
Beginning

JavaScript®and CSS Development with jQuery

Richard York

27794ffirs.indd 5 3/16/09 3:14:20 PM

Beginning JavaScript® and CSS Development with jQuery
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-22779-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

York, Richard.
 Beginning JavaScript and CSS development with jQuery / Richard York.
 p. cm.
 Includes index.
 ISBN 978-0-470-22779-4 (paper/website)
 1. JavaScript (Computer program language) 2. Web sites--Design. 3. Cascading style sheets. I. Title.
 QA76.73.J38Y67 2009
 006.7’6--dc22
 2009005636

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Web site may provide or recommendations it may make. Further, readers should be
aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written
and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. JavaScript is a registered trademark of Sun Microsystems, Inc. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

27794ffirs.indd 6 3/16/09 3:14:20 PM

Contents

Introduction xix

Part I: jQuery API 1

Chapter 1: Introduction to jQuery 3

What Does jQuery Do for Me? 4
Who Develops jQuery? 5
Obtaining jQuery 5
Installing jQuery 5
Programming Conventions 8

XHTML and CSS Conventions 9
JavaScript Conventions 16

Summary 25

Chapter 2: Selecting and Filtering 27

The Origin of the Selectors API 28
Using the Selectors API 29
Filtering a Selection 37

Searching within a Selection with find() 38
Finding an Element’s Siblings with siblings() 39
Selecting Specific Siblings 42
Searching Ancestors Using the parents() and parent() Methods 46
Selecting Children Elements 48
Selecting Elements via What You Don’t Want 50
Selecting a Snippet of the Results 51
Adding More Elements to a Selection 53
Selecting One Specific Element from a Result Set 55

Summary 66
Exercises 66

Chapter 3: Events 69

Assigning an Event with the Traditional Event Model 69
Assigning Events with the W3C Event Model 72

The this Object 73
The event Object 75

xii

Contents

The Microsoft JScript Event Model 77
Creating a Universal Event API 78

Binding Events with jQuery’s bind() Method 80
Binding Events with jQuery’s Event Methods 82
Triggering Events 83

Summary 93
Exercises 93

Chapter 4: Manipulating Content and Attributes 95

Setting and Accessing Attributes 95
Manipulating Class Names 105
Manipulating HTML and Text Content 109

Getting, Setting, and Removing Content 110
Appending and Prepending Content 115
Inserting Beside Content 123
Inserting Beside Content via a Selection 125
Wrapping Content 129

Replacing Elements 146
Removing Content 150
Cloning Content 154
Summary 162
Exercises 163

Chapter 5: Arrays and Iteration 165

Basic Iteration 165
Calling each() Directly 167
Variable Scope 168
Emulating break and continue 170
Iterating a Selection 172

Filtering Selections and Arrays 173
Filtering a Selection 174
Filtering a Selection with a Callback Function 175
Filtering an Array 177

Mapping a Selection or an Array 180
Mapping a Selection 180
Mapping an Array 183

Array Utility Methods 196
Making an Array 197
Finding a Value within an Array 197

xiii

Contents

Merging Two Arrays 198
Removing Duplicate Items 199

Summary 204
Exercises 205

Chapter 6: CSS 207

The css() Method 207
The outerWidth() and outerHeight() Methods 208
Summary 217
Exercises 217

Chapter 7: AJAX 219

Making a Server Request 220
What’s the Difference between GET and POST? 220
Formats Used to Transport Data with an AJAX Request 221
Making a GET Request with jQuery 222

Loading HTML Snippets from the Server 240
Dynamically Loading JavaScript 265
AJAX Events 267
Making an AJAX-Style File Upload 272
Summary 275
Exercises 276

Chapter 8: Effects 277

Showing and Hiding Elements 277
Sliding Elements 279
Fading Elements 280
Custom Animation 281
Summary 283
Exercises 284

Chapter 9: Plugins 285

Writing a Plugin 285
Good Practice for jQuery Plugin Development 295
Summary 296
Exercises 296

xiv

Contents

Part II: jQuery UI 297

Chapter 10: Implementing Drag-and-Drop 299

Making Elements Draggable 300
Making Elements Draggable with Ghosting 308
Dragging between Windows in Safari 311
Delegating Drop Zones for Dragged Elements 314
Summary 326
Exercises 326

Chapter 11: Drag-and-Drop Sorting 327

Making a List Sortable 327
Customizing Sortables 338
Saving the State of Sorted Lists 347
Summary 353
Exercises 354

Chapter 12: Selection by Drawing a Box 355

Introducing the Selectables Plugin 355
Summary 372
Exercises 372

Chapter 13: Accordion UI 373

Building an Accordion UI 373
Setting Auto-Height 376
Changing the Default Pane 377
Toggling the alwaysOpen Option 380
Changing the Accordion Event 380
Filling the Height of the Parent Element 381
Setting the Header Elements 381
Styling Selected Panes 384
Selecting a Content Pane by Location 387
Summary 390
Exercises 391

xv

Contents

Chapter 14: Datepicker 393

Implementing a Datepicker 393
Styling the Datepicker 395
Setting the Range of Allowed Dates 403
Allowing a Date Range to Be Selected 404

Localizing the Datepicker 405
Setting the Date Format 405
Localizing Datepicker Text 406
Changing the Starting Weekday 407

Summary 408
Exercises 408

Chapter 15: Dialogs 409

Implementing a Dialog 409
Examining a Dialog’s Markup 411
Making a Modal Dialog 417
Auto-Opening the Dialog 419
Controlling Dynamic Interaction 420
Animating the Dialog 421
Working with Dialog Events 422
Summary 423
Exercises 424

Chapter 16: Tabs 425

Implementing Tabs 425
Loading Remote Content via AJAX 432
Animating Tab Transitions 436
Summary 437
What Next? 437
Exercises 438

Appendix A: Answers to Exercises 439

Chapter 2 439
Chapter 3 439
Chapter 4 440
Chapter 5 441

xvi

Contents

Chapter 6 441
Chapter 7 442
Chapter 8 442
Chapter 9 443
Chapter 10 443
Chapter 11 444
Chapter 12 444
Chapter 13 444
Chapter 14 445
Chapter 15 445
Chapter 16 445

Appendix B: Selectors Supported by jQuery 447

Appendix C: Selecting and Filtering 451

Appendix D: Events 453

Event Object Normalization 455

Appendix E: Manipulating Attributes and Data Caching 457

Appendix F: Manipulating Content 459

Appendix G: AJAX Methods 461

Appendix H: CSS 465

Appendix I: Utilities 467

Appendix J: Draggables and Droppables 469

Appendix K: Sortables 475

Appendix L: Selectables 479

Notes 480

Appendix M: Effects 481

Speed 481
Callback Function 481

xvii

Contents

Appendix N: Accordion 485

Appendix O: Datepicker 487

Appendix P: Dialog 497

Appendix Q: Tabs 501

Appendix R: Re-Sizables 505

Appendix S: Sliders 509

Index 511

Introduction

The jQuery JavaScript framework is a rising star in the world of web development. JavaScript frame-
works in general have grown to become immensely popular in the past few years in parallel with the
ever-increasing presence of JavaScript-driven, so-called Web 2.0 websites that make heavy use of tech-
nologies like AJAX and JavaScript in general for slick graphical enhancements that would be impossible
or much more cumbersome to incorporate without JavaScript.

jQuery’s mission as a JavaScript library is simple — it strives to make the lives of web developers eas-
ier by patching over certain portions of cross-browser development and by making other tasks com-
monly needed by developers much easier. jQuery has the real, proven ability to reduce many lines of
plain-vanilla JavaScript to just a few lines, and, in many cases, just a single line. jQuery strives to
remove barriers to JavaScript development by removing redundancy wherever possible and normal-
izing cross-browser JavaScript development in key areas where browsers would otherwise differ,
such as Microsoft’s Event API and the W3C Event API, and other, more remedial tasks like getting the
mouse cursor’s position when an event has taken place.

jQuery is a compact, lightweight library that currently works in Microsoft’s Internet Explorer browser
from version 6 on, Firefox from version 1.5 on, Safari from version 2.0.2 on, Opera from version 9 on,
and Google’s new Chrome browser from version 0.2 on. Getting started with jQuery is very easy — all
you have to do is include a single link of markup in your HTML or XHTML documents that includes
the library. Throughout this book, I demonstrate jQuery’s API (Application Programming Interface)
components in detail and show you how all the nuts and bolts of this framework come together to
enable you to rapidly develop client-side applications.

I also cover the jQuery UI library, which makes redundant user-interface (UI) tasks on the client side
ridiculously easy and accessible to everyday web developers who might not have much JavaScript pro-
gramming expertise. Have you ever wanted to create an animated accordion effect like the one found
on Apple’s Mac home page at www.apple.com/mac? With jQuery, not only can you create this effect with
your own look and feel, but also it’s dead simple to boot.

Have you ever wondered how websites make virtual pop-up windows using JavaScript, HTML, and CSS?
The jQuery UI library provides the ability to create these pop-up windows and includes the ability to
animate transitions like fading the window on and off, or having it re-size from very small to full sized.
The jQuery UI library gives you the ability to use animations and transitions using JavaScript, markup,
and CSS that you may have thought previously could only have been done with Adobe’s Flash player.

The jQuery framework itself has enjoyed a great deal of mainstream exposure. It has been used by
Google, Dell, Digg, NBC, CBS, Netflix, The Mozilla Foundation, and the popular WordPress and Drupal
PHP frameworks.

jQuery is fast — superfast — and it has a small footprint. It’s only 15 KB, using the compressed and
gzipped version.

27794flast.indd 19 3/16/09 11:33:36 AM

Introduction

xx

jQuery gives you the ability to provide complex, professional, visually driven user interfaces and effects
with very few lines of code. What may have taken other developers days or even weeks to accomplish
can be done with jQuery in just a few hours.

Who This Book Is For
This book is for anyone interested in doing more with less code! You should have a basic understanding
of JavaScript. I review some basic JavaScript programming concepts, such as the Event API, but I do not
go into great detail about the JavaScript language itself. You’ll want to have at least a basic grasp of the
Document Object Model, or DOM, and basic JavaScript programming syntax. Additionally, you’ll need
to know your way around CSS and HTML, since knowledge of those technologies is also assumed. A
complete beginner might be able to grasp what is taking place in the examples in this book but might
not understand certain terminology and programming concepts that would be presented in a beginner’s
JavaScript guide, so if you are a beginner and insist with pressing forward, I recommend doing so with a
beginning JavaScript book on hand as well. Specifically, I recommend the following Wrox books for
more help with the basics:

Beginning Web Programming with HTML, XHTML, and CSS ❑ , 2nd ed. (2008), by Jon Duckett

Beginning CSS: Cascading Style Sheets for Web Design ❑ , 2nd ed. (2007), also written by yours truly.

Beginning JavaScript ❑ , 3rd ed. (2007), by Paul Wilton and Jeremy McPeak

For further knowledge of JavaScript above and beyond what is covered in this book, I recommend
Professional JavaScript for Web Developers, 2nd ed. (2009), by Nicholas C. Zakas.

What This Book Covers
This book covers the jQuery JavaScript framework and the jQuery UI JavaScript framework and demon-
strates in great detail how to use the jQuery framework to get more results more quickly out of JavaScript
programming. I cover each method exposed by jQuery’s API, which contains methods to make common,
redundant tasks go much more quickly in less code. Some examples are methods that help you to select
elements from a markup document through the DOM and methods that help you to traverse through
those selections and filter them using jQuery’s fine-grained controls. This makes working with the DOM
easier and more effortless. I also cover how jQuery eliminates certain cross-browser, cross-platform devel-
opment headaches like the event model; not only does it eliminate these headaches, but it also makes it
easier to work with events by reducing the amount of code that you need to write to attach events. It even
gives you the ability to simulate events.

Later in the book, I cover how you can leverage the jQuery UI library to make graphically driven UI
widgets. jQuery gives you the ability to break content up among multiple tabs in the same page. You
have the ability to customize the look and feel of the tabs, and even to create a polished look and feel by
providing different effects that come in when you mouse over tabs and click on them. The jQuery UI
library also makes it easy to create accordion sidebars, like the one on Apple’s Mac website. These side-
bars have two or more panels, and when you mouse over an item, one pane transitions to another via a
smooth, seamless animation wherein the preceding pane collapses and the proceeding pane expands.

27794flast.indd 20 3/16/09 11:33:36 AM

Introduction

xxi

The jQuery UI library also gives you the ability to make any element draggable with the mouse; by click-
ing and holding and moving the mouse, you can move elements around on a page. It also makes it really
easy to create drag-and-drop user interfaces. This can be used to make a dropping zone where you take
elements from other parts of the page and drop them in another, as you would in your operating sys-
tem’s file manager when you want to move a folder from one place to another. You can also make lists
that are sortable via drag-and-drop, rearranging elements based on where you drop them. You can also
have a user interface where you drag the mouse cursor to make a selection, as you would in your oper-
ating system’s file manager when you want to select more than one file. Then jQuery UI also exposes the
ability to re-size elements on a page using the mouse. All of those neat things that you can do on your
computer’s desktop, you can also do in a web browser with jQuery UI.

jQuery UI also provides a widget for entering a date into a field using a nice, accessible JavaScript-
driven calendar that pops up when you click on an input field.

You can also make custom pop-up dialogues that are like virtual pop-up windows, except they don’t
open a separate browser window — they come up using markup, CSS, and JavaScript.

Another widget that jQuery UI provides is a graphical slider bar, similar to your media player’s volume
control.

As jQuery has done for JavaScript programming in general, jQuery UI strives to do for redundant
graphical user interface (GUI) tasks. jQuery UI gives you the ability to make professional user-interface
widgets with much less development effort.

If you’re interested in reading news about jQuery, how it’s evolving, and topics related to web develop-
ment, you may be interested in reading the official jQuery blog at blog.jquery.com, or jQuery’s creator,
John Resig’s blog, at www.ejohn.org.

If you are in need of help, you can participate in programming discussion at p2p.wrox.com, which
you can join for free to ask programming questions in moderated forums. There are also program-
ming forums provided by the jQuery community, which you can learn more about at
http://docs.jquery.com/Discussion.

Finally, I maintain a blog and website at www.deadmarshes.com, where you can contact me directly with
your thoughts about the book or read about the web development projects I’m working on.

How This Book Is Structured
This book is divided into two parts: The first half of the book covers the basic API exposed by the jQuery
library, and the second half covers the jQuery UI library.

Part 1: jQuery API
Chapter 1: Introduction to jQuery ❑ — In this first chapter, I discuss a little of where jQuery came
from and why it was needed. Then I walk you through downloading and creating your first
jQuery-enabled JavaScript.

27794flast.indd 21 3/16/09 11:33:36 AM

Introduction

xxii

Chapter 2: Selecting and Filtering ❑ — This chapter introduces jQuery’s selector engine, which
uses selectors like you will have used with CSS to make selections from the DOM. Then I talk
about the various methods that jQuery exposes for working with a selection, to give you fine-
grained control over what elements you’re working with from the DOM. I talk about methods
that let you select, ancestor elements, parent elements, sibling elements, descendent elements,
how to remove elements from a selection, how to add elements to a selection, and how to
reduce a selection to a specific subset of elements.

Chapter 3: Events ❑ — In this chapter, I begin by reviewing the event model as you find it in plain-
vanilla JavaScript. You have the traditional event model, the W3C’s event model, and Microsoft’s
event model. I discuss the differences between these and why jQuery needed an entirely new
Event API to make the situation easier for web developers. Then I present jQuery’s Event API
and how you use it.

Chapter 4: Manipulating Content and Attributes ❑ — In Chapter 4, you learn how to use the
methods that jQuery exposes for working with content, text and HTML, and element attributes.
jQuery provides methods for doing just about everything you’d want to do to an element.

Chapter 5: Arrays and Iteration ❑ — In Chapter 5, I talk about how you can enumerate over a
selection of elements or an array using jQuery. As with everything else, jQuery provides an eas-
ier way that requires fewer lines of code to loop over the contents of an array or a selection of
elements from the DOM.

Chapter 6: CSS ❑ — In this chapter, you learn about the methods that jQuery exposes for working
with CSS properties and declarations. jQuery provides intuitive and versatile methods that let
you manipulate CSS in a variety of ways.

Chapter 7: AJAX ❑ — Chapter 7 elaborates on the methods that jQuery exposes for making AJAX
requests from a server, which allows you to request server content without working directly
with the XMLHttpRequest object and supports handling server responses in a variety of formats.

Chapter 8: Effects ❑ — In Chapter 8, I discuss some helper methods that jQuery exposes for dis-
covering what browser and browser version you’re working with, whether you’re working with
a browser that supports the standard W3C box model for CSS, and a variety of odds and ends
methods for working with objects, arrays, functions, and strings.

Chapter 9: Plugins ❑ — In this chapter, I describe how you can make your own plugins for jQuery.

Part II: jQuery UI
Chapter 10: Implementing Drag-and-Drop ❑ — In Chapter 10, I begin my coverage of the jQuery
UI library by discussing how you make individual elements draggable and how you make a
drag-and-drop interface where you take one element and place it on top of another to create a
complete drag-and-drop sequence.

Chapter 11: Drag-and-Drop Sorting ❑ — In Chapter 11, I discuss how you make lists sortable
using drag-and-drop.

Chapter 12: Selection by Drawing a Box ❑ — In Chapter 12, I cover the portion of the jQuery UI
library that lets you make a selection by drawing a box with your mouse, just like you would do
in your OS’s file management application.

Chapter 13: Accordion UI ❑ — In this chapter, I discuss how to make a really neat, polished-looking
sidebar that has panes that transition like an accordion. When you mouse over an element, one
pane collapses via a slick animation, and another one expands, also via an animation.

27794flast.indd 22 3/16/09 11:33:36 AM

Introduction

xxiii

Chapter 14: Datepicker ❑ — In Chapter 14, I cover how you make a standard form input field
into a Datepicker, using jQuery’s Datepicker widget.

Chapter 15: Dialogs ❑ — In Chapter 15, I talk about how you create virtual pop-up windows,
using the jQuery UI library, that look and act like real pop-up windows but are entirely con-
tained in the same web page that launches them and are built using pure markup, CSS, and
JavaScript.

Chapter 16: Tabs ❑ — In Chapter 16, I discuss the jQuery UI tab component, which allows you to
take a document and split it into several tabs and navigate between those tabs without needing
to load another page.

Appendixes ❑ — Appendix A contains the answers to chapter exercises. Appendix B through
Appendix S contain reference materials for jQuery and jQuery UI.

What You Need to Use This Book
To make use of the examples in this book, you need the following:

Several Internet browsers to test your web pages ❑

Text-editing software or your favorite IDE ❑

Designing content for websites requires being able to reach more than one type of audience. Some of
your audience may be using different operating systems or different browsers other than those you have
installed on your computer. This book focuses on the most popular browsers available at the time of this
writing as supported:

Microsoft Internet Explorer 6 or newer for Windows ❑

Safari for Mac OS X, version 2 or newer ❑

Mozilla Firefox for Mac OS X, Windows, or Linux ❑

Opera for Mac OS X, Windows and Linux, version 9 or newer ❑

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book.

First, be aware that not all the figures referenced in the text actually appear in print. This means, for
example, that the screenshots that actually do appear in a chapter might not be numbered in strict
sequence. For example, if you look only at the screenshots in Chapter 3, the first is Figure 3-1, and the
second is Figure 3-3. There is a reference to Figure 3-2 in the text, but the actual screenshot is not printed.
These “missing” screenshots aren’t really missing, though — they are generated by the code download.
It’s just that for all intents and purposes, they are identical to the screenshots that are printed before or
after them and are therefore not needed in the text.

27794flast.indd 23 3/16/09 11:33:36 AM

Introduction

xxiv

Try It Out
The Try It Out is an exercise you should work through, following the text in the book.

 1. It usually consists of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We ❑ highlight with italics new terms and important words when we introduce them.

We show keyboard strokes like this: ❑ Ctrl+A.

We show URLs and code within the text like so: ❑ persistence.properties.

We present code in the following way: ❑

We use a monofont type with no highlighting for most code examples.

Also, Visual Studio’s code editor provides a rich color scheme to indicate various parts of code syntax.
That’s a great tool to help you learn language features in the editor and to help prevent mistakes as you
code. To reinforce Visual Studio’s colors, the code listings in this book are colorized using colors similar
to what you would see on screen in Visual Studio working with the book’s code. In order to optimize
print clarity, some colors have a slightly different hue in print from what you see on screen. But all of
the colors for the code in this book should be close enough to the default Visual Studio colors to give
you an accurate representation of the colors.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click on the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-22779-4.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

27794flast.indd 24 3/16/09 11:33:36 AM

Introduction

xxv

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the Book Search Results page, click on the Errata link. On this page, you can
view all errata that have been submitted for this book and posted by Wrox editors.

A complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click on the Errata Form link and complete the form to
send us the error you have found. We’ll check the information and, if appropriate, post a message to the
book’s Errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find several different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click on the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages,
you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click on the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

27794flast.indd 25 3/16/09 11:33:36 AM

Part I

jQuery API

Chapter 1: Introduction to jQuery

Chapter 2: Selecting and Filtering

Chapter 3: Events

Chapter 4: Manipulating Content and Attributes

Chapter 5: Arrays and Iteration

Chapter 6: CSS

Chapter 7: AJAX

Chapter 8: Effects

Chapter 9: Plugins

1
Introduction to jQuery

JavaScript frameworks have arisen as necessary and useful companions for client-side web devel-
opment. Without JavaScript frameworks, client-side programming becomes a crater-filled mine-
field of cross-browser, cross-platform inconsistencies and idiosyncrasies. JavaScript frameworks
pave over those craters and inconsistencies to create a seamless, enjoyable client-side program-
ming experience.

The most important hole filled by a JavaScript framework is inconsistencies between Internet
Explorer’s and the W3C’s standard Event APIs. jQuery fills in this hole by making a cross-browser
Event API that is very similar to the W3C’s, adding some original helpful extensions of its own.

Another hole filled by most of the popular client-side JavaScript frameworks is the ability to select
and traverse through nodes in the Document Object Model (DOM) using more than the very reme-
dial selection and traversal APIs that are provided by browsers’ default DOM implementations.

jQuery provides a selection mechanism that uses selector syntax like that used in cascading style
sheets. However, not content to support only the standard selectors supported in CSS and even
the new Selectors API implementations supported by WebKit and Internet Explorer 8, jQuery
again extends the standard to support new, innovative, and useful selectors that make sense
when using selectors to select DOM nodes.

In a nutshell, jQuery reduces significantly the amount of JavaScript programming and Q/A (qual-
ity assurance) you have to undertake. It takes what might take several lines of code to write, and
more often than not reduces that to just one or a few lines of code. jQuery makes your JavaScript
more intuitive and easier to understand. jQuery takes JavaScript programming (which at one time
had a higher barrier of entry due to complexity and cross-browser, cross-platform idiosyncrasies)
and makes it easier and more attractive to average web developers.

Throughout this book, I will discuss jQuery’s Application Programming Interface, or API. We’ll
look in depth and up close at each little bit of programming syntax that enables jQuery to do what
it does. With each new bit, I also provide simple, to-the-point examples that demonstrate how that
bit works. I show you how to write JavaScript applications using jQuery, and by the end of this
book, you too will be able to create Web 2.0 applications that function seamlessly across multiple
browsers and platforms.

4

Part I: jQuery API

In this chapter, I begin discussion of jQuery by introducing what you get out of jQuery, who develops
jQuery, how you obtain jQuery, and how you install jQuery and test that it is ready to use.

As I mentioned in the Introduction, I do not assume that you are a JavaScript expert in this book, but I
do assume that you are familiar with basic JavaScript concepts, such as the DOM and attaching events.
I will do my best to keep examples simple and to the point and avoid layering on thick programming
jargon.

What Does jQuery Do for Me?
jQuery makes many tasks easier. Its simplistic, comprehensive API has the ability to completely change
the way you write JavaScript, with the aim of consolidating and eliminating as many common and
redundant tasks as possible. jQuery really shines in the following areas:

jQuery makes iterating and traversing the DOM much easier via its various built-in methods for ❑

doing the same.

jQuery makes selecting items from the DOM easier via its sophisticated, built-in ability to use ❑

selectors, just like you would use in CSS.

jQuery makes it really easy to add your own custom methods via its simple-to-understand ❑

plug-in architecture.

jQuery helps reduce redundancy in navigation and UI functionality, like tabs, CSS and markup- ❑

based pop-up dialogues, animations, and transitions, and lots of other things.

jQuery won’t do your laundry, walk the dog, or broker world peace (yet), but it does bring a lot to the
table in terms of making client-side website development easier.

Is jQuery the only JavaScript framework? — no, certainly not. You can pick from several JavaScript
frameworks: base2, Yahoo UI, Prototype, SproutCore, Dojo, and so on. I picked jQuery for this book
simply because I enjoy its simplicity and lack of verbosity. On the other hand, among the other frame-
works, you’ll find that there is a lot of similarity and each provides its own advantages in terms of uni-
fying Event APIs, providing sophisticated selector and traversal implementations, and providing
simple interfaces for redundant JavaScript-driven UI tasks.

In the past, I’ve been a big fan of base2, simply for its commitment to supporting W3C-sanctioned and
de facto standard APIs seamlessly. But I have decided to focus on jQuery exclusively and exhaustively
for this book because I think its popularity merits comprehensive coverage, which I’m able to present in
a way that is more befitting novice programmers.

In a nutshell, jQuery blurs and even erases lines in some places that existed as barriers for true cross-
browser, cross-platform development. It gives you a standard Event API, a standard Selectors API, use-
ful traversal and enumeration methods, and a very useful UI library that work across the board in
Internet Explorer, Safari, Firefox, and Opera on Windows, Mac, and Linux platforms.

That’s not to say that you won’t ever encounter cross-browser issues with your programs, but jQuery
makes it much less likely and eliminates a hefty chunk of compatibility issues.

5

Chapter 1: Introduction to jQuery

Who Develops jQuery?
I won’t spend a lot of time talking about the history of JavaScript frameworks, why they exist, and so on.
I prefer to get straight to the point. That said, a brief mention of the people involved with developing
jQuery is in order.

jQuery’s lead developer and creator is John Resig, whose website is located at www.ejohn.org. John
resides in Boston, Massachusetts and is a JavaScript Evangelist for the Mozilla Corporation.

There are also several other people who have contributed to jQuery and continue to assist with its
development. You can learn more about these people and what roles they played in jQuery’s develop-
ment at http://docs.jquery.com/About/Contributors.

Obtaining jQuery
jQuery is a free, Open Source JavaScript Framework. The current stable, production release version, as
of this writing, is 1.2.6. I use version 1.2.6 throughout the course of this book. Getting jQuery is easy —
all you have to do is go to www.jquery.com and click on the “Download” link. You’ll see three options
for downloading: a packed and gzipped version, an uncompressed version, and a packed version; these
all refer to the same jQuery script. Download “uncompressed” if you want to be able to look at jQuery’s
source code. Download “packed” if you, for whatever reason, are unable to use gzip compression. The
packed version is the same JavaScript code minus all comments, white space, and line breaks. Otherwise,
for the best possible download performance, the packed and gzipped version is the best.

Installing jQuery
Throughout this book, I will refer to the jQuery script as though it is installed at the following path:
www.example.com/Library/jquery/jquery.js.

Therefore, if I were using the domain example.com, jQuery would have this path from the document
root, /Source Code/jquery/jquery.js. You do not have to install jQuery at this exact path.

The following “Try It Out” assists you with installing jQuery by giving you an alternative dialogue
when the script is properly installed.

Try It Out Installing and Testing jQuery

Example 1-1
To install and test jQuery, follow these steps.

 1. Download the jQuery script from www.jquery.com. Alternatively, I have also provided the jQuery
script in this book’s source code download materials available for free from www.wrox.com.

 2. Enter the following XHTML document, and save the document as Example 1-1.html. Adjust your
path to jQuery appropriately; the path that I use reflects the path needed for the example to

6

Part I: jQuery API

work when opened in a browser via the source code materials download made available for
this book from www.wrox.com.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/2002/REC-xhtml1-20020801/DTD/xhtml1-transitional.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Link</title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 1-1.js’></script>
 <link type=’text/css’ href=’Example 1-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 jQuery is not loaded.
 </p>
 </body>
</html>

 3. Enter the following JavaScript document, and save the document as Example 1-1.js:

if ($) {
 $(document).ready(
 function() {
 $(‘p’).addClass(‘tmpFrameworkLoaded’);
 $(‘p’).text(‘jQuery successfully loaded and running!’);
 }
);
}

 4. Enter the following CSS document, and save the document as Example 1-1.css:

body {
 font: 16px sans-serif;
}
p {
 color: red;
 border: 1px solid red;
 padding: 5px;
 margin: 5px;
}
p.tmpFrameworkLoaded {
 color: green;
 border: 1px solid green;
}

The preceding code results in the screenshot that you see in Figure 1-1, if the installation was unsuc-
cessful; and the screenshot in Figure 1-2, if the installation was successful.

7

Chapter 1: Introduction to jQuery

Figure 1-1

Figure 1-2

In the preceding example, you installed and tested your installation of the jQuery framework. The
XHTML document references a style sheet and a test JavaScript. The XHTML document contains just a
single <p> element that contains the text “jQuery is not loaded.” The style sheet has a rule that makes
that text red with a red border around the <p> element.

The JavaScript that you included first looks for the jQuery object, which is contained in a single dollar
sign. That one dollar sign contains all of jQuery’s functionality, which makes jQuery statements really
short. If that’s too short for you, you can also substitute “jQuery” for the dollar sign, which would have
made that JavaScript example look like this:

if (jQuery) {
 jQuery(document).ready(
 function() {
 jQuery(‘p’).addClass(‘tmpFrameworkLoaded’);
 jQuery(‘p’).text(‘jQuery successfully loaded and running!’);
 }
);
}

8

Part I: jQuery API

An event is attached to jQuery’s ready event, which is executed as soon as the DOM is fully loaded, or
all markup content, JavaScript and CSS, but not images. In old-time JavaScript, you would have made
your JavaScript execute at page load, or the onload event. The onload event can be much slower, how-
ever, since it waits for all content and images to load before executing, instead of just content.

With an event attached to the ready event, you’re ready to do something with the document. In this
case, once the document is loaded, jQuery selects the <p> element and gives it the class name
tmpFramework Loaded. Then jQuery selects the <p> element again and changes its text content to say
“jQuery successfully loaded and running!” The addition of the class name results in the <p> element
having green text with a green border around the element.

