:

var gameObject = function (x, y, radius, mass) {
 var that = {
 x: x,
 y: y,
 vel: vector2d(0, 0),
 radius: radius,
 mass: mass,
 removeMe: false,

 move: function () {
 that.x += that.vel.vx;
 that.y += that.vel.vy;
 if (that.vel.vx < 0 && that.x < −50) {
 that.x += canvas.width + 100;
 } else if (that.vel.vx > 0 && that.x > canvas.width + 50) {
 that.x −= canvas.width + 100;
 }
 if (that.vel.vy < 0 && that.y < −50) {

Figure 7-6. Rocket simulation in action

Rocket Simulation | 181

 that.y += canvas.height + 100;
 } else if (that.vel.vy > 0 && that.y > canvas.height + 50) {
 that.y −= canvas.height + 100;
 }
 },

 draw: function () {
 return;
 }
 };
 return that;
};

Essentially, the object represents a ball with a radius and mass. We initialize game
Object by passing an initial x and y position, a radius, and mass. We use a velocity vector,
vel, to store the gameObject’s current direction and speed of movement, with an initial
value of 0 (no movement).

The move() method adds the velocity vector, vel, to the current x and y position of the
gameObject, thus moving it. The additional tests and calculations in the move() method
make the gameObject “wrap around” the canvas. For example, an object that drifts off
the righthand side of the canvas will magically reappear on the lefthand side. This makes
the whole simulation more fluid and prevents objects from constantly bouncing off the
edges of the canvas.

The draw() method within the context of gameObject is a dummy function, and is im-
plemented only for the sake of reference. The rocket and obstacles will override this
function with their own specific implementations that actually draw something.

The Obstacle Object
The obstacle object inherits all the methods and properties of gameObject but augments
itself with a proper draw() method and performs some additional setup. We create an
initial gameObject and give the fourth parameter (mass) the same value as the radius.
This is a quick way of assigning a mass that is proportional to the obstacle size. After
we’ve created the gameObject, we create a random color in randColor1. Next, we initi-
alize randColor2 with the same color, but with half the brightness: the >> 1 expression
is a binary shift-right, equivalent to integer division by two. The string slice() function
is called to ensure that the colors are always represented as a full six-digit hexadecimal
number (#123456).

Notice that we do not define a move() method, as the one inherited from gameObject
already has the functionality we need.

The draw() method draws a circle using the passed-in radius and fills it with a radial
gradient using randColor1 and randColor2, defined earlier. randColor1 is the lighter of
the two colors, and acts as a highlight to give the illusion of spherical solidity. The
highlight is offset slightly to the top left of the circle, with a radius 1/8 of the full radius
of the obstacle. Finally, we apply a three-pixel black stroke.

182 | Chapter 7: Vectors for Games and Simulations

var obstacle = function (x, y, radius) {
 var that = gameObject(x, y, radius, radius),
 randColor1 = Math.floor(Math.random()*0xffffff),
 randColor2 = ((randColor1 & 0xfefefe)>>1).toString(16);
 randColor1 = randColor1.toString(16);
 randColor1 = '#000000'.slice(0,7-randColor1.length) + randColor1;
 randColor2 = '#000000'.slice(0,7-randColor2.length) + randColor2;

 that.draw = function () {
 ctx.beginPath();
 var radgrad = ctx.createRadialGradient(that.x, that.y, radius,
 (that.x - (radius / 4)), (that.y - (radius / 4)), (radius / 8));
 radgrad.addColorStop(0, randColor2);
 radgrad.addColorStop(1, randColor1);
 ctx.fillStyle = radgrad;
 ctx.arc(that.x, that.y, that.radius, 0, Math.PI * 2, true);
 ctx.fill();
 ctx.strokeStyle = '#000';
 ctx.lineWidth = 3;
 ctx.stroke();
 ctx.closePath();
 };
 return that;
};

The Rocket Object
The bulk of the rocket object code is taken up by the draw() method. In fact, the
draw() method uses the output from the AI→Canvas plug-in for Adobe Illustrator and
is probably longer than if we’d worked out the drawing commands manually. However,
it’s a great time-saver, so in this instance we’ve used the unoptimized output.

The move() method adds a thrust vector to the rocket’s velocity, capping it at five units
to prevent the rocket from whizzing off too quickly.

We use three mouse events to control the rocket:

onmousedown
This creates a thrust vector in the direction of the mouse pointer. We calculate the
thrust vector by creating a vector between the rocket and mouse pointer, making
the vector unit length, and then scaling it to an appropriate length.

onmouseup
This zeros out the thrust vector, preventing further thrust from being added to the
rocket’s velocity.

onmousemove
This records the mouse pointer position over the canvas and stores the results in
mx and my. The angle to the mouse pointer is also stored for the draw() method’s
use, allowing the rocket to be drawn at the correct angle to face the mouse pointer.

var rocket = function (x, y) {
 // mx and my store the mouse position over the canvas.

Rocket Simulation | 183

 var mx = 0,
 my = 0,
 // Initial angle and thrust vector are zero.
 angle = 0,
 thrust = vector2d(0, 0),
 // gameObject is initialized with radius of 15 and mass of 15.
 that = gameObject(x, y, 15, 15),
 // Keep a reference to the parent (gameObject) move() method,
 // so it can be called in the overridden move() method later on.
 move = that.move;

 // Method to draw a rocket.
 // Output generated by AI->Canvas plug-in for Adobe Illustrator.
 that.draw = function () {
 ctx.save();
 ctx.translate(that.x, that.y);
 ctx.rotate(angle);
 ctx.scale(0.5, 0.5);
 ctx.beginPath();
 ctx.moveTo(−49.5, −16.0);
 ctx.lineTo(−48.9, 16.5);
 ctx.bezierCurveTo(−10.0, 19.9, 32.4, 31.4, 68.3, −1.6);
 ctx.bezierCurveTo(31.3, −33.5, −10.9, −21.8, −49.5, −16.0);
 ctx.closePath();
 ctx.fillStyle = "rgb(255, 255, 0)";
 ctx.fill();
 ctx.lineWidth = 6.0;
 ctx.lineJoin = "round";
 ctx.stroke();

 ctx.beginPath();
 ctx.moveTo(40.1, 5.6);
 ctx.bezierCurveTo(36.1, 5.7, 32.8, 2.5, 32.7, −1.4);
 ctx.bezierCurveTo(32.7, −5.3, 35.8, −8.6, 39.8, −8.7);
 ctx.bezierCurveTo(39.8, −8.7, 39.8, −8.7, 39.8, −8.7);
 ctx.bezierCurveTo(43.8, −8.7, 47.1, −5.6, 47.2, −1.6);
 ctx.bezierCurveTo(47.2, 2.3, 44.1, 5.6, 40.1, 5.6);
 ctx.bezierCurveTo(40.1, 5.6, 40.1, 5.6, 40.1, 5.6);
 ctx.closePath();
 ctx.fillStyle = "rgb(0, 127, 127)";
 ctx.fill();
 ctx.lineWidth = 3.6;
 ctx.stroke();

 ctx.beginPath();
 ctx.moveTo(19.7, 5.9);
 ctx.bezierCurveTo(15.7, 6.0, 12.4, 2.9, 12.4, −1.1);
 ctx.bezierCurveTo(12.3, −5.0, 15.5, −8.3, 19.5, −8.3);
 ctx.bezierCurveTo(19.5, −8.3, 19.5, −8.3, 19.5, −8.3);
 ctx.bezierCurveTo(23.5, −8.4, 26.7, −5.3, 26.8, −1.3);
 ctx.bezierCurveTo(26.9, 2.6, 23.7, 5.9, 19.7, 5.9);
 ctx.bezierCurveTo(19.7, 5.9, 19.7, 5.9, 19.7, 5.9);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();

184 | Chapter 7: Vectors for Games and Simulations

 ctx.beginPath();
 ctx.moveTo(−1.0, 6.3);
 ctx.bezierCurveTo(−4.9, 6.3, −8.2, 3.2, −8.3, −0.7);
 ctx.bezierCurveTo(−8.4, −4.7, −5.2, −7.9, −1.2, −8.0);
 ctx.bezierCurveTo(−1.2, −8.0, −1.2, −8.0, −1.2, −8.0);
 ctx.bezierCurveTo(2.8, −8.1, 6.1, −4.9, 6.2, −1.0);
 ctx.bezierCurveTo(6.2, 3.0, 3.0, 6.2, −0.9, 6.3);
 ctx.bezierCurveTo(−1.0, 6.3, −1.0, 6.3, −1.0, 6.3);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();

 ctx.beginPath();
 ctx.moveTo(−49.5, −16.0);
 ctx.lineTo(−68.3, −25.1);
 ctx.bezierCurveTo(−56.3, −31.0, −39.9, −37.8, −29.5, −35.3);
 ctx.bezierCurveTo(−22.7, −33.7, −14.5, −21.6, −14.5, −21.6);
 ctx.lineTo(−49.5, −16.0);
 ctx.closePath();
 ctx.fillStyle = "rgb(255, 0, 0)";
 ctx.fill();
 ctx.lineWidth = 6.0;
 ctx.stroke();

 ctx.beginPath();
 ctx.moveTo(−47.9, 16.4);
 ctx.lineTo(−66.4, 26.2);
 ctx.bezierCurveTo(−54.3, 31.7, −37.7, 38.0, −27.4, 35.2);
 ctx.bezierCurveTo(−20.6, 33.3, −12.8, 21.0, −12.8, 21.0);
 ctx.lineTo(−47.9, 16.4);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();
 ctx.restore();
 };
 that.move = function () {
 var speed;
 // Calculate angle to mouse pointer.
 angle = Math.atan2(my - that.y, mx - that.x);
 // Add thrust to current velocity.
 that.vel.add(thrust);
 speed = that.vel.length();
 // If speed is > 5, then scale velocity back down.
 if (length > 5) {
 that.vel.normalize();
 that.vel.scale(5);
 }
 move();
 };
 // When mouse is held down, thrust.
 canvas.onmousedown = function (event) {
 // Create a vector from rocket postion in direction of mouse.
 thrust = vector2d(mx - that.x, my - that.y);
 thrust.normalize(); // Make it unit length.

Rocket Simulation | 185

 thrust.scale(0.1); // Scale it down.
 };
 // When mouse is released, cancel thrust.
 canvas.onmouseup = function (event) {
 thrust = vector2d(0, 0);
 };

 // Keep a note of the mouse position over the canvas.
 canvas.onmousemove = function (event) {
 var bb = canvas.getBoundingClientRect();
 mx = (event.clientX - bb.left);
 my = (event.clientY - bb.top);
 };

 return that;
};

Background
The drawBackground() function fills the canvas with a subtle blue-to-dark purple gra-
dient to create the illusion of a space background. Because the background is the same
size as the canvas, we don’t need to clear the canvas on each frame; the background fill
will do this for us.

// Draws a spacey-looking background - a dark blue gradient fading to dark purple
// in the middle.
var drawBackground = function (){
 ctx.save();
 // Create a CanvasGradient object in linGrad.
 // The gradient line is defined from the top to the bottom of the canvas.
 var linGrad = ctx.createLinearGradient(0, 0, 0, canvas.height);
 // Start off with dark blue at the top.
 linGrad.addColorStop(0, '#000044');
 // Fade to purple in the middle.
 linGrad.addColorStop(0.5, '#220022');
 // Fade to dark blue at the bottom.
 linGrad.addColorStop(1, '#000044');
 // Use the CanvasGradient object as the fill style.
 ctx.fillStyle = linGrad;
 // Finally, fill a rectangle the same size as the canvas.
 ctx.fillRect(0, 0, canvas.width, canvas.height);
 ctx.restore();
};

Collision Detection and Response
The collision function first checks whether any two game objects are overlapping, and
if so, bounces them off each other. The initial overlap test determines whether the circles
defined by the position and radius of the game objects are touching: two circles are
intersecting if the distance between their center points is less than the sum of their radii.
In Figure 7-7, the two circles are colliding because distance D1 is less than R1+R2. D2
represents the amount of intersection. By moving the circles apart by length D2 after

186 | Chapter 7: Vectors for Games and Simulations

collision, we ensure that they will no longer intersect and will be flush to each other
for visually perfect edge-to-edge collision detection.

Figure 7-7. Two circles are colliding when the distance between their center points is less than the sum
of their radii

The collideAll() function uses a nested loop to check each object against the others.
One small but important optimization here is to make the inner loop start at +1 from
the current position of the outer loop. This ensures that collision tests are one-way only
—object 1 tests against object 2, but not object 2 against object 1—and in doing so can
more than halve the number of tests required.

If the game objects overlap, do the following:

1. Move the objects apart by the amount of overlap as described.

2. Make the game objects bounce off each other by calculating new velocity vectors:

var bounce = function(ball1,ball2) {
 var colnAngle = Math.atan2(ball1.y - ball2.y, ball1.x - ball2.x),
 length1 = ball1.vel.length(),
 length2 = ball2.vel.length(),
 dirAngle1 = Math.atan2(ball1.vel.vy, ball1.vel.vx),

Rocket Simulation | 187

 dirAngle2 = Math.atan2(ball2.vel.vy, ball2.vel.vx),
 newVX1 = length1 * Math.cos(dirAngle1-colnAngle),
 newVX2 = length2 * Math.cos(dirAngle2-colnAngle);
 ball1.vel.vy = length1 * Math.sin(dirAngle1-colnAngle);
 ball2.vel.vy = length2 * Math.sin(dirAngle2-colnAngle);
 ball1.vel.vx =((ball1.mass-ball2.mass)*newVX1 +
 (2*ball2.mass)*newVX2) /
 (ball1.mass+ball2.mass);
 ball2.vel.vx =((ball2.mass-ball1.mass)*newVX2 +
 (2*ball1.mass)*newVX1) /
 (ball1.mass+ball2.mass);
 ball1.vel.rotate(colnAngle);
 ball2.vel.rotate(colnAngle);
};

var collideAll = function () {
 var vec = vector2d(0, 0),
 dist, gameObj1, gameObj2, c, i;
 // Check each object against every other object.
 for (var c = 0; c < gameObjects.length; c++) {
 gameObj1 = gameObjects[c];
 // The inner loop starts at one past the outer loop.
 // This ensures efficient one-way testing:
 // A against B, but not B against A.
 for (i = c + 1; i < gameObjects.length; i++) {
 gameObj2 = gameObjects[i];
 // Get the distance between the two objects.
 vec.vx = gameObj2.x - gameObj1.x;
 vec.vy = gameObj2.y - gameObj1.y;
 dist = vec.length();
 // If distance < sum of the two radii, then we
 // have a collision.
 if (dist < gameObj1.radius + gameObj2.radius) {
 // Move objects apart so they are no longer intersecting,
 // but flush against each other.
 vec.normalize();
 vec.scale(gameObj1.radius + gameObj2.radius - dist);
 vec.negate();
 gameObj1.x += vec.vx;
 gameObj1.y += vec.vy;
 // Finally, bounce the two colliding objects.
 bounce(gameObj1, gameObj2);
 }
 }
 }
};

The bounce() function uses trigonometry and elastic collision calculations to work out
the magnitude and direction of bounce for the two colliding objects. This function
works by rotating the movement vectors so that a one-dimensional elastic collision
calculation can be performed. The resultant vectors are then rotated back into two
dimensions to make the objects bounce off each other. This is just one way of calcu-
lating bounce vectors; there are other methods available. Look up billiard or pool
physics in Google if you are interested in the math involved.

188 | Chapter 7: Vectors for Games and Simulations

Page Code
Here is the layout of the page. I’ve removed the body of certain functions to avoid
repetition.

<!DOCTYPE html>
<html>
<head>

<script type="text/javascript" >
 window.onload = function() {
 var gameObjects = [],
 canvas = document.getElementById('canvas'),
 ctx = canvas.getContext('2d');

 // Vector object.
 var vector2d = function (x, y) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var gameObject = function (x, y, radius, mass) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var obstacle = function (x, y, radius) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var bounce = function(ball1,ball2) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var rocket = function (x, y) {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 var collideAll = function () {
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 // Draws a spacey-looking background,
 // a dark blue gradient fading to dark purple
 // in the middle.
 var drawBackground = function (){
 /*** CODE REMOVED FOR CONCISENESS ***/
 };

 // Add rocket to the game objects list.
 gameObjects.push(rocket(50,canvas.height-150));
 // Create a bunch of obstacles.
 for(var i=0;i<20;i++) {
 var radius = ((Math.random()*4)+1)*10;
 var x = Math.random() * (canvas.width-(radius*2)) +radius;
 var y = Math.random() * (canvas.height-(radius*2))+radius;

Rocket Simulation | 189

 gameObjects.push(obstacle(x,y,radius));
 }

 // This is the main loop that moves and draws everything.
 setInterval(function() {
 var gameObjectsFresh = [];
 drawBackground();
 // Here, we loop through all the object in the gameObjects[]
 // array. As each object is found, it is drawn, moved, and then
 // added to the gameObjectsFresh[] array, UNLESS it has its removeMe flag
 // set. gameObjectsFresh[] is then copied into gameObjects[], ready for
 // the next frame. gameObjects[] will now not contain any removed
 // objects, and they will disappear as nothing references them anymore.
 for(var i=0;i<gameObjects.length;i++) {
 gameObjects[i].move();
 gameObjects[i].draw();
 if (gameObjects[i].removeMe === false) {
 gameObjectsFresh.push(gameObjects[i]);
 }
 }
 collideAll();
 gameObjects = gameObjectsFresh;
 },30);
 };

</script>

</head>
 <body>
 <canvas id = "canvas" width ="640" height = "480" style="border:1px solid">
 No HTML5 Canvas detected!
 </canvas>
 </body>
</html>

Possible Improvements and Modifications
• Add some friction into the movement of the objects so they slow down and stop.

Hint: In the move() method of gameObject, scale the velocity by a number just less
than one.

• The draw() method of the rocket object is a fairly substantial chunk of code that
draws lots of shapes and outlines. To speed up performance, draw the rocket object
only once onto a hidden Canvas element, and then use this hidden element as a
bitmap source for the Canvas drawImage() function. This will be substantially
faster. Hint: Create a drawOnce() method in the rocket object to initially draw the
rocket onto the hidden Canvas. Change the draw() method to use drawImage().

• Consider doing something more adventurous with the drawBackground() function.
Try adding some stars or other detail.

190 | Chapter 7: Vectors for Games and Simulations

• The collide() function uses the slower length() method to calculate the distance
between two objects. Modify this code to use the faster lengthSquared() method.
Hint: You’ll need to compare the value returned against the sum of the two radii
squared.

• Develop a new control system for the rocket, using the keyboard or different mouse
actions, such as dragging.

Rocket Simulation | 191

CHAPTER 8

Google Visualizations

The Google Chart Tools API (application programming interface) is an extensive and
growing set of data visualization tools that can add impressive visual impact to your
data. If you’re picturing boring old pie and bar charts, then read on: interactivity, ani-
mation, and just plain fun are all part of the Google Chart Tools mix (Figure 8-1). In
fact, there’s a lot more than just charts in Google Chart Tools:

• Maps

• Dynamic icons

• Dials and “o-meter”-style displays

• Formulas

• QR codes (2D bar codes for physical-world hyperlinks)

• Lots of third-party visualizations

• The ability to create your own custom visualizations

The API’s expansive nature easily warrants a book of its own, so this chapter covers
just the essentials required to get started, enabling you to make better use of the official
online documentation (http://code.google.com/apis/charttools/index.html) to explore
further. We will also develop some useful functions and examples to help you get the
most out of Google Chart Tools.

Google Chart Tools is split into two distinct sections:

Image charts (aka Chart API)
Image charts are created with a specially formatted URL that is passed to Google’s
chart servers. The servers return a static image of the chart for inclusion in web
pages. Typically, the URL is used as the value for an tag src attribute. Image
charts are easy to use, requiring no external library and little or no programming
to get them working. However, setting up the URL can be tricky and unintuitive.
A little bit of JavaScript programming can augment an image chart’s utility and
ease of use. Figure 8-2 shows an image chart example.

193

http://code.google.com/apis/charttools/index.html

Interactive charts (aka Google Visualizations API)
Interactive charts use a JavaScript API (loaded as an external library) to render all
sorts of dynamic charts and graphics in the browser. While making use of inter-
active charts requires some programming skill, the biggest challenge is choosing
from the vast array of options available. Figure 8-3 shows an interactive chart
example.

The first part of this chapter explores image charts, and the second explores interactive
charts.

Limitations
There are a few limitations to Google Chart Tools, mostly involving image charts, and
you should consider them if you intend to be adventurous with the API:

• Image charts are limited to a maximum pixel area of 300,000 pixels, with the lon-
gest edge being no longer than 1,000 pixels. In real terms, this is plenty for a rea-
sonably large chart.

Figure 8-1. Your accountant won’t appreciate a chart like this

194 | Chapter 8: Google Visualizations

• The maximum URL size for image charts is 2 KB using GET, and 16 KB using
POST. There are no such limitations for interactive charts, which connect to the
Google chart servers with AJAX.

• The maximum number of chart requests is 250,000 per day. If you require more
than this amount, you will need to contact Google. If you’re using mostly un-
changing image charts, one workaround is to simply take a copy of the generated
image chart and save it on your own web servers as an image instead of constantly
requesting the chart from Google.

Figure 8-2. All sorts of information can be given a visual kick with Google Chart Tools. This is a
Google-O-Meter image chart.

Figure 8-3. A sophisticated interactive chart with mouse-wheel zooming and drag scrolling

Limitations | 195

POST and GET are methods for sending data to the web server. What’s
the difference between them? GET data is usually used for simple re-
quests to the server, such as the URL in the browser address bar or the
src URL in tags (or an image chart URL). It is typically visible,
either in the browser address bar or in a web page’s source code. POST
is often used where more significant data is being sent to the server to
be processed and saved. Examples of typical POST data include the
contents of a form, such as credit card details or an email. The contents
of POST data are not visible under normal circumstances.

Chart Glossary
Regardless of the type of chart (meaning any image chart or visualization) you use, you
should understand some common elements beforehand:

Data table
The data for a chart is stored internally as a table, and the goal of any chart is to
make this table visually more meaningful than a basic grid of numbers and strings.
A table has rows, columns, and cells. Each cell contains a single value in the table
(a value might be a number, string, date, etc.). Rows and columns are numbered
from 0, and a cell can be referenced by its row and column location. In Ta-
ble 8-1, the cell at (0,2) has a value of 75, the cell at (0,0) has a value of Monday,
and the cell at (2,2) has a value of 35. Figure 8-4 shows the same table represented
as a column chart. I’ve deliberately used unique values so they are easier to pick
out in code examples.

Figure 8-4. Two data series represented as a bar chart

196 | Chapter 8: Google Visualizations

Data series
A data series represents a set of related data values from a table, and any chart will
feature one or more data series. In Table 8-1, each column represents one of three
data series: Days, Cookie sales, and Cake sales.

Table 8-1. Tabular representation of bakery sales over a three-day period; each column
represents a data series

Day Cookie sales Cake sales

Monday 90 75

Tuesday 40 65

Wednesday 60 35

Axis labels
Axis labels are either text or numeric labels that run along the length of each axis.
The chart in Figure 8-4 features text labels along the horizontal axis and numeric
labels on the vertical axis. You can automatically generate numeric labels by spec-
ifying a range and step value. Depending on the kind of chart, a data series might
be used to create axis labels; notice how the Day series is used to create labels for
the horizontal axis.

Legend
A legend describes a data series in a chart. In Figure 8-4, there are two color-coded
legends (Cookies and Cakes) that describe the corresponding series in Table 8-1.

Image Charts
Image charts are designed to allow nonprogrammers with no JavaScript knowledge to
create impressive-looking chart images. If you know a little HTML, you can use image
charts. In contrast to the interactive charts API, there is no need to include any special
JavaScript libraries, as the chart is requested from the Google chart servers with a reg-
ular URL request. Figure 8-5 shows the results of the following HTML page:

<html>
 <body>
 <img src = 'https://chart.googleapis.com/chart?
 cht=p3&chd=t:60,40&chs=500x250&chl=Hello|World'/>
 </body>
</html>

Not bad for such a short piece of code. However, constructing the URL can be a com-
plicated and unintuitive process. Thankfully, if you are using charts where the data set
is static (unchanging values that are known beforehand), Google has provided a useful
Chart Wizard that makes the process of creating image chart URLs a whole lot easier
(Figure 8-6). You can find the Chart Wizard at http://code.google.com/apis/chart/docs/
chart_wizard.html.

Image Charts | 197

http://code.google.com/apis/chart/docs/chart_wizard.html
http://code.google.com/apis/chart/docs/chart_wizard.html

In the Google Chart Wizard, a data series is referred to as a data set.

Figure 8-6. You want charts? You’ve got charts galore—and more—with Google’s Chart Wizard (for
image charts).

Figure 8-5. Image charts require nothing more than a simple URL request to yield impressive results

198 | Chapter 8: Google Visualizations

Although the Chart Wizard is very useful when the data series are static, it is not so
helpful when the data is dynamic, such as unknown values being read from a server via
JavaScript. You need a bit of JavaScript and an understanding of how the URL is con-
structed if you’ll be using image charts with dynamic data.

One drawback of the image charts is the cryptic nature of the URL that must be passed
to the Google servers. Let’s take a closer look at the format of the URL used to generate
the pie chart shown previously in Figure 8-5:

https://chart.googleapis.com/chart?
cht=p3&
chs=500x250&
chd=t:60,40&
chl=Hello|World

Here is a breakdown of the URL:

https://chart.googleapis.com/chart?
All chart requests are sent to this address.

cht=p3&
The type of chart—in this case, a 3D pie chart.

chs=500x250&
The size of the chart in pixels, width × height.

chd=t:60,40&
The data for each pie slice (one data series), specified in a basic text format that
allows floating-point values between 0 and 100. There are other ways to specify
data in the URL, which I’ll cover later in this chapter.

chl=Hello|World
These are the labels for each slice, separated by a pipe character.

Using ampersands (&) in URLs can cause problems with XHTML-
encoded pages. Replace the ampersand symbol with & if you en-
counter problems with WC3 validation or other issues with XHTML
pages.

Study the online documentation for details about the different chart styles and the
multitude of URL parameters required to set them up.

Data Formats and Chart Resolution
You can specify data for image charts in any one of four ways:

Basic text
As used in the pie chart example, for floating-point numbers 0–100 inclusive.

Image Charts | 199

Text format with custom scaling
For positive or negative floating-point numbers with no range limits.

Simple encoding format
A compact format where integer values 0–61 inclusive are represented by single
characters.

Extended encoding format
A compact format where integer values 0–4,095 inclusive are represented by com-
binations of two characters.

Why are all these different formats offered? URLs are limited to 2 KB in size (assuming
the URL is sent via the GET method). The two encoded formats allow for more compact
representation of chart data, thus increasing the chance that more complex charts will
fit within the 2 KB limit. The two nonencoded text formats are easier to create and read,
but are larger in size. A POST method is also supported that allows for 16 KB of data
to be transferred via an HTML form. This method requires additional programming to
post the chart data to the server and display the response.

The range of values allowed for each data format dictates the resolution of the chart
using that format. The extended encoding format provides ample resolution for most
applications (4,096 distinct values), and even the simple encoding format, with its
modest resolution of 62 values, is adequate for smaller charts. Larger charts will still
work at this resolution, but you may notice inaccuracies imposed by the limited
granularity.

The JavaScript calculation required to scale arbitrary data values into the available
resolution is as follows:

scaledValue = resolution * dataValue / maxDataValue;

maxDataValue is the chart limit above which none of the unscaled data values will pass.
This value can simply be equal to the largest data value in the set, but for certain types
of chart, a larger maxDataValue may be more aesthetically pleasing. For example, if
you’re using a data set that includes a maximum value of 185, then using a maxData
Value of 200 will ensure that the vertical axis is always slightly larger than the tallest
bar in the case of vertical bar charts.

Basic text format

Basic text format allows you to specify floating-point numbers 0–100 inclusive. Values
below 0 are lost, and values above 100 are truncated.

The syntax for basic text format is as follows:

chd=t:val_1_1,val_1_2,val_1_3|val_2_1,val_2_2,val_2_3|...

Notice the use of the pipe character to separate the data series. Although this simple
format is the easiest to use and create, it also takes up a lot of space, so watch that 2
KB limit.

200 | Chapter 8: Google Visualizations

Text format with custom scaling

Text format with custom scaling is similar to basic text format, but it uses an additional
chds parameter to represent the scale within which each data series will fit. There are
no limitations on the range of numbers that can be specified. The scales are represented
by min-max pairs.

The syntax for text format with custom scaling is as follows:

chd=t:val_1_1,val_1_2,val_1_3|val_2_1,val_2_2,val_2_3|...
chds=<series_1_min>,<series_1_max>,<series_2_min>,<series_2_max>,...

If there are fewer min-max scale pairs than there are data series, the final min-max pair
will be used for all remaining data series. In many cases, the same scale will be applied
to all data series in the chart, in which case only one min-max pair needs to be specified.

Simple encoding format

Simple encoding format allows for integer values 0–61. Although we could adjust the
data values to fit within this range, the limited granularity of values means that larger
charts may show inaccuracies. So, this compact format is probably more useful for
small charts.

The syntax for the simple encoding format is as follows:

chd:s<series_1>,<series_2>,<series_n>,...

The data series values are represented by single characters as follows:

• A–Z, where A = 0, B = 1, C = 2, ... Z = 25

• a–z, where a = 26, b = 27, c = 28, ... z = 51

• 0–9, where 0 = 52, 1 = 53, ... 9 = 61

• The underscore character (_) indicates a null value

This text format data:

chd=t:1,19,27,53,61,-1|12,39,57,45,51,27

is represented as chd=s:BTb19_,Mn5tzb in simple encoding format.

Notice that there is no delimiter between the values, and a comma separates each data
series. The following function converts a JavaScript numeric array into a simple enco-
ded string:

var simpleEncode = function (valueArray, maxValue) {

 var simpleEncoding =
 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
 chartData = '';
 for (var i = 0; i < valueArray.length; i++) {
 var currentValue = valueArray[i];
 if (!isNaN(currentValue) && currentValue >= 0) {
 // Calculate the character for the value, ensuring value is scaled to

Image Charts | 201

 // fit within maxval.
 chartData += simpleEncoding.charAt(
 Math.round((simpleEncoding.length - 1) * currentValue / maxValue));
 } else {
 // Invalid values will be ignored.
 chartData += '_';
 }
 }
 return chartData;
};

We’ll see an example of how to use this function in the upcoming section “Using Dy-
namic Data” on page 203.

Extended encoding format

Extended encoding format is similar to simple encoding format, but uses two alpha-
numeric characters to represent each value, giving a range of 0–4,095 inclusive. The
following table gives a concise list of the possible values:

AA = 0, AB = 1, ...AZ = 25 90 = 3956, 91 = 3957, ... 99 = 3965

Aa = 26, Ab = 27, ... Az = 51 9- = 3966, 9. = 3967

A0 = 52, A1 = 53, ... A9 = 61 -A = 3968, -B = 3969, ... -Z = 3993

A- = 62, A. = 63 -a = 3994, -b = 3995, ... -z = 4019

BA = 64, BB = 65, ... BZ = 89 −0 = 4020, −1 = 4021, ... −9 = 4029

Ba = 90, Bb = 91, ... Bz = 115 -- = 4030, -. = 4031

B0 = 116, B1 = 117, ... B9 = 125 .A = 4032, .B = 4033,Z = 4057

B- = 126, B. = 127 .a = 4058, .b = 4059,z = 4083

9A = 3904, 9B = 3905, ... 9Z = 3929 .0 = 4084, .1 = 4085,9 = 4093

9a = 3930, 9b = 3931, ... 9z = 3955 .- = 4094, .. = 4095

The syntax for extended encoding format is as follows:

chd:e<series_1>,<series_2>,<series_n>,...

This basic text format data:

chd=t:90,1000,2700,3500|3968,-1,1100,250

is represented as chd=e:BaPoqM2s,-A__RMD6 in extended encoding format.

Notice that there is no delimiter between the values, and a comma separates each data
series.

The following function converts a JavaScript numeric array into an extended encoded
string:

var extendedEncode = function (valueArray, maxVal) {
 var extendedEncoding =
 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-.',

202 | Chapter 8: Google Visualizations

 extendedEncodingLen = extendedEncoding.length,
 exLenSquared = extendedEncodingLen * extendedEncodingLen,
 chartData = '';
 for (var i = 0, len = valueArray.length; i < len; i++) {
 var numericVal = valueArray[i];
 // Scale the value to fit within maxVal.
 var scaledVal = Math.floor(exLenSquared * numericVal / maxVal);
 if (scaledVal > exLenSquared - 1) {
 chartData += "..";
 } else if (scaledVal < 0) {
 // Negative values will be ignored.
 chartData += '__';
 } else {
 // Calculate first and second characters and add them to the output.
 var quotient = Math.floor(scaledVal / extendedEncodingLen);
 var remainder = scaledVal - extendedEncodingLen * quotient;
 chartData += extendedEncoding.charAt(quotient) +
 extendedEncoding.charAt(remainder);
 }
 }
 return chartData;
};

We’ll explore an example of how to use this function in the next section, “Using Dy-
namic Data”.