The preceding is a pretty simple, cut-and-dry test of jQuery’s existence, and with this simple example,
you see a huge difference with traditional, framework-less JavaScript. Without the jQuery framework,
this is what the preceding example would have looked like:

window.onload = function() {
 var $p = document.getElementsByTagName(‘p’)[0];

 $p.className = ‘tmpFrameworkLoaded’;

 if ($p.innerText) {
 $p.innerText = ‘jQuery successfully loaded and running!’;
 } else {
 $p.textContent = ‘jQuery successfully loaded and running!’;
 }
};

Programming Conventions
In web development, it’s common for professional web designers, web developers — and anyone with
a job title whose day-to-day activities encompass the maintenance of source code — to adopt standards
and conventions with regard to how the source code is written. Standardization bodies like the W3C, who
define the languages that you use to create websites, already decide on some standards for you. Some
standards are not written, but are rather de facto standards. De facto standards are standards that have
become accepted throughout the industry, despite not appearing in any official document developed by
a standards organization.

Throughout this book, I talk about standards, de facto and official, and how to develop and design web-
based documents and even web-based applications that take those standards into account. For example,
I talk extensively about how to separate behavior (JavaScript) from presentation (CSS) and structure
(XHTML). JavaScript written in this way is commonly referred to as non-intrusive JavaScript — it’s non-
intrusive because it supplements the content of a web document, and, were it turned off, the document
would still be functional. CSS is used to handle all the presentational aspects of the document. And the
structure of the document lives in semantically written XHTML. XHTML that is semantically written is
organized meaningfully with the right markup elements and contains very little, if any at all, presenta-
tional components directly in the markup.

9

Chapter 1: Introduction to jQuery

In addition to standards, I discuss how to develop web-based documents, taking into account different
browser inconsistencies, discrepancies, and idiosyncrasies. There is some interactive functionality that
nearly every browser handles differently; in those situations, other web professionals have already pio-
neered de facto standards that are used to bring all browsers into accord. The idea of a JavaScript foun-
dational framework has become more popular and increasingly a dependency for so-called Web 2.0
applications, like the ones you’ll learn to develop using the jQuery framework.

Before I begin the discussion of jQuery, in the coming sections, I provide a generalized overview of pro-
gramming conventions and good practice that should be followed.

XHTML and CSS Conventions
It’s important that your web documents be well-organized, cleanly written, and appropriately named
and stored. This requires discipline and even an obsessive attention to the tiniest of details.

The following is a list of rules to abide by when creating XHTML and CSS documents:

Catch errors in XHTML and CSS. ❑

When selecting ID and Class names, make sure that they are descriptive and are contained in a ❑

namespace. You never know when you might need to combine one project with another — name-
spaces will help you to prevent conflicts.

When defining CSS, avoid using generic type selectors. Make your CSS more specific. This will ❑

also help with preventing conflicts.

Organize your files in a coherent manner. Group files from the same project in the same folder; ❑

separate multiple projects with multiple folders. Avoid creating huge file dumps that make it
difficult to locate and associate files.

Avoid inaccessible markup. Stay away from frames, where possible. Organize your markup ❑

using semantically appropriate elements. Place paragraphs in <p> elements. Place lists in
or elements. Use <h1> through <h6> for headings, and so on.

If you are able to, also consider the loading efficiency of your documents. For development, use ❑

small, modularized files organized by the component; combine and compress those modular-
ized files for a live production site.

In the following sections, I present some examples of why the preceding list of rules is important.

Catching Errors in XHTML and CSS
There are certain times when you won’t be able to easily spot markup or style errors. More often than
not, getting into a routine of indenting and spacing markup documents and style sheets will make it
much easier to spot errors during the initial development of a document, and much easier to perform
ongoing maintenance. However, neat and tidy development of a document isn’t always an option.
Maybe you’ve inherited an old content management system or have to deal with some other piece of
software that generates your source code for you. Next I’ll talk about what you can do to more easily
detect and repair errors.

10

Part I: jQuery API

Markup Errors in XHTML and HTML
Markup errors typically come about from simple human error. You may forget to type in a closing tag
for an element. You may forget to encode certain special characters. You may use an ID name more than
once in a document by mistake.

If a web document contains errors, the browser may carry on as if everything is just fine and dandy,
and it may not be obvious that it contains errors. Some errors go undetected because browsers are
designed to handle errors in HTML as they are found. The browser decides what to do with an error
when it comes to it and then simply moves on with processing the HTML document. (For example, it
may be able to guess where a closing tag is supposed to be.) When an error is found, the browser tries
to continue on and display a document to the end-user, and more often than not, it succeeds.

In some cases, you may notice a visual glitch and see clearly that something is out of place, but it’s also
possible that something not so obvious has been affected by the error. For example, you may try attach-
ing an event with JavaScript, and the event doesn’t fire. You may try manipulating the document with
script by removing or inserting elements and find that the elements aren’t being inserted, or are being
inserted in the wrong place. The effects of markup errors like this are much more subtle. Markup errors
do not appear in your browser’s error console. The only place where a structural markup error will
show up is in a validation of the document using the W3C’s markup validation service located at
http://validator.w3.org.

XHTML, on the other hand, is not forgiving of markup errors, and assuming that the browser properly
supports XHTML, the browser won’t attempt any kind of error correction when it encounters an error
in an XHTML document. One type of markup error that will bring processing to a halt is an incorrectly
specified MIME (Multipurpose Internet Mail Extensions) type.

The MIME standard is used by browsers and Web Servers to facilitate the automatic identification and
handling of files, which is to say that a MIME type is part of what a browser uses to identify the con-
tents of a document. XHTML documents are supposed to be served with an application/xhtml+xml
MIME type. The following is one way of setting the MIME type for an XHTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
 <html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’Content-Type’
 content=’application/xhtml+xml; charset=UTF-8’ />
 </head>
 <body>

In the preceding code example, the XHTML MIME type is set using a <meta /> element that’s included
in the document headers. The http-equiv attribute included in a <meta /> element is used to set HTTP
headers within the markup document itself. In the preceding code example, the Content-Type HTTP
header is being set, which, when supported by the browser, will force the browser to interpret an
XHTML document as application/xhtml+xml, rather than text/html.

An XHTML document properly served with the application/xhtml+xml MIME type with markup errors
like mismatched tags, or missing tags, or any markup error of any kind will result in what’s commonly
called the XML yellow screen of death (YSOD). The name yellow screen of death was coined because Mozilla’s
(and later, Firefox’s) XML error messages appear against a yellow background, and XML error messages

11

Chapter 1: Introduction to jQuery

prevent the display of the document, which prevents the user from seeing a web page, hence the “death”
part. Of course, the XML/XHTML error message isn’t yellow in every browser, but the point is that, in
properly served XHTML, one error could make a document unviewable by the end-user.

The yellow screen of death is also related to another error message, the blue screen of death, which, of
course, is the de facto name for error messages in the Windows Operating System that result in a complete
system crash — at the time of the crash, an error message with white lettering on a blue screen is seen.

XHTML 1.0 documents are not typically served with the correct, intended MIME
type. Rather, they are usually served as an HTML document — which isn’t techni-
cally illegal, as long as they are XHTML 1.0 documents. XHTML 1.1, on the other
hand, must be served as application/xhtml+xml.

It’s a good idea, if you’re going the XHTML route, to properly serve the document with the
application/xhtml+xml MIME type. Setting the XHTML MIME type is the best, most compatible
approach, since browsers like IE that don’t understand the XHTML MIME type will carry on and inter-
pret the document as plain-old HTML, while Firefox, Safari, and the like will correctly interpret the
XHTML document. If errors are present, these browsers won’t show a rendered document but, rather,
will show an error message complaining that something is awry in the document.

If you’re going the XHTML route, keeping the document neat becomes a matter of keeping the document
maintainable, and thus a matter of personal preference. Typically, dynamic websites strip the markup
source of excess white space in order to reduce the size of the document for performance advantages,
and even in the age of ubiquitous broadband connections, it’s still a good idea to optimize a document
for very slow dial-up connections, which are still in widespread use in rural areas. Dynamic websites
typically also have the best of both worlds in place. That is to say, on a pre-production server, the website
may serve uncompressed markup, while on a production server, the website serves compressed markup.

For your own sanity as a programmer, I strongly recommend that you maintain neat and organized
markup, check your markup documents for validation errors using the W3C validation service, and
consider using XHTML. Ultimately, however, XHTML or HTML is a matter of personal preference.
Both are perfectly acceptable Internet standards for the creation of web documents. The examples in
this book use the XHTML standard — however, these examples will work equally well with the HTML
standard.

Errors in CSS
Errors in style sheets usually make themselves known by not displaying the style you applied.

However, errors in CSS can also be more subtle and difficult to spot. To catch errors in CSS, I recom-
mend one of the two following approaches:

Use Mozilla Firefox (or another browser that reports CSS errors), and look for CSS errors in the ❑

browser’s Error Console. In Firefox, that’s located in Tools?Error Console.

Use the W3C’s CSS validation service at ❑ http://jigsaw.w3.org/css-validator.

Either of these solutions will assist you in locating and extinguishing style-sheet errors.

12

Part I: jQuery API

It’s also good practice to get into the habit of writing neat and organized CSS. Indent your style sheets
with white space, and use line breaks to make the style sheets more maintainable. The browser doesn’t
care what your style sheet looks like, as long as the basic syntax is correct. You may add or remove
white space to your heart’s content.

I continue to revisit the topics of neat and organized source code throughout this book by way of example.

ID and Class Naming Conventions
Most web developers don’t think too much about the topics of namespacing and naming conventions.
Naming conventions are just as important in your markup ID and class names as namespacing is impor-
tant in programming languages.

First, what is namespacing, and why do you need to do it? Namespacing is the concept of making your
programs, source code, and so on tailored to a particular naming convention, in an effort to make your
programs more portable and more capable of living in diverse, foreign programming environments. In
other words, if you want to be able to directly insert a web application into your document, you want to
be sure that the class and ID names, style sheets and script, and all the bits that make your web applica-
tion what it is do not conflict with any applications that are already present in the document. Your appli-
cations should be fully self-contained and self-sufficient and not collide or conflict with any elements
already present in a document.

What are some common ID names that people use in style sheets? Think first about what the typical
components of a web application are. There’s a body. There may be one or more columns. There may be
a header and a footer, and there are lots of components that can potentially be identified as generic,
redundant pieces that all web applications may have. Then, it stands to reason that plenty of websites
are probably using ID and class names like body, header, footer, column, left, right, and the like. If you
name an element with the ID or class name body, you have a very good chance of conflicting with an
overwhelming majority of websites in existence today. To avoid this type of conflict, it’s considered
good practice to prefix ID and class names within a web application to avoid conflicts and namespace
collisions. If you write an application called tagger, you might namespace that application by prefixing
all of your ID and class names with the word tagger. For example, you might have taggerBody, tagger Header,
taggerFooter, and so on. It may be possible, however, that someone has already written an application
called tagger. To be safe, you might do a Web search on the name you’ve chosen for your application to
make sure that no one’s already using that name. Typically, simply prefixing your ID and class names
with your application’s name is enough.

Additionally, it also helps to prefix ID and class names with type selectors in style sheets. Type selectors
help you narrow down what to look for when modifying or maintaining a document. For example, the
ID selector #thisID is ambiguous. You don’t know what kind of element thisID is, and thus would likely
have to scan the entire document to find it. But div#thisID is more specific. By including the div in the
selector, you instantly know you’re looking for a <div> element. Including the type in the selector also
helps you in another way: When dealing with class names, you can have the same class name applied to
different types of elements. While I may not condone that as good practice, at least in the style sheet, you
can control which element gets which style. span.someClass and div.someClass are selectors that dif-
ferentiate style based on the type of element, whereas .someClass is more ambiguous and applies to
any element.

ID and class names should also be descriptive of their purpose in a semantically meaningful way.
Keep in mind that an ID name can potentially be used in a URL as an HTML anchor. Which is better:

13

Chapter 1: Introduction to jQuery

www.example.com/index.html#left or www.example.com/index.html#exRelatedDocuments? The lat-
ter ID anchor is namespaced ex for example.com, and RelatedDocuments is the name of the element;
thus, the latter URL includes more information about what purpose the element serves and greatly
increases the maintainability of the document in a very intuitive way. Additionally, the latter has more
benefit in terms of search engine optimization (SEO). The former is too ambiguous and won’t provide
much in the way of SEO. Think of each of your ID and class names as though it is part of the URL of
your document. Give each ID and class name that you create semantic names that convey meaning and
purpose.

Generic Type Selectors
Generic type selectors are style-sheet rules that look something like this:

a {
 color: #29629E;
}

In the preceding style-sheet rule, you see what’s probably a pretty common scenario, changing the color
of every link in a document via a generic type selector that refers to all <a> elements. Generic type selec-
tors should be avoided for the same reason that it is good to namespace ID and class names within a
document, avoiding conflicts when multiple scripts or style sheets are combined in the same document.
Instead, it’s best practice to apply ID or class names to these elements, or at the very least, place them in
a container that has an ID or class name, and only use descendent selectors when referencing those ele-
ments via a style sheet.

div#tmpBanner a {
 color: #29629E;
}

The preceding example avoids the pitfalls introduced by using a blanket, generic selector style-sheet
rule by limiting the scope of the style-sheet rule’s application. Now, only <a> elements that are descen-
dants of a <div> with the ID name tmpBanner will receive the declaration color: #29629E;.

Storing and Organizing Files
How files are organized and stored is important to the maintainability of a document. You should main-
tain your documents in an easy-to-understand, easy-to-learn directory hierarchy. Different people have
different approaches to storing and organizing files, obviously. What matters is that there is an organiza-
tion scheme, rather than none at all. Some choose to store documents by type and then separate them by
application, while others prefer to separate by application first, then sort by type.

Avoid Making Documents Inaccessible
Accessibility is also an important factor to consider in the design of a web document. You should do
your best to make your JavaScript non-intrusive, but also avoid taking away a document’s accessibility
by either script or markup.

Avoid using frames. ❑

Limit the number of images to those that actually contribute to the content of a document (as ❑

opposed to the design). Try to contain as much of the design as possible in CSS background

14

Part I: jQuery API

images, and keep images that contribute to the content in elements. Be sure to include
alt attributes that describe the image for each element.

Place content in semantically appropriate markup containers — use ❑ <p> for paragraphs, <h1>
through <h6> for headings, for example.

Make the design high contrast. Imagine what the document would look like in black and white ❑

through the eyes of someone with poor vision. Can you easily read the content?

Avoid wandering too far away from established user-interface conventions. Can you distinguish ❑

hyperlinks from normal content?

Make the content keyboard-accessible. Can you navigate without a pointing device? ❑

Make the content unobtrusive. Can you use the website without flash and JavaScript functional- ❑

ity? JavaScript and flash should enhance web content in a complementary way, not be a
requirement.

Avoid placing a large number of links at the beginning of every document. If you were listening ❑

to the content being read to you, rather than seeing it visually, would the experience be enjoyable?

Accessibility should be practiced to the point of becoming an automatic reflex. It should be cemented in
your development practices in a fundamental way in the same way that namespacing, file organization,
and validation are; but while other best practices can become second nature easily, it’s also very easy to
get into the habit of ignoring accessibility, so a conscious effort must be made to periodically review
accessibility and ingrain accessibility in the development process.

Efficiency in Markup and CSS
Markup and CSS in a complex website can easily become large and bloated and drag down overall load-
ing and execution times more and more. This can become particularly troublesome as the overall popu-
larity of a site increases. As the complexity of a website increases, it becomes necessary to look into ways
of streamlining the content. It’s best to limit the number of external files being loaded, but all CSS and
JavaScript should be included in at least one external file. Were JavaScript and CSS included directly in a
document, the initial loading time would improve, but you’d also lose the advantage of caching JavaScript
and CSS on the client side.

For the best of the best in efficiency, combine the following concepts:

Server-side gzip compression ❑

Client-side caching ❑

Automatic compression of markup content ❑

Automatic compression and consolidation of multiple CSS and JavaScript files ❑

When the preceding items are combined, you make the loading times of a web document the best pos-
sible; however, there are some caveats to consider that may at first seem contradictory:

Maintainable markup should be written in a neat and organized manner. It should be well- ❑

spaced and indented and contain line breaks where appropriate.

Good programming practice means modularized development, so break up your CSS and ❑

JavaScript by component and application. Make small, easy-to-digest chunks. This will speed
up your ability to maintain and extend projects.

15

Chapter 1: Introduction to jQuery

Client-side caching can lead to headaches when updates are made to CSS or script files. ❑

Browsers will continue to use the old version of the CSS and script files after an update is made,
when caching is working correctly.

The good news is, all of the preceding caveats can be overcome. The bad news is, it’s not particularly
easy to overcome them.

The best way to implement efficiency in markup, JavaScript, and CSS documents is to make the effi-
ciency automatic. That is to say, write server-side applications that handle efficiency tasks for you. A
well-designed professional content management system will work out those bits for you. It will allow
you to make your JavaScript, markup, and CSS documents modularized, and separate them based on
the task each is designed to perform, but automatically combine and compress those documents for you.

Unfortunately, not everyone can use a professional content management system to serve their content.
For those individuals, there are some compromises to be made:

JavaScript and CSS can be hand-compressed using a web-based utility like Dean Edwards’s ❑

packer, http://dean.edwards.name/packer. Development can continue to be modularized,
and the compression and consolidation portion of development simply becomes a manual task.

You can limit the amount of white space you use in a document. Indent content with two spaces ❑

instead of four.

Overcoming the headaches with document caching, on the other hand, is a much easier task. You can
force a browser to update a document by changing its path. For example, say you have the following
script included in your markup:

<script src=’/script/my.js’ type=’text/javascript’></script>

You change the path from /script/my.js to /script/my.js?lastModified=09/16/07. The latter references the
same, my.js, but is technically a different path to the browser and, consequently, will force the browser
into refreshing its cached copy of the document. The ?lastModified=09/16/07 portion of the path is what’s
called the query string portion of the path. The query string begins with a question mark and then con-
tains one or more query string variables. Query string variables are used by a server-side programming
language or client-side JavaScript to pass information from one document to another. In this example,
there is no information being passed per se. You’re including the time of the last modification, although
I could have just as easily included the revision, or even a random string of characters. The inclusion of
a query string in this example has only one purpose: to force the browser into refreshing the cached
version of the document.

The same can be done with CSS:

<link type=’text/css’ rel=’stylesheet’ href=’/styles/my.css?lastModified=09/16/07’ />

In the preceding snippet of markup that includes an external CSS document, the query string is used to
force a refresh of the browser’s cached copy of the style sheet my.css.

In the next section, I talk about some conventions specific to JavaScript.

16

Part I: jQuery API

JavaScript Conventions
In JavaScript, there are several things that should be considered bad practice and avoided:

Include All Script in External Documents ❑ — JavaScript code should only be included in exter-
nal script files. Script should not be embedded in markup documents or be included inline,
directly on markup elements.

Write Clean, Consistent Code ❑ — JavaScript code should be neatly formatted and organized in a
consistent, predicable way.

Namespace JavaScript Code ❑ — JavaScript variables, functions, objects, and the like should be
namespaced to minimize potential namespace conflicts and collisions with other JavaScript
applications.

Avoid Browser Detection ❑ — Browser detection should be avoided where possible. Instead,
detect specific browser features.

In the next sections, I present cursory, generalized overviews of each of the preceding concepts.

Include All Script in External Documents
Part of making JavaScript non-obtrusive means making JavaScript complementary and supplemental,
rather than required and mandatory. This concept is explored in detail throughout this book; however,
it should be noted why this is the best approach.

Consider the following code example:

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”vvvvvv
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
 <head>
 <meta http-equiv=”Content-Type”
 content=”application/xhtml+xml; charset=UTF-8”/>
 <title>Inline JavaScript</title>
 <link rel=’stylesheet’ type=’text/css’ href=’style.css’ />
 </head>
 <body>
 <p>

 <a href=’javascript:void(0);’
 onclick=’window.open(
 “pumpkin.jpg”,
 “picture”,
 “scrollbars=no,width=300,height=280,resizable=yes”
);’>Open Picture
 </p>
 </body>
 </html>

Combine the preceding markup with the following style sheet:

 img {
 display: block;

17

Chapter 1: Introduction to jQuery

 margin: 10px auto;
 width: 100px;
 border: 1px solid rgb(128, 128, 128);
 }
 body {
 font: 14px sans-serif;
 }
 p {
 width: 150px;
 text-align: center;
 }

The preceding code gives you something like what you see in Figure 1-1.

In Figure 1-1, you see what is probably a pretty common scenario: You have a thumbnail, and you can
click to see a bigger version of the thumbnail. This is the kind of thing that JavaScript works well for
— giving you the bigger version in a separate pop-up window that doesn’t have any controls.

Now let’s examine why what I did in Figure 1-1 was the wrong way to go about adding this
functionality.

Here are the problems with this approach:

If JavaScript is disabled, viewing the larger picture doesn’t work. ❑

JavaScript can be disabled out of personal preference. ❑

JavaScript can be disabled because of company policy. ❑

JavaScript can be disabled if the end-user is using a handheld device or viewing the site ❑

through any kind of alternative medium.

Search bots may not understand the JavaScript, so Search Engines may not properly index this ❑

content.

Placing the JavaScript directly in the markup document adds unnecessary bloat and complexity ❑

to the markup document.

The overwhelming point in all of this is that inline JavaScript is a really bad way to approach adding
complementary, interactive functionality to a web document.

Here is a better approach to the application presented in Figure 1-1. First, you take the inline JavaScript
out of the markup and replace it with a reference to an externally loaded JavaScript. In the following
example, I’ve named the externally loaded JavaScript thumb.js:

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
 <head>
 <meta http-equiv=”Content-Type”
 content=”application/xhtml+xml; charset=UTF-8”/>
 <title>Inline JavaScript</title>
 <link rel=’stylesheet’ type=’text/css’ href=’style.css’ />
 <script type=’text/javascript’ src=’thumb.js’></script>

18

Part I: jQuery API

 </head>
 <body>
 <p>

 Open Picture
 </p>
 </body>
 </html>

Then in the externally loaded JavaScript you do something like the following:

 window.onload = function()
 {
 var $nodes = document.getElementsByTagName(‘a’);

 for (var $i = 0, $length = $nodes.length; $i < $length; $i++) {
 $nodes[$i].onclick = function($e) {
 window.open(
 this.href,
 “picture”,
 “scrollbars=no,width=300,height=280,resizable=yes”
);

 $e? $e.preventDefault() : (window.event.returnValue = false);
 };
 }
 };

With the preceding bits of code, you get the same results that you saw in Figure 1-1, and an example of
non-obtrusive JavaScript. Non-obtrusive JavaScript provides extended, interactive functionality within
a web document, but does not do so in a way that obstructs using the document in a plain-vanilla man-
ner. That is to say, with JavaScript disabled, you are still able to use the website and get what you need
from it.

In the preceding example, the JavaScript is moved to an external document called thumb.js. thumb.js gets
all <a> elements present in the document with document.getElementsByTagName(‘a’). Each <a> ele-
ment is placed in an array called $nodes, and then a for loop is used to iterate through every <a> element
present in the $nodes variable. This is done by making a counter, variable $i; then the number of <a>
elements is assigned to a variable called $length via the $nodes.length property. Now the for loop will
execute once for every <a> element present, and the variable $i will increment by a count of 1 each time.
When the variable $i contains a count that’s more than the number of <a> elements, execution of the
for loop will end.

Inside the for loop, you have an onclick event that’s assigned to each <a> element present in the $nodes
array. An anonymous function is assigned to the onclick event. When a user clicks on an <a> element,
the anonymous function will be executed. Within the anonymous function, the <a> element’s proper-
ties are available in a special object called this. You see a call to the window.open method; the href prop-
erty of the <a> element is passed as the path to open in the new window (this.href), then the window
name and some window parameters are defined.

So far, the user clicks on an <a> element and gets a pop-up window. You want the window to pop up
instead of initiating the default action that occurs when a user clicks on a link (which is for the browser
to navigate to the document defined in the href attribute of the <a> element). Stopping the default

19

Chapter 1: Introduction to jQuery

action, unfortunately, depends on what browser you’re using. IE has its way, and all the others have a
standard way. The JavaScript code accounts for both in the following line:

 $e? $e.preventDefault() : (window.event.returnValue = false);

The preceding line says that if the variable $e evaluates to a Boolean true value, execute the
prevent Default method of the event object, as in, $e.preventDefault();, otherwise, if $e evaluates
to a false value, evaluate this expression: (window.event.returnValue = false). So if $e is true, use
the standard W3C method for preventing the default action; if $e is false, use Microsoft’s method for
preventing the default action.

In this very simple example, you’ve seen how a really simple example can balloon into something much
more complex. All of the concepts I’ve presented in this example are ones I continue to revisit through-
out this book, but you get a pretty good idea of some of the challenges that non-obtrusive JavaScript
prevents. You run into situations in which one browser has one way of doing things, and another has its
way of doing things, and sometimes all of the popular browsers differ on how to go about accomplish-
ing a given task. Therefore, doing JavaScript the right way often involves quite a bit more thought and
planning. The good thing about this additional thought and planning is that it becomes second nature
once you understand how to account for all of the browser differences. The good news is that there are
people out there looking out for you, and who’ve already braved all the deep, dark corners of browser
inconsistencies, incompatibilities, and lack of common, coherent standards.

At this point, you might be asking yourself, so what are the benefits of going through all of this hassle
to get non-obtrusive, multiplatform JavaScript? I’m glad you asked.

In the preceding example, if JavaScript had been disabled, the end-user could still have clicked ❑

on the link to see a larger version of the thumbnail image. This makes your website much more
accessible.

When JavaScript is included in an externally loaded file, you get a speed boost, since the ❑

JavaScript only has to be loaded once, and from there on is cached by the client browser.

While it takes some planning, the cross-browser inconsistencies and incompatibilities can be ❑

completely overcome.

You can achieve better search rankings, since search engines can now access and see all of your ❑

content.

You’ll appear more hip, all the girls (or guys) will like you, a pretty butterfly will land on your ❑

shoulder, there will be world peace, and so on.

Well, maybe not that last one, but non-obtrusive JavaScript is, simply, A Good Thing™.

Write Clean, Consistent Code
It’s important to follow some predetermined criteria for producing clean, consistent, well-organized
code. In the professional world, most programmers have a particular way they like to see their code for-
matted. Earlier in this section, I talked about how indenting and spacing markup and CSS documents
can help you more easily catch errors in those documents and make those documents more maintain-
able. Well, the same can be applied to JavaScript, although, with JavaScript and other programming lan-
guages, programming conventions are typically much more defined, down to a very fine-grained level
of detail. Here I talk about each of the programming conventions that I follow for writing JavaScript
source code.

20

Part I: jQuery API

Indenting and Line Length
It’s a good idea to indent your code so that it’s easier to read and maintain. Take the following, for
example:

window.onload=function(){var $nodes=document.getElementsByTagName(‘a’);
for(var $i=0,$length=$nodes.length;$i<$length;$i++){$nodes[$i].onclick=function($e){
window.open(this.href,”picture”,”scrollbars=no,width=300,height=280,resizable=yes”);
$e? $e.preventDefault():(window.event.returnValue=false);};}};

In the preceding block of code, you see the contents of thumb.js presented above in this section, format-
ted without any indenting or spacing. Now, imagine that the preceding code is 10,000 lines of code
spread out over many files, all formatted the same way. It’s not a bad idea to reduce spacing for a live,
production script; in fact, many professionals use compression routines specifically for this. But those
same professionals don’t maintain their scripts in the compressed format and often have a rigid pro-
gramming standard to which every script they produce must conform.

A common, fairly universal programming standard is setting the size of an indentation to four spaces,
although some use just two spaces. This is in addition to setting a blanket rule that tabs cannot be used
in place of individual spaces, even though, technically, a tab character results in less bytes added to a
file when compared to four individual space characters. The “no tab” rule exists because of the wide
variance in the interpretation of what a tab character is in text applications. Some text applications say
that a tab character is equal to eight individual spaces. Some text applications say that a tab character is
equal to four individual spaces, while others still let you explicitly define how big a tab character is.
These variances have led to the tab character being unreliable. Most professional integrated developer
environments (IDEs) let you define the [Tab] key on a keyboard as individual spaces, in addition to let-
ting you define how many spaces to insert.

Some examples of IDEs are Adobe Dreamweaver, Zend Studio, and Microsoft Visual Studio: These are
all development environments for either directly writing or generating source code. Additionally, most
IDEs try to guess what you mean when writing a source document, by intelligently adjusting the num-
ber of spaces. For example, when you press [Return] to begin a new line in your source code document,
the IDE can indent the new line with at least as much space as the preceding line. Most IDEs behave
this way by default. Dreamweaver automatically inserts two spaces when you hit the [Tab] key. Zend
Studio can be configured to insert spaces instead of tab characters when you press the [Tab] key.

Throughout this book, I try to use four characters for a [Tab] key, although limited space may sometimes
require that I use two characters. Generally, the professional standard for client-side source code is two
characters, since four characters makes file sizes much larger. I’ve stuck with four because concerns about
file size and bandwidth usage can be addressed by compressing your source code when it’s used on a
production website.

Control Structures
Control structures include programming statements that begin with the keywords if, if else, switch, case,
else, for, while, try, catch, and the like. Control structure programming statements are the building blocks
of any programming language. Let’s see how control structure statements should be formatted with
regard to popular programming standards and guidelines.

21

Chapter 1: Introduction to jQuery

Although, ultimately, different people have different preferences for how to write source code, there are
two prevailing methods for formatting control structures in use by the majority of the professional pro-
gramming community.

The following convention, which is formally called K&R Style, is included in Sun’s Coding Standards
Guidelines for Java:

 if ($condition) {
 $something = 1;
 } else if ($another) {
 $something = 2;
 } else {
 $something = 3;
 }

In the preceding code example, you see that the curly braces and the parentheses are used as markers
for indention.

Compare the preceding to the next convention, which is known as Allman Style, which is the default in
Microsoft Visual Studio:

 if ($condition)
 {
 $something = 1;
 }
 else if ($another)
 {
 $something = 2;
 }
 else
 {
 $something = 3;
 }

In Allman Style, all the curly braces line up in the source code, which makes it easier to detect when
one is missing, in addition to preventing typos like missing curly braces from occurring in the first
place, since you have a visual aid for their placement.