Using Dynamic Data
To use dynamic data with image charts, you must automatically generate the chart
request URL from the data. You can do this in one of two ways:

• In the browser using JavaScript

• On the server using a language such as PHP (not discussed)

The following example shows how to create and use an image chart URL with Java-
Script. It creates some random data for another bakery sales chart. Instead of using
random data, however, it could just as easily read data from a server. The extended
Encode() helper function defined earlier converts the data sets into the correct format.
We also could have used simpleEncode(), but bear in mind the reduced resolution
accuracy. Every time the page is refreshed, a new random chart is generated:

<html>

 <head>
 <script type="text/javascript">
 var extendedEncode = function(valueArray, maxVal) {
 // CODE REMOVED FOR CONCISENESS
 };

 // Fill two arrays representing the two data sets with random values.
 var dataSet1 = [];
 var dataSet2 = [];
 var maxVal = 100;

Image Charts | 203

 for (var i = 0; i < 3; i++) {
 dataSet1.push(Math.random() * maxVal);
 dataSet2.push(Math.random() * maxVal);
 }
 // Create the URL using the random data sets.
 window.onload = function() {
 var URL = 'https://chart.googleapis.com/chart?' +
 'cht=bvg& +
 'chd=e:' +
 extendedEncode(dataSet1, maxVal) + ',' +
 extendedEncode(dataSet2, maxVal) +
 '&chs=500x300' +
 '&chxt=x,y' +
 '&chco=4D89F9,C6D9FD' +
 '&chdl=Cookies|Cakes' +
 '&chbh=30,10,20' +
 '&chl=Monday|Tuesday|Wednesday';

 // Locate the image element in the DOM and set its src attribute.
 var image = document.getElementById('chart');
 image.setAttribute('src', URL);
 }
 </script>
 </head>

 <body>
 <!-- The image source will be changed on each page refresh. -->

 </div>
 </body>

</html>

In the next example, we’ll create a random Google-O-Meter chart at one-second in-
tervals. The random values range from 0 to 100, and 100 minus this random value is
the value used as the label for the arrow. Try modifying the code to display two or more
arrows (hint: the Google-O-Meter draws one arrow for each value in the data set).

<html>

 <head>
 <script type="text/javascript">
 setInterval(function() {
 // Create a random value between 0-100
 var value = Math.floor(Math.random() * 100);
 // Create the URL with random value for the data
 // and 100 - value specified as the label for the arrow.
 var URL = 'https://chart.googleapis.com/chart?' +
 'cht=gom&' + // Specify Google-O-Meter chart.
 'chtt=Rate-a-Coder&' + // The chart title.
 'chts=000000,18&' + // Title size and color.
 'chs=500x250&' + // Chart size.
 // Show both x-axis (arrow) and y-axis (values) labels.
 'chxt=x,y&' +
 // Label for arrow (data set 0),

204 | Chapter 8: Google Visualizations

 // and labels for values (data set 1).
 'chxl=0:|' + (100 - value) + '|1:|Good|Bad|Ugly&' +
 // Color and size of label text.
 'chxs=0,000000,14,0,t|1,000000,14,0,t&' +
 // Color range of chart, red-yellow-green.
 'chco=00FF00,FFFF00,FF0000&' +
 // Finally, set the actual value for the arrow.
 'chd=t:' + value;

 // Locate the image element in the DOM, and set its src attribute.
 var image = document.getElementById('chart');
 image.setAttribute('src', URL);
 }, 1000);
 </script>
 </head>

 <body>
 <!-- The image source will be changed once a second. -->

 </div>
 </body>

</html>

The following code does not really create a chart at all. Instead it creates quick response
(QR) codes based on the text entered (Figure 8-7).

QR codes are a type of two-dimensional barcode that have become pop-
ular on the Web with the advent of mobile devices equipped with cam-
eras and barcode-reading software. QR codes’ ability to store all sorts
of information (up to 4,296 characters), such as website URLs, contact
details, and geographic locations, provides a quick way of entering in-
formation into mobile phones that would otherwise require time-
consuming typing and other interactions with the device. For example,
phone application websites often display a QR code that you can scan
with your phone to completely automate the process of installing the
software. QR codes can also be printed on business cards, allowing re-
cipients to quickly scan the card to enter the contact details into their
phones.

<html>
 <head>

 <script type="text/javascript">

 window.onload = function() {

 // Generate a new barcode when the submit button is clicked.
 document.getElementById('submit').onclick = function() {

 // Get the text from the input.
 var text = document.getElementById('text-input').value;

Image Charts | 205

 // Create the URL for QR bar codes.
 var URL = "https://chart.googleapis.com/chart?" +
 "chs=256x256&" + // Size.
 "cht=qr&" + // Chart type.
 "chl=" + escape(text) + '&' + // The text.
 "choe=UTF-8&"; // Encoding.

 // Locate the image element in the DOM, set its src attribute.
 document.getElementById('chart').setAttribute('src', URL);
 }
 }
 </script>

 </head>

 <body>
 <!-- The image source will be changed when submit is pressed -->

 <hr/>
 <input id="text-input" type="text" size="48"
 style="font-size:18px" value = "Enter text:"/>
 <input id = "submit" type="button" value = "Create Barcode!"/>
 <hr/>
 </div>
 </body>

</html>

Figure 8-7. QR codes can store approximately 4 KB of information

206 | Chapter 8: Google Visualizations

Summary
The preceding overview of image charts showed how to create basic charts with a cor-
rectly formatted URL, and how to use JavaScript to create image charts with dynamic
data. The Chart API gives you virtually unlimited options and chart combinations, and
with Google offering “no questions asked” use of the API for anyone requesting fewer
than 250,000 charts per day, there is plenty of scope for experimentation.

Next, we move on to interactive charts (aka Google Visualizations API), which is a more
programmer-focused interface to Google’s charting services.

Interactive Charts
In contrast to image charts, which (as their name implies) are displayed as regular
images, interactive charts are composed of dynamic graphics that are drawn using var-
ious browser facilities such as DHTML, Flash, Canvas, SVG, and VML. Typical inter-
activity includes scrolling, zooming, sorting, tool tips, and hover effects.

The drawing method employed is mostly transparent to the developer, as a well-written
visualization will use the appropriate rendering method for the target browser. This is
a great time-saver, allowing the developer to concentrate on the functionality and aes-
thetics of the charts rather than the minutiae of drawing them.

Interactive charts require the use of an external API, which you would typically include
in the <head> section of your page, as with any other external library:

 <script type="text/javascript" src="https://www.google.com/jsapi"></script>

The stages required to draw a chart using the visualizations API are as follows:

1. Load the general Google AJAX API.

2. Request the appropriate visualizations API.

3. When the visualizations API has loaded, prepare the data, and finally draw the
chart into an element on the page.

The following code draws a chart using the same bakery sales data used earlier in the
chapter:

<html>

 <head>
 <!-- Load the general Google AJAX API -->
 <script type="text/javascript" src="https://www.google.com/jsapi">
 </script>
 <script type="text/javascript">
 // Load the visualization API, using the 'corechart' package within it.
 google.load("visualization", "1", {
 packages: ["corechart"]
 });

Interactive Charts | 207

 // Define a function to draw the chart.
 var drawChart = function() {
 // Create a data table (initially empty).
 var data = new google.visualization.DataTable();
 // Define the columns in the table.
 data.addColumn('string', 'Day');
 data.addColumn('number', 'Cookies');
 data.addColumn('number', 'Cakes');
 // Specify the number of rows in the table.
 data.addRows(3);
 // Now add the data into each cell of the table.

 // Row 0
 data.setValue(0, 0, 'Monday');
 data.setValue(0, 1, 90);
 data.setValue(0, 2, 75);
 // Row 1
 data.setValue(1, 0, 'Tuesday');
 data.setValue(1, 1, 40);
 data.setValue(1, 2, 65);
 // Row 2
 data.setValue(2, 0, 'Wednesday');
 data.setValue(2, 1, 60);
 data.setValue(2, 2, 35);

 // Find an element in the page to draw the chart into.
 chartElement = document.getElementById('chart');
 // Create a chart object.
 var chart = new google.visualization.ColumnChart(chartElement);
 // Draw it!
 chart.draw(data, {
 width: 500,
 height: 300,
 title: 'Bakery Sales',
 vAxis: {
 minValue: 0,
 maxValue: 100
 }
 });
 }

 // Wait for the API loaded event to happen, then draw the chart.
 google.setOnLoadCallback(drawChart);
 </script>
 </head>

 <body>
 <!-- This is the element into which the chart will be drawn. -->
 <div id="chart">
 </div>
 </body>

</html>

208 | Chapter 8: Google Visualizations

At first glance, the output doesn’t look particularly different from the image charts we
created earlier. However, if you hover your mouse over the chart elements, you’ll see
some default interactivity, such as color-changing bars and tool tips that display the
exact data cell value (Figure 8-8).

Figure 8-8. Default interactivity on a simple column chart includes tool tips and color-changing bars
revealed on hover

If you have access to both Internet Explorer and Firefox browsers, study the source
code generated by the charts; it is embedded within the specified chart element in the
page as an <iframe>. If viewed in Internet Explorer, the chart will have been created
with VML; in Firefox, the chart will have been created with SVG, which is not available
in Internet Explorer.

To examine dynamically generated parts of an HTML page, you cannot
use the browser’s default “view-source” functionality; doing so will just
display the original page downloaded from the server without the chart.
You will need to use the browser’s developer facilities, such as Firebug
in Firefox, or by pressing F12 in Internet Explorer (from version 8).
Note, however, that there is a bug in IE that sometimes does not show
the developer tools window correctly.

The code example illustrates some key elements of using the visualizations API:

Creating a visualizations API data table (var data = new google.visualization.Data
Table())

This creates the table data structure, ready to be filled with useful values.

Interactive Charts | 209

Adding columns to the table (data.addColumn(type, label))
This adds a column (a data series) to the data table. All values that are later placed
in the column must be of type type. The way label is displayed for each column
in the visualization depends on the visualization type being used. For example, in
column charts, the label in column 0 is used for the x-axis labels; in pie charts, it
is used to name the slices of the pie. Different visualizations expect different num-
bers of columns to be defined. For example, pie charts and gauges expect two
columns to be defined (Figure 8-9):

• A text column for the pie slice name or gauge name

• A number column for the size of the pie slice or gauge pointer value

When using different visualizations, consult the online documentation for exact
details on the number and types of columns accepted.

Figure 8-9. Three data values shown as gauges

Adding rows to the table (data.addRows (numRows))
This adds a numRows number of empty data rows to the table. Alternatively, instead
of numRows, it accepts an array of data to fill in the rows directly. In the previous
code example, the data could have been filled in like this:

data.addRows([['Monday', 90, 75],
 ['Tuesday', 40, 65],
 ['Wednesday', 60, 35]]);

Setting the cell values (data.setValue(row, column, value))
This sets the value for a specific cell in the table. If value is not the correct type as
defined by the column, an error will be generated.

210 | Chapter 8: Google Visualizations

There are other ways to add data to the data table, including using
an efficient object literal method, which can be faster for very large
tables.

The visualizations API can also make use of a visualizations data
source to obtain data. A data source provides a URL to which the
visualization can use GET requests to obtain data in the correct
format. Typically, this data comes from a database or file. You
obtain the data source with the Google Visualization API wire pro-
tocol, and the server software needs to use this protocol as well.
Google provides libraries in various server languages to facilitate
use of the protocol, including parsers for the Google Visualization
API Query Language.

Consult the online documentation for information about adding
data and using data sources.

Creating a chart (var chart = new google.visualization.ColumnChart(chartElement))
This creates a chart object of the desired type (in this case, a column chart), ready
to be drawn. chartElement specifies the page element (usually a <div>) into which
the chart will be drawn.

Drawing a chart (chart.draw(data, options))
This actually draws the chart into the chart element specified when the chart object
was created. The options parameter is an object literal that contains both common
(e.g., width and height) and visualization-specific options. Study the online docu-
mentation of the desired visualization to see the options available.

Interactive Charts Events
You can add interactivity beyond what is built in to the visualizations by using events.
Each visualization may trigger its own events that JavaScript can listen for and act on.
Consult the online documentation for specific information about the events triggered
by the different visualizations. Table 8-2 lists the available events for the column chart
used previously.

Table 8-2. Available events for the column chart visualization

Event name Description
Values passed
back

error Triggered when an error occurs drawing the chart. id, message

onmouse
over

Triggered when the mouse moves over a bar. row, column

onmouse
out

Triggered when the mouse leaves a bar. row, column

ready Triggered when the chart is ready for interaction. You might be able to interact with
charts without waiting for this event, but behavior is not guaranteed.

none

Interactive Charts | 211

Event name Description
Values passed
back

select Triggered when a bar or legend is clicked. In the case of bars, both the row and column
values will be set. They can then be used to identify the correct value in the data table.
In the case of legends, only the column will be set.

none

Retrieving event information

One slight complication of using visualization events is that some events will pass the
event information directly to the event listener code, and others will require a method
call on the visualization object itself. For example, the select event passes nothing back
to event listeners, but the visualization’s getSelection() method can then be called to
establish which chart item was selected.

In the case of bar/column charts, we can listen for the two types of event like this:

// onmouseover events pass values back to listeners.
var eventListener = function(e) {
 // Display row and column of item clicked.
 alert(e.row + ',' + e.column);
};
google.visualization.events.addListener(chart, 'onmouseover', eventListener);

// select events do not pass values directly back to listeners.
// The visualizations getSelection() method must be called to get useful data.
var eventListener = function() {
 var sel = chart.getSelection();
 // getSelection() passes back an array of selected items. Here we just display
 // details of the first one.
 // Display row and column data of selected item.
 alert(sel[0].row + ',' + sel[0].column;
};
google.visualization.events.addListener(chart, 'select', eventListener);

The following code displays the same column chart as before, but now features three
event listeners for onmouseover, onmouseout, and select. Notice how the getSelec
tion() method returns an array. Some visualizations may have more than one item
selected in the chart (for example, the table visualization). For the column chart, how-
ever, only one item will be selectable.

<html>
 <head>
 <!-- Load the general Google AJAX API -->
 <script type="text/javascript" src="https://www.google.com/jsapi">
 </script>
 <script type="text/javascript">
 // Load the visualization API, using the 'corechart' package within it.
 google.load("visualization", "1", {
 packages: ["corechart"]
 });
 var chart;
 // Define a function to draw the chart.

212 | Chapter 8: Google Visualizations

 var drawChart = function() {
 // Create a data table (initially empty).
 var data = new google.visualization.DataTable();
 // Define the columns in the table.
 data.addColumn('string', 'Day');
 data.addColumn('number', 'Cookies');
 data.addColumn('number', 'Cakes');
 // Specify the number of rows in the table.
 data.addRows(3);
 // Now add the data into each cell of the table.

 // Row 0
 data.setValue(0, 0, 'Monday');
 data.setValue(0, 1, 90);
 data.setValue(0, 2, 75);
 // Row 1
 data.setValue(1, 0, 'Tuesday');
 data.setValue(1, 1, 40);
 data.setValue(1, 2, 65);
 // Row 2
 data.setValue(2, 0, 'Wednesday');
 data.setValue(2, 1, 60);
 data.setValue(2, 2, 35);

 // Find an element in the page to draw the chart into.
 chartElement = document.getElementById('chart');
 // Create a chart object.
 chart = new google.visualization.ColumnChart(chartElement);
 // Draw it!
 chart.draw(data, {
 width: 500,
 height: 300,
 title: 'Bakery Sales',
 vAxis: {
 minValue: 0,
 maxValue: 100
 }
 });

 // Add an event listener for onmouseover.
 // It sets the hover-text paragraph on the page to show
 // the row and column.
 google.visualization.events.addListener(chart, 'onmouseover',
 function(event){
 document.getElementById('hover-text').innerHTML =
 event.row + ' ' + event.column;
 });

 // Add an event listener for onmouseover.
 // It clears the hover-text paragraph.
 google.visualization.events.addListener(chart, 'onmouseout',
 function(event){
 document.getElementById('hover-text').innerHTML = "";
 });

Interactive Charts | 213

 // This event listener shows various details about
 // the cell/column being clicked.
 // Columns are selected by clicking the legends.
 google.visualization.events.addListener(chart, 'select',
 function(){
 var selectData = chart.getSelection(),
 message = '',row,column;
 for(var i=0; i<selectData.length; i++) {

 var info = selectData[i];
 row = info.row;
 column = info.column;
 // If both row and column are set,
 // then a specific cell is selected.
 if (row !== undefined && column !== undefined) {
 message += 'cell[' + row + ',' + column + ']=' +
 data.getValue(row, column) + ', ';
 }
 // Otherwise, just show the row...
 else if (row !== undefined) {
 message += 'row=' + row + ', ';
 }
 // or column.
 else if (column !== undefined) {
 message += 'column=' + column + ', ';
 }
 }
 alert (message);
 });
 }
 // Wait for the API loaded event to happen, then draw the chart.
 google.setOnLoadCallback(drawChart);
 </script>
 </head>

 <body>
 <!-- This is the element into which the chart will be drawn. -->
 <div id="chart"></div>
 <!-- This paragraph text will change with the hover events. -->
 <p id="hover-text"></p>
 </body>
</html>

214 | Chapter 8: Google Visualizations

CHAPTER 9

Reaching the Small Screen
with jQuery Mobile

Web-enabled mobile devices have opened up a plethora of development options for
programmers and designers. With so many mobile platforms available, covering all
bases and developing native applications for each mobile operating system is not prac-
tical. A nonexhaustive list of mobile operating systems includes:

• iOS

• Symbian

• Android

• BlackBerry OS

• Windows Mobile

• webOS

Each of these operating systems has its own development environment and program-
ming languages. For example, Apple’s iOS uses the Cocoa development environment
and the Objective-C programming language, whereas Android is built on Linux with
development in Java. Unfortunately, the smallness of the devices belies the complexity
of the underlying software. Even if we ignore the prospect of having to learn another
programming language, we’re still faced with large and complex operating systems that
provide a significant learning curve in and of themselves.

To eke out the best performance from mobile devices and to make best use of their
hardware facilities, we’d ideally develop using the native operating systems and pro-
gramming languages of the platform. However, where absolute performance is not
crucial, development time is limited, and multiplatform support is desired, there is an
alternative. Using your usual web development tools—JavaScript, HTML, and CSS—
you can develop applications that offer much of the look and feel of native software,
but without the overhead and learning curve. However, it’s important to be realistic
about what is possible with this method of development: JavaScript is not the fastest

215

programming language, and within the context of a low-powered mobile device, it can
be even slower. Even modern facilities like Canvas may have performance issues on all
but the highest-end mobile devices. It would certainly be difficult to develop a fast-
moving mobile arcade game without going native. However, as is usually the case, we
can expect mobile JavaScript performance to improve as new, more powerful devices
are released.

In this chapter, we will focus on the development of a simple game application,
TilePic, that is suitable for mobile devices. It will use the new jQuery Mobile library to
provide a more native-application feel.

jQuery Mobile
With jQuery having established itself as the most popular JavaScript library, it was a
natural development for it to go mobile. jQuery Mobile is built on top of jQuery to
provide a unified user interface across all popular mobile devices. With a 12 KB com-
pressed size (on top of jQuery), it has modest bandwidth requirements. At the time of
this writing, the library is at version 1.0 Alpha 3. Platform support is like a who’s who
of the mobile operating system world:

Apple iOS (3.1–4.2)
Tested on iPhone, iPod Touch, and iPad

Android (1.6–2.3)
All devices tested on the HTC Incredible, Motorola Droid, Google G1, and Nook
Color

BlackBerry 6
Tested on Torch and Style

Palm webOS (1.4)
Tested on Pre and Pixi

Opera Mobile (10.1)
Android

Opera Mini (5.02)
iOS and Android

Firefox Mobile (beta)
Android

For the up-and-coming beta release (at the time of this writing), support is planned for
BlackBerry 5, Nokia/Symbian, and Windows Phone 7.

Web developers are used to supporting several browsers, such as Internet Explorer,
Firefox, and Safari. On mobile, things are even more confusing due to the number of
platforms and their own associated browsers. Despite this challenge, jQuery Mobile
aims for full support (CSS and JavaScript), or near-full support, on the native browsers

216 | Chapter 9: Reaching the Small Screen with jQuery Mobile

on each platform. Other less well-supported browsers will degrade gracefully to plain
old HTML and simple CSS where required.

jQuery facilitates easy searching and manipulation of page elements to help you achieve
the desired functionality of your web applications. You must create any additional user
interface elements from scratch, or by using third-party plug-ins or extension libraries
like jQuery UI. jQuery Mobile has a higher-level approach: it takes clean, semantic
HTML and turns it into a rich, mobile-optimized browsing experience with very little
additional work on your part. In reality, it is a mobile user interface library built on top
of jQuery. It makes extensive use of the HTML5 data- attribute to change the behavior
and appearance of page elements. For example, the following simple code creates the
button shown in Figure 9-1:

Delete

Figure 9-1. jQuery Mobile button

The HTML5 data- attribute allows you to attach arbitrary data to DOM elements, and
is typically accessed in jQuery like this:

value = $('#myelement).attr('data-mydata'); // value = contents of data-mydata.

In the DOM, you specify an element using a data- attribute like this:

<div id='myelement' data-mydata = '99' ></div>

The data- attribute is becoming more popular, and this increases the possibility of
namespace collisions, in which the same data- attribute name is used for different
purposes (for example, in your own code and in an external library). A simple solution
is to always include a unique identifier when using the data- attribute. For example,
data-myuniqueid-icon would not clash with jQuery Mobile’s use of data-icon.

The HTML5 data- attribute will validate with the WC3 validator only if you correctly
set the page doctype to HTML5 using <!DOCTYPE html>. In addition to mobile-friendly
user interface elements, jQuery Mobile provides the following mobile functionality:

• Mobile-like page transitions

• Tap, swipe, and orientation events

• Accessibility features

• Responsive layouts that adapt to device orientation

• Theming framework

• Ajax page loading and history management

jQuery Mobile | 217

TilePic: A Mobile-Friendly Web Application
Using jQuery Mobile, we will create a mobile-friendly application—a game called
TilePic (Figure 9-2). TilePic is a simple sliding-picture puzzle game with a few extra
options and features to add longevity and interest. It is a good example of what’s real-
istic in terms of a graphical web application running on average mobile hardware. We
could be more ambitious if developing for higher-end devices only, but for the sake of
example, we will concentrate on creating an application that works acceptably on as
many devices as possible.

Figure 9-2. TilePic, a simple mobile-friendly sliding puzzle game

TilePic Game Description
TilePic works as follows:

1. The user is presented with a main menu screen (Figure 9-3).

2. The user chooses any one of three images.

3. The user selects the number of tiles to split the image into: 9, 16, or 25.

4. The user taps the Play button to start and is presented with the selected image split
into tiles, which are randomly ordered to jumble the picture up. A faint watermark

218 | Chapter 9: Reaching the Small Screen with jQuery Mobile

of the complete image is visible beneath the tiles to make the game a little easier
(as shown earlier in Figure 9-2).

5. The user tries to correctly reassemble the picture, moving the tiles around by tap-
ping them. At any time, the user can return to the main menu to select another
image and/or difficulty level.

The application will automatically move multiple tiles—a whole
row, for example—where appropriate. This feature makes the
game less tiring to play; rather than having to tap every tile in a row
to move the whole row, the user only needs to tap the last tile in
the row.

6. Once all the tiles are rearranged correctly, the user is congratulated and the com-
plete image is displayed without the tiling. A Main Menu button gives the user the
option to return to the original screen (Figure 9-4).

Figure 9-3. TilePic main menu screen

TilePic: A Mobile-Friendly Web Application | 219

Figure 9-4. Puzzle solved!

TilePic Game Code
The entire TilePic application is wrapped in an anonymous function to guarantee full
encapsulation of variables and functions. This ensures that nothing within the appli-
cation appears in the global scope, thus minimizing the chance of clashes with external
libraries and code (see the section “TilePic page layout” on page 226, later in this
chapter).

Application-wide variables

We define several application-wide variables:

var tileSize, // Tile size in pixels.
 numTiles, // Number of tiles, e.g. 4 = 4 by 4 grid.
 tilesArray, // An array of tile objects.
 emptyGx, // X position of empty tile space.
 emptyGy, // Y position of empty tile space.
 imageUrl; // Url of image to tile.

220 | Chapter 9: Reaching the Small Screen with jQuery Mobile

The tile object

The tileObj object encapsulates all the data and functionality for a single tile. It includes
a reference to the actual DOM element of the tile ($element) and the current grid po-
sition of the tile (gx and gy). The original, unshuffled position of the tile (solvedGx and
solvedGy) is stored, and we can compare this against the current position to see whether
the tile is “solved.” We use the move() method to move a tile (with or without animation)
to a new position in the grid. We animate using the jQuery animate() method, and it
accepts the new tile coordinates as the destination left and top properties of the tile
element

The checkSolved() method performs a simple comparison to see whether the tile’s
current grid position is equal to its original grid position, thus indicating that the tile
is “solved.” We store a reference to the tile object in the tile DOM element using the
jQuery data() method. This allows us to easily access the tile object when responding
to events bound to its DOM element.

// tileObj represents a single tile in the puzzle.
// gx and gy are the grid position of the tile.
var tileObj = function (gx, gy) {
 // solvedGx and solvedGy are the grid coordinates
 // of the tile in its 'solved' position.
 var solvedGx = gx,
 solvedGy = gy,
 // Left and top represent the equivalent css pixel positions.
 left = gx * tileSize,
 top = gy * tileSize,
 $tile = $("<div class='tile'></div>"),

 that = {
 $element: $tile,
 gx: gx,
 gy: gy,

 // The move() method makes a tile move to a new grid position.
 // The use of animation is optional.
 move: function (ngx, ngy, animate) {
 that.gx = ngx;
 that.gy = ngy;
 tilesArray[ngy][ngx] = that;
 if (animate) {
 $tile.animate({
 left: ngx * tileSize,
 top: ngy * tileSize
 }, 250);
 } else {
 $tile.css({
 left: ngx * tileSize,
 top: ngy * tileSize
 });
 }
 },
 // The checkSolved() method returns true if the tile

TilePic: A Mobile-Friendly Web Application | 221

 // is in the correct 'solved' position.
 checkSolved: function () {
 if (that.gx !== solvedGx || that.gy !== solvedGy) {
 return false;
 }
 return true;
 }
 };
 // Set up the tile element's css properties.
 $tile.css({
 left: gx * tileSize + 'px',
 top: gy * tileSize + 'px',
 width: tileSize - 2 + 'px',
 height: tileSize - 2 + 'px',
 backgroundPosition: -left + 'px ' + -top + 'px',
 backgroundImage: 'url(' + imageUrl + ')'
 });
 // Store a reference to the tileObj instance
 // in the jQuery DOM tile element.
 $tile.data('tileObj', that);
 // Return a reference to the tile object.
 return that;
};

Checking whether the puzzle is solved

The checkSolved() function iterates through all the tiles, calling their individual check
Solved() methods. If any of the tiles is not solved (that is, if any tile is not at its original
start position), then the entire puzzle is not solved. The function is called whenever the
user moves a tile.

// The checkSolved() function iterates through all the tile objects
// and checks if all the tiles in the puzzle are solved.
var checkSolved = function () {
 var gy, gx;
 for (gy = 0; gy < numTiles; gy++) {
 for (gx = 0; gx < numTiles; gx++) {
 if (!tilesArray[gy][gx].checkSolved()) {
 return false;
 }
 }
 }
 return true;
};

Moving tiles

The application needs to determine several factors when the user clicks a tile, including
the clicked tile’s distance from the empty space and the direction in which tiles should
move. Possible scenarios are:

• The clicked tile is immediately above, right, below, or left of the empty space. In
this case, the tile should move into the empty space.

222 | Chapter 9: Reaching the Small Screen with jQuery Mobile

• The clicked tile is not immediately next to the empty space, but is in the same row
or column. In this case, the clicked tile and all tiles up to the empty space in the
row or column should shift toward the empty space.

• Neither of the two preceding cases is true, in which case the clicked tile cannot
move.

With a little thought, it’s possible to come up with a solution that works for all cases.
Figure 9-5 illustrates the concept applied to handle the different types of tile movement.

Figure 9-5. Tile movement

For the middle row, assuming the user clicked tile A, we would do the following:

1. Establish that the clicked tile is on the same row as the empty space (in this case,
true; otherwise, finish).

2. Establish the direction (dir) from the clicked tile (tile A) to the empty space (dir
= 1).

3. Set a starting grid position (x) to be the same position as the empty tile less dir (x
= 1).

4. Get the tile at the current position (tile B), and move it by dir.

5. Repeat step 4 (moving to the left) until the position (x) is equal to the position of
the clicked tile less dir. In this example, the next tile would be tile A.

TilePic: A Mobile-Friendly Web Application | 223

6. Finally, set the empty space position to be the same as the position of the clicked
tile at the time of clicking.

For vertical movement of tiles C and D, the concept is exactly the same, but movement
and tests take place along the vertical axis instead.

// When a tile is clicked on, the moveTiles() function will
// move one or more tiles into the empty space. This can be done
// with or without animation.
var moveTiles = function (tile, animate) {
 var clickPos, x, y, dir, t;
 // If empty space is on same vertical level as clicked tile,
 // move tile(s) horizontally.
 if (tile.gy === emptyGy) {
 clickPos = tile.gx;
 dir = tile.gx < emptyGx ? 1 : −1;
 for (x = emptyGx - dir; x !== clickPos - dir; x -= dir) {
 t = tilesArray[tile.gy][x];
 t.move(x + dir, tile.gy, animate);
 }
 // Update position of empty tile.
 emptyGx = clickPos;
 }
 // If empty space is on same horizontal level as clicked tile,
 // move tile(s) vertically.
 if (tile.gx === emptyGx) {
 clickPos = tile.gy;
 dir = tile.gy < emptyGy ? 1 : −1;
 for (y = emptyGy - dir; y !== clickPos - dir; y -= dir) {
 t = tilesArray[y][tile.gx];
 t.move(tile.gx, y + dir, animate);
 }
 // Update position of empty tile.
 emptyGy = clickPos;
 }
};

Shuffling the tiles

The shuffle() function chooses a random tile in either the same column or row as the
empty space, and then calls the moveTiles() function on it. Using the modulo operator
(%) ensures that the tile chosen is not the empty space (a wasted shuffle), and is always
a valid tile within the confines of the grid.

// Randomly shuffles the tiles, ensuring that the puzzle
// is solvable. moveTiles() is called with no animation.
var shuffle = function () {
 var randIndex = Math.floor(Math.random() * (numTiles - 1));
 if (Math.floor(Math.random() * 2)) {
 moveTiles(tilesArray[emptyGx][(emptyGy + 1 + randIndex) % numTiles], false);
 } else {
 moveTiles(tilesArray[(emptyGx + 1 + randIndex) % numTiles][emptyGy], false);
 }
};

224 | Chapter 9: Reaching the Small Screen with jQuery Mobile

The shuffle() function performs only one random movement of tiles, and must be
called multiple times to truly shuffle the tiles.

TilePic setup code

The setup() function performs various cleanup and setup operations before each game,
including:

• Removing tiles from the picture frame if they exist from a previous game.

• Creating the watermark guide image within the picture frame.

• Creating new tiles (but it does not place a tile in the bottom right).

• Setting the position of empty space to the bottom right of the picture frame.

• Shuffling the new tiles.

// Initial setup. Clears picture frame of old tiles,
// creates new tiles, and shuffles them.
var setup = function () {
 var x, y, i;
 imageUrl = $("input[name='pic-choice']:checked").val();
 // Create a subtle watermark 'guide' image to make the puzzle
 // a little easier.
 $('#pic-guide').css({
 opacity: 0.2,
 backgroundImage: 'url(' + imageUrl + ')'
 });
 // Prepare the completed 'solved' image.
 $('#well-done-image').attr("src", imageUrl);
 // Remove all old tiles.
 $('.tile', $('#pic-frame')).remove();
 // Create new tiles.
 numTiles = $('#difficulty').val();
 tileSize = Math.ceil(280 / numTiles);
 emptyGx = emptyGy = numTiles - 1;
 tilesArray = [];
 for (y = 0; y < numTiles; y++) {
 tilesArray[y] = [];
 for (x = 0; x < numTiles; x++) {
 if (x === numTiles - 1 && y === numTiles - 1) {
 break;
 }
 var tile = tileObj(x, y);
 tilesArray[y][x] = tile;
 $('#pic-frame').append(tile.$element);
 }
 }
 // Shuffle the new tiles randomly.
 for (i = 0; i < 100; i++) {
 shuffle();
 }
};

TilePic: A Mobile-Friendly Web Application | 225

TilePic events

The bindEvents() function is called only once on page load to bind the appropriate
events to elements in the page. It binds the 'tap' event to the picture frame, as this is
more efficient than attaching 'tap' to each tile.

When a user clicks a tile element, the event will bubble up to the surrounding picture
frame, and at this point, we can access the element’s tileObj object via the jQuery
data() method. The moveTiles() function is then called to move the tile(s) in the ap-
propriate way. Finally, a call to checkSolved() tests whether the puzzle is solved and,
if so, redirects to a page displaying a “Well Done” message.

The bindEvents() function also binds a click event to the play-button link to ensure
that the setup() function is called when a new game is started.

var bindEvents = function () {
 // Trap 'tap' events on the picture frame.
 $('#pic-frame').bind('tap',function(evt) {
 var $targ = $(evt.target);
 // Has a tile been tapped?
 if (!$targ.hasClass('tile')) return;
 // If a tile has been tapped, then move the appropriate tile(s).
 moveTiles($targ.data('tileObj'),true);
 // Check if the puzzle is solved.
 if (checkSolved()) {
 $.mobile.changePage("#well-done","pop");
 }
 });

 $('#play-button').bind('click',setup);
};

TilePic page layout
<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>TilePic - A jQuery Mobile Game</title>
 <script src="http://code.jquery.com/jquery-1.5.min.js"></script>
 <script type="text/javascript">
 $(function() {

 var tileSize, // Tile size in pixels.
 numTiles, // Number of tiles, e.g. 4 = 4 by 4 grid.
 tilesArray, // An array of tile objects.
 emptyGx, // X position of empty tile space.
 emptyGy, // Y position of empty tile space.
 imageUrl; // Url of image to tile.