When function calls, like window.open in the example, are very long, sometimes the function call is bro-
ken up over multiple lines to make it easier to read. To the browser,

window.open(
 this.href,
 “picture”,
 “scrollbars=no,width=300,height=280,resizable=yes”
);

and

window.open(this.href, “picture”, “scrollbars=no,width=300,height=280,resizable=yes”);

22

Part I: jQuery API

are exactly the same. The former example just makes it easier for humans to parse the arguments pres-
ent in the function call.

Sometimes these two conventions are mixed to form a third convention, which is known as the One
True Brace convention. This convention is defined in the Coding Standards Guidelines for PHP’s PEAR
repository.

 window.onload = function()
 {
 var $nodes = document.getElementsByTagName(‘a’);

 for (var $i = 0, $length = $nodes.length; $i < $length; $i++) {
 $nodes[$i].onclick = function($e) {
 window.open(
 this.href,
 “picture”,
 “scrollbars=no,width=300,height=280,resizable=yes”
);
 $e? $e.preventDefault() : (window.event.returnValue = false);
 };
 }
 };

In the One True Brace convention, the function assigned to window.onload follows the Allman Style,
while the code within it follows K&R Style. This is the convention that I prefer for writing JavaScript,
since it’s more compact and leads to smaller file size, although I prefer the Allman Style for writing
non-JavaScript code for its greater readability, since with other languages, file size is less of an issue.

Which programming convention you use is a matter of personal taste. Often which convention to use
can lead to endless battles among programming teams, since sometimes people have different tastes.
You should use whichever convention makes the most sense for you. Although the three I’ve showcased
are the most popular, there are a multitude of variations that exist out in the wild. More information
about programming indention styles can be found on Wikipedia at http://en.wikipedia.org/wiki/
Indent_style.

Optional Curly Braces and Semicolons
In the conventions above, you’ll note that there is always a single space between the keyword that
begins the control structure, like if, and the opening parenthesis. The following is a switch control
structure using the first convention:

 switch ($variable) {
 case 1:
 $condition = ‘this’;
 break;

 case 2:
 $condition = ‘that’;
 break;

 default:
 $condition = ‘those’;
 }

23

Chapter 1: Introduction to jQuery

Note in the preceding that no break statement appears in the default case. As the default, a break is
implied, and it is necessary to include the break statement. I tend to deviate from the norm with how I
prefer switch control structures to be written.

 switch ($variable) {
 case 1:
 {
 $condition = ‘this’;
 break;
 };
 case 2:
 {
 $condition = ‘that’;
 break;
 };
 default:
 {
 $condition = ‘those’;
 };
 }

I like to add curly braces around each case in the switch statement; I do this because I believe it makes
the switch statement easier to read; however, ultimately, these are not necessary. Concerning optional
curly braces, I always include them, even if they’re technically optional. The same goes for semicolons.
Terminating each line with a semicolon is technically optional in JavaScript, although there are some
circumstances in which you won’t be able to omit it. I include all optional semicolons and curly braces,
as I think that this not only makes the code cleaner, more organized, and consistent, but also gives you
a technical benefit. If you want to compress your code to remove all additional white space, comments,
and so on, these optional bits suddenly are no longer optional, but needed to keep the program functional
once it’s been compressed. In the following example, you can see what I mean by optional components:

 if ($condition)
 $something = 1
 else if ($another)
 $something = 2
 else
 $something = 3

In JavaScript, the preceding code is perfectly valid. The semicolon is implied where there is a line break.
And as long as there is only a single statement being executed, technically you don’t have to include
curly braces. However, the above fails when it is compressed:

if ($condition) $something = 1 else if ($another) $something = 2 else $something = 3

The preceding fails with a syntax error when you try to execute it. It fails because the script interpreter
has no idea where you intend one statement to end and the next to begin. The language could probably
be extended to guess in some circumstances, but it’s better to just be as explicit as possible.

Something else that you might think is odd is the inclusion of a semicolon after some function defini-
tions. You’ll see this in JavaScript because a function can be a type of data, just like a number is a type
of data or a string is a type of data. In JavaScript, it’s possible to pass a function around as you would a

24

Part I: jQuery API

number or a string. You can assign a function to a variable and execute the function later. You’ve
already seen an example of this, and here it is again in the following code example:

 window.onload = function()
 {
 var $nodes = document.getElementsByTagName(‘a’);

 for (var $i = 0, $length = $nodes.length; $i < $length; $i++) {
 $nodes[$i].onclick = function($e) {
 window.open(
 this.href,
 “picture”,
 “scrollbars=no,width=300,height=280,resizable=yes”
);
 $e? $e.preventDefault() : (window.event.returnValue = false);
 };
 }
 };

In the preceding code example, you can see that a function is being assigned to the onload event of the
window object. The function definition is terminated with a semicolon. Again, that semicolon is techni-
cally optional in this example, but I include it because I want the code to work if it gets compressed,
and I think that it makes the code more consistent, organized, and easier to follow.

Naming Variables, Functions, Objects, . . .
Variable naming is also accounted for in the coding standards I follow throughout this book. I always
use the camelCase convention when naming variables, functions, objects, or anything that I can poten-
tially invent a name for. I like to append a dollar sign ($) to local variable names (variables that are exe-
cuted within the scope of the currently executing function or object method). I name global variables
without a dollar sign to indicate that they are global. The dollar sign is technically optional in JavaScript.
You aren’t required to begin variable names with it, but I use it to assist with identifying variable scope.
Also, it’s worth noting that my use of the dollar sign originates from my roots as a PHP programmer,
where the dollar sign is a required prefix for variable names. Some people find this convention odd, so,
again, I implore you to do what makes the most sense to you.

Namespace JavaScript Code
It’s important to think about the big picture when writing an application. Whether you’re writing an
application for your own use or writing an application that will be deployed in varying environments
that you have no control over, you’re likely to run into one problem at some point in your career: nam-
ing conflicts. I touched on this topic when I talked about namespacing class and ID names in your CSS
and markup. The same principles I talked about there are also applicable to JavaScript. Your script appli-
cations need to run without invading the global namespace too much. I say “too much,” because you’ll
need to invade it somewhat, but you need to do so in a controlled and intelligent way. As you may have
done for your markup and CSS, namespacing your JavaScript may be as simple as sticking to object-
oriented code, wrapping all of your programs in just one, or a handful of objects and then naming those
objects in the global namespace in a non-invasive way. A common approach is to namespace those objects
with a prefix of some kind that doesn’t infringe on some other existing project. One example is how the
jQuery JavaScript framework is namespaced. jQuery does a lot, but for all of the code that’s included in
jQuery, there are precious few intrusions made on the global namespace, the “jQuery” object, and the

25

Chapter 1: Introduction to jQuery

dollar sign method the jQuery object is aliased to. All of the functionality that jQuery provides is pro-
vided through those objects.

Without a well-thought-out approach to the namespacing problem, it’s possible that your application may
cause conflicts with others. It’s best to just assume that everything you place in the global namespace will
cause a conflict, and thus set out to make as minimal as possible an intrusion into the global namespace.

Avoid Browser Detection
Browser detection can be a real annoyance. You’re surfing the Web using your favorite browser, and you
hit a website that locks you out — not because your web browser is technically incapable, but because it
didn’t match what the website’s creators presupposed would be capable. So, I propose the following:

Make no assumptions about the capabilities of a visitor’s browser. ❑

Test for feature compatibility, rather than a browser name or browser version. ❑

Account for the official standards and the de facto standards. (Official standards should take ❑

precedence — de facto standards will either become or be replaced by the former.)

The world is always changing — what’s most popular today may not remain the most popular ❑

in the months and years to come.

It may be time to turn to a framework for some compatibility bridging. ❑

Anyone remember a little company called Netscape? At one time, Netscape was the dominant, de facto
standard. Now Netscape holds just under 0.6 percent of world market share, and Microsoft’s IE is domi-
nant. At its most popular, IE held more than 90 percent of the market. Now IE holds around 70 percent;
Firefox holds 21 percent; and Safari holds roughly 7 percent, Opera and others have around 2 percent
combined. The browsing market can and does fluctuate. In the real world, there are lots of people who
use less popular browsers. And 2 percent may sound small at first glance, but keep in mind that is 2
percent of a very large number. According to www.internetworldstats.com, in 2008, as I write this,
there are just over 1.4 billion Internet users world-wide, which is 21.9 percent of the world’s population.
Therefore, the so-called less popular browsers aren’t really doing too shabby in the grand scheme of
things, and while 2 percent sounds small, it’s actually a pretty large base of users.

Summary
jQuery takes what would otherwise be a more complex or verbose task in plain-vanilla JavaScript, and it
makes it much easier, sometimes reducing many lines to one or a few. Throughout this book, you will
learn about what jQuery has to offer and how to use its simple, easy-to-understand API to write spectacu-
lar, professional-appearing web applications that have all the polish and sparkle of a Fortune 500 company.

In this chapter, I talked a little about what jQuery is, where it comes from, and who develops and main-
tains it; and I showed you how to install it and begin using it. In the next chapter, you get right down to
business, learning about jQuery’s powerful implementation of the Selectors API and its world-class
Event API.

If you are interested in learning more about jQuery’s origins, visit www.jquery.com and www.ejohn.org.

26

Part I: jQuery API

This chapter also covered some things that a good programmer will want to get into the habit of doing,
such as adopting a formal programming convention and avoiding conflicts with others’ code through
using a namespace of some sort (whether that be via a feature provided by the language, or through
prefixing the names that you use that make an impact on the global namespace). I’ve shown a few of the
practices that I have adopted for myself, although I should emphasize that it doesn’t matter what pro-
gramming convention that you adopt, but rather that you adopt one. The premise of a programming
convention is that you have a set of rules that you can follow to format your code so that it is neat, orga-
nized, and easy to follow. My conventions might not be what you want, but there are many others to
choose from.

You should avoid detecting the user’s browser, especially when it may lead to one group or another
being locked out from functionality.

Your code should take advantage of client-side caching and the increase in performance it provides.

In my opinion, it is better to write code in neatly organized modules and combine those into a larger
script later using server-side programming.

Finally, it is also important that you adopt standards for the presentation and maintenance of client-side
markup and CSS. Choose either XHTML or HTML, since both are accepted standards. I personally use
XHTML, although XHTML may be too strict for your taste. Use the W3C’s validation services to discover
errors in your markup or your CSS, as sometimes errors in CSS or markup can cause errors in your
JavaScript.

2
Selecting and Filtering

In this chapter, I talk about jQuery’s sophisticated implementation of a Selectors API, which pro-
vides the ability to select elements in the DOM using selectors just like you use in CSS. jQuery’s
Selectors API allows you to select one or more elements from the DOM using a selector, then you
can either use that result set, or you can pass those elements on to be filtered down to a more spe-
cific result set.

If you’ve never heard of a selector before, then I recommend that you have a look at my book,
Beginning CSS: Cascading Style Sheets for Web Design, 2nd ed. (Wrox, 2004; ISBN 978-0-7645-7642-3),
which has extensive coverage of selectors.

In CSS, you can apply style to one or more elements by writing a style sheet. You choose which
elements to style based on the syntax that appears in the first part of a CSS rule, before the first
curly brace, which is known as the selector. Here is a sample CSS selector:

body form#hProductSummaryDialogue {
 display: block;
 position: absolute;
 z-index: 1;
 top: 22px;
 left: 301px;
 right: 0;
 bottom: 24px;
 width: auto;
 margin: 0;
 border: none;
 border-bottom: 1px solid rgb(180, 180, 180);
}

Using markup and CSS, you are able to assign IDs and class names to elements, and you are able
to control the presentational aspects of elements very specifically using selectors. In jQuery, that
concept of selectors as applied to CSS is also applied to the concept of the DOM, or Document
Object Model. In the DOM, you have available to you every element that exists in the markup of
your document, and you are able to travel the DOM and select the elements you want to work
with using selectors, just like you use in your CSS style sheets.

28

Part I: jQuery API

Once you’ve selected elements from the DOM, you can apply behavior to them. You can make some-
thing happen when a user clicks on an element, for example. You can make something happen when
the user’s mouse cursor comes over or leaves an element. Basically, you can make your web documents
look and behave more like desktop applications. You are no longer limited to static content as you are
with markup and CSS alone — you can apply behavior as well.

In this chapter, I describe how to use jQuery’s Selectors API to retrieve elements from a document, in
addition to providing some practical examples of usage. I also describe how you can chain calls in jQuery.
One use for this is filtering elements, which you would do to reduce a larger selection of elements down
to a smaller selection. Finally, I discuss how jQuery’s Event API works in relation to the W3C’s Event
API and Microsoft’s.

The Origin of the Selectors API
The concept of a Selectors API was first dreamed up by Dean Edwards, a JavaScript guru, who first cre-
ated a Selectors API in JavaScript in a free, Open Source package he called cssQuery. Not long after Dean
pioneered the idea and produced a working, proof-of-concept implementation of that idea, it was taken
up and expanded upon by John Resig (and other JavaScript framework authors, mutually exclusive to
John’s efforts) and implemented in his jQuery framework. This led to some back-and-forth collaboration
and competition between Dean, John, and other JavaScript framework authors, which resulted in much
needed performance boosts in these ad hoc implementations, which at their conception were quite slow
in some scenarios.

Not long after Dean came up with the concept of a Selectors API, W3C members and editors Anne van
Kesteren and Lachlan Hunt drafted it into a specification for the W3C. The official W3C Selectors API
involves two methods, one for selecting a single element called document.querySelector() and one for
selecting multiple elements called document.querySelectorAll().

The names for the official API were under considerable debate for quite some time, as no browser
makers could agree on the names used. The names were finally put to a vote, with these names being
the ones decided on. The controversy surrounding the names was not without merit, as this API is
quite possibly the most important change to JavaScript that will have a lasting impact for years to
come. It’s important in that, in one fell swoop, it replaces methods like document.getElementById,
document.all, and document.getElementsByTagName, which are no longer really needed — since
these methods let you use selector syntax, you can select by ID, by tag name, by class name, or by
context, via whatever selectors the browser already supports for CSS.

As I write this, the W3C version is a Candidate Recommendation, and document.querySelector and
document.querySelectorAll are implemented natively in Internet Explorer 8, Safari 3, Firefox 3.1, and
Opera 10. For once, a new feature is present and accounted for in the latest releases of all of the major
browsers!

The great thing about jQuery and other JavaScript frameworks is that they had their own versions of
the Selectors API already implemented prior to its native inclusion in browsers, which allows them to
use the native implementation, if it is available. Using the native implementation makes selecting ele-
ments screamingly fast. Otherwise, if the user has an older browser, the framework can fall back on its
own, slower, JavaScript-based implementation. This means that when using a JavaScript framework like
jQuery, the Selectors API is ubiquitously available across all platforms it supports. jQuery is officially
compatible with IE 6+, Firefox 1.5+, Safari 2.0.2+, and Opera 9+.

29

Chapter 2: Selecting and Filtering

Using the Selectors API
Using the Selectors API in jQuery is very easy. First, you must know that everything you want to do
with jQuery originates from a single, very simply named object that is called $. That’s right, its name is a
single dollar sign. As I mentioned back in Chapter 1, you can also use “jQuery” in place of the dollar sign,
but from here on throughout this book, I will use only the dollar sign, and I will refer to it either as “the
dollar sign object” or “the dollar sign method,” depending on context, because it is really both a method
and an object at the same time.

The dollar sign is both a method and an object because it can be used like a function call, but it also has
member properties and methods that you can call. The dollar sign is named after a single dollar sign for
one reason only, and that is to reduce the amount of code that you have to write. This is why a dollar
sign is used instead of, say, document.getElementsBySelector(), which is very long, verbose, and
annoying to type out.

Here’s a very simple example of how you would use this method with a selector to add a click behavior
to a collection of links. Basically, the object of the following code is to force the links to open in a new
window, instead of using the “target” attribute, which does not validate under XHTML Strict.

Let’s say that you have a markup document that looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Link</title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-1.js’></script>
 <link type=’text/css’ href=’Figure 2-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <ul id=’tmpFavorites’>
 Wrox
 Gizmodo
 Apple
 jQuery

 </body>
</html>

In the preceding markup document, you have a simple unordered list that contains four links. You take
that markup and put it with the following CSS:

body {
 font: 16px sans-serif;
}
ul {
 list-stlye: none;

30

Part I: jQuery API

 margin: 0;
 padding: 0;
}
a {
 text-decoration: none;
}

The preceding CSS document does little more than make that list look a little prettier — it neither really
adds to nor takes away from the example.

Finally, you add the following JavaScript document to the markup:

var tmpExample = {
 ready : function() {
 // Get all links…
 $(‘ul#tmpFavorites li a’).click(
 function($e) {
 $e.preventDefault();
 window.open(this.href, ‘FavoriteLink’, ‘’);
 }
);
 }
};

$(document).ready(tmpExample.ready);

The preceding code, all put together, should look something like what you see in Figure 2-1.

Figure 2-1

When you click on a link in the example, you should see the link open in a new window or tab, depend-
ing on how you have your browser’s preferences set up to handle pop-up windows.

In the preceding example, you’re using JavaScript to force the links in the element with ID name
tmpFavorites to open in a new window or tab. To do this, in the JavaScript, you created a JavaScript
Object Literal, which isn’t the only way to create a new object — there are lots of ways to do this, but I just
happen to like this one. The new object is called tmpExample, and it has one member method, called
ready; then inside the ready method are all the things you want to do when the document is ready.

31

Chapter 2: Selecting and Filtering

I don’t go into much detail on the topic of object-oriented JavaScript, preferring instead to stick to the
topic of jQuery. If you’d like to learn more about object-oriented JavaScript, I recommend Nicholas C.
Zakas’s excellent, critically acclaimed Professional JavaScript for Web Developers, also from Wrox
Press (2005; 2nd ed., 2009).

As I touched on briefly in Chapter 1, jQuery provides its own event called ready, which is fired as soon
as the DOM has finished loading, which is different from the onload or load event, in that with the load
event, you have to wait for all the images to load too before that event will fire. Most of the time, you
don’t need to wait so long; you just want to start working with the document and adding behavior as
soon as the DOM has finished loading. That’s what the last line of code does:

$(document).ready(tmpExample.ready);

The preceding line of code attaches an event that fires when the DOM has finished loading, at which
time the function tmpExample.ready is called and executed. Note that when you reference tmpExample
.ready, you do so without adding parentheses to the function reference — parentheses cause the func-
tion reference to be executed immediately, whereas without the parentheses you are simply referencing
the function. In this case, you want the function reference to be executed when the document is ready,
instead of immediately, so you assign the function to the event by referencing it without parentheses.
With parentheses, you are assigning the return value of the executed function, instead of the function
itself.

Now that the DOM is loaded, you want to add behaviors to the document using script. The first item is
an example of jQuery’s Selectors API in action: it is a function call to the dollar sign method that uses a
selector that picks a element with the ID name tmpFavorites that looks for descendant elements
within that element, then looks for descendant <a> elements within the elements.

$(‘ul#tmpFavorites li a’)

Once those <a> elements are selected, you more than likely want to do something with them. In this
example, you add a click event to each of the <a> elements that you selected. The click event is added
via a click method that is unique to jQuery:

 $(‘ul#tmpFavorites li a’).click();

What you see here is an example of how jQuery lets you chain methods together. First, you selected a
bunch of <a> elements; now, you’re applying a click event directly to each of those <a> elements via a
new method called click() that’s chained to the end of your selection.

Within the click() method, you are passing a single anonymous (i.e., nameless) function that contains
the programming that you want to be executed when each <a> element is clicked on by a user.

 $(‘ul#tmpFavorites li a’).click(
 function($e) {
 $e.preventDefault();
 window.open(this.href, ‘FavoriteLink’, ‘’);
 }
);

32

Part I: jQuery API

The anonymous function contains one argument called $e, which represents the event object. The event
object is just like what you would use with the standard W3C Event API, and works even in Internet
Explorer, which does not natively support the W3C Event API at the time of this writing. Internet
Explorer is able to use the standard API because jQuery has patched the problem areas and created a
seamless API behind the scenes. No browser upgrade required!

Next, the function call $e.preventDefault(); prevents the default action from occurring. The default
action varies depending on what element you’re referring to. In the case of the <a> element, the default
action would be to navigate the window the user is using to the link specified in the href attribute of
the <a> element. $e.preventDefault() prevents that default action from occurring, since you want the
link to open in a new window or tab instead. If you were to omit that line, $e.preventDefault();, you
would find that the link opens in a new window or tab in addition to the main window where the user
clicked on the link, and also navigates to that page.

Finally, the code includes the line that causes the link to open in a new window or tab:

window.open(this.href, ‘FavoriteLink’, ‘’);

The window.open() method is called with the value of the href attribute as its first value, followed by
the name of the window or tab, followed by the arguments used for controlling the presentation of the
window; an empty string causes this method to behave similarly to the target attribute with a value of
_blank.

The following “Try It Out” takes what you’ve just learned about jQuery and the Selectors API and gives
you an opportunity to try it out for yourself. (Remember, this book’s source code for all of the “Try It Out”
exercises, and the examples of each section, is available via download for free from www.wrox.com.)

Try It Out Using the Selectors API

Example 2-1
For a hands-on demonstration of jQuery’s Selectors API, follow these steps:

 1. Create the following markup document in your text editor, and save the document as Example
2-1.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Link</title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 2-1.js’></script>
 <link type=’text/css’ href=’Example 2-1.css’ rel=’stylesheet’ />
 </head>
 <body id=’tmpDialogueExample’>
 <form action=’javascript:void(0);’ method=’post’>
 <p>

33

Chapter 2: Selecting and Filtering

 In jQuery, the selector API allows you to select elements from
 the DOM, just like you do in CSS stylesheets. This simple dialogue
 contains a few selector API examples.
 </p>
 <p>
 <input type=’submit’ name=’tmpDialogueOpen’
 id=’tmpDialogueOpen’ value=’Open Dialogue’ />
 </p>
 <div id=’tmpDialogue’>
 <input type=’submit’ name=’tmpDialogueClose’
 id=’tmpDialogueClose’ value=’Close Dialogue’ />
 </div>
 </form>
 </body>
</html>

 2. Create the following CSS document in your text editor, and save the CSS document in the same
folder where you saved the previous HTML document, as Example 2-1.css:

body {
 font: 16px sans-serif;
}
div#tmpDialogue {
 display: none;
 position: absolute;
 top: 50%;
 left: 50%;
 width: 500px;
 height: 500px;
 margin: -251px 0 0 -251px;
 border: 1px solid blue;
 background: lightblue;
}
body#tmpDialogueExample div.tmpDialogueOn {
 display: block;
}
input#tmpDialogueClose {
 position: absolute;
 bottom: 5px;
 right: 5px;
 width: 100px;
}

 3. Enter the following JavaScript, and save this as yet another document in the same folder as
your HTML and CSS as Example 2-1.js:

var tmpExample = {
 ready : function() {
 $(‘input#tmpDialogueOpen’).click(
 function($e) {
 $e.preventDefault();
 $(‘div#tmpDialogue’).addClass(‘tmpDialogueOn’);
 }

34

Part I: jQuery API

);

 $(‘input#tmpDialogueClose’).click(
 function($e) {

 $e.preventDefault();
 $(‘div#tmpDialogue’).removeClass(‘tmpDialogueOn’);
 }
);
 }
};

$(document).ready(tmpExample.ready);

Keep in mind that the examples that you create and the examples I demonstrate in each section must
also take into account your path to jQuery that you made back in Example 1-1 in Chapter 1, when you
installed and tested jQuery. If all is right and good, you should see something like the screenshot in
Figure 2-2.

Figure 2-2

In Example 2-1, you see a little more of what jQuery can do with selectors (and a little beyond selectors
even). What you have is a very simple implementation of a markup and CSS-driven pop-up.

In the markup, you lay the structural groundwork for your pop-up.

 <form action=’javascript:void(0);’ method=’post’>
 <p>
 In jQuery, the selector API allows you to select elements from

35

Chapter 2: Selecting and Filtering

 the DOM, just like you do in CSS stylesheets. This simple dialogue
 contains a few selector API examples.
 </p>
 <p>
 <input type=’submit’ name=’tmpDialogueOpen’
 id=’tmpDialogueOpen’ value=’Open Dialogue’ />
 </p>
 <div id=’tmpDialogue’>
 <input type=’submit’ name=’tmpDialogueClose’
 id=’tmpDialogueClose’ value=’Close Dialogue’ />
 </div>
 </form>

It should be noted that you don’t really need a <form> element to make this work, and you also don’t
really need name attributes on your <input> elements — these are included simply to make things vali-
date. Also, a more responsible implementation will also take into account that some people don’t have
JavaScript enabled, whether by paranoia or by strict IT policy. You should account for that in your
design — however, to keep things simple, I’ve ignored that requirement.

Structurally speaking, things are pretty simple; you have a button to open your dialogue. You have a
<div> element that contains the dialogue itself, and within that dialogue you have a button to close the
dialogue. It doesn’t look particularly pretty, but it works.

In the CSS, you see how things really come together, “presentationally” speaking. First, you have a
rule that sets the font and font size for the <body> element; then, you have a rule that positions the
<div> element with ID name tmpDialogue absolutely and then offsets the position by 50 percent on the
top and left sides. You have a static width and height set, which is required, so that you can offset the
top and left margin to center the dialogue. Centering is achieved by positioning top and left 50 percent,
then applying a negative margin to the top and left sides that is equal to half of the width + left and
right padding + left and right borders, and half of the height + top and bottom padding + top and bot-
tom borders. In this case, the width is 500 pixels, and there is 1 pixel (px) of border on the left and right
sides. So the value you want to divide by 2 is 502, which comes to 251. The height value is also 502, so
that also comes to 251. You apply a negative margin of 251 pixels to the top and left sides, which results
in the dialogue being perfectly centered.

div#tmpDialogue {
 display: none;
 position: absolute;
 top: 50%;
 left: 50%;
 width: 500px;
 height: 500px;
 margin: -251px 0 0 -251px;
 border: 1px solid blue;
 background: lightblue;
}

The dialogue is also set to display: none; by default, which makes it invisible. To make the dialogue
visible, you use JavaScript to add a class name to the <div> element with ID name tmpDialogue. The
class name you add is tmpDialogueOn. To make the display: block; declaration work in the next rule,
you have to think about specificity in CSS. An ID is more specific than a class name, so to make the dia-
logue visible, you have to reference an ID name in the CSS rule. The approach I take is to give the <body>

36

Part I: jQuery API

element an ID name, in this case, tmpDialogueExample, and then reference the class name for the
<div> for the dialogue via a descendant selector. This makes the selector body#tmpDialogueExample
div.tmp DialogueOn more specific than div#tmpDialogue, which means that when the class name
tmpDialogueOn is present, the dialogue is on, and when it is not, the dialogue is off.

body#tmpDialogueExample div.tmpDialogueOn {
 display: block;
}

The last rule in the style sheet is very simple: It positions the <input> element with ID name
tmpDialogueClose to the lower right-hand corner of the dialogue, 5 pixels from the bottom and 5
pixels from the left. A fixed width is set to correct a sizing glitch in IE7 and IE6.

input#tmpDialogueClose {
 position: absolute;
 bottom: 5px;
 right: 5px;
 width: 100px;
}

That brings me to the JavaScript. Like the example you saw earlier in this section, I set up an object lit-
eral called tmpExample with one method called ready, and that method is set to execute using jQuery’s
ready event. The method in the object literal can actually have any name, but I like using ready because
it’s more semantically correct. Some people like to call the method loaded when the document is ready
init (short for “initiate”) — use whatever makes sense for you. As to why I set up an object literal, and
not a stand-alone function, I like to minimize pollution of the global namespace as much as possible.
This helps to avoid naming conflicts with third-party scripts.

Within the ready method, two things happen: An event is set to happen when the user clicks on the
<input> element with ID name tmpDialogueOpen, and another event is set to happen when the user
clicks on the <input> element with ID name tmpDialogueClose.

First, I select the <input> element with the dollar sign method:

 $(‘input#tmpDialogueOpen’)

Then, I directly add a click event to that element using jQuery’s click() method. The function call to
the click method is chained right to the back of the selection.

 $(‘input#tmpDialogueOpen’).click();

The click method receives a single argument, which is an anonymous function:

 function($e) {
 $e.preventDefault();
 $(‘div#tmpDialogue’).addClass(‘tmpDialogueOn’);
 }

This function is executed every time a click occurs on the <input> element. The function takes one
argument, which contains the event object; in this example, the event object is placed in the variable
named $e. The event object lets you get information about the event that occurred and control the

37

Chapter 2: Selecting and Filtering

outcome of the event. In this case, you want to prevent the default action from occurring. The default
action for an <input> element with the type attribute set to submit results in the form being submitted
to the URL referenced in the action attribute of the <form> element. Of course, for this example, I set the
action attribute to javascript:void(0);, which also prevents the form from being submitted, so pre-
venting the default action isn’t technically needed. But what if I were to return to this <form> later and
change the action attribute? Let’s say I wanted to be a responsible JavaScript programmer and account
for situations in which the user does not have JavaScript enabled. One thing I could do is set the action
attribute to a new page that contains the data I would have displayed in the JavaScript-driven pop-up
dialogue. I could add a target=”_blank” attribute to the <form> element, which would result in the
pop-up dialogue being opened in a new window, and allow my content to continue to function in the
absence of JavaScript. Of course, I would also have to use an XHTML Transitional Doctype instead of
Strict, since the target attribute isn’t allowed in XHTML Strict. So, in any case, thinking about how you
would continue to build on and expand your web page in the future — it’s good practice to provision
for as much as possible when writing your script.

With the default action canceled, the next thing that happens is making the dialogue visible. To do
that, you use the dollar sign method to select the <div> element with ID name tmpDialogue. And next
you chain another jQuery method to the end of the selection called addClass(). As the name implies,
addClass() adds a class name to the element; in this case, the class name you’re adding is tmpDialogue On.
Remembering the style sheet that you created, adding this class name to the dialogue makes it visible.

Then for the Close Dialogue button, you do the same as you did for the Open Dialogue button; but this
time, you’re removing the class name to make the dialogue invisible again.

 $(‘input#tmpDialogueClose’).click(
 function($e) {
 $e.preventDefault();
 $(‘div#tmpDialogue’).removeClass(‘tmpDialogueOn’);
 }
);

As you can see, jQuery can help with something trivial like making a pop-up dialogue. In this case,
however, jQuery could have done even more because as you will see later on the book, in Chapter 15,
jQuery can provide just about everything you need to do a pop-up dialogue like this, even including
fancy animated transitions — all you have to do is provide the content that you want to use and how
you want it to look.

jQuery supports more selectors than browsers support natively for CSS. For example, jQuery supports
many advanced selectors defined in the CSS 2.1 and CSS 3 specifications. In addition to advanced selec-
tor support, jQuery introduces some selectors of its own that are impractical for CSS.

Appendix B contains a reference table of all selectors supported by jQuery.

Filtering a Selection
jQuery has a very innovative feature, in that, every method it provides returns the jQuery object. In pre-
vious examples, you saw how this works by making a selection, and then doing something with that
selection, like adding a click event.

38

Part I: jQuery API

There are lots of ways you can take a larger selection of elements and narrow it down in jQuery. In this
section, I present some of the ways you can narrow a selection.

Searching within a Selection with find()
jQuery’s find() method lets you perform a selection within a selection. This concept is illustrated in the
following example. Let’s say you have the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Link</title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-3.js’></script>
 <link type=’text/css’ href=’Figure 2-3.css’ rel=’stylesheet’ />
 </head>
 <body>
 <ul id=’tmpFavorites’>
 Wrox
 Gizmodo
 Apple
 jQuery

 </body>
</html>

The preceding markup is that familiar list of hyperlinks from earlier in this chapter. Combine the pre-
ceding markup with the following CSS:

body {
 font: 16px sans-serif;
}
ul#tmpFavorites {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul#tmpFavorites li {
 margin: 1px;
 padding: 3px;
}
a {
 text-decoration: none;
}
li.tmpFound {
 background: yellowgreen;
}

39

Chapter 2: Selecting and Filtering

Then, the following JavaScript is added:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpFavorites’).find(‘li’).addClass(‘tmpFound’);
 }
};

$(document).ready(tmpExample.ready);

The source code in the preceding examples results in the output that you see in Figure 2-3.

Figure 2-3

In the preceding example, you see an example of jQuery’s find() method. Basically, find() lets you take
a selection and refine it. In this example, first you selected the element with ID name tmpFavorites;
then, once you had that selection, you looked at the ’s descendants to find every element within
it. Once you had those elements, you added the class name tmpFound to each of them. This method
would be more useful if, for example, you wanted to take the element and add some events to it, and
then do something with each of its children elements. In that scenario, you can assign the selection
of the original element to a variable, perform some actions on the element using that variable,
and then reuse that selection to find the elements and do something with those.

The find() method gives you the ability to search for elements within a selection you’ve already made.

Finding an Element’s Siblings with siblings()
The next method I demonstrate shows you how to find all of one element’s siblings using the siblings()
method. You begin with the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>

40

Part I: jQuery API

 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-4.js’></script>
 <link type=’text/css’ href=’Figure 2-4.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Places in Middle-Earth</h4>
 <ul id=’tmpPlaces’>
 Mordor
 Gondor
 Rohan
 Moria
 Lothlorien
 Dead Marshes
 <li class=’tmpExampleCity’>Minas Tirth

 </body>
</html>

A little style is added with the following CSS:

body {
 font: 16px sans-serif;
}
h4 {
 font-size: 16px;
 margin: 0 0 5px 0;
}
ul#tmpPlaces {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul#tmpPlaces li {
 margin: 1px;
 padding: 3px;
}
li.tmpSiblings{
 background: khaki;
}

Then, the following JavaScript:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpPlaces li.tmpExampleCity’).siblings().addClass(‘tmpSiblings’);
 }
};

$(document).ready(tmpExample.ready);

The preceding source code gives you the output you see in Figure 2-4.

41

Chapter 2: Selecting and Filtering

Figure 2-4

In the preceding example, you see another method that’s very similar to the find() method that you
saw in the last section; only this time, the selection is filtered to include all of the element’s siblings.
First, you select the element with class name tmpExampleCity via the selector
ul#tmpPlaces li.tmpExampleCity. Then the selection is filtered to include all of the elements
with class name tmpExampleCity’s siblings, or in other words, all of the elements except that one.

The siblings() method, like the find() method, could also include a selector to filter even more. First,
let’s modify the markup of the last example to include more class names:

 <h4>Places in Middle-Earth</h4>
 <ul id=’tmpPlaces’>
 Mordor
 <li class=’tmpRealmOfMen’>Gondor
 <li class=’tmpRealmOfMen’>Rohan
 Moria
 <li class=’tmpRealmOfElves’>Lothlorien
 Dead Marshes
 <li class=’tmpExampleCity’>Minas Tirth

Then modify the JavaScript of the last example, so that it looks for only siblings that have the class name
tmpRealmOfMen:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpPlaces li.tmpExampleCity’)
 .siblings(‘.tmpRealmOfMen’)
 .addClass(‘tmpSiblings’);
 }
};

$(document).ready(tmpExample.ready);

This time you get output like that shown in Figure 2-5.

42

Part I: jQuery API

Figure 2-5

So, in Figure 2-5, you see that only the elements with the class name tmpRealmOfMen have been
given the class name tmpSiblings, and thus a colored background.

When you add a class name using addClass, that class name is applied in addition to previous class
names. In Figure 2-5, the elements with class name tmpRealmOfMen have that class, in addi-
tion to the class name tmpSiblings.

Selecting Specific Siblings
Going back to the topic of siblings, jQuery has yet more methods that provide you with fine-grained
control over sibling selection. In a preceding section, you saw how jQuery’s siblings() method allows
you to select all siblings or a specific set of siblings using a selector. jQuery also gives you the ability to
select siblings based on whether they appear before or after an element, using the following methods:
next(), prev(), nextAll(), and prevAll(). These methods work similarly to the siblings() method.
The following example demonstrates the next() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-6.js’></script>
 <link type=’text/css’ href=’Figure 2-6.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Colors</h4>
 <ul id=’tmpColors’>
 Red
 Blue
 Green

43

Chapter 2: Selecting and Filtering

 <li id=’tmpYellow’>Yellow
 Orange
 Purple

 </body>
</html>

The following CSS is included with the preceding markup:

body {
 font: 16px sans-serif;
}
h4 {
 font-size: 16px;
 margin: 0 0 5px 0;
}
ul#tmpColors {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul#tmpColors li {
 margin: 1px;
 padding: 3px;
}
li.tmpSibling {
 background: #165b91;
 color: white;
}

The following JavaScript demonstrates the next() method.

var tmpExample = {
 ready : function() {
 $(‘li#tmpYellow’).next().addClass(‘tmpSibling’);
 }
};

$(document).ready(tmpExample.ready);

In Figure 2-6, you see that the element containing the word Orange has a dark-blue background
with white text, which is a result of that element receiving the tmpSibling class name, which is the next
element appearing after the element with ID name tmpYellow.

The following demonstrates what happens if you replace next() with prev():

var tmpExample = {
 ready : function() {
 $(‘li#tmpYellow’).prev().addClass(‘tmpSibling’);
 }
};

$(document).ready(tmpExample.ready);

44

Part I: jQuery API

Figure 2-6

In Figure 2-7, you see that the element containing the word Green has the class name tmpSibling,
indicating that the element immediately preceding the element with ID name tmpYellow has been
selected.

Figure 2-7

Next, I demonstrate what happens when prev() is replaced with the method nextAll():

var tmpExample = {
 ready : function() {
 $(‘li#tmpYellow’).nextAll().addClass(‘tmpSibling’);
 }
};

$(document).ready(tmpExample.ready);

In Figure 2-8, you see that elements containing the words Orange and Purple have the tmpSibling
class name, indicating that all elements following the element with ID name tmpYellow have been
selected.

45

Chapter 2: Selecting and Filtering

Figure 2-8

Finally, the last sibling-related method that I demonstrate is the prevAll() method, which, as you
might have expected, selects all previous siblings:

var tmpExample = {
 ready : function() {
 $(‘li#tmpYellow’).prevAll().addClass(‘tmpSibling’);
 }
};

$(document).ready(tmpExample.ready);

In Figure 2-9, the elements with the words Red, Blue, and Green have the tmpSibling class name,
indicating that all elements previous to the element with ID name tmpYellow have been selected.

Figure 2-9

Each of the methods, prev(), prevAll(), next(), and nextAll() also accepts a selector as the first
argument, which allows you to filter the selection. For example, calling next() like so:

$(‘li#tmpYellow’).next(‘li.someClassName’).addClass(‘tmpSibling’);

46

Part I: jQuery API

only selects the next() element if it is a element with class name someClassName. Likewise, calling
the nextAll() method with a selector also limits which elements are selected.

$(‘li#tmpYellow’).nextAll(‘li.someClassName’).addClass(‘tmpSibling’);

The preceding code selects elements that come after the element with ID name tmpYellow, but only
if they are elements with the class name someClassName.

Searching Ancestors Using the parents()
and parent() Methods

As you can select siblings and descendants, you can also go up the DOM tree and select ancestor ele-
ments. The following markup builds on the example you saw in Figures 2-4 and 2-5:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-10.js’></script>
 <link type=’text/css’ href=’Figure 2-10.css’ rel=’stylesheet’ />
 </head>
 <body id=’tmpExample’>
 <h4>Places in Middle-Earth</h4>
 <div id=’tmpPlacesWrapper’>
 <ul id=’tmpPlaces’>
 Mordor
 <li class=’tmpRealmOfMen’>Gondor
 <li class=’tmpRealmOfMen’>Rohan
 Moria
 <li class=’tmpRealmOfElves’>Lothlorien
 Dead Marshes
 <li class=’tmpExampleCity’>Minas Tirth

 </div>
 </body>
</html>

The CSS file has a few modifications too; the new document looks like this:

body {
 font: 16px sans-serif;
}
h4 {
 font-size: 16px;
 margin: 0 0 5px 0;
}
ul#tmpPlaces {

47

Chapter 2: Selecting and Filtering

 list-style: none;
 margin: 0;
 padding: 0;
}
ul#tmpPlaces li {
 margin: 1px;
 padding: 3px;
}
div#tmpPlacesWrapper {
 padding: 5px;
 border: 1px solid rgb(200, 200, 200);
 background: rgb(240, 240, 240);
}
body#tmpExample div.tmpParent {
 background: rgb(174, 211, 248);
}

Then, the JavaScript looks like this:

var tmpExample = {
 ready : function() {
 $(‘li.tmpExampleCity’).parents(‘div#tmpPlacesWrapper’).addClass(‘tmpParent’);
 }
};

$(document).ready(tmpExample.ready);

In Figure 2-10, you see how you are able to select an element’s ancestors using a selector, although in
this example, you are only selecting a single parent, the <div> with ID name tmpPlacesWrapper. You can
select multiple ancestors if more than one ancestor matches the selector that you supply to the parents()
method. Giving that <div> element a class name of tmpParent causes the background to change to RGB
174, 211, 248, or a nice shade of sky-blue. If the tmpParent class name were not added, the background
color would have been RGB 200, 200, 200, or light gray.

Figure 2-10

In the previous example, if you exclude the selector, all ancestor elements are selected:

$(‘li.tmpExampleCity’).parents().addClass(‘tmpParent’);

48

Part I: jQuery API

The parents() method has the ability to look at all of an element’s ancestors, all the way back to the
root element. If you only want to look at the immediate parent, you can use the parent() method
instead. The following code gives you the same result as Figure 2-10:

$(‘ul#tmpPlaces’).parent().addClass(‘tmpParent’);

The preceding code selects the element with ID name tmpPlaces immediate parent, which is the
<div> element with the ID name tmpPlacesWrapper.

Additionally, you may also use a selector to limit the parent() method to matching a more specific
element:

$(‘ul#tmpPlaces’).parent(‘div#tmpPlacesWrapper’).addClass(‘tmpParent’);

The preceding code limits the parent() method to making a match only when the with the ID
element tmpPlaces has a parent <div> element with the ID name tmpPlacesWrapper.

Selecting Children Elements
You can also select an element’s children with jQuery using the children() method. The following
demonstrates the children() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-11.js’></script>
 <link type=’text/css’ href=’Figure 2-11.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Fruit</h4>

 Apple
 Cherry
 Orange
 Lemons
 Limes
 Grapes

 </body>
</html>

The following style sheet is included with the preceding markup:

body {
 font: 16px sans-serif;
}

49

Chapter 2: Selecting and Filtering

h4 {
 font-size: 16px;
 margin: 0 0 5px 0;
}
ul {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul li {
 margin: 1px;
 padding: 3px;
}
li.tmpChild {
 background: #cf0c35;
 color: white;
}

The following JavaScript demonstrates how every element is selected using jQuery’s children()
method:

var tmpExample = {
 ready : function() {
 $(‘ul’).children().addClass(‘tmpChild’);
 }
};

$(document).ready(tmpExample.ready);

Figure 2-11 shows that each of the elements has the class name tmpChild. Each element was
selected by first selecting the element, then calling jQuery’s children() method.

Figure 2-11

Like the other methods I’ve demonstrated throughout this chapter, you can also pass a selector to the
children() method to limit which elements are included:

$(‘ul’).children(‘li.tmpCitrus’).addClass(‘tmpChild’);

50

Part I: jQuery API

In the preceding code snippet, passing the selector li.tmpCitrus limits the selection to elements
that have a class name of tmpCitrus.

Selecting Elements via What You Don’t Want
The next method gives you the ability to select elements based on what you don’t want included in the
selection. This markup document sets up the structure for the demonstration:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-7.js’></script>
 <link type=’text/css’ href=’Figure 2-7.css’ rel=’stylesheet’ />
 </head>
 <body id=’tmpExample’>
 <h4>Slapstick Comedians</h4>
 <ul id=’tmpSlapstick’>
 <li class=’tmpMarxBrothers’>Groucho
 <li class=’tmpMarxBrothers’>Chico
 <li class=’tmpMarxBrothers’>Harpo
 <li class=’tmpMarxBrothers’>Zeppo
 <li class=’tmpThreeStooges’>Moe
 <li class=’tmpThreeStooges’>Larry
 <li class=’tmpThreeStooges’>Curly
 <li class=’tmpThreeStooges’>Shemp
 <li class=’tmpAbbottAndCostello’>Abbott
 <li class=’tmpAbbottAndCostello’>Costello

 </body>
</html>

The preceding markup is styled by the following CSS:

body {
 font: 16px sans-serif;
}
h4 {
 font-size: 16px;
 margin: 0 0 5px 0;
}
ul#tmpSlapstick {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul#tmpSlapstick li {

51

Chapter 2: Selecting and Filtering

 margin: 1px;
 padding: 3px;
}
li.tmpFunny {
 background: rgb(174, 211, 248);
}

Next, the following JavaScript demonstrates how you can exclude elements from the result set using
jQuery’s :not() method:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpSlapstick li’).not(‘li.tmpThreeStooges’).addClass(‘tmpFunny’);
 }
};

$(document).ready(tmpExample.ready);

In Figure 2-12, you can see that all of the slapstick comedians except those with the class name
tmpThree Stooges have been given a tmpFunny class name. To come to this result, first you selected every
element using the selector ul#tmpSlapstick li; then you filtered out what you didn’t want to select using
jQuery’s not() method, whereas every element that did not have the class name tmpThreeStooges
was given the tmpFunny class name. Just kidding — by the way, the Stooges are great.

Figure 2-12

Selecting a Snippet of the Results
So far you’ve seen how jQuery’s Selectors API allows you to do all kinds of contextual selection up and
down the DOM and sideways and upside down. The next method I demonstrate shows you how to
select a snippet of the results set with a method called slice(). Taking the same slapstick comedians
example from the last section, and modifying the CSS ever so slightly:

52

Part I: jQuery API

body {
 font: 16px sans-serif;
}
h4 {
 font-size: 16px;
 margin: 0 0 5px 0;
}
ul#tmpSlapstick {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul#tmpSlapstick li {
 margin: 1px;
 padding: 3px;
}
li.tmpReallyFunny {
 background: #fcc16e;
}

In the following JavaScript, you see how the slice() method is tacked onto the end of a selection to
filter the results:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpSlapstick li’).slice(0, 4).addClass(‘tmpReallyFunny’);
 }
};

$(document).ready(tmpExample.ready);

In Figure 2-13, you see that the first four list items have been selected, which corresponds to the Marx
Brothers. jQuery’s slice() method takes two arguments, the position of the first element that you want
to select, and the position of the last element you want to select. The numbering is offset from zero.

Figure 2-13

53

Chapter 2: Selecting and Filtering

The slice() method’s second argument is optional. The following JavaScript demonstrates what shows
the slice() method with the second argument left off:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpSlapstick li’).slice(5).addClass(‘tmpReallyFunny’);
 }
};

$(document).ready(tmpExample.ready);

In the preceding JavaScript, the slice() method receives a single argument, 5. In Figure 2-14, you see
the outcome of this modification.

Figure 2-14

When you specify just one argument, the slice() method selects from the specified index, which is
numbered offset from zero, and goes to the end. In the Slapstick Comedians example, that results in
numbers 6, 7, 8, 9, and 10 being selected.

Adding More Elements to a Selection
Sometimes when you make a selection, you may need to add() more elements. jQuery gives you the
ability to do this with the add() method. So, continuing to build on the Slapstick Comedians example,
you modify the markup to look like so:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’

54

Part I: jQuery API

 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-10.js’></script>
 <link type=’text/css’ href=’Figure 2-10.css’ rel=’stylesheet’ />
 </head>
 <body id=’tmpExample’>
 <h3>Slapstick Comedians</h3>
 <h4>The Marx Brothers</h4>
 <ul id=’tmpMarxBrothers’>
 Groucho
 Chico
 Harpo
 Zeppo

 <h4>The Three Stooges</h4>
 <ul id=’tmpThreeStooges’>
 Moe
 Larry
 Curly
 Shemp

 <h4>Abbott & Costello</h4>
 <ul id=’tmpAbbottAndCostello’>
 Abbott
 Costello

 </body>
</html>

The style sheet has a few modifications as well:

body {
 font: 16px sans-serif;
}
h3 {
 font-size: 18px;
 margin: 0 0 5px 0;
}
h4 {
 font-size: 16px;
 margin: 5px 0;
}
ul {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul li {
 margin: 1px;
 padding: 3px;
}
li.tmpReallyFunny {
 background: #88fac6;
}

55

Chapter 2: Selecting and Filtering

The following JavaScript shows how you add elements to a selection using jQuery’s add method:

var tmpExample = {
 ready : function() {
 $(‘ul#tmpMarxBrothers li’)
 .add(‘ul#tmpAbbottAndCostello li’)
 .addClass(‘tmpReallyFunny’);
 }
};

$(document).ready(tmpExample.ready);

Figure 2-15 shows, as you might expect, that the elements within the element with ID name
tmpMarxBrothers and the elements within the element with ID name tmpAbbottAndCostello
all have the seagreen background (#88fac6).

Figure 2-15

Selecting One Specific Element from a Result Set
jQuery’s eq() method (short for “equals”) gives you the ability to select an element based on its position
within a result set. The following source code demonstrates how this method is used:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>

56

Part I: jQuery API

 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 2-11.js’></script>
 <link type=’text/css’ href=’Figure 2-11.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h3>Brilliant Muscians</h3>

 Brian Wilson
 Paul McCartney
 John Lennon
 Freddie Mercury

 </body>
</html>

The following style sheet is used with the preceding markup:

body {
 font: 16px sans-serif;
}
h3 {
 font-size: 18px;
 margin: 0 0 5px 0;
}
ul {
 list-style: none;
 margin: 0;
 padding: 0;
}
ul li {
 margin: 1px;
 padding: 3px;
}
li.tmpQueen {
 background: #cdb6ed;
}

Then, the following JavaScript demonstrates how the eq() method is used to pick just one element from
a result set based on its position offset from zero:

var tmpExample = {
 ready : function() {
 $(‘ul li’).eq(3).addClass(‘tmpQueen’);
 }
};

$(document).ready(tmpExample.ready);

The preceding source code gives you the results that you see in Figure 2-16.

57

Chapter 2: Selecting and Filtering

Figure 2-16

As you saw with the slice() method, the eq() method picks a specific element from the result set.
jQuery, and just about any JavaScript library you find, selects elements from the DOM based on what
order they appear in the markup. So, in this example, Brian Wilson is contained within element 0,
and Freddie Mercury is contained within element 3.

The following “Try It Out” recaps all the methods jQuery provides for filtering a selection. You can try
this example out for yourself to aid you in remembering how each method works and what each method
might be used for. If you feel that you have a sufficient understanding of the material, then you may
want to skip ahead to the section on events.

All source code examples within this book are downloadable for free from www.wrox.com.

Try It Out Filtering a Selection

Example 2-2
To recap selection filtering, follow these steps:

 1. Create the following markup document as Example 2-2.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Link</title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 2-2.js’></script>
 <link type=’text/css’ href=’Example 2-2.css’ rel=’stylesheet’ />
 </head>
 <body id=’tmpDialogueExample’>
 <div id=’tmpSelection’>
 <div class=’tmpList’>
 <h4>Edible Plants</h4>

58

Part I: jQuery API

 <ul id=’tmpPlants’>
 <li class=’tmpVegetables’ id=’tmpOnion’>Onion
 <li class=’tmpVegetables’ id=’tmpBroccoli’>Broccoli
 <li class=’tmpVegetables’ id=’tmpPepper’>Pepper
 <li class=’tmpVegetables’ id=’tmpCarrot’>Carrot
 <li class=’tmpFruits’>Apple
 <li class=’tmpFruits’>Cherry
 <li class=’tmpFruits’ id=’tmpOrange’>Orange
 <li class=’tmpFruits’>Lemon

 </div>
 <div class=’tmpList’>
 <h4>Animals</h4>
 <ul id=’tmpAnimals’>
 <li id=’tmpChicken’>Chicken
 <li id=’tmpCow’>Cow
 <li id=’tmpBuffalo’>Buffalo
 <li id=’tmpSheep’>Sheep
 <li id=’tmpRabbit’>Rabbit

 </div>
 </div>
 <div id=’tmpRecap’>
 <p>

 Find all elements inside of elements.

 </p>
 <p>

 Find all siblings of the element with id tmpCarrot.

 </p>
 <p>

 Select the sibling element after the element
 with id name tmpBroccoli.

 </p>
 <p>

 Select the sibling element before the element
 with id name tmpBroccoli.

 </p>
 <p>

 Select all sibling elements after the element
 with id name tmpBroccoli.

 </p>
 <p>

 Select all sibling elements before the element
 with id name tmpOrange.

59

Chapter 2: Selecting and Filtering

 </p>
 <p>

 Select only sibling elements before the
 element with id name tmpOrange that are vegetables.

 </p>
 <p>

 Find the parent <div> element, with id tmpSelection.

 </p>
 <p>

 Find parent elements of elements.

 </p>
 <p>

 Find children <h4> elements of parent <div> elements with
 class name tmpList.

 </p>
 <p>

 Select children elements of parent elements,
 except for vegetables.

 </p>
 <p>

 Select elements beginning with Cow and ending with Sheep.

 </p>
 <p>

 Select all animal elements, then add Pepper and Broccoli.

 </p>
 <p>

 Select all elements, and reduce to only Buffalo.

 </p>
 </div>
 </body>
</html>

 2. Create the following CSS document as Example 2-2.css:

body {
 font: 16px sans-serif;
}
ul {
 list-style: none;
 padding: 0;

60

Part I: jQuery API

 margin: 0;
 width: 200px;
}
li {
 padding: 3px;
 margin: 3px;
}
div.tmpList {
 float: left;
 margin: 0 20px;
}
div#tmpRecap {
 clear: left;
 padding: 10px;
}
.tmpExample {
 border: 1px solid rgb(200, 200, 200);
 background: #cbe5f8;
}
div#tmpSelection {
 overflow: hidden;
}

 3. Create the following JavaScript document as Example 2-2.js:

var tmpExample = {
 ready : function() {
 // Find all <input> elements and add a click
 // event.
 $(‘a’).click(tmpExample.findElements);
 },

 findElements : function($e)
 {
 // Prevent the default action, navigating to the link.
 $e.preventDefault();

 // Reset the example before applying the next.
 $(‘*’).removeClass(‘tmpExample’);

 switch (this.id)
 {
 case ‘tmpFind’:
 {
 // If the id of “this” <input> element contains “Find”,
 // Do the find() example.
 $(‘ul’).find(‘li’).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpSiblings’:
 {
 $(‘li#tmpCarrot’).siblings().addClass(‘tmpExample’);
 break;
 }
 case ‘tmpNext’:

61

Chapter 2: Selecting and Filtering

 {
 $(‘li#tmpBroccoli’).next().addClass(‘tmpExample’);
 break;
 }
 case ‘tmpPrev’:
 {
 $(‘li#tmpBroccoli’).prev().addClass(‘tmpExample’);
 break;
 }
 case ‘tmpNextAll’:
 {
 $(‘li#tmpBroccoli’).nextAll().addClass(‘tmpExample’);
 break;
 }
 case ‘tmpPrevAll’:
 {
 $(‘li#tmpOrange’).prevAll().addClass(‘tmpExample’);
 break;
 }
 case ‘tmpVegetables’:
 {
 $(‘li#tmpOrange’).prevAll(‘li.tmpVegetables’).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpParents’:
 {
 $(‘li#tmpCarrot’).parents(‘div#tmpSelection’).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpParent’:
 {
 $(‘li’).parent(‘ul’).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpChildren’:
 {
 $(‘div.tmpList’).children(‘h4’).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpNot’:
 {
 $(‘ul li’).not(‘li.tmpVegetables’).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpSlice’:
 {
 $(‘ul#tmpAnimals li’).slice(1, 4).addClass(‘tmpExample’);
 break;
 }
 case ‘tmpAdd’:
 {
 $(‘ul#tmpAnimals li’)
 .add(‘li#tmpBroccoli, li#tmpPepper’)
 .addClass(‘tmpExample’);

62

Part I: jQuery API

 break;
 }
 case ‘tmpEq’:
 {
 $(‘ul li’).eq(10).addClass(‘tmpExample’);
 break;
 }
 }
 }
};

$(document).ready(tmpExample.ready);

The preceding document looks something like what you see in Figure 2-17. Clicking on each link in the
example results in a different section of the top portion of the document being highlighted, depending
on the description provided for each <a> element.

Figure 2-17

The preceding example is one big recap of all the ways jQuery provides for selecting elements and fil-
tering elements you’ve already selected. When you click on a link, some JavaScript is executed to dem-
onstrate what is described in the link.

63

Chapter 2: Selecting and Filtering

First, each <a> element has a click event attached to it, so that when you click on a link, that event is
handled by the findElements() method of the tmpExample object. This is as easy as having one line of
code execute once the ready() method of the tmpExample object executes:

 $(‘a’).click(tmpExample.findElements);

Inside the findElements() method, the first thing done prevents the default action from occurring, which
in the case of an <a> element is navigating to the document specified in the href attribute. Of course, in
this case, that wouldn’t have happened anyway, since the value of the href attribute for each <a> element
is a hash character (or pound sign), but the default action is canceled nevertheless, since you’re never
really sure how your script might evolve.

The next thing that happens is that every element in the document is selected via the universal selec-
tor (the asterisk), and the class name tmpExample is removed. This re-sets the document to its original
state so that each time you click on a new link, you’re only seeing the elements that match that link’s
description.

 // Reset the example before applying the next.
 $(‘*’).removeClass(‘tmpExample’);

Then, a big, long switch statement is executed; each case is an ID name for an individual <a> element in
the markup document.

The first <a> element with ID name tmpFind locates all elements within all elements in the
document using jQuery’s find() method. Thus, clicking on the following link:

 Find all elements inside of elements.

results in this code being executed in the JavaScript:

 case ‘tmpFind’:
 {
 // If the id of “this” <input> element contains “Find”,
 // Do the find() example.
 $(‘ul’).find(‘li’).addClass(‘tmpExample’);
 break;
 }

subsequently results in all of the elements having a gray border and sky-blue background, as is
defined in the style sheet for the class name tmpExample.

.tmpExample {
 border: 1px solid rgb(200, 200, 200);
 background: #cbe5f8;
}

The jQuery selector selects all elements, regardless of what element they appear in. This is
because you first made a selection using $(‘ul’), which is a type selector, resulting in the selection of
all elements. Chaining the find() method to the selection changed the selection to include all
 elements instead, since you supplied a type selector to the find() method, as find(‘li’).

64

Part I: jQuery API

The next link triggers a selection of all sibling elements of the element with ID name tmpCarrot:

 Find all siblings of the element with id tmpCarrot.

Clicking on the preceding link executes the following JavaScript within Example 2-2.js:

 case ‘tmpSiblings’:
 {
 $(‘li#tmpCarrot’).siblings().addClass(‘tmpExample’);
 break;
 }

Using jQuery’s siblings() method causes all elements that are adjacent to Carrot to be selected.
Therefore, Onion, Broccoli, Pepper, Apple, Cherry, Orange, and Lemon are selected. Since you’re select-
ing Carrot’s siblings, all elements within the same element except Carrot are selected.

When you click the following link, the element that comes after the element with ID name
tmpBroccoli is selected using jQuery’s next() method, which is Pepper:

 Select the sibling element after the element
 with id name tmpBroccoli.

The preceding link triggers the following JavaScript when you click on it:

 case ‘tmpNext’:
 {
 $(‘li#tmpBroccoli’).next().addClass(‘tmpExample’);
 break;
 }

The following link does the opposite; it selects the element that comes before Broccoli, which is the
Carrot element. This is done via jQuery’s prev() method.

 Select the sibling element before the element
 with id name tmpBroccoli.

The preceding link executes the following JavaScript when you click it:

 case ‘tmpPrev’:
 {
 $(‘li#tmpBroccoli’).prev().addClass(‘tmpExample’);
 break;
 }

65

Chapter 2: Selecting and Filtering

In the next snippet, you select all elements following Broccoli using jQuery’s nextAll() method:

 case ‘tmpNextAll’:
 {
 $(‘li#tmpBroccoli’).nextAll().addClass(‘tmpExample’);
 break;
 }

Then, you select all the elements preceding the Orange element with jQuery’s prevAll() method:

 $(‘li#tmpOrange’).prevAll().addClass(‘tmpExample’);

In the next case, you look through all of the ancestor elements of the element with ID name tmp Carrot
to find the <div> element with ID name tmpSelection, and add the class name tmpExample to it.