 // tileObj represents a single tile in the puzzle.
 // gx and gy are the grid position of the tile.
 var tileObj = function (gx, gy) {
 /*** CODE REMOVE FOR CONCISENESS ***/

226 | Chapter 9: Reaching the Small Screen with jQuery Mobile

 };

 // The checkSolved() function iterates through all the tile objects
 // and checks if all the tiles in the puzzle are solved.
 var checkSolved = function () {
 /*** CODE REMOVE FOR CONCISENESS ***/
 };

 // When a tile is clicked on, the moveTiles() function will
 // move one or more tiles into the empty space. This can be done
 // with or without animation.
 var moveTiles = function (tile, animate) {
 /*** CODE REMOVE FOR CONCISENESS ***/
 };

 // Randomly shuffles the tiles, ensuring that the puzzle
 // is solvable. moveTiles() is called with no animation.
 var shuffle = function () {
 /*** CODE REMOVE FOR CONCISENESS ***/
 };

 // Initial setup. Clears picture frame of old tiles,
 // creates new tiles, and shuffles them.
 var setup = function () {
 /*** CODE REMOVE FOR CONCISENESS ***/
 };

 var bindEvents = function () {
 /*** CODE REMOVE FOR CONCISENESS ***/
 };

 bindEvents();
 setup();

 });
 </script>

 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.0a3/jquery.mobile-1.0a3.min.css" />
 <script
 src="http://code.jquery.com/mobile/1.0a3/jquery.mobile-1.0a3.min.js">
 </script>

 <style type="text/css">
 label img {
 margin-right:10px;
 }

 #pic-frame {
 width:280px;
 height:280px;
 position:relative;
 left:0px;
 top:0px;
 }

TilePic: A Mobile-Friendly Web Application | 227

 #pic-guide {
 position:absolute;
 backround-repeat:no-repeat;
 width:100%;
 height:100%;
 }

 .tile {
 border:1px solid;
 position:absolute;
 }

 #well-done {
 position:relative;
 }

 </style>
</head>
<body>

 <!-- Menu page -->
 <div id="menu" data-role="page">
 <div data-role="header" data-backbtn="false">
 <h1>
 TilePic
 </h1>
 </div>
 <div data-role="content">
 <div id="pic-choice" data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>
 Choose Picture:
 </legend>

 <input type="radio" name="pic-choice" id="pic-choice-1"
 value="rhino.jpg" checked="checked" />
 <label for="pic-choice-1">

 Rhino
 </label>

 <input type="radio" name="pic-choice" id="pic-choice-2"
 value="butterfly.jpg" />
 <label for="pic-choice-2">

 Butterfly
 </label>

 <input type="radio" name="pic-choice" id="pic-choice-3"
 value="otter.jpg" />
 <label for="pic-choice-3">

 Otter
 </label>

228 | Chapter 9: Reaching the Small Screen with jQuery Mobile

 </fieldset>
 </div>
 <div data-role="fieldcontain">
 <label for="difficulty" " class="select ">Choose Difficulty:</label>
 <select name="difficulty "" id="difficulty">
 <option value="3">
 Easy (9 Tiles)
 </option>
 <option value="4" selected="1">
 Normal (16 Tiles)
 </option>
 <option value="5">
 Hard (25 Tiles)
 </option>
 </select>
 </div>
 Play!
 </div>
 </div>

 <!-- Game page -->
 <div id="game" data-role="page" data-backbtn="false">
 <div data-role="header" data-backbtn="false">
 <h1>
 TilePic
 </h1>
 </div>
 <div data-role="content">
 <div id="pic-frame">
 <div id="pic-guide">
 </div>
 </div>
 Main Menu
 </div>
 </div>

 <!-- Well done popup page -->
 <div id="well-done" data-role="page">
 <div data-role="header" data-backbtn="false">
 <h1>
 TilePic - Solved!
 </h1>
 </div>
 <div data-role="content">

 Main Menu
 </div>
 </div>

</body>
</html>

TilePic: A Mobile-Friendly Web Application | 229

PhoneGap
PhoneGap is a suite of multiplatform native libraries that take regular web applications
and hide them inside a native application “wrapper.” This enables you to distribute
and sell web applications as if they were native applications on multiple mobile formats.
However, although PhoneGap is undoubtedly useful, it is not a one-click-wonder
solution that will convert web applications into best-selling native applications with
no effort on your part. There are a few points to consider when using PhoneGap:

• PhoneGap will not improve a web application’s performance. If your web appli-
cation is slow, it will still be slow after being made native with PhoneGap.

• You’ll need to install the desired platform’s software development kit along with
the relevant PhoneGap library. This is not a trivial task in some cases and can be
tricky to get working.

• If applicable, you’ll still be required to go through the desired platform’s approval
process and pay any fees to release a web application wrapped with PhoneGap.

The next chapter will demonstrate how to convert our TilePic application into a native
Android application using PhoneGap.

230 | Chapter 9: Reaching the Small Screen with jQuery Mobile

CHAPTER 10

Creating Android Apps with PhoneGap

In the previous chapter, we developed a mobile-friendly web application using jQuery
Mobile. In this chapter, we’ll convert the very same mobile application into a native
Android mobile application using PhoneGap. At first glance, converting a humble
JavaScript application into a native Android application seems like a miraculous met-
amorphosis: native Android apps are usually written in Java, Java is not JavaScript, and
you can’t convert from one to the other. How does PhoneGap manage this? In fact,
PhoneGap’s apparent magical abilities lie within the Android system itself. Android
provides a facility called WebView that allows native applications to display regular
web content. This includes the ability to execute JavaScript within the web content as
normal.

One exciting feature of WebView is that it also allows interaction between a native
Android application and the web content within the WebView. This is extremely useful,
both for Android developers wanting to display and interact with web content within
their applications and for web developers wanting to take advantage of Android device
features like cameras and accelerometers. Essentially, PhoneGap is an Android appli-
cation that uses a WebView for your web content, and also provides a JavaScript library
for accessing some of the facilities of the Android device itself.

Other flavors of PhoneGap work in a similar way. For example, the Apple iPhone ver-
sion of PhoneGap uses the iOS system’s UIWebView facility internally. Regardless of
the underlying implementation, the PhoneGap JavaScript library provides a consistent
interface to the device’s features.

This chapter explains how to install PhoneGap for Android on a Windows system using
the Eclipse development environment. At the time of this writing, PhoneGap has var-
iants for Apple’s iOS, BlackBerry, Palm webOS, Windows 7 Mobile (coming soon),
and Symbian. All of the variants will require you to install the appropriate development
environment.

231

Installing PhoneGap
Web developers are used to installing JavaScript libraries in a jiffy by including a simple
script tag at the top of an HTML page. Installing PhoneGap and the other associated
applications and files is a more laborious process. Some of the required elements may
already be installed on your system, but this chapter assumes that a clean install of all
elements is required. Here’s a breakdown of the steps involved:

1. Install the Java Development Kit (JDK). This differs from the Java Runtime Envi-
ronment (JRE) that is typically installed on systems. The JRE allows Java programs
to be run on a system, while the JDK contains all the resources for actually devel-
oping Java applications (and also contains the JRE). Remember, PhoneGap is ac-
tually a native Android Java application, and that’s why Java development must
be enabled on your system.

2. Install the Android Software Development Kit (SDK) for windows. This download
enables you to install all the desired Android platform versions, tools, and utilities,
including a virtual device manager and an Android device emulator that allows you
to test applications without actually having the device hardware.

3. Install the Eclipse Integrated Development Environment (IDE). This is the prefer-
red IDE for Java and includes a code editor, debugger, project organization facili-
ties, and many other tools for making Java application development easier.

4. Install the Android Development Tools (ADT) plug-in for Eclipse. This leverages
Eclipse’s Java development tools and turns it into an Android IDE with everything
that you need for full-blown Android development.

5. Install PhoneGap itself. This is by far the smallest download!

Installing the Java JDK
You can find the latest Java JDK on the Oracle website at http://www.oracle.com/tech
network/java/javase/downloads/index.html. This address may change in the future, but
just search for “download java jdk” in Google, and you should be fine.

Click the leftmost Java link to download the JDK (Figure 10-1). Select the platform
required (e.g., Windows), and agree to the terms of the license agreement. The down-
load filename will be presented as a link (e.g., jdk-6u24-windows-i586.exe), and is ap-
proximately 75 MB in size (as opposed to about 15 MB for the JRE; this is one way to
check whether you are downloading the correct file). Once the file has downloaded,
simply double-click it to install.

232 | Chapter 10: Creating Android Apps with PhoneGap

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure 10-1. Downloading the Java JDK

Installing the Android SDK
To download the Android SDK, visit http://developer.android.com/sdk/index.html.

For Windows systems, the recommended file to download is the Windows installer
version (installer_r10-windows.exe at this writing). This will install the base software
tools for Android development, aka the Android SDK Manager (ASM). The ASM in-
cludes its own tools for installing and managing updates of the desired Android plat-
forms and other components (Figure 10-2). The full suite of Android platforms and
components can take a while to download in the ASM, but you only need to do it once,
downloading updates as and when they become available.

In addition to the regular Windows application window you expect, the ASM opens a
command-line window (aka DOS box). No need to panic; this is normal. The ASM is
actually a convenient Windows wrapper for a suite of Android command-line tools
that you can use if desired. In fact, all Android development can be done with a basic
text editor and the Android command-line tools, but the Eclipse environment and as-
sociated extras can make life a lot easier.

If, when you try to install the ASM, it pops up a message saying that the Java JDK is
not found (even though it definitely has been installed), click the back button in the
message dialog and try again. This is a workaround for a bug in the ASM installer that
can bring up the “JDK not found” message incorrectly.

Installing PhoneGap | 233

http://developer.android.com/sdk/index.html

Installing Eclipse
Eclipse is a popular programming IDE for many programming languages, and is the
recommended choice for Android development. Augmented with the Eclipse Android
plug-in, it provides all the tools required to work with Android projects, including those
using PhoneGap.

Eclipse comes in several flavors for various programming languages and platforms. We
are interested in the Android recommended version, Eclipse Classic (Figure 10-3),
which is the Java development version and can be downloaded from http://www.eclipse
.org/downloads/.

Being a Java application itself, Eclipse will not create any Windows registry entries,
program groups, or shortcut icons. It runs entirely from its installation directory via
the eclipse.exe file. You can create your own shortcut icon to this executable file if
desired.

If you are serious about full-blown application development or wish to augment
PhoneGap with additional capabilities, there is a huge amount of resources relating to
Eclipse development. The following link is a good starting point: http://www.eclipse
.org/resources/.

Figure 10-2. Windows Android SDK Manager

234 | Chapter 10: Creating Android Apps with PhoneGap

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/resources/
http://www.eclipse.org/resources/

Installing Android Development Tools
Eclipse would be nothing without its plug-ins, and virtually every programming lan-
guage has an Eclipse plug-in. The plug-ins add language-specific functionality to Eclipse
such as syntax highlighting, class browsing, debugging facilities, and much more.

There is no reason why you couldn’t do Android development with the regular Java
language version of Eclipse, but the most efficient Android development environment
is provided by the ADT plug-in.

You can find further information about installing the ADT Eclipse plug-in at http://
developer.android.com/sdk/eclipse-adt.html.

The ADT is actually installed from within Eclipse rather than a separate application.
There are a few steps involved to install the ADT:

1. Start Eclipse, and then select Help→Install New Software.

2. Click the Add button.

Figure 10-3. Eclipse Classic is the one we want

Installing PhoneGap | 235

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

3. In the Add Repository dialog box that appears, enter ADT Plugin for the name and
the following URL for the location: https://dl-ssl.google.com/android/eclipse/. Click
OK. The “Work with:” entry should now read “ADT Plugin – https://dl-ssl.google
.com/android/eclipse/.”

If you encounter problems downloading the ADT plug-in, try using http:// instead
of https:// for the location.

4. Select the checkbox near Developer Tools and click Next. Eclipse will check the
remote ADT files and display a review of the downloads it will perform. Click Next
again, accept the terms of the license agreement, and then click Finish. The down-
load and installation will begin. If an “unsigned file” warning appears, just click
OK to continue.

5. Finally, restart Eclipse. You’re ready for Android development.

All that remains is to install PhoneGap itself.

Installing PhoneGap
PhoneGap isn’t actually installed; it just contains a few files that we need to include in
this project. You can download Android PhoneGap from http://www.phonegap.com/
start#android.

Click the Download button for the PhoneGap .zip file, which is approximately 4.5 MB.
Extract the file to a directory, ready for inclusion in our project.

Creating a PhoneGap Project in Eclipse
Now that everything has been downloaded and installed, it’s time to create a PhoneGap
project in Eclipse that’s ready for testing on the Android emulator or on a real Android
device:

1. Start Eclipse and select File→New→Project.

2. Select Android Project from the New Project dialog.

3. In the New Android Project dialog, enter the details as shown in Figure 10-4. Your
default location will be the same as your Eclipse workspace, but you can change
this if desired. Choose an Android version that is compatible with one of your
virtual Android devices or a real Android device. The package name follows the
usual Java rules of package naming—typically, a reverse domain name that is
guaranteed unique so it does not conflict with other Java packages.

4. Go to the root directory of the project and create two new directories: /libs
and /assets/www. (Note that the assets directory already exists.)

5. Copy phonegap.js from the Android directory in the extracted PhoneGap directory
to /assets/www.

236 | Chapter 10: Creating Android Apps with PhoneGap

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://www.phonegap.com/start#android
http://www.phonegap.com/start#android

6. Copy phonegap.jar from the Android directory in the extracted PhoneGap direc-
tory to /libs.

After you’ve created the two directories and copied phonegap.jar and phonegap.js,
the project in Eclipse should be structured within the Package Explorer as shown in
Figure 10-5.

Figure 10-4. The New Android Project dialog

Creating a PhoneGap Project in Eclipse | 237

Figure 10-5. Project layout in Eclipse

Altering the App.java File
Double-click the App.java file and replace its content with the following code:

package com.phonegap.tilepic;
import android.app.Activity;
import android.os.Bundle;
import com.phonegap.*;

public class App extends DroidGap {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 super.loadUrl("file:///android_asset/www/index.html");
 }
}

238 | Chapter 10: Creating Android Apps with PhoneGap

At this point, Eclipse might highlight a few errors. This is because it does not currently
know about the PhoneGap Java library in the /libs folder.

To fix this, right-click the /libs folder in the Package Explorer, and then select Build
Path→Configure Build Path.

When the “Properties for TilePic” dialog appears, click the Libraries tab, and then click
the Add JARs button. This brings up a JAR Selection dialog box that allows you to
select the PhoneGap JAR file (Figure 10-6).

Figure 10-6. Selecting the PhoneGap library for inclusion

Altering the AndroidManifest.xml File
Next, replace the AndroidManifest.xml file content with the following code:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.phonegap.helloworld" android:versionCode="1"
 android:versionName="1.0">
 <supports-screens android:largeScreens="true"
 android:normalScreens="true" android:smallScreens="true"
 android:resizeable="true" android:anyDensity="true" />
 <uses-permission

Creating a PhoneGap Project in Eclipse | 239

 android:name="android.permission.CAMERA" />
 <uses-permission
 android:name="android.permission.VIBRATE" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission
 android:name="android.permission.READ_PHONE_STATE" />
 <uses-permission
 android:name="android.permission.INTERNET" />
 <uses-permission
 android:name="android.permission.RECEIVE_SMS" />
 <uses-permission
 android:name="android.permission.RECORD_AUDIO" />
 <uses-permission
 android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
 <uses-permission
 android:name="android.permission.READ_CONTACTS" />
 <uses-permission
 android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".App" android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Creating and Testing a Simple Web Application
We can now create a simple web application to test on the emulator or an actual An-
droid device.

Right-click the assets/www folder in the Package Explorer, select New→File, and create
a file called index.html. Right-click index.html in the Package Explorer, and select Open
With→Text Editor.

240 | Chapter 10: Creating Android Apps with PhoneGap

Add the following code into the file:

<!DOCTYPE HTML>
<html>
<head>
 <title>TilePic Test</title>
 <script type="text/javascript" charset="utf-8" src="phonegap.js"></script>
</head>
<body>
 <h1>TilePic Test</h1>
</body>
</html>

Click the top-level TilePic folder in the Package Explorer, and then right-click and select
Run As→Android Application. Eclipse will now run the application on either the em-
ulator or, if connected, an actual Android device. The application will display the text
“TilePic Test.” Well done—you have just created your first PhoneGap Android
application!