 $(‘li#tmpCarrot’).parents(‘div#tmpSelection’).addClass(‘tmpExample’);

In the next example, you select the immediate parent of any element, which would be the
elements. The selector ‘ul’ ensures that the parent is only selected if it is a element, a moot point
in this case, since it would be a element anyway, but demonstrative of your option to pass a selec-
tor to jQuery’s parent() method if you so choose.

 $(‘li’).parent(‘ul’).addClass(‘tmpExample’);

The next example selects all children of the <div> element with ID name tmpList that are <h4> elements
using jQuery’s children() method:

 $(‘div.tmpList’).children(‘h4’).addClass(‘tmpExample’);

Subsequently, you create an example that selects all elements that are descendant of elements,
but remove all elements with class name tmpVegetables from the selection using jQuery’s not()
method:

 $(‘ul li’).not(‘li.tmpVegetables’).addClass(‘tmpExample’);

In the following snippet, you use jQuery’s slice() method to select elements based on their posi-
tion in the selection, where each number represents the element’s sequential position in the selection
offset from zero. The following selects Cow, Buffalo, and Sheep:

 $(‘ul#tmpAnimals li’).slice(1, 4).addClass(‘tmpExample’);

Next, you see how jQuery’s add() method can be used to add to a selection you’ve already made. The
following selects all elements descendant of the element with ID name tmpAnimals, then adds
the elements with ID names tmpBroccoli and tmpPepper:

 $(‘ul#tmpAnimals li’)
 .add(‘li#tmpBroccoli, li#tmpPepper’)
 .addClass(‘tmpExample’);

66

Part I: jQuery API

In the last example, you select a element based on its offset position in the selection. Each element
is assigned a number, starting with 0; the following selects Buffalo, because it is element number
10 in the selection:

 $(‘ul li’).eq(10).addClass(‘tmpExample’);

Appendix C provides a reference for all of jQuery’s selection and filtering methods.

Summary
In this chapter, you’ve seen some remedial examples that give you a comprehensive overview of jQuery’s
selection and filtering abilities. You learned how jQuery provides ridiculously fine-grained control over
selecting elements from the DOM, so fine-grained, that you’ll often find that there are multiple ways to
achieve the same results.

jQuery’s selection and filtering methods go much farther than what you get with plain-vanilla JavaScript,
which more often than not would take several lines of code to come to the same level of control over a
selection.

jQuery harnesses the power, ease, familiarity, and convenience of selectors to help you get anywhere in
the DOM you want to go. The selector syntax, you’ll find, is the same as what you’re used to using for
CSS; jQuery even supports a few extensions of its own. See Appendix B for a full listing of selector syn-
tax supported by jQuery.

jQuery’s filtering methods let you select descendants using the find() method; ancestors using the
parents() method; and siblings using the siblings(), prev(), prevAll(), next(), and nextAll()
methods. You can add elements using the add() method or ignore elements using the not() method.
And you can also get even more specific using the slice() and eq() methods. See Appendix C for a
full list of methods related to selection and filtering.

Exercises
 1. What other client-side technology does jQuery have a lot in common with in terms of its fine-

grained control over the selection of elements from the markup source?

 2. If you wanted to select an element from the DOM using jQuery based on an ancestral relation-
ship, which method would you use?

 3. Let’s say you wanted to swap an element’s position in the DOM with its preceding sibling.
What jQuery method would help with that application?

 4. If you have selected an element and want to select one of that element’s descendants from the
DOM, what methods does jQuery expose that would give you the results you seek?

 5. If you made a selection but later wanted to remove one or more elements from that selection,
what jQuery method would you use?

67

Chapter 2: Selecting and Filtering

 6. If you only wanted to select a single element from a broader selection, what jQuery method
would you use?

 7. List all of the methods that jQuery provides for working with sibling elements.

 8. How would you add elements to a selection using jQuery?

 9. Internet Explorer 8 does not support the :nth-child selector from the CSS 3 specification.
Would that selector work in that browser using jQuery?

3
Events

One of John Resig’s primary motivations for creating jQuery was the need to make support for
certain scripting features more seamless across browsers in a way that is as efficient and perfor-
mance-aware as is possible. John has managed pretty well — his Event API not only works across
all the popular, modern browsers, but it also simplifies events in very intuitive ways, reducing the
amount of code that you need to write to bind events to objects.

That said, to truly appreciate what John has done to bridge the gap in jQuery, a brief review of how
events work without a framework is in order. This chapter reiterates how event handling works in
JavaScript via the traditional event model, the W3C event model, and Microsoft’s JScript event
model, followed by a demonstration of how events work with jQuery.

Long a thorn in the sides of web developers everywhere is the rift in the event model supported
by Internet Explorer, and the event model standardized by the W3C. Over the years, developers
have come up with all sorts of creative ways to unite these different event models to have an
extensible, reliable, and easy-to-use Event API. To truly understand the challenge that a devel-
oper faces when attempting to bridge the compatibility gaps in event handling, you have to under-
stand the subtle nuisances that created the compatibility gap in the first place. In this chapter, I
look at the different methods for attaching an event in more detail by providing a recap on how
each of the different event-handling methods work, and some of those subtle nuances that make
cross-browser event handling a challenge, although I do not go into great detail on those nuances,
since that discussion can get quite advanced, and we don’t really need that kind of detail to con-
vey the point.

Assigning an Event with
the Traditional Event Model

Most browsers ever made that support JavaScript also support the so-called traditional event model,
a relic of Netscape’s original JavaScript design. This event model lets you assign a single event of
the same type to the same element. For example, if you wanted to assign an onclick event to an
HTML element, you’d only be able to assign just one onclick event to that element. If you tried to

70

Part I: jQuery API

assign another onclick event to the same element, subsequent assignments would overwrite previous
ones, and you’d be left in a situation wherein only the last onclick event that you assigned is the one
fired when you click on the element.

Most of the time, this limitation presents no problem at all, because you usually only need one event of
the same type on the same element, but there are enough use cases in which you want to be able to assign
the same event to the same element multiple times for this to become a very big limitation of event han-
dling. The most common example is attaching an onload event to the window object. In a modularized
development environment where script is separated into more manageable chunks based on its purpose
and loaded via external scripts, the traditional event model becomes very difficult to deal with. In every
script that you load, you’ll need to attach document events, and to attach those events, you’ll need to wait
until the document is fully loaded; so you need to attach a function to the onload event. With the tradi-
tional event model, you can only attach one function to the onload event. Capable programmers could
use some programming creativity to overcome the limitations of the traditional event model, but this
leads to bloated scripts, and fortunately standards bodies have already recognized this limitation and
come up with a superior solution — the W3C event model.

The following example demonstrates how the traditional event model works with a very simple example
that’s very common on the Web — a search box that has its label included as its initial value. Typically,
the value of the search input is Search or Search Example.com, or Search Company. When you click on the
input, the value is removed so that you can enter your query. When the input loses focus (the onblur
event), if the user has entered a query, his or her query stays entered in the input box; otherwise, the
label returns to the search box. This is an easy and convenient way to save space by combining the
input’s label with the input itself.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/2002/REC-xhtml1-20020801/DTD/xhtml1-transitional.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’ src=’Figure 2-18.js’></script>
 </head>
 <body>
 <input type=’text’ name=’q’ id=’tmpSearch’ value=’Search’ />
 </body>
</html>

The following JavaScript demonstrates the traditional event model, which limits you to a single event
being assigned to the same element. In the context of the following JavaScript, that would mean that
you could not have additional onfocus events attached to the same element, since subsequent assign-
ments would overwrite the first.

window.onload = function()
{
 document.getElementById(‘tmpSearch’).onfocus = function() {
 if (this.value == ‘Search’) {
 this.value = ‘’;
 }

71

Chapter 3: Events

 };

 document.getElementById(‘tmpSearch’).onblur = function() {
 if (!this.value) {
 this.value = ‘Search’;
 }
 };
};

The preceding looks like what you see in Figure 3-1 when you load it into a browser.

Figure 3-1

In Figure 3-1 you see three objects: the HTML document (Figure 3-1.html), the JavaScript document
(Figure 3-1.js), and the rendered output of the HTML and JavaScript in Safari. In the JavaScript, there is
an event that fires once the document is loaded, via a function assigned to window.onload. Within the
function that’s executed onload, there is an onfocus and an onblur event being applied to the <input>
element with ID name tmpSearch. When the <input> element receives focus and its value is Search, the
value is set to null. When the element is blurred (loses focus) and if it has no value, its value again
becomes Search. This is a common technique used to make a search box’s label its initial value.

There is one big limitation to this method of assigning events, however. Let’s say that you have a sepa-
rate JavaScript library being loaded and that library applies onfocus and onblur events of its own, or
even more common, that you have multiple external scripts that need to create events at onload. With
the traditional event model, you can only assign one of the same events to the same object. Were you to
create additional assignments to window.onload, in the window.onload = function() fashion, your
subsequent assignments would override previous ones, and you’d end up with a system in which not
all of your events are being assigned.

Of course, with the right planning, you could overcome this limitation of the traditional event model.
Having also recognized this limitation of the traditional event model, the W3C created a new event
model to give developers more flexibility.

72

Part I: jQuery API

Assigning Events with the W3C Event Model
With the W3C’s event model, you can assign as many of the same events to the same element that you
like. The following is an example of the concept presented in Figure 3-1, but using the W3C’s event
model rather than the traditional event model:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/2002/REC-xhtml1-20020801/DTD/xhtml1-transitional.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Contacts</title>
 <script type=’text/javascript’ src=’Figure 3-2.js’></script>
 </head>
 <body>
 <input type=’text’ name=’q’ id=’tmpSearch’ value=’Search’ />
 </body>
</html>

In contrast to the traditional event model, the W3C event model lets you assign as many events of the
same type to the same element as you like. In the following JavaScript, I can theoretically assign as
many focus and blur events to the <input> element as I like — well, within reason, of course!

window.addEventListener(
 ‘load’,
 function() {
 document.getElementById(‘tmpSearch’).addEventListener(
 ‘focus’,
 function() {
 if (this.value == ‘Search’) {
 this.value = ‘’;
 }
 }, false
);

 document.getElementById(‘tmpSearch’).addEventListener(
 ‘blur’,
 function() {
 if (!this.value) {
 this.value = ‘Search’;
 }
 }, false
);
 }, false
);

This will produce Figure 3-2 when run, although that figure is not actually shown here.

It results in the same document that you saw in Figure 3-1, the only difference being how events are
assigned. The W3C’s event model works by calling the addEventListener() method on the object you
want to assign an event to. In the preceding code, the first instance of attaching an event with

73

Chapter 3: Events

addEventListener() is calling that method on the window object to attach a load event. In Figure 3-1,
the event was onload, and the W3C’s event model dispenses with the on prefix of event names; other-
wise, the events are the same. The addEventListener() method accepts three arguments:

object.addEventListener(event, function, useCapture);

The second argument of addEventListener() is the function that you want to execute when the event
takes place. The argument that you provide to addEventListener() can be the name of the function, or,
as you see in the preceding JavaScript, the argument can also be an anonymous function. Anonymous
functions do not have a name, as in this example, so the nameless function definition is passed as the
second argument to addEventListener(). You will see many more examples of anonymous functions
versus named functions throughout this book, so I won’t go into great detail about that here.

The third argument, called useCapture, is almost never needed, although there are a handful of situa-
tions that call for its use. useCapture has to do with the concept of event capturing. Because event cap-
turing is a feature that few JavaScript developers use or need, I’ve chosen not to explore this concept in
depth, since this is really a fringe feature with few actual use cases justifying its existence — in fact, it is
such a fringe feature that jQuery does not provide for it in the majority of its publically exposed Event
API. For the most part, the value of the useCapture argument should always be false.

The this Object
The this object has special meaning in JavaScript, and its meaning can change depending on the context
it’s used in, and even the browser it’s used in. Because of how its meaning can change depending on con-
text, the this object can be confusing to JavaScript newcomers. In the preceding two examples demon-
strating the traditional Event API and the W3C Event API, this is used to modify properties of the
element to which events are applied.

Some of you may be saying, hold on — technically, this is a keyword! I think it helps to think of this
as an object, since it usually is. And technically, it isn’t necessarily incorrect to call it an object. If
you’re interested in more nuts-and-bolts discussion about this, I recommend you pick up Nicholas C.
Zakas’s Professional JavaScript for Web Developers, also from Wrox Press (2005; 2nd ed., 2009).

Let’s say you’ve added an event to an element. If you used the traditional event model, this always refers
to the element you added the event to, and the same is true when you’re using the addEventListener
function. An example of this appears in the following documents … literally and figuratively:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/2002/REC-xhtml1-20020801/DTD/xhtml1-transitional.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Contacts</title>
 <script type=’text/javascript’ src=’Figure 3-3.js’></script>
 <link rel=’stylesheet’ href=’Figure 3-3.css’ type=’text/css’ />
 </head>
 <body>
 <input type=’text’ name=’q’ id=’tmpSearch’ value=’Search’ />
 </body>
</html>

74

Part I: jQuery API

The following style sheet is included in the preceding markup document:

input.tmpInputFocused {
 background: red;
 color: white;
}

Finally, the following JavaScript is also included in the preceding document. It demonstrates how this
refers to the <input /> element in the markup document. When you’re working with an event that you’ve
attached to an element, this always refers to the element to which you’ve attached the event — that is,
if you’re working with the W3C or the traditional Event API. Unfortunately, Internet Explorer has a dif-
ferent idea of what this should mean. In fact, it should also be noted that Internet Explorer does not
support the W3C event, so this example and the last example won’t work in IE.

window.addEventListener(
 ‘load’,
 function() {
 document.getElementById(‘tmpSearch’).addEventListener(
 ‘focus’,
 function($e) {
 this.className = ‘tmpInputFocused’;
 }, false
);

 document.getElementById(‘tmpSearch’).addEventListener(
 ‘blur’,
 function($e) {
 this.className = ‘’;
 }, false
);

 }, false
);

In Figure 3-3, the correlation between the this object and the element is highlighted; the this object
when using the traditional event model, or the W3C event model, is an HTML node object, and whatever
properties or methods that are exposed for the particular HTML node object you’ve attached an event to
are available in the this object. In Figure 3-3, this refers to the <input> element in Figure 3-3.html.
Figure 3-3 shows you what happens when you load Figure 3-3.html in Safari and focus the <input> ele-
ment. (Note that the figure references in the book’s source code don’t always match up with the figure
numbers in the book itself.)

In Figure 3-3, you see that when the <input> element gains focus, the class name, tmpInputFocused,
becomes the value of the <input> element’s class attribute by assigning that class name to the <input>
element’s className property. From the style sheet in the preceding source code, you can see that makes
the <input> element’s background red, and its text is white. Figure 3-4 shows what happens when the
<input> element loses focus, or is blurred.

In Figure 3-4, you see that the red background and white text styles are no longer applied, and that’s
because the class name tmpInputFocused was removed upon the <input> element losing focus or becom-
ing blurred.

75

Chapter 3: Events

Figure 3-3

Figure 3-4

The this object can also refer to other objects depending on what context that you use it in. What you’ve
seen so far is the this object in relation to the traditional event model and the W3C event model, but
those are not the only situations in which you can use the this object. Having said that, you will see
more examples of how the this object can be used throughout this book.

The event Object
When you’re handling an event, sometimes you want to intercept or prevent another action from occur-
ring. For example, let’s say that you have existing links on a web page. When you click on a link, your
browser takes you to the document referenced in the href attribute of the <a> element. With JavaScript
it’s possible to intercept a click on a hyperlink. If you want to prevent the default action from occurring,
that is, the browser navigating to the document referenced in the href attribute, you need to access meth-
ods of an event object that can be passed as the first argument in any function acting as an event listener

76

Part I: jQuery API

(a function assigned via the W3C event model, or the traditional event model). To prevent the default
action, you need to call the preventDefault() method of the event object. An example of this appears
in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/2002/REC-xhtml1-20020801/DTD/xhtml1-transitional.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title>Link</title>
 <script type=’text/javascript’ src=’Figure 3-5.js’></script>
 </head>
 <body>
 Wrox® Programmer to Programmer™
 </body>
</html>

The following JavaScript is included in the preceding markup:

window.addEventListener(
 ‘load’,
 function() {
 document.getElementsByTagName(‘a’)[0].addEventListener(
 ‘click’,
 function($event) {
 window.open(this.href, ‘P2P’, ‘width=500,height=500’);
 $event.preventDefault();
 }, false
);
 }, false
);

In the preceding source code, you see a simple markup document with a single hyperlink. In the refer-
enced JavaScript, a click event is attached to that one hyperlink, by getting all <a> elements and adding
the click event to the first <a> element returned via document.getElementsByTagName(‘a’)[0]. An
anonymous function is used to handle the click event, and it has one argument defined, $event. That
argument can have whatever name you like; most developers use a variable named e or $e to save time
typing. With that argument in place, when the click event fires, the browser passes the event object to
the event-handling function.

The event object carries with it a few predefined methods and properties that give you more control over
an event. You can use that object to learn more about the event or the object that the event is attached to
relative to the event, or to control what happens after your event-handling function has finished execut-
ing. In the case of the preceding code, you want to intercept a click on an <a> element. Instead of the
browser navigating to the location specified in the href property as soon as the user has clicked on
the <a> element, you’re telling the browser to open a pop-up window at the location specified in the
href property of the <a> element, and not to navigate the main window to that location by calling the
preventDefault() method of the event object. Figure 3-5 is a demonstration of what happens when
you execute the code above.

77

Chapter 3: Events

Figure 3-5

In the case of attaching click events to hyperlinks, the default action is the browser navigating to the
location specified in the href property. The default action changes depending on the event and the
object the event is being applied to.

There are other methods and properties that the event object provides, but for the purpose of introduc-
ing you to the event object or refreshing your memory on the event object, that’s the gist of what it is. I
continue to revisit the event object throughout this book.

The Microsoft JScript Event Model
Up till now I’ve been talking about the W3C event model and the traditional event model. Microsoft’s
JScript supports a substantially different event model, of Microsoft’s own design. The API for
Microsoft’s event model looks like this:

object.attachEvent(event, function);

78

Part I: jQuery API

In Microsoft’s event model, there are only two arguments, event and function. At first glance, this may
give you the impression that the JScript event model has feature parity with the W3C event model, save
the useCapture argument. However, there is not feature parity. The first difference is that its event argu-
ment takes the event name with the on prefix. So the Microsoft model uses the same event names verba-
tim as the traditional event model.

In Microsoft’s event model, when events are attached via attachEvent(), this points to the window object,
not the object the event is attached to, a pretty big deviation from the handling of this in the traditional
event model, which Microsoft does support in its implementation of the traditional event model.

Microsoft does not allow the event object to be passed as the first argument of listener functions. Instead,
Microsoft provides a global window.event object. So, rather than calling $event.preventDefault(); as
you saw in Figure 3-5 above, you’d set the returnValue property of the window.event object to false,
as in window.event.returnValue = false, and that provides the same outcome in Internet Explorer.
Additionally, Microsoft’s event object does not provide the same, standardized, methods that the event
objects in other browsers support. This is also true of Microsoft’s implementation of the traditional
event model — the event object is always global.

It should also be noted that Microsoft’s JScript, as supported in Internet Explorer, has not seen much
revision at all since the release of IE6 back in 2001. Whereas Microsoft did provide a few CSS improve-
ments in IE7 — less than many had hoped for — there was precious little in the way of JScript enhance-
ments or bug fixes, despite Microsoft having always had the ability to update JScript without updating IE.
Sure, there have been security patches, and they gave us a native implementation of the XMLHttpRequest
object in IE7, the same supported by other browsers, as an alternative to the ActiveX object provided by
previous versions of IE. Otherwise, the JScript of today is the same one that IE has used since the release
of IE6 in 2001. With Microsoft’s latest browser release, as of this writing, IE8, the JavaScript side does see
a few notable improvements: faster performance, more stability, and implementation of the Selectors API.
Unfortunately, however, there is still no support for the W3C’s Event API, and a rift remains between
the Event API of Microsoft’s browsers and the standard W3C Event API supported by everyone else.

While there are some nooks and crannies of JavaScript where browser makers are so fragmented that
each has its own particular way of doing one particular thing, the rift in support between Microsoft’s
event model and the W3C’s is the single biggest annoyance, since it is an incompatibility that has to be
dealt with each and every time you want to attach and handle events, the most common task a JavaScript
developer will embark upon.

Creating a Universal Event API
Despite the differences, for the most part developers have coped, using home-brewed solutions that bridge
compatibility. As I mentioned earlier in this chapter, such home-brewed solutions must take quite a heavy
load into account. Here is a reiteration of the ingredients required to make your own home-brewed
addEventListener()/attachEvent() method:

Don’t leak memory. A memory leak occurs when your browser claims memory (RAM) for a ❑

script. Your script uses the memory, but the memory is never released when the browser is fin-
ished using it. The next time the browser needs memory, it claims more memory instead of
reusing or releasing what it already claimed. Your JavaScript can become a black hole, sucking up

79

Chapter 3: Events

more memory to sit in a useless limbo. Be careful, though: Memory leaks can be difficult to rec-
ognize. Slowly, over multiple page loads, your browser will become more and more sluggish and
less stable. Depending on the severity of the leak, it could lead to your browser crashing. At this
time, IE6 has the biggest problem with runaway memory use. IE7 fixed some of this, but some
problems remain. And IE8 fixes still more. Firefox and other browsers have been known to suf-
fer from this problem too, so this is not an infliction that’s limited to IE alone.

You must fix the ❑ this object in IE. this should point to the object that the event is attached to,
rather than the window object.

You must fix the ❑ event object in IE and provide feature parity with the event object that other
browsers support.

You need to be able to attach multiple events to the same element. ❑

You need to be able to remove attached events from an element ❑ . That is, remember which events
are assigned to which elements so you can unassign them, if needed.

It may not seem like it, but to implement that list is actually a bit of a tall order. You need lots of testing
and expert JavaScript knowledge, and most times less experienced programmers fail on one or more of
the necessary points needed for a truly fluid and stable Event API implementation.

Average web developers, for the most part, shouldn’t have to worry or care about memory usage, at
least not at that low level. Of course, you need to keep memory usage in mind. You need to avoid crash-
ing the browser because your JavaScript application wants to load megabytes upon megabytes of data,
and you want to find ways to make average performing scripts faster and more efficient.

Thankfully, you don’t have to develop your own event-handling method. In 2005, Dean Edwards and
other prominent JavaScript experts came together to fix the event problem. Pioneered mostly by Dean’s
effort, a solution called addEvent() was born. Later, John Resig drew inspiration from the fundamen-
tals of Dean’s script, while bringing in his own innovations to create jQuery’s Event API. John did away
with much of the verbosity and unnecessary complexity of the Event API.

jQuery supports events through the following APIs:

The ❑ bind() method, which can be thought to be just like the W3C’s Event API, minus that mostly
useless useCapture argument

Via individual event methods, like ❑ click(), change(), focus(), blur(), and so on, which make
the code required to attach an event even less verbose. To use this API, all you have to do is pass
a reference to a function, or an anonymous function as the first and only argument to one of these
individual methods. This is just like you’ve seen earlier in this chapter, and in Chapter 1, with
the click() and ready() methods.

An event can be simulated programmatically very easily. All you have to do is call the event ❑

method without any arguments.

The next few sections describe the preceding APIs in a little more detail.

For a full reference of what jQuery supports in terms of events, see Appendix D.

80

Part I: jQuery API

Binding Events with jQuery’s bind() Method
As I mentioned in the previous section, jQuery’s bind() method works similarly to the W3C’s stan-
dard Event API. Aside from it having a much shorter name, the only other difference is that it omits
the mostly useless useCapture argument. The useCapture argument is so useless that I have decided
not to even discuss it in this book, except to say that it is useless. Well, actually, to be fair, there are a pre-
cious few fringe cases where this feature of the W3C’s Event API is useful, but 99 percent of the time you
won’t run into them. If you absolutely must know more about this, then, fear not, you can find some
coverage of this in Nicholas C. Zakas’s Professional JavaScript for Web Developers, also from Wrox Press
(2005; 2nd ed., 2009).

The following example demonstrates the bind() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 3-6.js’></script>
 <link rel=’stylesheet’ href=’Figure 3-6.css’ type=’text/css’ />
 </head>
 <body>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 </body>
</html>

The preceding document is linked to the following style sheet:

div {
 border: 1px solid rgb(200, 200, 200);
 width: 100px;
 height: 100px;
 margin: 5px;
 float: left;
}
div.tmpExampleOver {
 background: #5092c5;
}
div.tmpExampleOn {
 background: #165b91;
}

81

Chapter 3: Events

and the following JavaScript:

$(document).bind(
 ‘ready’,
 function() {
 $(‘div’).bind(
 ‘mouseover’,
 function() {
 $(this).addClass(‘tmpExampleOver’);
 }
);

 $(‘div’).bind(
 ‘mouseout’,
 function() {
 $(this).removeClass(‘tmpExampleOver’);
 }
);

 $(‘div’).bind(
 ‘click’,
 function() {
 if ($(this).hasClass(‘tmpExampleOn’)) {
 $(this).removeClass(‘tmpExampleOn’);
 } else {
 $(this).addClass(‘tmpExampleOn’);
 }
 }
);
 }
);

The preceding source code demonstrates how you use jQuery’s bind() method to attach events, and from
the example earlier in this chapter, you can see that it works just like the W3C’s addEventListener()
method (minus that one useCapture argument), in that the method is called on the object you want to
attach events to, then you pass the name of the event and a function that acts as an event listener. In this
case, you attached a mouseover and mouseout event that result in each <div> element turning blue when
you pass your mouse cursor over each box by attaching the class name tmpExampleOver to the <div> ele-
ment. Then you attach a mouseout event that removes the tmpExampleOver class name from the <div>
element, reverting it to have no background. Finally, you attach a click event that toggles the class name
tmpExampleOn to be present every other click. The preceding gives you the output shown in Figure 3-6.

The bind() method is useful when you need to attach an event that jQuery does not provide a method
for. Some examples would be Microsoft’s onselectstart event, or ondrag event, which are only sup-
ported by Internet Explorer and Safari at present. Those events would be passed to the bind() method,
minus the on prefix, as selectstart or drag.

You’ll also note the way in which I have called the hasClass(), addClass(), and removeClass() methods,
which are all methods provided by jQuery, within the event-handling functions. In the event-handling
function, by default, jQuery provides the this object just like the standard W3C Event API does; it is an
object representing the element that the event is attached to. To access jQuery methods, you have to wrap
this in a call to the jQuery object, that is, $(this); then you have access to all of jQuery’s methods.

82

Part I: jQuery API

Figure 3-6

Binding Events with jQuery’s Event Methods
John Resig and the jQuery team didn’t stop at building a unified, cross-browser Event API into jQuery,
but they saw an opportunity to make event binding even simpler by making individual methods for each
event, similar to the traditional event model, but with two big differences. John dropped the on prefix for
each event name, as is done for the W3C Event API, and he made the events methods instead of proper-
ties, so that you could attach multiple events of the same type to the same element. The following exam-
ple demonstrates the example you saw in the previous section rewritten to use jQuery’s individual event
methods, using the same markup and style sheet, with the following JavaScript:

$(document).ready(
 function() {
 $(‘div’).mouseover(
 function() {
 $(this).addClass(‘tmpExampleOver’);
 }
);

 $(‘div’).mouseout(
 function() {
 $(this).removeClass(‘tmpExampleOver’);
 }
);

 $(‘div’).click(
 function() {
 if (!$(this).hasClass(‘tmpExampleOn’)) {
 $(this).addClass(‘tmpExampleOn’);
 } else {
 $(this).removeClass(‘tmpExampleOn’);
 }
 }
);
 }
);

83

Chapter 3: Events

The preceding has the same functionality as the example that you saw that uses the bind() method in
Figure 3-6 but is slightly less verbose, since it uses individual event methods to attach each function.
This example produces Figure 3-7 (not shown).

Additionally, jQuery accounts for a few patterns that occasionally come up when attaching events, such
as when you attach a mouseover event, you also tend to attach a mouseout event. Well, why not make an
event that can attach both at once? That’s exactly what they did — the jQuery method that allows attach-
ing both a mouseover event and a mouseout event is called hover(). jQuery also accounts for another
pattern that alternates between attached functions every other click; this method is called toggle().
The preceding example is refined further to use these two methods.

$(document).ready(
 function() {
 $(‘div’).hover(
 function() {
 $(this).addClass(‘tmpExampleOver’);
 },
 function() {
 $(this).removeClass(‘tmpExampleOver’);
 }
);

 $(‘div’).toggle(
 function() {
 $(this).addClass(‘tmpExampleOn’);
 },
 function() {
 $(this).removeClass(‘tmpExampleOn’);
 }
);
 }
);

The preceding source code produces Figure 3-8 (not shown) and it does the same thing as the last two
examples in still less code. The hover() method’s first argument is a function that is bound to the ele-
ment’s mouseover event, and the second argument is a function that is bound to the element’s mouseout
event. Then the toggle() method accepts a minimum of two methods: Each method is alternated with
each click — upon the first click, the first function is executed; upon the second click, the second func-
tion is executed; upon the third click, it goes back to the first function; and so on. A minimum of two
functions is required, but you can supply an unlimited number of methods to alternate between.

Triggering Events
The functions that you bind to events with jQuery’s Event API can be triggered independent of any
event taking place rather easily. The concept allows you to reuse functions bound to events for other
purposes. You can even pass arguments to the function without much fuss. The following demonstrates
how you trigger an event in jQuery using the trigger() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>

84

Part I: jQuery API

 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 3-9.js’></script>
 <link rel=’stylesheet’ href=’Figure 3-9.css’ type=’text/css’ />
 </head>
 <body>
 <form method=’post’ action=’javascript:void(0);’>
 <div>
 <input type=’text’ name=’tmpExample’ value=’Example’ size=’25’ />
 </div>
 </form>
 </body>
</html>

The following style sheet is included in the preceding markup document:

input.tmpFocused {
 background: #5092c5;
 color: white;
}

The following JavaScript demonstrates jQuery’s trigger() method:

$(document).ready(
 function() {
 $(‘input’).focus(
 function() {
 $(this).addClass(‘tmpFocused’);
 }
);

 $(‘input’).blur(
 function() {
 $(this).removeClass(‘tmpFocused’);
 }
);

 $(‘input’).trigger(‘focus’);
 }
);

In the preceding example, you see a simple focus and blur event combination: When the <input /> ele-
ment is focused, the class name tmpFocused is added to it; when it is blurred, it is taken away. Upon page
load, the focus event is triggered, giving the <input /> element focus by default. This should look
something like the screenshot in Figure 3-9.

85

Chapter 3: Events

Figure 3-9

In the preceding example, you see how the trigger() element complements the bind() method, by
giving you the ability to artificially simulate an event, without actually needing the event to take place.
However, like the bind() method, jQuery also makes event simulation even easier, and you can also
simulate an event in jQuery by simply calling the event method without any arguments. The following
JavaScript demonstrates this concept by modifying the JavaScript that you saw in the last example:

$(document).ready(
 function() {
 $(‘input’).focus(
 function() {
 $(this).addClass(‘tmpFocused’);
 }
);

 $(‘input’).blur(
 function() {
 $(this).removeClass(‘tmpFocused’);
 }
);

 $(‘input’).focus();
 }
);

In the preceding JavaScript, which produces Figure 3-10 (not shown), instead of calling the trigger()
method to simulate the focus event, you simply call the focus() method without passing any argu-
ments to it, and this gives you the same result that you observed in Figure 3-9.

As I mentioned at the beginning of this section, if you need to, you can also pass arguments to the sim-
ulated event. You can do this by passing a second argument to the trigger() method, called the data
argument. The data that you pass to the trigger() method is made available in the function acting as

86

Part I: jQuery API

the event handler via its second argument, which can have whatever name you like. This is demon-
strated in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 3-11.js’></script>
 <link rel=’stylesheet’ href=’Figure 3-11.css’ type=’text/css’ />
 </head>
 <body>
 <form method=’post’ action=’javascript:void(0);’>
 <div>
 <input type=’text’ name=’tmpExample’ value=’Example’ size=’25’ />
 </div>
 </form>
 </body>
</html>

The preceding markup document links to the following style sheet:

input.tmpFocused {
 background: #89130a;
 color: white;
}
input.tmpFocusedOnLoad {
 background: #acd1ed;
}

In the following JavaScript, you see how the trigger() method can pass additional information to the
event handler. To access the information being passed to it, the event handler must define a second argu-
ment, which can have whatever name you like. In the following example, the information is passed to
the event handler via the $data argument:

$(document).ready(
 function() {
 $(‘input’).focus(
 function($e, $data) {
 if (typeof($data) != ‘undefined’ && $data.thisIsOnLoad) {
 $(this).addClass(‘tmpFocusedOnLoad’);
 } else {
 $(this).addClass(‘tmpFocused’);
 }
 }
);

 $(‘input’).blur(

87

Chapter 3: Events

 function() {
 $(this).removeClass(‘tmpFocusedOnLoad’);
 $(this).removeClass(‘tmpFocused’);
 }
);

 $(‘input’).trigger(‘focus’, {thisIsOnLoad: true});
 }
);

The preceding source code comes together to give you what you see in Figure 3-11. When the page first
loads, the <input /> element is given the class name tmpFocusedOnLoad and receives focus. Upon losing
focus, or blurring, it loses that class name. Then on subsequent focuses, the <input /> element receives
the class name tmpFocused.

Figure 3-11

The following “Try It Out” reviews jQuery’s Event API.

Try It Out Reviewing jQuery’s Event API

Example 3-1
For a comprehensive review of jQuery’s Event API, follow these steps:

 1. Create the following HTML document as Example 3-1.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />

88

Part I: jQuery API

 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 3-1.js’></script>
 <link rel=’stylesheet’ href=’Example 3-1.css’ type=’text/css’ />
 </head>
 <body>
 <p>
 jQuery’s event API is modeled after the standard event API put
 forth by the W3C. It’s bind() method simplifies this API,

 by requiring less code, and dropping a mostly unneeded argument.
 </p>
 <div class=’tmpBind’>
 <div></div>
 <div></div>
 <div></div>
 </div>
 <p>
 jQuery doesn’t stop there, however, you can also use individual

 event methods to bind events.
 </p>
 <div class=’tmpIndividual’>
 <div></div>
 <div></div>
 <div></div>
 </div>
 <p>
 And if that weren’t enough, jQuery also provides two methods that
 accommodate applying both a mouseover and mouseout event in the
 same method, and a method that makes toggling easier and

 more intuitive.
 </p>
 <div class=’tmpPattern’>
 <div></div>
 <div></div>
 <div></div>
 </div>
 <p>
 You can also programmatically trigger events, like automatically

 focusing the following <textarea> element on page load.
 </p>
 <div class=’tmpTrigger’>
 <textarea name=’tmpExample’ cols=’50’ rows=’5’>Example</textarea>
 </div>
 <p>
 Even triggering an event is made easier, you can use individual

 event methods with no arguments to do that too.
 </p>
 </body>
</html>

89

Chapter 3: Events

 2. Create the following style sheet as Example 3-1.css:

body {
 font: 16px sans-serif;
}
div.tmpBind,
div.tmpIndividual,
div.tmpPattern {
 height: 100px;
}
div.tmpBind div,
div.tmpIndividual div,
div.tmpPattern div {
 height: 88px;
 width: 88px;
 border: 1px solid rgb(200, 200, 200);
 float: left;
 margin: 0 3px;
 background: #cfdbe5;
}
body div.tmpExampleOver {
 background: #acd1ed;
}
body div.tmpExampleOn {
 background: #7e93a4;
}
textarea.tmpFocused {
 background: #acd1ed;
 color: white;
}

 3. Create the following JavaScript as Example 3-1.js:

$(document).ready(
 function() {
 $(‘div.tmpBind’).bind(
 ‘mouseover’,
 function() {
 $(this).find(‘div’).addClass(‘tmpExampleOver’);
 }
).bind(
 ‘mouseout’,
 function() {
 $(this).find(‘div’).removeClass(‘tmpExampleOver’);
 }
).bind(
 ‘click’,
 function() {
 if ($(this).find(‘div’).hasClass(‘tmpExampleOn’)) {
 $(this).find(‘div’).removeClass(‘tmpExampleOn’);
 } else {
 $(this).find(‘div’).addClass(‘tmpExampleOn’);
 }
 }

90

Part I: jQuery API

);

 $(‘div.tmpIndividual’).mouseover(
 function() {
 $(this).find(‘div’).addClass(‘tmpExampleOver’);
 }
).mouseout(
 function() {
 $(this).find(‘div’).removeClass(‘tmpExampleOver’);
 }
).click(
 function() {
 if ($(this).find(‘div’).hasClass(‘tmpExampleOn’)) {
 $(this).find(‘div’).removeClass(‘tmpExampleOn’);
 } else {
 $(this).find(‘div’).addClass(‘tmpExampleOn’);
 }
 }
);

 $(‘div.tmpPattern’).hover(
 function() {
 $(this).find(‘div’).addClass(‘tmpExampleOver’);
 },
 function() {
 $(this).find(‘div’).removeClass(‘tmpExampleOver’);
 }
).toggle(
 function() {
 $(this).find(‘div’).addClass(‘tmpExampleOn’);
 },
 function() {
 $(this).find(‘div’).removeClass(‘tmpExampleOn’);
 }
);

 $(‘div.tmpTrigger textarea’).focus(
 function($e) {
 $(this).addClass(‘tmpFocused’);
 }
).blur(
 function() {
 $(this).removeClass(‘tmpFocused’);
 }
);

 $(‘div.tmpTrigger textarea’).focus();
 }
);

The preceding example should look like the screenshot in Figure 3-12 when you load it into a browser.

91

Chapter 3: Events

Figure 3-12

The preceding example lumps in almost everything you learned about jQuery’s Event API in this
chapter — the most important bits, at least. I introduced some minor deviations from the previous
examples to keep things interesting.

The biggest deviation is that I demonstrated how you can reduce jQuery code even more by chaining the
events together one after the other. Once you’ve made a selection in jQuery, most jQuery methods also
return that selection, or a filtered selection, if you’ve opted to do that; even the event methods return
your previous selection so that you can keep doing things with that selection. This is one thing about
jQuery that has contributed to its immense popularity: It lets you chain methods one after the other to
save you even more lines of code than it already does otherwise. Of course, you don’t have to use this
innovation, but it is one more thing you have available at your disposal.

The rest of the example reiterates the different ways that you can use jQuery’s Event API to attach events
to each element. The first chain of jQuery methods utilizes the bind() method to attach events to the
following markup:

 <div class=’tmpBind’>
 <div></div>
 <div></div>
 <div></div>
 </div>

92

Part I: jQuery API

The preceding markup is styled by the following CSS:

div.tmpBind,
div.tmpIndividual,
div.tmpPattern {
 height: 100px;
}
div.tmpBind div,
div.tmpIndividual div,
div.tmpPattern div {
 height: 88px;
 width: 88px;
 border: 1px solid rgb(200, 200, 200);
 float: left;
 margin: 0 3px;
 background: #cfdbe5;
}

The preceding CSS puts those <div> elements side-by-side and makes them perfectly square boxes with a
gray border and murky sky-blue backgrounds. The following JavaScript adds some remedial mouseover,
mouseout, and click interactions:

 $(‘div.tmpBind’).bind(
 ‘mouseover’,
 function() {
 $(this).find(‘div’).addClass(‘tmpExampleOver’);
 }
).bind(
 ‘mouseout’,
 function() {
 $(this).find(‘div’).removeClass(‘tmpExampleOver’);
 }
).bind(
 ‘click’,
 function() {
 if ($(this).find(‘div’).hasClass(‘tmpExampleOn’)) {
 $(this).find(‘div’).removeClass(‘tmpExampleOn’);
 } else {
 $(this).find(‘div’).addClass(‘tmpExampleOn’);
 }
 }
);

The bind() method in the preceding code takes two arguments: the type of event you want to attach
and the function you want to use as an event listener. In this case, you’re adding mouseover, mouseout,
and click events to the <div> element with class name tmpBind. Upon mouseover, the class name
tmpExampleOver is added to each of the child <div> elements, and upon mouseout, the class name is
removed. The tmpExampleOver class name makes each child <div> element have a brighter sky-blue
background. Upon clicking on the <div> element, the class name tmpExampleOn is added to each child
<div> element, which makes each <div> element have a darker blue background. Clicking again
removes the class name.

The next chunk of code does the same thing, but instead of using the bind() method to attach each
event, you attach each event using the individual mouseover(), mouseout(), and click() event methods.

93

Chapter 3: Events

Then, in the chunk of code after that, you consolidate the event handlers for the mouseover() and
mouseout() events into a single hover() method, and you split the event handler for the previous
click() method into two methods that are passed to the toggle() method.

Finally, you add focus and blur events to the <textarea> element, and you trigger the focus() event
handler for the <textarea> at page load.

Summary
Previous to JavaScript frameworks, the Event API was pretty fragmented between browsers. Microsoft
had its own way of doing things, and everyone else had theirs. Through the past several years, cross-
browser development potholes like this one helped to keep JavaScript down and relegated to the realm
of novelty in mainstream web development … and worse, it contributed to the close-minded IE-only
development policies put forth by many IT departments. The popularity of Firefox and Safari has chal-
lenged that mindset and pushed change on the status quo, and even forced Microsoft to return to seri-
ous development of its flagship browser.

JavaScript experts like Dean Edwards, Peter-Paul Koch, John Resig, and others have been instrumental
in developing entirely JavaScript-driven patch-jobs that pave over JavaScript’s rough edges to make
development in JavaScript much more seamless and accessible to the average web developer.

jQuery’s Event API makes dealing with events in JavaScript much easier and takes away the constant,
tedious cross-browser bits that plagued the JavaScript of old and normalized events in JavaScript mostly
on the W3C’s superior event model. No longer do you have to worry about what object this refers to, or
how to cancel the browser’s default action for an event.

jQuery’s bind() method mirrors the W3C addEventListener() closely, but makes it less verbose and
drops the need to specify the third argument that barely ever gets any use. Additionally, jQuery inno-
vates even further by providing individual event methods that further reduce the amount of code that
you need to write, and makes it very easy to simulate an event.

Exercises
 1. In the traditional event model, is it possible to attach multiple events of the same type to the

same element?

 2. What was the biggest shortcoming of the traditional event model that was addressed by the
W3C’s addEventListener() API?

 3. In terms of the names of events, what is the difference in how events are named between the
traditional event model, the W3C addEventListener() API, and Microsoft’s event model?

 4. What method does jQuery provide that is very similar to the W3C’s addEventListener() API,
and what are the differences?

 5. What methods would you use if you wanted to simulate a focus event on a form <input> field?

 6. If you wanted to attach both mouseover and mouseout events to an element, what would be the
best method for doing so?

4
Manipulating Content

and Attributes

jQuery is a thorough library, and it provides everything you can imagine for working with content
from the DOM. In Chapter 2, you saw how jQuery made it really easy to fetch elements from the
DOM via its fine-grained support for selecting and filtering selections. Then in Chapter 3, you saw
how jQuery built on the W3C event model and made it less verbose while providing more meth-
ods that you can use in every browser today. This chapter continues the discussion of jQuery’s
API components with an in-depth look at the methods that jQuery makes available for manipulat-
ing content and attributes. No longer do you have to worry about whether a browser supports the
innerText or textContent properties, or the outerHTML property, or what the standard DOM
method of removing an element from a document is. jQuery paves right over these frighteningly
verbose and sometimes fragmented methods with a rock-solid API that just works.

In this chapter, I cover how you can shuffle DOM content around, doing things like replacing one
element with another, inserting new text or HTML, appending or prepending content, cloning
content, and getting rid of content.

I also cover how you manipulate attributes using jQuery, another area that fringe use cases in
some browsers (cough, IE) can make difficult.

Or maybe you’ve had occasion to want to save custom data with an element, without having to
mess around with creating custom attributes or hidden elements. jQuery provides this too.

Setting and Accessing Attributes
Working with attributes is very easy with jQuery. Like everything you do with jQuery, first you
make a selection, and then once you’ve made a selection, you can do something with that selec-
tion, like setting or accessing an attribute. Setting an attribute on a selection sets the attribute on
every element that you’ve selected, which can be one or more elements. Accessing an attribute’s
value is also easy — once you’ve made a selection, accessing an attribute’s value will provide you

96

Part I: jQuery API

with the attribute value of the first element in the selection. The following document demonstrates these
concepts in source code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-1.js’></script>
 <link type=’text/css’ href=’Figure 4-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div>Mouse over to change this element’s id.</div>
 </body>
</html>

The following style sheet is linked to the preceding document:

body {
 font: 16px sans-serif;
}
div {
 width: 350px;
 padding: 10px;
 border: 1px solid rgb(200, 200, 200);
 background: #93cdf9;
 margin: 5px;
}
div#tmpExample {
 background: #6faddd;
}

And the following JavaScript is also linked to the preceding document:

$(document).ready(
 function() {
 $(‘div’).hover(
 function() {
 // Set the id attribute
 $(this).attr(‘id’, ‘tmpExample’);

 // Get the id attribute
 $(this).text(‘This element\’s ID is: ‘ + $(this).attr(‘id’));
 },
 function() {
 $(this).attr(‘id’, ‘’);
 $(this).text(‘This element\’s ID has been removed.’);
 }
);
 }
);

97

Chapter 4: Manipulating Content and Attributes

The preceding example demonstrates how you use jQuery’s attr() method to set the id attribute in the
document. It’s pretty easy: All you have to do is specify the name of the attribute you want to set in the
first argument and the value you want to set in the second argument. Retrieving the attribute’s value is
also easy: Just call the attr() method with the name as the first argument, and do not specify a second
argument. The preceding gives what you see in Figure 4-1.

Figure 4-1

jQuery’s attr() method can also have slightly different syntax — you can also pass an object literal to
the method defining attributes in key, value pairs. This would look like the following:

 $(‘a’).attr({
 id: ‘tmpExample’,
 title: ‘Some Tooltip Text’,
 href: ‘http://www.example.com’
 });

Note the inclusion of the curly braces above. The opening curly brace comes after the opening parenthe-
sis, letting JavaScript know that what follows is an object literal. Each property appears as the attribute
name followed by a colon, then followed by the value. If the value is a string, it is, of course, enclosed in
quotes; then you put in a comma and the next attribute key, value pair, and so on; then a closing curly
brace completes the object. In this example, you set three separate attributes, the id, title, and href
attributes. The alteration of the DOM would produce corresponding HTML that looks like this:

 A link

Taking away attributes is also easy — for that you use the removeAttr() method. This method takes
the name of an attribute, then deletes that attribute from each selected element. So, if you were to run
the following jQuery on the preceding markup:

 $(‘a’).removeAttr(‘title’);

As you would expect, you would have the following markup instead:

 A link

98

Part I: jQuery API

jQuery’s attr() method lets you do one other thing, and that’s set attributes using a callback function.
This concept is demonstrated in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-2.js’></script>
 <link type=’text/css’ href=’Figure 4-2.css’ rel=’stylesheet’ />
 </head>
 <body>

 Jupiter
 Saturn
 Uranus
 Neptune

 </body>
</html>

The following style sheet is included in the preceding document:

body {
 font: 16px sans-serif;
}
ul {
 list-style: none;
 padding: 0;
 margin: 0;
}
ul li {
 margin: 3px;
 padding: 3px;
}
li#tmpJupiter {
 background: #d7b05b;
}
li#tmpSaturn {
 background: #d3988a;
}
li#tmpUranus {
 background: #8ad3a6;
}
li#tmpNeptune {
 background: #8aa9d3;
}

99

Chapter 4: Manipulating Content and Attributes

The following JavaScript shows how each element is selected; then an id attribute is added using
jQuery’s attr() method. An anonymous function is provided in the second argument, which is exe-
cuted in the context of each selected element. That means the anonymous function is executed
four times, since there are four elements. Within that function, an ID is created and returned by
taking the prefix tmp, and the text content of the element is retrieved using jQuery’s text() method
(which I discuss later in this chapter) and glued to that prefix. So, each element receives a unique
ID: The first element is given the ID name tmpJupiter; the second, tmpSaturn; the third, tmpUranus;
and the fourth, tmpNeptune.

$(document).ready(
 function() {
 $(‘li’).attr(
 ‘id’,
 function() {
 return ‘tmp’ + $(this).text();
 }
);
 }
);

So jQuery’s attr() method can accept a callback function, which is executed in the context of each
selected element; the value returned by that function becomes the attribute value. Figure 4-2 shows
the example as it appears in a browser.

Figure 4-2

The following “Try It Out” recaps all you’ve learned about jQuery’s attribute manipulation abilities.

Try It Out Manipulating Attributes

Example 4-1
To review attribute manipulation in jQuery, follow these steps:

 1. Enter the following markup document into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

100

Part I: jQuery API

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 4-1.js’></script>
 <link type=’text/css’ href=’Example 4-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 Setting an attribute value with jQuery’s attr() method is
 really easy, all you have to do is supply the name of the
 attribute and a value.
 </p>

 The id attribute of this element is set to <i>tmpSetID</i>.

 <p>
 You can also set multiple attributes by supplying an object
 literal to the attr() method.
 </p>

 The title of this element is set to <i>Hello, World!</i> and
 the id attribute of this element is set to <i>tmpHelloWorld</i>.

 <p>
 Getting an attribute value is just as intuitive, all you need
 to do is call the attr() method with the name of the attribute
 you want to get the value for.
 </p>

 This element’s title attribute has a value of .

 <p>
 An attribute can be removed from an element using the
 removeAttr() method.
 </p>

 This element’s class attribute is removed.

 <p>
 Element attributes may also be set via a callback function.
 </p>

 I
 Me
 Mine

 </body>
</html>

 2. Save the preceding document as Example 4-1.html.

101

Chapter 4: Manipulating Content and Attributes

 3. Enter the following style sheet into your text editor:

body {
 font: 16px sans-serif;
}
span#tmpSetID {
 background: yellow;
 border: 1px dashed rgb(128, 128, 128);
 padding: 3px;
}
span#tmpHelloWorld {
 background: green;
 padding: 3px;
 border: 1px dashed yellowgreen;
 color: yellowgreen;
}
span.tmpGetAttr {
 background: blue;
 padding: 3px;
 border: 1px dashed lightblue;
 color: lightblue;
}
span.tmpRemoveAttr {
 background: red;
 padding: 3px;
 border: 1px dashed pink;
 color: pink;
}
ul {
 list-style: none;
 padding: 0;
 margin: 5px;
}
li#tmpI,
li#tmpMe,
li#tmpMine {
 padding: 3px;
}
li#tmpI {
 background: orange;
}
li#tmpMe {
 background: purple;
}
li#tmpMine {
 background: magenta;
}

 4. Save the preceding document as Example 4-1.css.

 5. Enter the following JavaScript document:

$(document).ready(
 function() {
 $(‘span.tmpSetAttr’).attr(‘id’, ‘tmpSetID’);

 $(‘span.tmpSetMultipleAttr’).attr({

102

Part I: jQuery API

 title: ‘Hello, World!’,
 id: ‘tmpHelloWorld’
 });

 $(‘span.tmpGetAttr’).find(‘span’).text(
 $(‘span.tmpGetAttr’).attr(‘title’)
);

 $(‘span.tmpRemoveAttr’).removeAttr(‘class’);

 $(‘li’).attr(
 ‘id’,
 function() {
 return ‘tmp’ + $(this).text();
 }
);
 }
);

 6. Save the preceding document as Example 4-1.js.

The preceding document gives you something like what you see in Figure 4-3.

Figure 4-3

In Example 4-1, you reviewed all the ways that jQuery’s API provides for direct manipulation of attri-
bute values.

103

Chapter 4: Manipulating Content and Attributes

In the first example, you set the following element’s ID attribute to tmpSetID:

 The id attribute of this element is set to <i>tmpSetID</i>.

The id attribute of the element is set with the following JavaScript, by first selecting the
element with the selector span.tmpSetAttr, and then setting the id attribute by using jQuery’s attr()
method with two values, the first value being the attribute you want to set and the second value being
the value you want to give to that attribute.

 $(‘span.tmpSetAttr’).attr(‘id’, ‘tmpSetID’);

Adding the ID tmpSetID to the preceding element triggers the following style-sheet rule to be
applied to the element:

span#tmpSetID {
 background: yellow;
 border: 1px dashed rgb(128, 128, 128);
 padding: 3px;
}

Subsequently, you set both the id and title attributes of the following element:

 The title of this element is set to <i>Hello, World!</i> and
 the id attribute of this element is set to <i>tmpHelloWorld</i>.

You set both the id and title attributes at the same time by providing an object literal to the attr()
method, containing multiple attributes in key, value pairs.

 $(‘span.tmpSetMultipleAttr’).attr({
 title: ‘Hello, World!’,
 id: ‘tmpHelloWorld’
 });

The preceding application of the ID tmpHelloWorld results in the following style-sheet rule being
applied to that element:

span#tmpHelloWorld {
 background: green;
 padding: 3px;
 border: 1px dashed yellowgreen;
 color: yellowgreen;
}

In the next example, you simply retrieve the value of the title attribute and insert that value within a
nested element.

 This element’s title attribute has a value of .

104

Part I: jQuery API

Setting the value of the nested element is done with the following script. The outer ele-
ment is selected with the selector span.tmpGetAttr, then the nested element is selected using
find(‘span’), and the text() method is used to set the text value of that nested element. The
outer is selected again, and the value of its title attribute is retrieved using the method
attr(‘title’).

 $(‘span.tmpGetAttr’).find(‘span’).text(
 $(‘span.tmpGetAttr’).attr(‘title’)
);

In the next example, you remove an attribute completely using jQuery’s removeAttr() method.

 This element’s class attribute is removed.

The class attribute is removed completely using the following script:

 $(‘span.tmpRemoveAttr’).removeAttr(‘class’);

The removal of the class attribute results in the following style-sheet rule not being applied:

span.tmpRemoveAttr {
 background: red;
 padding: 3px;
 border: 1px dashed pink;
 color: pink;
}

Then, the final example that you see demonstrates how you can use a callback function to set an ele-
ment’s attribute. You take the text values of the following elements, and turn those into ID names.

 I
 Me
 Mine

The following script selects each element, and sets the id attribute of each element to tmpI,
tmpMe, tmpMine, respectively:

 $(‘li’).attr(
 ‘id’,
 function() {
 return ‘tmp’ + $(this).text();
 }
);

The execution of the preceding script results in the following style-sheet rules being applied:

li#tmpI,
li#tmpMe,
li#tmpMine {
 padding: 3px;
}

105

Chapter 4: Manipulating Content and Attributes

li#tmpI {
 background: orange;
}
li#tmpMe {
 background: purple;
}
li#tmpMine {
 background: magenta;
}

In the next section, I continue the discussion of attribute manipulation in jQuery with the API jQuery
offers for manipulating class names.

Manipulating Class Names
In earlier chapters, you’ve already seen examples of the addClass(), hasClass(), and removeClass()
methods that jQuery uses to manipulate class names. It is considered best practice in client-side web
development to avoid placing style declarations directly in your JavaScript code, and instead maintain a
separation of behavior and presentation by placing styles in your CSS and manipulating the class names
of elements for situations in which you require a manipulation of style. This is considered best practice
for a reason: It makes the most sense. Since all of your presentation is neatly contained in CSS, and your
behaviors in JavaScript, and your structure in HTML, your documents become much easier to manage,
since it’s more predictable where to look to make a modification. If your styles are scattered inline in
HTML, in the JavaScript, and in actual style sheets, then it becomes an order of magnitude more diffi-
cult to change the presentation of a document.

Class names are very flexible and allow you to specify one or more class names for the same element.
Multiple class names are separated by a single space in the attribute like so:

<div class=’thisClassName otherClassName stillAnotherClassName’>
 Some content…
</div>

In the preceding example, the <div> element has three separate class names, any one of which can be
used to delegate style from style sheets. CSS also specifies the ability to chain class names together in
the style sheet, like so:

div.thisClassName.otherClassName.stillAnotherClassName {
 color: red;
}

The preceding isn’t used very much, though, since IE6 only applies style to the last class name specified
in the chain. This was fixed in IE7, and other browsers have long supported this. However, you don’t have
to chain the class names in the style sheet; you can specify the styles separately, using only one class
name at a time, and utilize CSS’s specificity and cascading rules to make sure the right style is applied.

div.thisClassName {
 color: red;
}
div.otherClassName {
 color: maroon;

106

Part I: jQuery API

}
div.stillAnotherClassName {
 color: crimson;
}

In the preceding example, the style for the <div> element will be crimson, since its selector has the
same specificity as the preceding two, and thanks to the cascade, since it is last, its styles take prece-
dence over the preceding two. Since you’re applying behavior using JavaScript, you can use these rules
to your advantage to create effects that happen on click, or on mouseover or mouseout, dynamically
swapping the class names assigned to an element.

If these CSS topics are foreign to you, you might consider picking up a copy of my book Beginning CSS:
Cascading Style Sheets for Web Design, 2nd ed. (Wiley, 2007), in which I discuss the preceding
concepts in great detail.

In the following “Try It Out” you review jQuery’s class name manipulation API.

Try It Out Manipulating Class Names

Example 4-2
To review the methods jQuery provides for manipulating class names, follow these steps:

 1. Enter the following markup in a new document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 4-2.js’></script>
 <link type=’text/css’ href=’Example 4-2.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 jQuery’s class name manipulation API can be used to add or
 remove a class name from multiple elements at once, using
 the addClass(), removeClass(), or toggleClass() methods.
 </p>
 <table>
 <tbody>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <td></td>

107

Chapter 4: Manipulating Content and Attributes

 <td></td>
 <td></td>
 </tr>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

 2. Save the preceding markup document as Example 4-2.html.

 3. Enter the following style sheet in yet another new document in your text editor:

body {
 font: 16px sans-serif;
}
td {
 width: 100px;
 height: 100px;
 border: 1px solid rgb(200, 200, 200);
}
td.tmpHover {
 background: yellow;
}
td.tmpSelected {
 background: orange;
}

 4. Save the preceding document as Example 4-2.css.

 5. Enter the following JavaScript in another new document:

$(document).ready(
 function() {
 $(‘table’).hover(
 function() {
 $(‘td’).addClass(‘tmpHover’);
 },
 function() {
 $(‘td’).removeClass(‘tmpHover’);
 }
)
 .click(
 function() {
 $(‘td’).toggleClass(‘tmpSelected’);
 }
);
 }
);

 6. Save the preceding document as Example 4-2.js.

108

Part I: jQuery API

The preceding document results in the screenshot that you see in Figure 4-4 when you hover your
mouse cursor over the table, and the screenshot that you see in Figure 4-5 when you click on the table.

Figure 4-4

Figure 4-5

109

Chapter 4: Manipulating Content and Attributes

In Example 4-2, you did a quick review of the class name manipulation methods provided by jQuery.
You attached two events to the <table> element, a hover event and a click event. When your mouse
cursor hovers over the <table> element, the following script is executed:

 $(‘table’).hover(
 function() {
 $(‘td’).addClass(‘tmpHover’);
 },
 function() {
 $(‘td’).removeClass(‘tmpHover’);
 }
)

When the mouse is over the <table> element, the class name tmpHover is added to all nine <td> ele-
ments, using jQuery’s addClass() method. When the mouse leaves the <table> element, the class name
tmpHover is removed from all nine <td> elements using jQuery’s removeClass() method. Adding the
class name tmpHover to each <td> element triggers the following style-sheet rule to be applied to each
<td> element:

td.tmpHover {
 background: yellow;
}

Finally, when you click on the <table>, the class name tmpSelected is toggled on and off (added and
removed from each <td> element) with each alternate click.

 .click(
 function() {
 $(‘td’).toggleClass(‘tmpSelected’);
 }
);

Adding the tmpSelected class name triggers the following style to be applied:

td.tmpSelected {
 background: orange;
}

jQuery’s class-name manipulation methods make it much easier to add, remove, and toggle class names,
in addition to checking for the presence of a class name. Making class-name manipulation easier, in turn,
makes it easier for you to maintain separation of style and behavior, keeping your presentation in style
sheets and your behavior in JavaScript.

Manipulating HTML and Text Content
jQuery provides a method for just about everything. Its unique, innovative approach to JavaScript pro-
gramming reinvents how you program JavaScript. Reinventing JavaScript is required since jQuery meth-
ods define some ground rules that can be expected to be universal among all of its methods. For example,
one ground rule that becomes more obvious as you learn more about how jQuery works is how wherever

110

Part I: jQuery API

it is possible, its methods work on one or more elements. You never have to distinguish between whether
you want to work with just one or lots of elements, since jQuery always assumes the possibility of an array.