Testing the TilePic Application
To run the full TilePic puzzle game as a native application, copy all the TilePic web
application files to the assets/www folder. The index.html test file created earlier will be
overwritten with the TilePic index.html file. The assets/www should contain the files
and folders as shown in Figure 10-7.

Run and test TilePic by clicking the top-level TilePic folder in the Package Explorer,
then right-clicking and selecting Run As→Android Application.

Creating a PhoneGap Project in Eclipse | 241

Figure 10-7. Complete TilePic project and file assets

242 | Chapter 10: Creating Android Apps with PhoneGap

Index

Symbols
3D carousel (see carousel (3D), creating)
3D drawing context for Canvas, 130
& (ampersand)

binary AND operator
checking collision flags in Orbit Assault

game, 99
bitwise AND operator, 13
in URLs, problems with, 199

< > (angle brackets)
<< (binary shift left) operator, 15
>> (binary right shift with sign) operator,

182
>> (binary shift right with sign) operator,

15, 150
>>> (binary shift right with zero fill)

operator, 15
* (asterisk), multiplication operator, 15
^ (caret), bitwise XOR operator, 14
$ (dollar sign)

$.fn.bouncyPlugin.defaults object
(example), 37

$drawTarget variable (example) for jQuery
plug-in, 37

preceding PHP variables, 155
referencing jQuery object, 20, 36

% (percent sign), modulus operator, 14
. (period), string concatenation operator in

PHP, 155
+ (plus sign), preceding values taken from XML

file, 65
? (question mark), ?: (ternary) operator, 15
; (semicolon), separating jQuery plug-in from

preceding code, 36

/ (slash), division operator, 15
~ (tilde), bitwise NOT operator, 15
| (vertical bar), bitwise OR operator, 14

A
accordion widgets, 72
actual FPS, calculating, 42
add() method, adding Orbit Assault game

objects to proccess list, 97
addColorStop() method, CanvasGradient

object, 142, 143
addedItems[] array, Orbit Assault game

(example), 97
addition and subtraction (on vectors), 170
addText() method, graphical chat application

(example), 160
Adobe Flash

Adobe Flash CSS+ Canvas exporter, 127
Canvas versus, 126

Adobe Illustrator plug-in, All-Canvas, 128
ADT (Android Development Tools), 232

installing, 235
ajax() function, 65

loading Tiled map via, 65
algorithms, optimizing, 7
alien bombs (Orbit Assault game), 94, 104

checking for collisions with other game
objects, 100

alien invaders (Orbit Assault game), 93, 104,
105

aliensManager object, 107
game over when alien reaches bottom of play

area, 118
new wave starting after all aliens are hit,

117

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

243

score update when alien is hit, 117
All-Canvas (Adobe Illustrator plug-in), 128
alpha values (see globalAlpha property, Canvas

context)
Android, 215

creating apps with PhoneGap, 231–241
creating PhoneGap project in Eclipse,

236–241
installing PhoneGap, 232–236

support of jQuery Mobile, 216
Android Development Tools (see ADT)
Android SDK (see SDK, Android)
Android SDK Manager (ASM), 233
AndroidManifest.xml file, altering in Eclipse,

239
angles

cosine of angle between two vectors, 172
specifying in radians, 171

animate() method, jQuery, 221
animating DHTML sprite image, 26
animating with Canvas, 144–147

more sophisticated moving squares, 146
naively animating moving squares, 144

animation effect object, Orbit Assault game
(example), 98

animIndex variable
adjusting to yield integer values to pass to

changeImage(), 45
incrementing or decrementing for

horizontal movement, 33
anonymous function, defining to wrap jQuery

plug-in code, 36
Apache

starting web server using XAMPP, 157
XAMPP software, 155

App.java file, altering in Eclipse IDE, 238
arc() method, Canvas context, 132
arcs, drawn with increasing end angle,

clockwise and anticlockwise, in
Canvas, 133

arcTo() method, Canvas context, 133
drawing squares with rounded corners,

134
arrays

array of bouncySprite objects (example),
33

converting numeric array into extended
encoded string, 202

converting numeric array into simple
encoded string, 201

interating through and calling function with
array contents, 18

returned by getSelection() method, 212
storing background position of each tile in

tile-based scrolling, 57
ASM (Android SDK Manager), 233
atan2() function, Math object, 177
autocomplete widgets, 72
avatars (in graphical chat application), 158
axis labels, 197

B
background

cannon simulation, using Canvas
globalAlpha property, 178

continuously moving, using map wrapping
in tile-based scrolling, 56

drawBackground() function of rocket
simulation, 186

drawing color gradient for chat application,
161

background image caching in IE6, 46
background image scrolling, 51–53
background-position property (CSS), 26
barcodes, QR (quick response) codes, 205
base-10 number system, 13
bezierCurveTo() method, Canvas context, 131,

135
binary numbers, 13
binary operators

& (AND) operator, 99
<< (shift left) operator, 15
>> (shift right with sign) operator, 15, 150,

182
>>> (shift right with zero fill) operator, 15

bindEvents() function, TilePic game (example),
226

bitmaps
CSS/bitmap screen coordinate system, 168
defined, 125
drawing in Canvas, 138
extracting appropriate tile index number

from, 56
bitwise operators, 12, 13–16

& (AND) operator, 13
| (OR) operator, 14
~ (NOT) operator, 15

244 | Index

BlackBerry OS, 215
support of jQuery Mobile, 216

bomb-dropping logic, Orbit Assault game
aliens, 104

bounce vectors, calculating in rocket
simulation collisions, 188

bouncy sprite application (example)
achieving constant speed, 41–45
animIndex, storing current animation image

index, 32
call to bouncyBoss() creating bouncySprites

and calling their moveAndDraw()
methods, 35

converting to jQuery plug-in, 36–38
creating and referencing DTHMLSprite in

the that object, 32
creating bouncyBoss object to manage

bouncySprites, 33
creating bouncySprite object, 32
HTML page layout for using bouncyBoss

object, 34
timer accuracy, 40
using setInterval() and setTimeout()

functions, 38
brickLayout[] array, shieldBricks in Orbit

Assault game shields, 113
broad-phase collision detection, 101
browsers

Canvas support, 124
creating jQuery 3D carousel plug-in for use

in, 81
examining dynamically generated parts of

HTML page, 209
inconsistent speed of animation and

movement, 41
JavaScript performance, 4
on mobile devices, 217
patchy support for HTML5 <input> tag

types, 70
profilers, 5
reflow action, 57
running under Windows, coarse-grained

timers, 40
target, for example code, xiii
WebSockets support and security, 153

buttons, 72
Orbit Assault game (example), mapping key

codes to, 95

C
C3DL library, 130
Cachefly network, 77
callbacks

callBack() method, firing callback in Orbit
Assault game (example), 102

passing to setInterval() function for
repeated calls, 38

camera object, graphical chat application, 157
canFire property in Orbit Assault game

(example)
alien objects, 105, 107

set to true, 108
tank objects, 111

cannon simulation, using vectors, 174–180
background, 178
cannon, 177
cannonball, 176
defining simulation-wide variables, 175
main loop, 179
page layout, 179

Canvas, 123–165
Adobe Flash versus, 126
animating with, 144–147
browser support of, 124
drawing basics, 129–144

bitmap images, 138
Canvas element, 129
colors, strokes, and fills, 140
drawing context, 129
drawing paths with lines and curves,

130–138
drawing rectangles, 130

exporters and converters, 127
graphical chat application using

WebSockets, 151–165
advantage of using WebSockets, 152
browser support and security issues,

153
chat application, 154–165

limitations of, 125
low-level, immediate mode API, 123
performance issues on mobile devices, 216
recursive drawing, 147–149
replacing DHTML sprites with Canvas

sprites, 149
new CanvasSprite object (example), 150
other code changes for CanvasSprite

object (example), 151

Index | 245

SVG (Scalable Vector Graphics) versus,
125

using in cannon simulation, 174
(see also simulations; vectors)
background, 178

vector graphics, bitmap images, or both,
124

Canvas element, xiii
CanvasGradient object, addColorStop()

method, 142, 143
CanvasRenderingContext2D object (see

context)
Canvg library, 127
carousel (3D), creating, 79–90

carousel item objects, 83
carousel object, 85
carousel specifications, 81
jQuery plug-in code, 87
loading images, 82
page layout, 88

Cartesian coordinate system, 168
CDN (content delivery network)

Cachefly, 77
Google, 73

cell values, setting in data table in visualization
API, 210

changeImage() function, adjusting animIndex
to yield integer values for, 45

changeImage() method, changing sprite image
displayed, 29

character encodings, in image charts, 200
extended encoding, 202
simple encoding, 201

Chart Wizard, 197
charts

creating chart object in Google visualization
API, 211

drawing in Google visualization API, 211
Ext JS, 76
Google Chart Tools API, 193

chart terminology, 196
image charts, 193, 197–207
interactive charts (Visualization API),

194, 207–214
limitations of, 194

chat application (graphical), with Canvas and
WebSockets, 151–165

advantage of using WebSockets, 152
avatars, 158

camera, 157
chat text, 160
drawing background, 161
initialization, 162–164
installing web hosting environment locally,

155
main elements of the application, 154
page code, 164
socket server, 154
support and security issues with

WebSockets, 153
checkCollisions() function, Orbit Assault game

(example), 103
checkList variable, listing collider objects for

collision checks (Oribt Assault game),
101

checkListIndex variable, unique identifier for
collider objects in checkList (Orbit
Assault game), 101

checkSolved() function, TilePic game
(example), 222, 226

checkSolved() method, tile object in TilePic
game (example), 221

Chrome
example code on, xiii
fast speed of animation and movement, 41
HTML5 date <input> element, 70
timer accuracy with Windows systems, 40
WebSockets protocol in versions 4+, 153

cinema screen scrolling effect, 47
circles

drawing in Canvas, 132
radial gradient spanning, 143
radius of, 171

class-based languages, 1
clearRect() method, Canvas context, 130
closePath() method, Canvas context, 131
code examples from this book, xii
code reuse, 1

functional inheritance, 3
prototypal inheritance, 2

collision manager object, Orbit Assault game
(example), 101

collisions
alien bomb added to collision system in

Orbit Assault game, 104
alien invaders in Orbit Assault game, 105
checking for aliens near shields in Orbit

Assault game, 106

246 | Index

collision detection
in Orbit Assault game (example), 99–

104
collision detection and response in rocket

simulation, 187
mystery saucer in Orbit Assault game, 114
player's tank hit in Orbit Assault game, 111
player's tank in Orbit Assault game, 111
shields in Orbit Assault game, 113

color gradients (see gradients, creating in
Canvas)

colors
rocket simulation obstacle object, 182
specifying in Canvas, 140

columns, adding to data table in visualization
API, 210

comma-separated values (CSV) file, saving tile
map data as, 65

command-line window, opened by ASM, 233
compile-time optimizations, 4
content delivery network (see CDN)
context

CanvasRenderingContext2D object, 129
drawing paths with lines and curves,

methods for, 130
drawing position for “to” commands, 131
fillRect(), strokeRect(), and clearRect()

methods, 130
control points, quadratic and Bézier curves,

135
converters, Canvas, 127
coordinate systems

Canvas, 129
CSS/bitmap screen coordinate system, 168

cosine of angle between two vectors, 172
createItem() function, 83
createLinearGradient() method, Canvas

context, 141
creating gradient sky and grass effect, 142

createRadialGradient() method, Canvas
context, 141, 143

CSS (Cascading Style Sheets)
background-position property, 26
carousel3d class for jQuery plug-in, 81
draw-target class, 38
jQuery UI themes, 74
optimizing CSS style changes, 20
screen coordinate system, 168
scrolling effects, 47–51

setting up initial properties for div element
of DHTML sprite, 29

sprites, 26
css() function, 29
CSV (comma-separated values) file, saving tile

map data as, 65
ctx, referring to drawing context in Canvas

code, 130
curves, drawing in Canvas, 130

arc() method, 132
arcTo() method, 133
quadraticCurveTo() and bezierCurveTo()

methods, 135

D
data formats, in image charts, 199–203

basic text, 200
extended encoding format, 202
simple encoding format, 201
text format with custom scaling, 201

data series, 197
data tables, 196

creating visualization API data table, 209
<data> tags, saving in Tiled XML files, 64
data() method, jQuery, 226
data- attribute (HTML5), 217
date type, HTML5 <input> element, 70
date widget, attached to window object created

with Ext JS, 77
Date() function, 40
datepicker widgets, 72
degrees

angles expressed in, 171
converting to and from radians, 132, 172

development environments, xiii
Eclipse, 231
mobile device operating systems, 215

DHTML, 25–46
converting bouncy sprite application into

jQuery plug-in, 36–38
creating sprites, 25–36

encapsulation and drawing abstraction,
28

image animation, 26
more dynamic sprite application, 32–36
simple sprite application, 30–31
sprite code, 28–30

games, 91
(see also Orbit Assault game)

Index | 247

Internet Explorer 6 background image
caching, 46

replacing DHTML sprites with Canvas
sprites, 149

timers, speed, and frame rate, 38–45
achieving consistent speed, 41–45
timer accuracy, 40
using setInterval() and setTimeout(),

38–40
dialog widgets, 72
direction, vectors, 167

four direction vectors with their x and y
components, 168

div elements
changing background-position property,

26
defining with CSS class of draw-target, 38
methods to hide, show, and remove for

DHTML sprite, 30
position:fixed CSS rule for, 48
setting up CSS properties for DHTML

sprite, 29
in tile scrolling page code, 67
in tile-based image scrolling, 54
wrapping div defining which elements are

part of carousel, 87
division operator (/), 15
doctype, HTML5, 217
DOM (Document Object Model)

attaching arbitrary data to elements with
data- attribute, 217

Ext JS and, 77
hiding DOM manipulation within DHTML

sprites, 28
minimizing DOM insertion and deletion in

DHTML sprite, 28
minimizing to enhance performance, 7
optimizing jQuery and DOM interaction,

20–23
in tile-based image scrolling, 54

DOS box, opened by ASM, 233
dot product, 172
draggable elements, 73
draw() function, updating position of DHTML

sprite div element, 29
draw() method

cannon simulation objects, 179
rocket simulation obstacle object, 182
rocket simulation, game object, 182

rocket simulation, rocket object, 183
draw-target class (CSS), 38
drawBackground() function, rocket simulation

(example), 186
drawGraph() function, 10
drawImage() method, Canvas context, 138
drawing

with Canvas (see drawing with Canvas)
chart in Google visualization API, 211
DHTML sprite, 28
sprites for DHTML sprite, 31

drawing context, Canvas (see context)
drawing position for “to” commands (Canvas),

131
drawing with Canvas, 129–144

bitmap images, 138
Canvas element, 129
colors, strokes, and fills, 140
drawing context, 129
drawing paths with lines and curves, 130–

138
rectangles, 130
recursive drawing, 147–149

drawRoundedRect() function (example), 134
page code showing how it is called in a loop,

134
drawText() method, graphical chat application

(example), 160
droppable elements, 73
Duff's device, 17

defined, 18
dynamic data, using in image charts, 203–207

E
e, 3
Eclipse IDE, 232

ADT plug-in, 232
creating PhoneGap project, 236–241

altering AndroidManifest.xml file, 239
altering App.java file, 238
creating and testing simple web

application, 240
installing ADT plug-in, 235
installing Eclipse Classic cersion, 234

elapsed time, calculating between calls to
getInfo(), timeInfo object, 43

elastic collisions in rocket simulation, 188
(see also collisions)

elements

248 | Index

minimizing insertion and delection of DOM
elements, 28

optimizing insertion of DOM elements, 23
encapsulation of code

hiding DOM manipulation within DHTML
sprite, 28

encoding formats, data in image charts, 200
extended encoding, 202
simple encoding, 201

end of game, Orbit Assault game (example),
116

error event, interactive charts, 211
events

interactive chart, 211
retrieving event information, 212–214

keyboard, in Orbit Assault game (example),
95

mouse events controlling rocket object in
simulation, 183

not applicable to items drawn with Canvas,
125

TilePic game for mobile devices (example),
226

exclusive OR operator, ^ (bitwise XOR), 14
execution speed of JavaScript, 4
exporters, Canvas, 127
Ext JS, 71

heavy-duty UI with, 76–78
loading and using Ext JS, 77–78

extend() function, 37

F
fallback content for Canvas element, 129
field of view (FOV), setting for camera, 157
file:/// protocol, 157
fill and stroke

changing in Canvas, 140
drawing filled triangle and stroked triangle

in Canvas, 131
fill() method, Canvas context, 131
fillRect() method, Canvas context, 130
fillStyle property, Canvas context, 140
Firebug profiler, 5
Firefox

example code on, xiii
Firebug profiler, 5
HTML5 date <input> element, 70
performance hit when rendering at

fractional pixel positions, 150

source code generated by interactive chart,
209

speed of animation and movement, 41
WebSockets protocol in Firefox 4, 153

Flash
Adobe Flash CSS+, Canvas exporter, 127
Canvas versus, 126

floating-point numbers, 12
floor() function (Math), 15, 29
flying saucer in Orbit Express game (see

mystery saucer)
fn property, jQuery, 36
fonts, jQuery UI font sizes, 75
forms, 69–71

new <input> tag types in HTML5, 69
FOV (field of view), setting for camera, 157
FPS (frames per second)

calculating actual FPS, 42
and perceived movement smoothness, 42
speeds of different browsers, 41
using to calculate time coefficients, 42

fractional pixel positions (Canvas), 131
frame rate, 41

(see also FPS)
keeping it fast in tile-based scrolling, 56

frameRate property, carousel object (example),
85

functional inheritance, 3

G
game object (Orbit Assault game), 115–119

declaring variables, 115
gameCallback() function, 117
gameOver() function, 116
init() function, 116
initShields() function, 115
newSaucer() function, 116
score updates when alien is hit, 117
updateScores() function, 115

gameCallback() function, Orbit Assault game
(example), 117

gameLoop () function, Orbit Assault game
(example), 118

gameOver() function, Orbit Assault game
(example), 116

games, 91–121
Orbit Assault game (example), 92–121
rocket simulation, 180

game object, 181

Index | 249

simulations used for, 174
(see also simulations)