Since jQuery always assumes the possibility of an array, it eliminates redundant code that has historically
always been required to do an iteration over an array or list of several elements. You can chain methods
onto one another, and you can perform complex operations on just one or many elements at the same time.
One thing you may ask yourself while working with jQuery is, how do I access standard or de facto stan-
dard DOM methods and properties? In many cases, you don’t need to directly access DOM properties or
methods, since jQuery provides equivalent, and in most cases, less verbose methods that are designed to
work seamlessly with jQuery’s chainable model of programming. And not only are jQuery’s methods
less verbose, they also attempt to fix as many cross-browser stability and reliability issues as possible.

One such property that jQuery replaces is the de facto standard innerHTML property. The innerHTML
property and many of Microsoft’s extensions to the DOM are on their way to standardization in the
HTML5 specification. The innerHTML property is one of the few Microsoft extensions to the DOM that
has been ubiquitously adopted among browser makers.

Rather than relying exclusively on the implementation of Microsoft’s de facto standard innerHTML prop-
erty and similar properties, jQuery provides a variety of methods that assist you in manipulating HTML
and text content. In this section, I discuss the following methods offered in jQuery’s API:

The ❑ html() method sets or gets the HTML content of one or more elements.

The ❑ text() method gets or sets the text content for one or more elements.

The ❑ append() and prepend() methods let you append or prepend content. I also talk about how
these methods are actually better than the native de facto standard alternative, innerHTML.

The ❑ after() and before() methods let you place content beside other elements (as opposed to
appending or prepending the content inside of those elements).

insertAfter() ❑ and insertBefore() methods let you modify a document by taking one selec-
tion of elements and inserting those elements beside another selection of elements.

The ❑ wrap(), wrapAll(), and wrapInner() methods give you the ability to wrap one or more
elements with other elements.

In the following sections, I describe and demonstrate how the preceding methods work, to give you
expertise in understanding how content manipulation in jQuery works.

Getting, Setting, and Removing Content
The simplest methods that jQuery provides for content manipulation are the html() and text() methods.
If you make a selection and call one of these methods without any arguments, jQuery simply returns the
text or HTML content of the first matched element in a jQuery selection. The following document dem-
onstrates how this works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

111

Chapter 4: Manipulating Content and Attributes

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-6.js’></script>
 <link type=’text/css’ href=’Figure 4-6.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 Before I speak, I have something important to say. <i>- Groucho Marx</i>
 </p>
 </body>
</html>
The preceding document is linked to the following stylesheet:
body {
 font: 16px sans-serif;
}

The following script demonstrates how you use the html() and text() methods and what to expect in
the output that you get back:

$(document).ready(
 function() {
 alert(
 ‘HTML: ‘ + $(‘p’).html() + “\n” +
 ‘Text: ‘ + $(‘p’).text()
)
 }
);

In Figure 4-6, you see that the html() method has returned the <i> element in the results, but the text()
method has left that out. In this sense, you find that the html() method is similar to the innerHTML
property, and the text() method is similar to the innerText or textContent properties.

Figure 4-6

112

Part I: jQuery API

Setting Text or HTML Content
Setting content works similarly: All you have to do is provide the content that you want to set as the value
for the element (or elements) in the first argument to the text() or html() method. Which method you
use, of course, depends on whether or not you want HTML tags to be expanded as HTML. The following
document demonstrates how to set text or HTML content:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-7.js’></script>
 <link type=’text/css’ href=’Figure 4-7.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 Before I speak, I have something important to say. <i>- Groucho Marx</i>
 </p>
 <p class=’tmpQuote’ id=’tmpQuote-1’>
 </p>
 <p class=’tmpQuote’ id=’tmpQuote-2’>
 </p>
 </body>
</html>

The following style sheet is applied to the preceding HTML document:

body {
 font: 16px sans-serif;
}
p {
 padding: 5px;
 margin: 5px;
}
p.tmpQuote {
 background: lightblue;
}
p#tmpQuote-2 {
 background: lightgreen;
}

The following script demonstrates setting element content via jQuery’s text() and html() methods:

$(document).ready(
 function() {
 $(‘p#tmpQuote-1’).text(
 “Getting older is no problem. You just have to “ +

113

Chapter 4: Manipulating Content and Attributes

 “live long enough. <i>- Groucho Marx</i>”
);

 $(‘p#tmpQuote-2’).html(
 “I have had a perfectly wonderful evening, but “ +
 “this wasn’t it. <i>- Groucho Marx</i>”
);
 }
);

Figure 4-7 shows how the content applied via the text() method results in the HTML tags being
ignored, and showing through in the rendered output of the <p> element with ID name tmpQuote-1.
It also shows how the HTML tags are expanded in the content of the <p> element with ID name
tmpQuote-2, which is applied using jQuery’s html() method.

Figure 4-7

Setting Text or HTML Content for Multiple Items
Although you probably usually think about text or HTML content being applied only to a single element
at a time, jQuery’s text() and html() methods will apply that text or HTML content to one or more ele-
ments. The following document is essentially the same document that you saw in Figure 4-7, with some
minor changes to demonstrate what happens when you apply HTML content to a selection that includes
multiple elements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-8.js’></script>
 <link type=’text/css’ href=’Figure 4-8.css’ rel=’stylesheet’ />
 </head>

114

Part I: jQuery API

 <body>
 <p>
 Before I speak, I have something important to say. <i>- Groucho Marx</i>
 </p>
 <p class=’tmpQuote’ id=’tmpQuote-1’>
 </p>
 <p class=’tmpQuote’ id=’tmpQuote-2’>
 </p>
 </body>
</html>

The following CSS is linked to the preceding HTML document:

body {
 font: 16px sans-serif;
}
p {
 padding: 5px;
 margin: 5px;
 background: lightgreen;
}

The following script applies HTML content to all of the <p> elements in the document:

$(document).ready(
 function() {
 $(‘p’).html(
 “Quote me as saying I was mis-quoted. “ +
 “<i>- Groucho Marx</i>”
);
 }
);

Figure 4-8 shows a screenshot of the output. You see that the quote applied in the script has been
applied to all three <p> elements, replacing whatever content was present previously.

Figure 4-8

As you can see in Figure 4-8, jQuery applies the HTML content depending on your selection. If you’ve
selected several elements, you’ll find that the content modification has been applied to several elements,

115

Chapter 4: Manipulating Content and Attributes

and if you’ve only selected a single element, you’ll find that your content modifications have only been
applied to a single element.

Removing Content
Removing content can also be done with jQuery’s text() and html() elements. All you have to do to
remove an element is to call either method with an empty string, that is, text(‘’) or html(‘’), and
that’s all there is to it. That isn’t the only way to remove content from a document, however, and you’ll
see alternative methods for doing this later in this chapter.

Appending and Prepending Content
One of the nuisances that jQuery patches over, leaving new jQuery developers completely oblivious to
browser idiosyncrasies, is IE’s Read Only limitation of <table> elements. When you use properties like
innerHTML or outerHTML on <table> elements, the table designation encompasses any element used
inside of <table> tag: <tbody>, <thead>, <tfoot>, <tr>, <td>, and <th>. As you develop more complex
applications in which you require HTML tables for the layout of tabular data, this limitation becomes a
painful roadblock that stifles innovation. Working around this limitation isn’t too terribly difficult; any
creative programmer can imagine a work-around where the table is completely rebuilt. Thankfully,
jQuery paves right over this annoying IE bug, as is demonstrated with the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-9.js’></script>
 <link type=’text/css’ href=’Figure 4-9.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>John Lennon Albums</h4>
 <table>
 <thead>
 <tr>
 <th>Title</th>
 <th>Year</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>John Lennon/Plastic Ono Band</td>
 <td>1970</td>
 </tr>
 <tr>
 <td>Imagine</td>
 <td>1971</td>
 </tr>

116

Part I: jQuery API

 <tr>
 <td>Some Time in New York City</td>
 <td>1972</td>
 </tr>
 <tr>
 <td>Mind Games</td>
 <td>1973</td>
 </tr>
 <tr>
 <td>Walls and Bridges</td>
 <td>1974</td>
 </tr>
 <tr>
 <td>Rock ‘n Roll</td>
 <td>1975</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

The preceding code is linked to the following style sheet:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 5px;
}
table {
 width: 100%;
 background: lightgreen;
}
th {
 background: green;
 color: lightgreen;
}

Then the following JavaScript demonstrates IE’s innerHTML Read Only limitation:

$(document).ready(
 function() {
 $(‘table tbody’)[0].innerHTML +=
 “<tr>\n” +
 “ <td>Double Fantasy</td>\n” +
 “ <td>1980</td>\n” +
 “</tr>\n”;
 }
);

As you can see in Figure 4-9, the new row including the album Double Fantasy is not present when this
document is loaded in IE, but it is present when you load the document in Safari (or Firefox or Opera).

117

Chapter 4: Manipulating Content and Attributes

Figure 4-9

Figure 4-10 shows the same document in IE, with the following modifications made to the JavaScript:

$(document).ready(
 function() {
 $(‘table tbody’).append(
 “<tr>\n” +
 “ <td>Double Fantasy</td>\n” +
 “ <td>1980</td>\n” +
 “</tr>\n”
);
 }
);

In the preceding example, instead of directly using the innerHTML property to append HTML content
to the <tbody> element, instead, you use jQuery’s append() method. Since jQuery’s append() method
automatically fixes the Read Only limitation of the innerHTML property, appending the HTML to the
table works this time, and you see Double Fantasy added to the table in IE6.

118

Part I: jQuery API

Figure 4-10

Fixing Firefox’s innerHTML Form Bugs
In the previous section you saw how jQuery’s append() function is superior to IE’s native support for
innerHTML, since it does not impose any Read Only limitation and actively works around that limitation.
Another browser that has innerHTML bugs is Firefox. In the case of Firefox, a bug manifests while using
innerHTML on elements that contain form elements, and you see the bug in action when you attempt to
use innerHTML to append new content. When you do this, Firefox re-sets form elements and does not
retain their values. Here again, jQuery comes to the rescue and actively fixes the issue, so you don’t have
to work around it.

The following document modifies the example that you saw in Figures 4-9 and 4-10 so that the table
now contains form elements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-11.js’></script>
 <link type=’text/css’ href=’Figure 4-11.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>John Lennon Albums</h4>
 <table>
 <thead>
 <tr>
 <th>Title</th>
 <th>Year</th>

119

Chapter 4: Manipulating Content and Attributes

 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 <select>
 <option value=’0’>0</option>
 <option value=’0’>1</option>
 </select>
 <input type=’text’ value=’John Lennon/Plastic Ono Band’ size=’25’ />
 </td>
 <td>1970</td>
 </tr>
 <tr>
 <td>
 <input type=’text’ value=’Imagine’ size=’25’ />
 </td>
 <td>1971</td>
 </tr>
 <tr>
 <td>
 <input type=’text’ value=’Some Time in New York City’ size=’25’ />
 </td>
 <td>1972</td>
 </tr>
 <tr>
 <td>
 <input type=’text’ value=’Mind Games’ size=’25’ />
 </td>
 <td>1973</td>
 </tr>
 <tr>
 <td>
 <input type=’text’ value=’Walls and Bridges’ size=’25’ />
 </td>
 <td>1974</td>
 </tr>
 <tr>
 <td>
 <input type=’text’ value=’Rock 'n Roll’ size=’25’ />
 </td>
 <td>1975</td>
 </tr>
 </tbody>
 </table>
 <input type=’submit’ value=’Add Album’ id=’tmpAddAlbum’ />
 </body>
</html>

The preceding HTML document is linked to the same CSS document that you saw in Figure 4-9.

body {
 font: 16px sans-serif;
}

120

Part I: jQuery API

h4 {
 margin: 5px;
}
table {
 width: 100%;
 background: lightgreen;
}
th {
 background: green;
 color: lightgreen;
}

The JavaScript in Figure 4-11 demonstrates a scripting scenario that trips the Firefox bug. Like the
example that you saw in Figure 4-9, this example also does not work in IE because of its Read Only
limitation.

$(document).ready(
 function() {
 $(‘input#tmpAddAlbum’).click(
 function($e) {
 $e.preventDefault();

 $(‘table tbody’)[0].innerHTML +=
 “<tr>\n” +
 “ <td>\n” +
 “ <input type=’text’ value=’Double Fantasy’ size=’25’ />\n” +
 “ </td>\n” +
 “ <td>1980</td>\n” +
 “</tr>\n”;
 }
);
 }
);

In Figure 4-11, you see that when you select the option “1” from the dropdown list in the first row, then
click on the “Add Album” button, the select box in the first row reverts to option “0.”

Figure 4-11

121

Chapter 4: Manipulating Content and Attributes

In Figure 4-12, you see that the option “1” is selected, and the “Add Album” button is pressed.

Figure 4-12

Figure 4-13 shows that the select box has reverted to option “0” after the row containing Double Fantasy
is added.

Figure 4-13

Again, jQuery’s append() method works around this bug that’s long been present in Firefox and is still
present in Firefox 3 as I write this. The following script demonstrates how changing the JavaScript so that
jQuery’s append() method is used instead of directly working with the innerHTML method fixes the bug.
Figure 4-14 shows that the right outcome has been achieved upon pressing the “Add Album” button.

$(document).ready(
 function() {

 $(‘input#tmpAddAlbum’).click(
 function($e) {
 $e.preventDefault();

 $(‘table tbody’).append(

122

Part I: jQuery API

 “<tr>\n” +
 “ <td>\n” +
 “ <input type=’text’ value=’Double Fantasy’ size=’25’ />\n” +
 “ </td>\n” +
 “ <td>1980</td>\n” +
 “</tr>\n”
);
 }
);
 }
);

Figure 4-14

With the previous examples, you can see that jQuery doesn’t just superfluously replace standard and
de facto standard JavaScript API methods like innerHTML. It also fixes cross-browser bugs that act as
roadblocks to smooth and seamless cross-browser web-based application development. You don’t have
to worry about the idiosyncrasies of native development, like those you’ve seen in the preceding exam-
ples, and you can ever more increasingly make applications that are guaranteed to just work everywhere.
Aside from fixing bugs like the ones you see with the innerHTML property, however, you also find that
jQuery’s API is also more universally consistent in the way that it always lets you work with one or more
items (where that makes sense and is possible). jQuery uses a standard method of selecting elements
in a document, and it applies that standard, selectors, everywhere you need the ability to select an ele-
ment. Browser makers and the authors of standardized JavaScript have much to learn from jQuery’s
clean, consistent, and smooth API.

Of course, even though you may have less to worry about in the realm of JavaScript, you’re still stuck
with Internet Explorer’s badly outdated and undersupported CSS capabilities. As I am also an avid sup-
porter of CSS, I look at a few of the challenges that you face with CSS as well, throughout this book.

Prepending Content
The word prepend is a term more or less invented by the technical programming world (although it does
have some use outside of that world). It means to prefix or add some content to the beginning of some-
thing else. In fact, you won’t find the word prepend in many dictionaries, and if you do, you’ll find that

123

Chapter 4: Manipulating Content and Attributes

the definition offered — “(transitive) To premeditate; to weigh up mentally” — doesn’t really match up
with the way it’s used in the technical programming community, where this word is meant to be the
opposite of append, which, of course, means “to add to the end of something.”

This term has come out of the technical programming world by virtue of the flexible nature of com-
puting when compared to the world of print. In the print world, modifying a hardcopy body of work
is very difficult to do. You have to renumber pages, possibly renumber chapters, and rewrite table of
contents and indexes. Without a computer, that’s an enormous amount of work. So in the print world,
it’s easier to add to a printed body of work by appending, or tacking on new content to the end. It’s not
always done that way, but it’s one possible explanation for why the world never really needed a word
like prepend until the existence of computers made the action a necessity. In the technical world, it’s
easy to glue something onto the beginning of something else, so we made a new word to describe
that action.

In the preceding sections discussing various bugs with modifying content via the innerHTML property,
you learned how jQuery can modify content, tack on new content to the end of other content, via a method
called append(). jQuery also offers a method that lets you prepend content, add content to the beginning
of other content, and that is done with the method prepend().

Inserting Beside Content
With the append() and prepend() methods, you’re adding to content within an element. With the
before() and after() methods, you are inserting content beside an element. The before() and
after() methods are demonstrated in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-15.js’></script>
 <link type=’text/css’ href=’Figure 4-15.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 Why, I’d horse-whip you if I had a horse.
 </p>
 </body>
</html>

The following style sheet is applied to the preceding document:

body {
 font: 16px sans-serif;
}

124

Part I: jQuery API

h4 {
 margin: 5px;
}
p {
 margin: 5px;
}
p.tmpAttribution {
 text-align: right;
}

The following JavaScript demonstrates how content can be inserted before and after the <p> element,
via the respective before() and after() methods:

$(document).ready(
 function() {
 $(‘p’)
 .before(
 “<h4>Quotes</h4>”
)
 .after(
 “<p class=’tmpAttribution’>\n” +
 “ - Groucho Marx\n” +
 “</p>\n”
);
 }
);

Figure 4-15 shows what happens when you load the preceding document in a browser.

Figure 4-15

Figure 4-15 shows no real surprises. The content passed to the before() method is inserted before the
<p> element, and the content passed to the after() method is inserted after the <p> element. The fol-
lowing markup shows what the source code looks like upon execution of this JavaScript:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />

125

Chapter 4: Manipulating Content and Attributes

 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-15.js’></script>
 <link type=’text/css’ href=’Figure 4-15.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Quotes</h4>
 <p>
 Why, I’d horse-whip you if I had a horse.
 </p>
 <p class=’tmpAttribution’>
 - Groucho Marx
 </p>
 </body>
</html>

Inserting Beside Content via a Selection
The before() and after() methods are used to insert content beside elements. The insertBefore()
and insertAfter() methods do the same function, but instead of passing content directly to these meth-
ods, as you did with the before() and after() methods, you use a selector to reference another element
in your document that you want inserted beside another element. In addition, the logic is reversed in how
you write the script that does the insert beside action. The following document demonstrates how you
might use the insertBefore() and insertAfter() methods:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-16.js’></script>
 <link type=’text/css’ href=’Figure 4-16.css’ rel=’stylesheet’ />
 </head>
 <body>
 <!-- Template Items -->
 <table id=’tmp’>
 <thead>
 <tr>
 <th>Title</th>
 <th>Year</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Title</th>

126

Part I: jQuery API

 <th>Year</th>
 </tr>
 </tfoot>
 </table>

 <!-- Main Content -->
 <h4>John Lennon ‘70s Albums</h4>
 <table class=’tmpAlbums’>
 <tbody>
 <tr>
 <td>John Lennon/Plastic Ono Band</td>
 <td>1970</td>
 </tr>
 <tr>
 <td>Imagine</td> <td>1971</td>
 </tr>
 <tr>
 <td>Some Time in New York City</td>
 <td>1972</td>
 </tr>
 <tr>
 <td>Mind Games</td> <td>1973</td>
 </tr>
 <tr>
 <td>Walls and Bridges</td> <td>1974</td>
 </tr>
 <tr>
 <td>Rock 'n Roll</td> <td>1975</td>
 </tr>
 </tbody>
 </table>
 <h4>Paul McCartney ‘70s Albums</h4>
 <table class=’tmpAlbums’>
 <tbody>
 <tr>
 <td>McCartney</td> <td>1970</td>
 </tr>
 <tr>
 <td>RAM</td> <td>1971</td>
 </tr>
 <tr>
 <td>Wild Life</td> <td>1971</td>
 </tr>
 <tr>
 <td>Red Rose Speedway</td> <td>1973</td>
 </tr>
 <tr>
 <td>Band on the Run</td> <td>1973</td>
 </tr>
 <tr>
 <td>Venus and Mars</td> <td>1975</td>
 </tr>
 <tr>
 <td>At the Speed of Sound</td> <td>1976</td>

127

Chapter 4: Manipulating Content and Attributes

 </tr>
 <tr>
 <td>Thrillington (As Percy Thrillington)</td>
 <td>1977</td>
 </tr>
 <tr>
 <td>Londontown</td> <td>1978</td>
 </tr>
 <tr>
 <td>Wings Greatest</td> <td>1978</td>
 </tr>
 <tr>
 <td>Back To The Egg</td> <td>1979</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 5px;
}
table {
 width: 100%;
 background: lightblue;
}
th {
 background: royalblue;
 color: lightblue;
 font-weight: normal;
}
table#tmp {
 display: none;
}

The following script demonstrates how you use the insertBefore() and insertAfter() methods with
selectors to duplicate content in a document:

$(document).ready(
 function() {
 $(‘table#tmp thead’).insertBefore(‘table.tmpAlbums tbody’);
 $(‘table#tmp tfoot’).insertAfter(‘table.tmpAlbums tbody’);
 }
);

Figure 4-16 shows the results of the preceding document in Safari.

128

Part I: jQuery API

Figure 4-16

In the preceding example, you can see that the <thead> and <tfoot> elements contained within the
hidden <table> element with ID name tmp are duplicated to the other two <table> elements using
jQuery. You start the script with the logic reversed; that is to say, you do the opposite of what you did
with the before() and after() methods, where you first selected the element that you wanted to insert
content beside and then provided the content to be inserted beside the selected element(s) within the
before() or after() methods. This time, you begin with a selection of existing content within the doc-
ument that you want to insert beside another element. In the script, you have the following:

$(‘table#tmp thead’).insertBefore(‘table.tmpAlbums tbody’);

The preceding line begins with selecting the <thead> element contained in the <table> with ID name
tmp. You want to duplicate that <thead> element to the other two tables and use that content as a tem-
plate. To do that, you call the insertBefore() method, then pass a selector to that method. The selector
that you pass is the element before which you want the original selection, <thead>, to be inserted. The
selector first references <table> elements with the class name tmpAlbums, then selects the descendent
<tbody> element. So, in plain English, the script says, “Take the <thead> element in the hidden table and
duplicate and insert that <thead> element before the <tbody> elements of the other two tables contain-
ing discography information for 1970s era albums of two former Beatles.” The other line:

 $(‘table#tmp tfoot’).insertAfter(‘table.tmpAlbums tbody’);

does the same thing, but this time, you take the <tfoot> element from the hidden table and duplicate
and insert that element after the <tbody> element of the other two tables.

129

Chapter 4: Manipulating Content and Attributes

Essentially, the insertBefore() and insertAfter() methods make it easier to do templating.

Wrapping Content
In jQuery, wrapping an element means creating a new element and placing an existing element within a
document inside that new element.

jQuery provides a few methods for wrapping content, that is to say, methods that take one or more
elements and place those elements within container elements to change the structural hierarchy of a
document. The methods that jQuery provides that let you wrap content are wrap(), wrapAll(), and
wrapInner(). In the following sections, I demonstrate how to use these methods.

Wrapping a Selection of Elements Individually
jQuery’s wrap() method is used to wrap each element matched in a selection individually. That is, if
your selection matches five different elements, jQuery’s wrap() method makes five separate wrappers.
To better illustrate how this works, the following code demonstrates how the wrap() method is used to
wrap three <p> elements within <div> elements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-17.js’></script>
 <link type=’text/css’ href=’Figure 4-17.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Mitch Hedberg Quotes</h4>
 <p>
 Dogs are forever in the push up position.
 </p>
 <p>
 I haven’t slept for ten days, because that would be too long.
 </p>
 <p>
 I once saw a forklift lift a crate of forks. And it was way
 too literal for me.
 </p>
 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}

130

Part I: jQuery API

h4, p {
 margin: 5px;
}
div {
 background: #fedd58;
 border: 1px solid #ebcb49;
 margin: 3px;
}

The following script demonstrates jQuery’s wrap method:

$(document).ready(
 function() {
 $(‘p’).wrap(‘<div></div>’);
 }
);

In Figure 4-17, you see that each <p> element is wrapped in a <div> element, which is made obvious by
the styles applied in the style sheet. Each <div> has a distinct border, margin, and background color
applied to make it obvious that a <div> exists.

Figure 4-17

The preceding example makes it obvious that jQuery’s wrap() method is used to wrap each element
present in a selection individually.

Wrapping a Collection of Elements
Whereas the wrap() method wraps each item present in a selection individually, jQuery’s wrapAll()
method wraps all items present in a selection within a single wrapper. The following document presents
the same markup and style sheet as you saw in the last section for the demonstration of the wrap() method.
The only item that is changed is that the wrapAll() method is used instead of the wrap() method.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

131

Chapter 4: Manipulating Content and Attributes

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-18.js’></script>
 <link type=’text/css’ href=’Figure 4-18.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Mitch Hedberg Quotes</h4>
 <p>
 Dogs are forever in the push up position.
 </p>
 <p>
 I haven’t slept for ten days, because that would be too long.
 </p>
 <p>
 I once saw a forklift lift a crate of forks. And it was way
 too literal for me.
 </p>
 </body>
</html>
The following stylesheet is applied to the preceding markup.
body {
 font: 16px sans-serif;
}
h4, p {
 margin: 5px;
}
div {
 background: #fedd58;
 border: 1px solid #ebcb49;
 margin: 3px;
}

In the following script, you see that the wrap() method has been swapped out for the wrapAll()
method:

$(document).ready(
 function() {
 $(‘p’).wrapAll(‘<div></div>’);
 }
);

Figure 4-18 shows that instead of each <p> element being individually wrapped in a <div> element, you
find that all three <p> elements are wrapped with a single <div> element, as made obvious again by the
styles used in your style sheet.

132

Part I: jQuery API

Figure 4-18

As you can see in the preceding example, the wrapAll() method takes a selection of elements and col-
lectively wraps the whole selection with a single wrapper element.

Wrapping an Element’s Contents
The last wrapper method that I demonstrate is the wrapInner() method, which is used to wrap an ele-
ment’s contents. This method works similarly to the wrap() method, in that a wrapper is applied to
each item in a selection, but instead of the selected element being placed in a wrapper, its contents are
placed in a wrapper. The following document, which is the same document you saw in the last two
examples, demonstrates how the wrapInner() method compares and contrasts with the wrap() and
wrapAll() methods:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-19.js’></script>
 <link type=’text/css’ href=’Figure 4-19.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Mitch Hedberg Quotes</h4>
 <p>
 Dogs are forever in the push up position.
 </p>
 <p>
 I haven’t slept for ten days, because that would be too long.
 </p>
 <p>
 I once saw a forklift lift a crate of forks. And it was way
 too literal for me.
 </p>
 </body>
</html>

133

Chapter 4: Manipulating Content and Attributes

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}
h4, p {
 margin: 5px;
}

In the following script, you see that the only change from the preceding two examples is that the
wrapInner() method is used instead of the wrap() or wrapAll() methods:

$(document).ready(
 function() {
 $(‘p’).wrapInner(‘<i></i>’);
 }
);

In Figure 4-19, you see that the contents of all three <p> elements are each wrapped with <i> tags,
making the contents of each <p> element styled in italics. Of course, this example is meant simply to
convey how the wrapInner() method works. Even though what you see is a change to style invoked
from JavaScript, which I personally consider to be bad practice, you should keep all style changes
contained in your style sheet, but you see how the wrapInner() method technically works.

Figure 4-19

As demonstrated by what you see in Figure 4-19, the wrapInner() method takes the contents of each
individual element present in a selection and places that content in a wrapper.

Wrapping Elements Using an Object Reference
The last item that I cover with regard to wrapping elements can be applied to any of the three wrapper
methods — wrap(), wrapAll(), or wrapInner(). Specifically, you don’t have to use a string of HTML in
the argument passed to each of these methods, but you can also use a JavaScript object reference to a
valid DOM element. The following document demonstrates what I mean by this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

134

Part I: jQuery API

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-20.js’></script>
 <link type=’text/css’ href=’Figure 4-20.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Mitch Hedberg Quotes</h4>
 <p>
 I saw a human pyramid once. It was very unnecessary. It
 did not need to exist.
 </p>
 <p>
 I used to be a hot-tar roofer. Yeah, I remember that… day.
 </p>
 <p>
 I want to get a vending machine, with fun sized candy bars,
 and the glass in front is a magnifying glass. You’ll be mad,
 but it will be too late.
 </p>
 </body>
</html>
The following CSS is applied to the preceding markup document.
body {
 font: 16px sans-serif;
}
h4, p {
 margin: 5px;
}
div {
 background: #70d6f0;
 border: 3px solid #7ac3d5;
 margin: 3px;
}

In the following script, you see that instead of the string <div></div>, you pass
document.createElement (‘div’) to the wrapAll() method, which provides essentially the same effect
that was demonstrated in Figure 4-18:

$(document).ready(
 function() {
 $(‘p’).wrapAll(document.createElement(‘div’));
 }
);

Figure 4-20 shows that using a JavaScript object reference to an element provides the same result as
passing a raw string of HTML to jQuery’s wrapAll() method.

135

Chapter 4: Manipulating Content and Attributes

Figure 4-20

In the following “Try It Out,” you recap all that you’ve learned about jQuery’s document manipulation API:

Try It Out Manipulating HTML and Text Content

Example 4-3
To review jQuery’s document manipulation API, follow these steps:

 1. Enter the following HTML into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 4-3.js’></script>
 <link type=’text/css’ href=’Example 4-3.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p>
 jQuery’s html() method can be used to get HTML content.
 </p>
 <input type=’submit’ id=’tmpGetHTML’ value=’Get HTML’ />
 <p>
 jQuery’s text() method can be used to get text content.
 </p>
 <input type=’submit’ id=’tmpGetText’ value=’Get Text’ />
 <p>
 The html() method can also be used to set HTML content,
 which is done by passing HTML to its first argument.
 </p>
 <input type=’submit’ id=’tmpSetHTML’ value=’Set HTML’ />

136

Part I: jQuery API

 <p>
 The text() method can also be used to set text content,
 which is done by passing text to its first argument.
 </p>
 <input type=’submit’ id=’tmpSetText’ value=’Set Text’ />
 <p class=’tmpSetMultiple’>
 Text or HTML can be set on just one or many elements.