TilePic, for mobile devices, 218
application-wide variables, 220
checking if puzzle is solved, 222
events, 226
game description, 218–230
moving tiles, 222
page layout, 226
setup code, 225
shuffling tiles, 224
tile object, 221

gauges, columns defined in, 210
GET and POST methods, 196
getContext() method, Canvas object, 129
getGridList() function, Orbit Assault game

(example), 101
getInfo() method, timeInfo object, 43
getSelection() method, 212
getXY() method, returning aliens' positions in

Orbit Assault game, 106
GLGE library, 130
globalAlpha property, Canvas context, 141

using in cannon simulation background,
178

Google
CDN (content delivery network), 73
Chart Tools API, 193

(see also visualizations)
Chart Wizard, 197
image charts (Chart API), 193
interactive charts (Visualizations API),

194
Pac-Man on home page, 91

Google-O-Meter charts
creating image chart using dynamic data,

204
image chart, 193

gradients, creating in Canvas, 141
background gradient in rocket simulation,

186
chat application background, blue sky and

green floor, 161
gradient sky and grass effect, using

createLinearGradient(), 142
radial gradient in rocket simulation obstacle

object, 182
radial gradients, 143

graphical updates in JavaScript, throttling, 38

gravity, simulating gravitational acceleration of
cannonball, 176

grid
Orbit Assault game (example), used for

collision detection, 100
getGridList() function, 101

H
handle variable to Canvas, 129
<head> elements, external API included in,

207
highlight giving illusion of spherical solidity,

182
hit() function

mystery saucer in Orbit Assault game, 114
for shields in Orbit Assault game, 113

hit() method, player's tank is hit in Orbit
Assault game, 111

hitCallback() function, in remove() method,
Orbit Assault game, 105

horizontal (x) and vertical (y) components,
vectors, 168

hosting environment, installing on local
machine, 155

HTML
basic page that initializes and draws two

sprites, 30
cannon simulation page layout, 179
Canvas tree page layout, 149
carousel page layout (example), 88
graphical chat application page layout, 164
jQuery plug-in created from bouncy sprite

application, 37
Orbit Assault game page code (example),

119–121
page for using bouncyBoss object (example),

34
rocket simulation page code, 189
tile scrolling page, 67
TilePic game (example) page layout, 226

HTML5
Canvas element (see Canvas)
data- attribute, 217
forms, 69–71
WebSockets, 151

(see also WebSockets)
HTML5 doctype, xiii
HTTP protocol, limitations compared to

WebSockets, 152

250 | Index

I
id attribute, Canvas elements, 129
IDE (Integrated Development Environment),

232
IE (see Internet Explorer)
image charts (Google Chart Tools), 193, 194,

197–207
chart terminology, 196
Chart Wizard, 197
data formats and chart resolution, 199–203
using dynamic data, 203–207

image elements, in tile-based image scrolling,
54

imageList parameter, animEffect object (Orbit
Assault game), 98

images
animating sprite images, 26
drawing bitmap images in Canvas, 138
loading for 3D carousel, 82

immediate mode API (Canvas), 123
index.html file, creating for TilePic game in

Eclipse, 241
indexes

animIndex variable storing bouncySprite
animation image index, 32

sprite images, converting to pixel offsets,
26

tile maps, created with Tiled editor, 61
inheritance

functional, 3
prototypal, 2

init() function, Orbit Assault game (example),
116

initialization, graphical chat application
(example), 162–164

initShields() function, Orbit Assault game
(example), 115

<input> tags, new types in HTML5, 69
installing PhoneGap

Android SDK, 233
Eclipse Classic IDE, 234
Java Development Kit (JDK), 232
PhoneGap, 236
required steps, 232

integers, 12
Integrated Development Environment (IDE),

232
interactive charts (Google Chart Tools), 194,

207–214

events, 211
retrieving event information, 212–214

example using bakery sales data, 207
key elements of using visualization API,

209
stages in drawing, 207

Internet Explorer (IE)
background image caching in IE6, 46
Canvas support in IE9, 124
example code on, xiii
IE6 Countdown website, 81
making carousel work with IE 6 or 7, 81
problems with 32-bit PNG files in IE6, 27
source code generated by interactive chart,

209
speed of animation and movement in IE8,

41
interpreted languages, 4
iOS, xiii, 215

Cocoa development environment and
Objective-C programming
language, 215

support of jQuery Mobile, 216
UIWebView, 231

iPhone, Phone Gap, 231
items, carousel, creating, 83

J
Java Development Kit (JDK), 232

installing, 232
Java Runtime Environment (JRE), 232
JavaScript

network socket programming, 154
optimizing code, 7
resources for further information, 23
3D graphcis capabilities, 130

jQuery
ajax() function, 65

loading Tiled map via, 65
converting bouncy sprite application to

jQuery plug-in, 36–38
creating 3D carousel widget plug-in, 79

jQuery plug-in code, 87
css() function, 29
Mobile library, 216

creating TilePic game, 218
mobile functionality, 217
TilePic game, application-wide variables,

220

Index | 251

TilePic game, checking if puzzle is
solved, 222

TilePic game, description of, 218
TilePic game, events, 226
TilePic game, moving tiles, 222
TilePic game, setup code, 225
TilePic game, shuffling tiles, 224
TilePic game, tile object, 221

optimizing interaction with DOM, 20–23
UI draggable functionality, 135
UI library for enhanced web interfaces, 71–

76
loading and using, 73
lower-level interactions applied to DOM

elements, 73
UI elements, 72
using themes, 74

JRE (Java Runtime Environment), 232

K
key codes in JavaScript, 95
keyboard events

fire key status for player's tank in Orbit
Assault game, 111

keyboard input, reading in JavaScript, 95
keyMap object, 95
kInfo object, Orbit Assault game (example),

96

L
labels, axis, in charts, 197
laser (player tank, Orbit Assault game), 94,

112
layer styles (CSS), in parallax scrolling effect,

51
legend, 197
length of vectors (see magnitude of vectors)
linear gradients, creating in Canvas, 141
lines, using to draw paths in Canvas, 130
lineTo() command, Canvas context, 131
lineWidth property, Canvas context, 140
Linux

Android built on, 215
browsers on, xiii
PHP on web hosing services, 154
setting up XAMPP for hosting, 157

listIndex variable, in Orbit Assault game
(example), 101

loadImage() function
facilitating image-loading initialization and

detection, 82
triggered via createItem() function for

carousel item objects, 83
loadMap() function, 65

multilayer Tiled map file loaded via ajax()
and parsed, 65

viewports for tile scrolling created in, 67
lookup tables, 8
loops

gameLoop() function, Orbit Assault game
(example), 118

main loop of cannon simulation, 179
optimizing, 16–19
partial unrolling, 17

low-level, immediate mode API (Canvas), 123

M
Macintosh

browsers on, xiii
setting up XAMPP for hosting, 157

magnitude (length) of vectors, 167
calculating, 168
scaling, 171

mapping key codes to game buttons in Orbit
Assault (example), 95

maps
creating tile maps with Tiled, 61–67
Ext JS, 76
map scroll position, 55
map wrapping in tile-based image scrolling,

56
mapHeight, in tile-based imae scrolling, 57
mapWidth in tile-based image scrolling, 56
tile maps, 54

mass
assigning to rocket simulation obstacle

object, 182
gameObject in rocket simulation, 182
obstacle object in rocket simulation, 182

Math.atan2() function, 177
Math.floor() function, 15

using local mathFloor() variable reference
to function in DHTML sprite, 29

Math.sin() function, using lookup table instead
of, 8

measureText() method, Canvas context, 160
Microsoft, 124

252 | Index

(see also Internet Explorer; Windows
systems)
IE6 Countdown website, 81

mobile devices, 231
(see also Android)
operating systems, 215

supporting jQuery mobile, 216
PhoneGap library, creating applications

with, 230
Mobile library (jQuery), 216–230

creating TilePic game, 218–230
application-wide variables, 220
checking if puzzle is solved, 222
events, 226
game description, 218
moving tiles, 222
page layout, 226
setup function, 225
shuffling tiles, 224
tile object, 221

mobile functionality, 217
modulus operator (%), 14
mouse events

carousel object, 85
controlling rocket object in rocket

simulation, 183
interactive chart, 211

listeners for, 212
scrolling, 53

move() method
alien invader game objects in Orbit Assault

game, 106
cannon simulation objects, 179
moving bomb and updating collision object

in Orbit Assault game, 105
moving player's tank in Orbit Assault game,

110
mystery saucer in Orbit Assault game, 114
Orbit Assault game objects, 97, 98
rocket simulation, game object, 182
rocket simulation, rocket object, 183
TilePic game, tile object (example), 221

moveAll() method
calling timeInfo.getInfo() to get time

coefficient, 45
defining for bouncySprites (example), 34

moveAndDraw() method
accepting time coefficient as argument, 45

called by moveAll() for each bouncySprite
(example), 34

calling for bouncySprite objects (example),
35

creating bouncySprite instance (example),
32

tine coefficient passed to each bouncySprite
instance, 45

movement
achieving consistent speed, 41–45
tiles in TilePic game (example), 222

moveTiles() function, TilePic game (example),
224, 226

moveTo() method, Canvas context, 131
multiplication operator (*), 15
mystery saucer (Orbit Assault game), 94, 114

newSaucer() function, 116
score update when player hits saucer, 117

N
namespaces

avoiding collisions with creative naming of
jQuery plug-ins, 36

collisions caused by use of data- attribute,
217

ncapsulation of code, 3
negating binary numbers, 13
new statement, 3
newCollider() function, Orbit Assault game

(example), 102
newSaucer() function, Orbit Assault game

(example), 116
Nishikado, Tomohiro, 92
normalization (vectors), 171
NOT operator (~), bitwise NOT, 15
numbers

converting to integer types, 12
represented in floating-point format in

JavaScript, 12

O
O3d library, 130
object-oriented programming (OOP), 1
obstacle object, rocket simulation, 182
OpenGL, 130
Opera

example code on, xiii
fast speed of animation and movement, 41

Index | 253

HTML5 date <input> element, 70
performance hit when rendering at

fractional pixel positions, 150
WebSockets protocol, 153

operating systems
mobile, 215, 231

(see also Android)
supporting jQuery Mobile, 216

setting up XAMPP for hosting, 157
optimization of code, 4

bitwise operators, integers, and binary
numbers, 12–19

jQuery and DOM interaction, 20–23
knowing what and when to optimize, 5
in tile-based image scrolling, 56
using lookup tables, 8

options, passing to jQuery plug-in created from
bouncy sprite application, 37

OR operator (|), 14
Oracle website, Java JDK, 232
Orbit Assault game (example), 91–121

alien bombs, 104
alien invaders, 105
aliensManager object, 107
collision detection, 99–104
the game, 115–119
game objects overview, 92
game-wide variables, 94
moving all game objects, 97
mystery saucer, 114
page code, 119–121
player tank, 110
player tank's laser, 112
reading keyboard input, 95
requirements, 92
shields, 113
simple animator, 98

P
Pac-Man, 91
Package Explorer, structuring PhoneGap

project in Eclipse, 237
Page Themes (jQuery UI themes), 75
parallax scrolling, 48
parameters

bouncyBoss object (example), 33
creating params object to hold DHTML

sprite parameters, 30

passing all setup parameters for
DHTMLSprite using single
params object, 28

setup parameters for bouncySprite object in
params object, 32

paths, drawing in Canvas, 130–138
pause() method, defining for bouncing sprite

application, 44
paused variable, used with getInfo() method of

timeInfo object, 43
performance

execution speed of JavaScript applications,
4

on mobile devices, 215
perspective, simulating with chat application

camera, 157
PhoneGap, 230, 231–241

creating PhoneGap project in Eclipse, 236
altering AndroidManifest.xml file, 239
altering App.java file, 238
creating and testing simple application,

240
installing

Android SDK, 233
Eclipse IDE, 234
Java Development Kit (JDK), 232
PhoneGap files, 236
steps in process, 232
steps in process/ADT (Android

Development Tools), 235
phonegap.jar file, 237
phonegap.js file, 236
PHP

using for chat application socket server,
154

XAMPP software for web hosting
environment installation, 155

pie charts, 199
(see also visualizations)
columns defined in, 210
URL for request to Google server, 199

pixel offsets
calculating for sprites, 27
defining for background-position property

in div element, 26
pixel positions, fractional (Canvas), 131
player's tank (Orbit Assault game), 94, 110

game updates in response to hit, 117

254 | Index

playing state, Orbit Assault game (example),
118

PNG images
alpha channel for transparency effects, 141
problems with 32-bit PNG files in IE6, 27
substitution JPEG images in IE6 for carousel

widget, 81
with alpha, 49

position:fixed CSS rule, 48
POST and GET methods, 196
process() method, Orbit Assault game objects

(example), 97
Processing.js library, 130
processList[] array, Orbit Assault game

(example), 97
profilers, 5
profiling

creating your own tests, 7
using Firebug, 5

programming languages
choice for socket server, 154
interpreted, 4
mobile device operating systems, 215
OOP (object-oriented programming), 1

progressbar widgets, 72
projects, creating in Eclipse, 236
prototypal inheritance, 2
Pythagorean theorem, 169

Q
QR (quick response) codes, 205
quadraticCurveTo() method, Canvas context,

135

R
radial gradients, creating in Canvas, 141, 143

rocket simulation obstacle object (example),
182

radians
converting degrees to and from, 172
converting to and from degrees, 132

radians, angles expressed as, 171
radius, gameObject in rocket simulation, 182
ready event, interactive charts, 211
rectangles

drawing with Canvas, 130
drawing with rounded corners in Canvas,

134

recursive drawing with Canvas, 147–149
recursive tree drawn with Canvas, 147
tree page layout, 149

recursive functions, 147
reflow by browsers, 57
remove() function, calling on mystery saucer in

Orbit Assault game, 114
remove() method

creating explosion effect and removing
bombs in Orbit Assault game,
104

removing aliens hit in Orbit Assault game,
105

removing collider object from
collisionManager grid in Orbit
Assault game, 102

removing player's tank when hit in Orbit
Assault game, 111

removedCallback() function, passed to
remove() in Orbit Assault game,
104

removing objects from Orbit Assault game
process list, 97

resizable elements, 73
resolution of charts, 200
Retro Theater example, 47
rocket simulation, 180

background, 186
collision detection and response, 187
game object, 181
obstacle object, 182
page code, 189
possible improvements and modifications,

190
rocket object, 183

rotation
3D carousel, 83
updating carousel rotation value, 85
vectors, 171

rounding errors with floating-point numbers,
12

rows, adding to data table in visualization API,
210

S
Safari

example code on, xiii
WebSockets protocol, 153

Scalable Vector Graphics (see SVG)

Index | 255

scaling
arbitrary data values into available

resolution, 200
text format with custom scaling in image

charts, 201
scaling vectors, 171
SceneJS library, 130
scores, updating in Orbit Assault game

(example), 115
screen coordinates (canvas), calculating from

world coordinates, 157
screenToWorld() function, camera object,

158
scrolling, 47–68

background image scrolling, 51–53
CSS parallax scrolling effect, 48
CSS scrolling cinema screen effect, 47–51
tile-based image scrolling, 53–68

SDK (Software Development Kit), Android,
232

installing, 233
security issues with WebSockets protocol, 153
select event, interactive charts, 211

listener for, 212
selectable elements, 73
Sencha website, Ext JS, 76
setFOVandYPos() function, camera object,

157
setInterval() function

anonymous function within, main loop of
cannon simulation, 179

calling a function repeatedly by passing it as
callback, 38

loop updating carousel rotation value and
passing to carousel items via
update(), 85

repeatedly calling drawGraph() with
continuously changing
parameters, 11

setTimeout() function, 40
creating for bouncy sprite animation, 34
defining timeout to remove animation effect

from Orbit Assault game objects,
98

setup() function, TilePic game (example), 225,
226

shields (Orbit Assault game), 94, 113
checking for aliens near, 106

checking for collisions with other game
objects, 99

initShields() function, 115
removing aliens hit by a shield, 105

shuffling tiles in TilePic game (example), 224
Silverback website, 48
simulations

cannon simulation using vectors, 174
background, 178
cannon, 177
cannonball, 176
defining simulation-wide variables, 175
main loop, 179
page layout, 179

rocket simulation using vectors, 180
background, 186
collision detection and response, 187
game object, 181
obstacle object, 182
page code, 189
possible improvements to, 190
rocket object, 183

use of vectors in, 167
sin() function (Math), using lookup table

instead of, 8
sine lookup table used in animated application,

9
sky and grass effect, using linear gradient, 142
sliders, 72

attached to window object created with Ext
JS, 77

smoothness of movement, FPS and, 42
snapping in tile-based image scrolling, 54
socket server, chat application using Canvas

and WebSockets, 154
starting using XAMPP, 156

Software Development Kit, Android (see SDK,
Android)

sortable elements, 73
Space Invaders, 91
spacer object, attached to window created with

Ext JS, 77
speech bubble effect, graphical chat

application, 160
speed

achieving constant speed in bouncy sprite
application (example), 41–45

controlling for background image scrolling
with JavaScript, 51

256 | Index

controlling for tile scroller, 67
stored in game object velocity vector, 182

spherical solidity, illusion of, 182
SpiderGL library, 130
split() function, using on CSV data, 65
sprites

converting bouncy sprite application to
jQuery plug-in, 36–38

creating DHTMLSprite instance for alien
objects in Orbit Assault game,
105

creating DHTMLSprite instance for mystery
saucer in Orbit Assault game,
114

creating DHTMLSprite instance for player
tank's laser in Orbit Assault game,
112

creating DHTMLSprite instance for player's
tank in Orbit Assault game, 110

creating using DHTML, 25–36
encapsulation and drawing abstraction,

28
image animation, 26
minimizing DOM insertion and deletion,

28
more dynamic sprite application, 32–36
simple sprite application, 30–31
sprite code, 28

DHTML, replacing with Canvas sprites,
149

new CanvasSprite object (example), 150
other code changes for CanvasSprite

object (example), 151
initializing DHTMLSprite instance for

shields in Orbit Assault game,
113

Orbit Assault game (example), arranged in
single bitmap, 92

squares, drawing using arcTo() method in
Canvas, 134

string concatenation in PHP, 155
strings

converting numeric array into extended
encoded string, 202

converting numeric array into simple
encoded string, 201

raw data in XML files treated as, when
parsing with JavaScript, 65

stroke() method, Canvas context, 131, 140

strokeRect() method, Canvas context, 130
strokeStyle property, Canvas context, 140
style properties

optimizing changes for DOM elements, 20
storing reference for each tile in array for tile-

based scrolling, 57
subtraction operations (on vectors), 170
sun effect, using radial gradient, 143
SVG (Scalable Vector Graphics)

Canvas versus, 125
Canvg JavaScript library, drawing SVG data

using Canvas, 127
SVG-to-Canvas converter, 127
use in interactive charts, 207, 209

Symbian, 215
SYS_keys variable (Orbit Assault game), 96
SYS_process variable (Orbit Assault game)

alenManager object instance added to, 110
alien bomb adding itself, 105
animation effect adding itself to process list,

99

T
tables (data), 196

creating visualization API data table, 209
tabs, in jQuery UI widgets, 72
Taito Corporation, 92
tank obejcts, Orbit Assault game player, 110
tank's laser (Orbit Assault game), 94, 112

checking for collisions with other game
objects, 100

ternary operator (?:), 15
text

formats for image charts, 199
basic text, 200
extended encoding format, 202
simple encoding format, 201
text format with custom scaling, 201

in graphical chat application, 160
textScroller object, graphical chat application

(example), 160
ThemeRoller application, 75
themes, jQuery UI, 71, 74
throttling graphical updates in JavaScript, 38
thrust vector, adding to rocket's velocity, 183
tile-based image scrolling

creating tile maps with Tiled, 61
ensuring rapid frame rate, 56
parameters passed to tileScroller object, 57

Index | 257

scrolling page code, 67
three-layer scrolling, code, 57–61
Tiled file format, 64
using snapping, 54
using wrapping, 56

Tiled, 61
file format, 64
formats for saving map data (<data>) tag in

XML file, 64
TilePic game (example), 218–230

application-wide variables, 220
checking if puzzle is solved, 222
converting to PhoneGap app for Android

creating application, 241
creating PhoneGap project in Eclipse,

236–241
testing application, 241

description of game, 218
events, 226
moving tiles, 222
page layout, 226
setup code, 225
shuffling tiles, 224
tile object, 221

tilesets, 54
time coefficient, calculating for sprite

animation and movement code, 42
timeInfo object

creating for animated applications, 43
instance created by bouncyBoss object, 45
modifying bouncySprite and bouncyBoss

code to use, 44
timeout, 33

(see also setTimeout() function)
defining to remove animation effect in Orbit

Assault game objects, 98
timers, 38

accuracy of, 40
using setInterval() and setTimeout()

functions, 38
titleScreen state, Orbit Assault game (example),

118
.tmx files, 64
transparency

PNG images with alpha, 49
specifying for colors in Canvas, 141

tree (recursive), drawing with Canvas, 147
tree page layout, 149

triangles, drawing filled and stroked triangle in
Canvas, 131

twos complement, 13

U
UI (user interface), advanced, 69–90

creating 3D carousel widget, 78–90
carousel item objects, 83
carousel object, 85
jQuery plug-in code, 87
loading carousel images, 82
page layout for carousel, 88
specifications for carousel, 81

heavy-duty UI system, Ext JS, 76–78
HTML5 forms, 69
jQuery draggable functionality, 135
using jQuery UI for enhanced web

interfaces, 71–76
unit length, 171
unit vectors, 171
units of measurement (vectors), 168
unrolling loops, 16–19

partial unrolling, 17
update() function

altering carousel items' position, scale, and
z depth, 83

updating carousel items' rotation, 85
update() method, Orbit Assault game,

updating collider object's position,
102

updateScores() function, Orbit Assault game
(example), 115

URL requests, Google image charts, 197
URLs

ampersands (&) in, 199
image chart requests passed to Google

servers, 199
maximum size for image charts, 194

V
variables

application-wide, for TilePic game
(example), 220

declaring for Orbit Assault game, 115
game-wide, in Orbit Assault game

(example), 94
JavaScript handle variable to Canvas, 129

258 | Index

local variable copies of params object
properties for DHTMLSprite, 28

PHP, 155
simulation-wide, defining for cannon

simulation, 175
vector graphics, defined, 124
vectors, 167–191

addition and subtraction operations, 170
creating JavaScript vector object, 173
direction and length in 2D space, as x and y

components, 168
dot product, 172
normalization, 171
rotating, 171
scaling, 171
using in cannon simulation, 174

background, 178
cannon, 177
cannonball, 176
main loop, 179
page layout, 179
simulation-wide variables, 175

using in rocket simulation, 180
background, 186
collision detection and response, 187
game object, 181
obstacle object, 182
page code, 189
possible improvements and

modifications, 190
rocket object, 183

velocity
thrust vector added to rocket's velocity,

183
velocity vector added to current x and y

positions, rocket simulation,
gameObject, 182

viewports, 47
creating for tile-based scrolling in

loadMap(), 67
maximum number of tiles displayed in tile-

based image scrolling, 54
visualizations (Google Chart Tools API), 193–

214
chart terminology, 196
image charts, 197–207

data formats and chart resolution, 199–
203

using dynamic data, 203–207

interactive charts, 207–214
example using bakery sales data, 207
interactive chart events, 211–214
key elements of using visualization API,

209
limitations of, 194

VML, use in interactive charts, 207, 209

W
web application, creating and testing in Eclipse

IDE, 240
web development tools, using to develop

mobile applications, 216
web hosting environment, installing locally,

155
web page for this book, xiv
WebGL, 130
webOS, 215

Palm webOS (1.4), support of jQuery
Mobile, 216

WebSockets, 151–165
advantage of using, 152
graphical chat application using Canvas,

151
avatars, 158
background, 161
camera, 157
chat text, 160
initialization, 162–164
installing web hosting environment

locally, 155
main elements of application, 154
page code, 164
socket server, 154

support and security, 153
WebView, 231
which property, of passed event object, 95
width and height attributes, Canvas element,

129
window object with date widget, spacer object

and slider widget, creating with Ext
JS, 77

Windows Mobile, 215
Windows systems

coarse-grained timers, 40
example code tested on, xiii
installing PhoneGap for Android, 231

Android SDK, 233
Internet Explorer (IE) 9, 124

Index | 259

setting up XAMPP for hosting, 157
world coordinates, calculating from canvas

screen coordinates, 158
worldToScreen() function, camera object,

157
wrapping, map wrapping in tile-based image

scrolling, 56

X
x and y coordinates

getXY() method, returning aliens' positions
in Orbit Assault game, 106

representing vectors' direction and length in
2D space, 168

setting y position for camera in chat
application, 157

x and y positions, moving for bouncy sprite,
32

XAMPP software, 155
XML

AndroidManifes.xml file, altering, 239
parsing files in JavaScript, 65
SVG based on, 125
Tiled files (.tmx), 64
Tiled map file loaded via ajax() and parsed

with loadMap(), 65

Z
Zen Garden website (CSS), 47

260 | Index

About the Author
Raffaele Cecco is a veteran software developer from the European video games
industry. He served as Technical Director at London-based software studio, King of
the Jungle Ltd., where he created software for clients such as Hasbro and Virgin. He
has also worked with web technologies and retail e-commerce systems.

Colophon
The animal on the cover of Supercharged JavaScript Graphics is a maned sheep, or
Barbary sheep.

The Barbary sheep (Ammotragus lervia) is a relatively large species of caprid, or goat-
antelope. It is native to Northern Africa and can now be found in southeastern Spain,
the southwestern US, and parts of Mexico. These desert-dwelling grazers are also
known as aoudad or auddan.

The Barbary sheep is adapted to hot, dry, and barren areas. It takes in most of its water
through the plants it eats, but will drink and bathe in water if it’s present. Its large,
curved horns contain a rich blood supply, which helps keep it cool in the hot, dry desert.
In addition to its horns, the Barbary sheep is characterized by a sandy-brown, bristly
coat and long hair on the chest, front legs, and throat.

Barbary sheep, like most desert-dwelling animals, seek shade during the day and are
most active at dawn and dusk, when it’s cooler. They are expert climbers and jumpers
and can ascend and descend extremely steep slopes; this ability to out-climb humans
makes them difficult to hunt. Because they dwell in areas with little to no cover, their
coloring helps them elude predators. In North Africa, they were preyed upon by the
caracal, Barbary lion, and Barbary leopard, but today, their main threat comes from
humans.

Despite their agility, hunting has depleted the Barbary sheep population in Africa;
however, their introduction into the wild of the southwestern US in the 1950s led to a
slight increase in population. The Barbary sheep is currently on the International Union
for Conservation of Nature’s Red List of vulnerable species due to its population of
between 5,000 and 10,000 animals and due to a predicted 10 percent population decline
over the next 15 years (as a result of hunting and loss of habitat).

The cover image is from Riverside Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience and Assumptions
	Organization
	Conventions Used in This Book
	Using Code Examples
	Target Browsers

	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Code Reuse and Optimization
	Keeping It Fast
	What and When to Optimize
	Homespun Code Profiling
	Optimizing JavaScript
	Lookup Tables
	Bitwise Operators, Integers, and Binary Numbers
	A quick recap of binary numbers
	JavaScript’s bitwise operators
	Bitwise AND (x & y)
	Bitwise OR (x | y)
	Bitwise XOR (x ^ y)
	Bitwise NOT (~x)
	Shift left (x << numBits)
	Shift right with sign (x >> numBits)
	Shift right with zero fill (x >>> y)

	Loop unrolling: An inconvenient truth

	Optimizing jQuery and DOM Interaction
	Optimizing CSS Style Changes
	Optimizing DOM Insertion

	Other Resources

	Chapter 2. DHTML Essentials
	Creating DHTML Sprites
	Image Animation
	Encapsulation and Drawing Abstraction (aka Hiding Stuff)
	Minimizing DOM Insertion and Deletion
	The Sprite Code
	A Simple Sprite Application
	A More Dynamic Sprite Application

	Converting into a jQuery Plug-in
	Timers, Speed, and Frame Rate
	Using setInterval and setTimeout
	Timer Accuracy
	Achieving Consistent Speed

	Internet Explorer 6 Background Image Caching

	Chapter 3. Scrolling
	CSS-Only Scrolling Effects
	Scrolling with JavaScript
	Background Image Scrolling
	Tile-Based Image Scrolling
	Snapping...
	...and Wrapping
	Keeping things fast
	Tile scrolling code
	Creating tile maps with Tiled
	Tiled file format

	Tile scroller page layout

	Chapter 4. Advanced UI
	HTML5 Forms
	Using JavaScript UI Libraries
	Using jQuery UI for Enhanced Web Interfaces
	Loading and using jQuery UI
	Theming jQuery UI

	Heavy Duty UI with Ext JS
	Loading and using Ext JS

	Creating UI Elements from Scratch
	Creating a 3D Carousel
	Carousel specifications
	Carousel image loading
	Carousel item objects
	The carousel object
	The jQuery plug-in part
	Carousel page layout

	Chapter 5. Introduction to JavaScript Games
	Game Objects Overview
	The Game Code
	Game-Wide Variables
	Reading Keys
	Moving Everything
	A Simple Animator
	Collision Detection
	Aliens
	Alien bombs
	Alien invaders
	Aliens manager

	The Player
	Tank
	Laser

	Shields
	Mystery Saucer
	The Game
	Putting It All Together

	Chapter 6. HTML5 Canvas
	Canvas Support
	Bitmaps, Vectors, or Both?
	Canvas Limitations
	Canvas Versus SVG
	Canvas Versus Adobe Flash
	Canvas Exporters
	Canvas Drawing Basics
	The Canvas Element
	The Drawing Context
	Drawing Rectangles
	Drawing Paths with Lines and Curves
	Drawing Bitmap Images
	Colors, Strokes, and Fills

	Animating with Canvas
	Canvas and Recursive Drawing
	Canvas Tree Page Layout

	Replacing DHTML Sprites with Canvas Sprites
	The New CanvasSprite Object
	Other Code Changes

	A Graphical Chat Application with Canvas and WebSockets
	The WebSockets Advantage
	WebSockets Support and Security
	Turning on WebSockets in Firefox 4 and Opera 11

	The Chat Application
	The socket server
	Installing a web hosting environment locally
	The camera
	The avatars
	The chat text
	The background
	Initialization
	The page code

	Chapter 7. Vectors for Games and Simulations
	Operations on Vectors
	Addition and Subtraction
	Scaling
	Normalization
	Rotation
	Dot Product

	Creating a JavaScript Vector Object
	A Cannon Simulation Using Vectors
	Simulation-Wide Variables
	The Cannonball
	The Cannon
	The Background
	The Main Loop
	Page Layout

	Rocket Simulation
	The Game Object
	The Obstacle Object
	The Rocket Object
	Background
	Collision Detection and Response
	Page Code
	Possible Improvements and Modifications

	Chapter 8. Google Visualizations
	Limitations
	Chart Glossary
	Image Charts
	Data Formats and Chart Resolution
	Basic text format
	Text format with custom scaling
	Simple encoding format
	Extended encoding format

	Using Dynamic Data
	Summary

	Interactive Charts
	Interactive Charts Events
	Retrieving event information

	Chapter 9. Reaching the Small Screen with jQuery
 Mobile
	jQuery Mobile
	TilePic: A Mobile-Friendly Web Application
	TilePic Game Description
	TilePic Game Code
	Application-wide variables
	The tile object
	Checking whether the puzzle is solved
	Moving tiles
	Shuffling the tiles
	TilePic setup code
	TilePic events
	TilePic page layout

	PhoneGap

	Chapter 10. Creating Android Apps with PhoneGap
	Installing PhoneGap
	Installing the Java JDK
	Installing the Android SDK
	Installing Eclipse
	Installing Android Development Tools
	Installing PhoneGap

	Creating a PhoneGap Project in Eclipse
	Altering the App.java File
	Altering the AndroidManifest.xml File
	Creating and Testing a Simple Web Application
	Testing the TilePic Application

	Index