 </p>
 <input type=’submit’ id=’tmpSetMultiple’ value=’Set Multiple’ />
 <p>
 The append() method is used to append content.
 </p>
 <input type=’submit’ id=’tmpAppend’ value=’Append HTML’ />
 <p>
 The prepend() method is used to prepend content.
 </p>
 <input type=’submit’ id=’tmpPrepend’ value=’Prepend HTML’ />
 <p>
 The before() and after() methods are used
 to insert content beside other content.
 </p>
 <div class=’tmpBeside’>

 </div>
 <input type=’submit’ id=’tmpBefore’ value=’Insert Before’ />
 <input type=’submit’ id=’tmpAfter’ value=’Insert After’ />

 <p>
 The insertBefore() and insertAfter() methods are
 used to insert existing content beside other content via a
 selector.
 </p>
 <div class=’tmpBesideSelection’>

 </div>
 <input type=’submit’ id=’tmpBeforeSelection’ value=’Insert Before’ />
 <input type=’submit’ id=’tmpAfterSelection’ value=’Insert After’ />
 <p>
 The wrap() method is used to wrap each item in a selection
 with individual wrapper elements.
 </p>
 <input type=’submit’ id=’tmpWrap’ value=’Wrap’ />
 <p>
 The wrapAll() method wraps an entire selection of elements
 in a single wrapper.
 </p>
 <input type=’submit’ id=’tmpWrapAll’ value=’Wrap All’ />
 <p>
 The wrapInner() method wraps the contents of every element
 in a selection with individual wrapper elements.
 </p>

137

Chapter 4: Manipulating Content and Attributes

 <input type=’submit’ id=’tmpWrapInner’ value=’Wrap Inner’ />
 </body>
</html>

 2. Save the preceding document as Example 4-3.html.

 3. Enter the following CSS in a new document in your text editor:

body {
 font: 16px sans-serif;
}
p {
 margin: 5px;
}
p.tmpSetMultiple span {
 display: block;
 margin: 5px;
}
div.tmpBeside,
div.tmpBesideSelection {
 clear: both;
 height: 62px;
}
span.tmpReference,
span.tmpReferenceBefore,
span.tmpReferenceAfter {
 float: left;
 width: 50px;
 height: 50px;
 margin: 5px;
}
span.tmpTemplate {
 display: none;
}
div span.tmpReference,
div span.tmpReferenceBefore,
div span.tmpReferenceAfter {
 display: block;
}
span.tmpReference {
 background: blue;
 border: 1px solid lightblue;
}
span.tmpReferenceBefore {
 background: green;
 border: 1px solid lightgreen;
}
span.tmpReferenceAfter {
 background: red;
 border: 1px solid pink;
}
div.tmpWrapper {
 background: #fdee8a;
 border: 3px solid #f3e270;
 margin: 5px;

138

Part I: jQuery API

}
div.tmpWrapAll {
 background: #bdfae2;
 border: 3px solid #a1e8cc;
}
span.tmpWrapInner {
 background: #b8def8;
}

 4. Save the preceding document as Example 4-3.css.

 5. Enter the following JavaScript in a new document in your text editor:

$(document).ready(
 function() {
 $(‘input’).click(
 function($e) {
 $e.preventDefault();

 switch (this.id) {
 case ‘tmpGetHTML’: {
 alert($(this).prev().html());
 break;
 }
 case ‘tmpGetText’: {
 alert($(this).prev().text());
 break;
 }
 case ‘tmpSetHTML’: {
 $(this).prev().html(
 “Set HTML Content.”
);
 break;
 }
 case ‘tmpSetText’: {
 $(this).prev().text(
 “Set Text Content.”
);
 break;
 }
 case ‘tmpSetMultiple’: {
 $(this).prev().find(‘span’).html(
 “Set content on multiple items.”
);
 break;
 }
 case ‘tmpAppend’: {
 $(this).prev().append(
 “ This content is appended.”
);
 break;
 }

139

Chapter 4: Manipulating Content and Attributes

 case ‘tmpPrepend’: {
 $(this).prev().prepend(
 “This content is prepended. “
);
 break;
 }
 case ‘tmpBefore’: {
 $(‘div.tmpBeside’).find(‘span.tmpReference’).before(
 “”
);
 break;
 }
 case ‘tmpAfter’: {
 $(‘div.tmpBeside’).find(‘span.tmpReference’).after(
 “”
);
 break;
 }
 case ‘tmpBeforeSelection’: {
 $(‘span.tmpReferenceBefore.tmpTemplate’).insertBefore(
 ‘div.tmpBesideSelection span.tmpReference’
);
 break;
 }
 case ‘tmpAfterSelection’: {
 $(‘span.tmpReferenceAfter.tmpTemplate’).insertAfter(
 ‘div.tmpBesideSelection span.tmpReference’
);
 break;
 }
 case ‘tmpWrap’: {
 $(‘p’).wrap(“<div class=’tmpWrapper’></div>”);
 break;
 }
 case ‘tmpWrapAll’: {
 $(‘body > *’).wrapAll(“<div class=’tmpWrapAll’></div>”);
 break;
 }
 case ‘tmpWrapInner’: {
 $(‘p’).wrapInner(“”);
 break;
 }
 }
 }
);
 }
);

 6. Save the preceding document as Example 4-3.js.

The preceding example results in the document that you see in Figure 4-21.

140

Part I: jQuery API

Figure 4-21

Example 4-3 reviews the various methods that jQuery provides for manipulating a document.
Following is a line-by-line review of the code used in this example.

The first method that you review is jQuery’s html() method. When you use this method without any
arguments, you retrieve an element’s HTML contents.

 <p>
 jQuery’s html() method can be used to get HTML content.
 </p>
 <input type=’submit’ id=’tmpGetHTML’ value=’Get HTML’ />

When you press the button labeled “Get HTML,” you get an alert message that contains the contents of
the <p> element that precedes that <input> element.

 case ‘tmpGetHTML’: {
 alert($(this).prev().html());
 break;
 }

141

Chapter 4: Manipulating Content and Attributes

In the alert message, you can see that the tags are present, which lets you know that you retrieved
the <p> element’s content with HTML tags intact.

The next method that you review is the text() method. When you press the button in the following
snippet, you get an alert message that contains the text content of the <p> element:

 <p>
 jQuery’s text() method can be used to get text content.
 </p>
 <input type=’submit’ id=’tmpGetText’ value=’Get Text’ />

This time, the tags are not present in the alert message, which lets you know that you retrieved just
the text content, ignoring all of the HTML tags.

Subsequently, you observe setting HTML content, also using the html() method.

 <p>
 The html() method can also be used to set HTML content,
 which is done by passing HTML to its first argument.
 </p>
 <input type=’submit’ id=’tmpSetHTML’ value=’Set HTML’ />

When you press the <input> button associated with the preceding snippet, you replace the contents of
the <p> element with the string Set HTML Content..

 case ‘tmpSetHTML’: {
 $(this).prev().html(
 “Set HTML Content.”
);
 break;
 }

Then, you observe setting text content using the text() method:

 <p>
 The text() method can also be used to set text content,
 which is done by passing text to its first argument.
 </p>
 <input type=’submit’ id=’tmpSetText’ value=’Set Text’ />

This time, you set the contents of the <p> element to the string Set Text Content. using the
text() method, upon pressing the <input> button. When you do this, you see that the raw unrendered
HTML tags appear as text.

 case ‘tmpSetText’: {
 $(this).prev().text(
 “Set Text Content.”
);
 break;
 }

142

Part I: jQuery API

In the next example, you observe how using jQuery’s manipulation methods work on multiple ele-
ments, if multiple elements are present in the selection. In this example, you see how this is true of the
html() method, but it is true of all of jQuery’s manipulation methods.

 <p class=’tmpSetMultiple’>
 Text or HTML can be set on just one or many elements.

 </p>
 <input type=’submit’ id=’tmpSetMultiple’ value=’Set Multiple’ />

This time when you press the <input> button, you set the string Set content on multiple items
. on the three elements in the preceding snippet.

 case ‘tmpSetMultiple’: {
 $(this).prev().find(‘span’).html(
 “Set content on multiple items.”
);
 break;
 }

The next example demonstrates how the append() method is used to, ahem, append content.

 <p>
 The append() method is used to append content.
 </p>
 <input type=’submit’ id=’tmpAppend’ value=’Append HTML’ />

When you press the button labeled “Append HTML,” the string This content is appended.
is tacked onto the end of the content of the <p> element.

 case ‘tmpAppend’: {
 $(this).prev().append(
 “ This content is appended.”
);
 break;
 }

Then, you observe the opposite, prepend() method, to, you guessed it, prepend content:

 <p>
 The prepend() method is used to prepend content.
 </p>
 <input type=’submit’ id=’tmpPrepend’ value=’Prepend HTML’ />

When you press the button labeled “Prepend HTML,” the string This content is prepended.
is tacked onto the front of the content of the <p> element.

 case ‘tmpPrepend’: {
 $(this).prev().prepend(
 “This content is prepended. “

143

Chapter 4: Manipulating Content and Attributes

);
 break;
 }

Consequentially, that leads to the next example, where you observe the before() and after() methods.

 <p>
 The before() and after() methods are used
 to insert content beside other content.
 </p>
 <div class=’tmpBeside’>

 </div>
 <input type=’submit’ id=’tmpBefore’ value=’Insert Before’ />
 <input type=’submit’ id=’tmpAfter’ value=’Insert After’ />

When you click on the button labeled “Insert Before,” you insert a element with class name
tmpReferenceBefore before the element with class name tmpReference. The element inserted
is styled with a green background, and the reference is styled with a blue background.

 case ‘tmpBefore’: {
 $(‘div.tmpBeside’).find(‘span.tmpReference’).before(
 “”
);
 break;
 }

First, you select the <div> with class name tmpBeside, then you use jQuery’s find() method to locate the
 with class name tmpReference (the blue), and then you use jQuery’s before() method to
insert the new with the green background before it.

When you click the button labeled “Insert After,” you insert a element with class name
tmpReferenceAfter, after the element with class name tmpReference. The new is styled
with a red background.

 case ‘tmpAfter’: {
 $(‘div.tmpBeside’).find(‘span.tmpReference’).after(
 “”
);
 break;
 }

The next methods that you review are the insertBefore() and insertAfter() methods.

 <p>
 The insertBefore() and insertAfter() methods are
 used to insert existing content beside other content via a
 selector.
 </p>
 <div class=’tmpBesideSelection’>

144

Part I: jQuery API

 </div>
 <input type=’submit’ id=’tmpBeforeSelection’ value=’Insert Before’ />
 <input type=’submit’ id=’tmpAfterSelection’ value=’Insert After’ />

When you click the button labeled “Insert Before,” the following script is executed:

 case ‘tmpBeforeSelection’: {
 $(‘span.tmpReferenceBefore.tmpTemplate ‘).insertBefore(
 ‘div.tmpBesideSelection span.tmpReference’
);
 break;
 }

In the preceding script, you select the with class name tmpReferenceBefore, then you call the
insertBefore() method, which takes that element, duplicates it, and inserts it before the
with class name tmpReference, which is contained within the <div> with class name tmpBesideSelection.

The following script does the name thing, only this time, you take the with class name
tmpReferenceAfter, duplicate it, and insert that element after the element with class
name tmpReference:

 case ‘tmpAfterSelection’: {
 $(‘span.tmpReferenceAfter.tmpTemplate ‘).insertAfter(
 ‘div.tmpBesideSelection span.tmpReference’
);
 break;
 }

Then, you review the various wrapper methods. The first wrapper method that you review is the
wrap() method.

 <p>
 The wrap() method is used to wrap each item in a selection
 with individual wrapper elements.
 </p>
 <input type=’submit’ id=’tmpWrap’ value=’Wrap’ />

When you click the button labeled “Wrap,” the following script takes each <p> element and wraps it
with a <div> with class name tmpWrapper:

 case ‘tmpWrap’: {
 $(‘p’).wrap(“<div class=’tmpWrapper’></div>”);
 break;
 }

Wrapping each <p> element in that <div> element triggers the following style-sheet rule to be applied:

div.tmpWrapper {
 background: #fdee8a;
 border: 3px solid #f3e270;
 margin: 5px;
}

145

Chapter 4: Manipulating Content and Attributes

Each <div> element has a yellow background with a darker yellow border.

Then, you review the wrapAll() method.

 <p>
 The wrapAll() method wraps an entire selection of elements
 in a single wrapper.
 </p>
 <input type=’submit’ id=’tmpWrapAll’ value=’Wrap All’ />

When you click on the “Wrap All” button, the following script takes all children of the <body> element
and wraps all of those elements in a single <div> element with class name tmpWrapAll:

 case ‘tmpWrapAll’: {
 $(‘body > *’).wrapAll(“<div class=’tmpWrapAll’></div>”);
 break;
 }

Wrapping everything in that <div> element triggers the application of the following style-sheet rule:

div.tmpWrapper {
 background: #fdee8a;
 border: 3px solid #f3e270;
 margin: 5px;
}

This <div> element has a sea-green colored background, with a darker sea-green border.

The final method that you review in Example 4-3 is the wrapInner() method:

 <p>
 The wrapInner() method wraps the contents of every element
 in a selection with individual wrapper elements.
 </p>
 <input type=’submit’ id=’tmpWrapInner’ value=’Wrap Inner’ />

When you click the button labeled “Wrap Inner,” the following script takes the content of each <p> ele-
ment in a element with class name tmpWrapInner:

 case ‘tmpWrapInner’: {
 $(‘p’).wrapInner(“”);
 break;
 }

The addition of that element results in the application of the following style-sheet rule:

span.tmpWrapInner {
 background: #b8def8;
}

The preceding style-sheet rule results in a light-blue colored background being applied to the text con-
tent of each <p> element.

146

Part I: jQuery API

Replacing Elements
In this section, I discuss two methods, jQuery’s replaceWith() and replaceAll() methods. jQuery’s
replaceWith() method replaces a selection with whatever HTML content that you specify. This works
very similarly to jQuery’s html() method, but whereas the html() method sets an element’s contents,
jQuery’s replaceWith() method replaces the element and its content. This can be thought to be similar
to Microsoft’s de facto standard outerHTML property. The following document demonstrates how jQuery’s
replaceWith() method works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-22.js’></script>
 <link type=’text/css’ href=’Figure 4-22.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4><i>More</i> Mitch Hedberg Quotes</h4>
 <div>
 <input type=’submit’ id=’tmpQuote1’ value=’View Quote’ />
 </div>
 <div>
 <input type=’submit’ id=’tmpQuote2’ value=’View Quote’ />
 </div>
 </body>
</html>

The following style sheet is applied to the preceding HTML:

body {
 font: 16px sans-serif;
}
h4, p {
 margin: 5px;
}
div {
 background: #70d6f0;
 border: 3px solid #7ac3d5;
 margin: 3px;
}

The following script demonstrates how jQuery’s replaceWith() method is used to replace elements:

$(document).ready(
 function() {
 $(‘input#tmpQuote1’).click(

147

Chapter 4: Manipulating Content and Attributes

 function($e) {
 $e.preventDefault();

 $(this).replaceWith(
 “<p>\n” +
 “ I would imagine that if you could understand \n” +
 “ Morse code, a tap dancer would drive you crazy.\n” +
 “</p>\n”
);
 }
);

 $(‘input#tmpQuote2’).click(
 function($e) {
 $e.preventDefault();

 $(this).replaceWith(
 “<p>\n” +
 “ I’d like to get four people who do cart wheels \n” +
 “ very good, and make a cart.\n” +
 “</p>\n”
);
 }
);
 }
);

Figure 4-22 shows the results of the preceding document. When you click on either of the buttons, you
see that the button is replaced with the quote.

Figure 4-22

Figure 4-23 shows the buttons have been replaced with the quotes.

148

Part I: jQuery API

Figure 4-23

In the preceding example, you see that a click event is attached to each button, and upon clicking
either button, you make a call to $(this).replaceWith(), which causes the <input> element to be
replaced with the HTML content passed to the replaceWith() method.

The second method that I present in this section is jQuery’s replaceAll() method, which works simi-
larly to jQuery’s insertBefore() and insertAfter() methods that you learned about previously in
this chapter. jQuery’s replaceAll() method takes a selector, instead of a string. The following docu-
ment takes essentially the same content that you saw in Figure 4-22, but uses the replaceAll()
method, instead of the replaceWith() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-24.js’></script>
 <link type=’text/css’ href=’Figure 4-24.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=’tmp’>
 <p id=’tmpQuoteText1’>
 I’m sick of following my dreams. I’m just going to ask them
 where they’re goin’, and hook up with them later
 </p>
 <p id=’tmpQuoteText2’>
 My fake plants died because I did not pretend to water them.
 </p>
 </div>
 <h4><i>Even More</i> Mitch Hedberg Quotes</h4>

149

Chapter 4: Manipulating Content and Attributes

 <div>
 <input type=’submit’ id=’tmpQuote1’ value=’View Quote’ />
 </div>
 <div>
 <input type=’submit’ id=’tmpQuote2’ value=’View Quote’ />
 </div>
 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}
h4, p {
 margin: 5px;
}
div {
 background: #acf7d0;
 border: 3px solid #96dab6;
 margin: 3px;
}
div#tmp {
 display: none;
}

The following script demonstrates how the replaceAll() method is used to replace content:

$(document).ready(
 function() {
 $(‘input#tmpQuote1’).click(
 function($e) {
 $e.preventDefault();
 $(‘p#tmpQuoteText1’).replaceAll(this);
 }
);

 $(‘input#tmpQuote2’).click(
 function($e) {
 $e.preventDefault();
 $(‘p#tmpQuoteText2’).replaceAll(this);
 }
);
 }
);

Figure 4-24 shows that you get a document similar to the one you saw in Figure 4-22. You have two
buttons, and when you click on either button, a new Hedberg quote is revealed.

150

Part I: jQuery API

Figure 4-24

Figure 4-25 shows the results of clicking on each button.

Figure 4-25

In the preceding example, you see that when you click on a button, a click event is executed. The content
you want to use for replacement is selected, as p#tmpQuoteText1, for example, then the replaceAll()
method is called, and you provide the item you want to replace as an argument to that method. In the
preceding example, you pass the this keyword, but you can also use a selector. Essentially, you find
that the logic is reversed from the replaceWith() method demonstrated earlier in this section.

Removing Content
Removing content can be done in a variety of ways. You can, for example, use the replaceWith() or
html() methods in conjunction with an empty string. But jQuery also provides methods that are specifi-
cally designated for the removal of content, the empty() and the remove() methods. The following doc-
ument demonstrates how both of these methods are used:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>

151

Chapter 4: Manipulating Content and Attributes

 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-26.js’></script>
 <link type=’text/css’ href=’Figure 4-26.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>John Lennon Albums</h4>
 <table>
 <thead>
 <tr>
 <th>Title</th>
 <th>Year</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>John Lennon/Plastic Ono Band</td>
 <td>1970</td>
 </tr>
 <tr>
 <td>Imagine</td>
 <td>1971</td>
 </tr>
 <tr>
 <td>Some Time in New York City</td>
 <td>1972</td>
 </tr>
 <tr>
 <td>Mind Games</td>
 <td>1973</td>
 </tr>
 <tr>
 <td>Walls and Bridges</td>
 <td>1974</td>
 </tr>
 <tr>
 <td>Rock ‘n Roll</td>
 <td>1975</td>
 </tr>
 <tr>
 <td>Double Fantasy</td>
 <td>1980</td>
 </tr>
 </tbody>
 </table>
 <input type=’submit’ id=’tmpEmptyTable’ value=’Empty Table’ />
 <input type=’submit’ id=’tmpDelete’ value=’Delete Content’ />
 </body>
</html>

152

Part I: jQuery API

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 5px;
}
table {
 width: 100%;
 background: lightgreen;
 margin-bottom: 5px;
}
th {
 background: green;
 color: lightgreen;
}

The following script demonstrates both the empty() and the remove() methods:

$(document).ready(
 function() {
 $(‘input#tmpEmptyTable’).click(
 function($e) {
 $e.preventDefault();
 $(‘td’).empty();
 }
);

 $(‘input#tmpDelete’).click(
 function($e) {
 $e.preventDefault();
 $(‘h4, table’).remove();
 }
);
 }
);

Figure 4-26 shows the result of the preceding example.

Figure 4-26

153

Chapter 4: Manipulating Content and Attributes

Figure 4-27 shows what happens when you click on the button labeled “Empty Table”: Each <td> ele-
ment has its content removed.

Figure 4-27

Figure 4-28 shows what happens when you click on the button labeled “Delete Content.” Both the <h4>
and the <table> element are removed from the document.

Figure 4-28

The preceding example shows what happens when you use jQuery’s empty() method. This is essentially
the same as passing an empty string to the html() method — all of the element’s children elements,
whether HTML elements or text, are removed.

The preceding example also demonstrates jQuery’s remove() method, which deletes the items specified
in the selection. It should be noted, however, that those items still exist within jQuery, and you can con-
tinue to work with those items by chaining subsequent jQuery methods to the remove() method. You
can also pass a selector to the remove() method, which acts as a filter. Any items specified in a selector
provided to the remove() method are preserved and are not removed from the document.

154

Part I: jQuery API

Cloning Content
jQuery provides a method called clone() for cloning (copying) content. jQuery’s clone() method, unlike
the DOM cloneNode() method, automatically assumes that you want to copy the element and all of its
descendants, so you don’t have to worry about specifying whether you want to clone descendant elements.
Also unlike the DOM cloneNode() method, you have the option of cloning the element’s event handlers
(as well as those of descendant elements), which cannot be done with plain-vanilla JavaScript. If you want
to clone the element’s event handlers, all you have to do is specify Boolean true as the first argument to
jQuery’s clone() method. The following document demonstrates jQuery’s clone() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 4-29.js’></script>
 <link type=’text/css’ href=’Figure 4-29.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>My Form</h4>
 <form action=’javascript:void(0);’ method=’post’>
 <table>
 <thead>
 <tr>
 <th>Title</th>
 <th>Selected</th>
 </tr>
 </thead>
 <tbody>
 <tr id=’tmp’>
 <td><input type=’text’ name=’tmpTitle[]’ value=’0’ /></td>
 <td><input type=’checkbox’ name=’tmpTitleChecked[]’ value=’1’ /></td>
 </tr>
 <tr>
 <td><input type=’text’ name=’tmpTitle[]’ value=’0’ /></td>
 <td><input type=’checkbox’ name=’tmpTitleChecked[]’ value=’1’ /></td>
 </tr>
 <tr>
 <td><input type=’text’ name=’tmpFirst[]’ value=’0’ /></td>
 <td><input type=’checkbox’ name=’tmpTitleChecked[]’ value=’1’ /></td>
 </tr>
 </tbody>
 </table>
 <input type=’submit’ id=’tmpAddRow’ value=’Add a Row’ />
 </form>
 </body>
</html>

155

Chapter 4: Manipulating Content and Attributes

The following style sheet is linked to the preceding document:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 5px;
}
table {
 width: 100%;
 background: #b6d9f6;
 margin-bottom: 5px;
}
th {
 background: #8dc3f0;
}
tr#tmp {
 display: none;
}

The following script demonstrates jQuery’s clone() method:

$(document).ready(
 function() {
 $(‘input#tmpAddRow’).click(
 function($e) {
 $e.preventDefault();
 $(‘tr#tmp’).clone(true).removeAttr(‘id’).appendTo(‘tbody’);
 }
);

 $(‘tr input[type=text]’).focus(
 function() {
 $(this).addClass(‘tmpFocused’);
 }
).blur(
 function() {
 $(this).removeClass(‘tmpFocused’);
 }
);
 }
);

Figure 4-29 shows a screenshot of the preceding example. When you click on the “Add a Row” button, a
new row is added to the form.

The script adds a click event to the <input> element. When the <input> element receives a click
event, the <tr> with ID name tmp is selected, then the clone() method is called with the first argument
set to true. Setting that argument to true causes the clone() method to also clone any event handlers
present on the element being cloned, or any that element’s children elements. Setting the first argument
to true causes the focus and blur events attached to the text <input> element to be cloned along with
the structural markup. The next method in the chain removes the id attribute from the cloned element

156

Part I: jQuery API

by calling removeAttr(‘id’). Otherwise, the cloned row would be hidden. Then, the new cloned row is
inserted into the document using jQuery’s appendTo() method, which has the selector tbody specified,
causing the new row to be appended to the <tbody>, thus adding a new row to the form.

Figure 4-29

The following “Try It Out” recaps everything you’ve learned about jQuery’s replaceAll(),
replaceWith(), empty(), remove(), and clone() methods:

Try It Out Replacing, Removing, and Cloning Content

Example 4-4
To recap replacing, removing, and cloning content with jQuery’s manipulation API, follow these steps:

 1. Enter the following markup into a new document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Example 4-4.js’></script>
 <link type=’text/css’ href=’Example 4-4.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div class=’tmpWrapper’>
 <input type=’submit’ id=’tmpReplaceWith’ value=’Replace With’ />
 </div>
 <div class=’tmpWrapper’>
 <p id=’tmpReplaceAllContent’>
 jQuery’s replaceAll() method takes existing content and
 replaces it.
 </p>

157

Chapter 4: Manipulating Content and Attributes

 <input type=’submit’ id=’tmpReplaceAll’ value=’Replace All’ />
 </div>
 <div class=’tmpWrapper’>
 <p>
 jQuery’s empty() method removes all children elements (including
 text) from selected items. jQuery’s remove() method completely
 removes the selected items.
 </p>

 replaceAll()
 replaceWith()
 empty()
 remove()
 clone()

 <input type=’submit’ id=’tmpEmpty’ value=’Empty’ />
 <input type=’submit’ id=’tmpRemove’ value=’Remove’ />
 </div>
 <div class=’tmpWrapper’>
 <p>
 jQuery’s clone() method can be used to duplicate elements. Setting
 its first argument to true also duplicates those elements’ event
 handlers.
 </p>
 <form action=’javascript:void(0);’ method=’post’>
 <div id=’tmp’ class=’tmpRow’>
 <input type=’text’ name=’tmpItem’ value=’’ size=’25’ />
 </div>
 <div>
 <input type=’submit’ id=’tmpAddInput’ value=’Add Input’ />
 </div>
 </form>
 </div>
 </body>
</html>

 2. Save the preceding document as Example 4-4.html.

 3. Key the following CSS into another new document in your text editor:

body {
 font: 16px sans-serif;
}
p {
 margin: 5px;
}
p#tmpReplaceAllContent {
 display: none;
}
div.tmpWrapper,
form div {
 padding: 5px;
}
input.tmpFocused {
 background: lightblue;
}

158

Part I: jQuery API

 4. Save the preceding document as Example 4-4.css.

 5. Enter the following JavaScript into your text editor:

$(document).ready(
 function() {
 $(‘input#tmpReplaceWith’).click(
 function($e) {
 $e.preventDefault();

 $(this).replaceWith(
 “<p>\n” +
 “ jQuery’s replaceWith() method is used to completely \n” +
 “ replace one or more elements with the specified content.\n” +
 “</p>\n”
);
 }
);

 $(‘input#tmpReplaceAll’).click(
 function($e) {
 $e.preventDefault();

 $(‘p#tmpReplaceAllContent’)
 .replaceAll(this)
 .removeAttr(‘id’);
 }
);

 $(‘input#tmpEmpty’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul li’).empty();
 }
);

 $(‘input#tmpRemove’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul’).remove();
 }
);

 $(‘input#tmpAddInput’).click(
 function($e) {
 $e.preventDefault();

 $(‘div#tmp’)
 .clone(true) // Copy the <div>
 .removeAttr(‘id’) // Remove the id
 .insertAfter(‘div.tmpRow:last’) // Insert after the last <div>
 .find(‘input’) // Get the input
 .val(‘’); // Remove the value

159

Chapter 4: Manipulating Content and Attributes

 }
);

 $(‘input[type=text]’)
 .focus(
 function() {
 $(this).addClass(‘tmpFocused’);
 }
)
 .blur(
 function() {
 $(this).removeClass(‘tmpFocused’);
 }
);
 }
);

 6. Save the preceding document as Example 4-4.js.

The documents you created in the preceding example result in the screenshot that you see in Figure 4-30.

Figure 4-30

In Example 4-4, you reviewed the remaining jQuery manipulation methods that I cover in this chapter.
You began the example by reviewing jQuery’s replaceWith() method.

 <div class=’tmpWrapper’>
 <input type=’submit’ id=’tmpReplaceWith’ value=’Replace With’ />
 </div>

160

Part I: jQuery API

When you press the preceding <input> button labeled “Replace With,” the following script is executed:

 $(‘input#tmpReplaceWith’).click(
 function($e) {
 $e.preventDefault();

 $(this).replaceWith(
 “<p>\n” +
 “ jQuery’s replaceWith() method is used to completely \n” +
 “ replace one or more elements with the specified content.\n” +
 “</p>\n”
);
 }
);

In the preceding script, the <input> element that the user clicks on is completely removed from the
document and replaced with the <p> element and its text content using the replaceWith() method.

The second method that you review in this example is jQuery’s replaceAll() method.

 <div class=’tmpWrapper’>
 <p id=’tmpReplaceAllContent’>
 jQuery’s replaceAll() method takes existing content and
 replaces it.
 </p>
 <input type=’submit’ id=’tmpReplaceAll’ value=’Replace All’ />
 </div>

When the <input> button in the preceding markup, labeled “Replace All” is clicked, the <input> ele-
ment is completely removed from the document and replaced with the <p> element with ID name
tmpReplaceAllContent.

 $(‘input#tmpReplaceAll’).click(
 function($e) {
 $e.preventDefault();

 $(‘p#tmpReplaceAllContent’)
 .replaceAll(this)
 .removeAttr(‘id’);
 }
);

After the <input> element is replaced with the <p> element, the id attribute is removed from the <p>
element, which also makes that content visible. As you can see in this script and remember from pre-
vious discussions in this chapter, the replaceAll() method works with the logic reversed from the
replaceWith() method. You first select the content that you want to use for replacement. You can also
provide content directly to the dollar sign method, if you so choose; then you call the replaceAll()
method with its first argument being a selector that references the content that you want to replace.

Next, you review jQuery’s empty() and remove() methods.

 <div class=’tmpWrapper’>
 <p>

161

Chapter 4: Manipulating Content and Attributes

 jQuery’s empty() method removes all children elements (including
 text) from selected items. jQuery’s remove() method completely
 removes the selected items.
 </p>

 replaceAll()
 replaceWith()
 empty()
 remove()
 clone()

 <input type=’submit’ id=’tmpEmpty’ value=’Empty’ />
 <input type=’submit’ id=’tmpRemove’ value=’Remove’ />
 </div>

When you click on the <input> button labeled “Empty” in the preceding snippet of markup, you exe-
cute the following script:

 $(‘input#tmpEmpty’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul li’).empty();
 }
);

The preceding script demonstrates how empty() is used to remove the content of each element.

When you click on the <input> button labeled “Remove” in the preceding snippet of markup, you exe-
cute this script:

 $(‘input#tmpRemove’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul’).remove();
 }
);

The preceding script demonstrates how jQuery’s remove() method removes the element and all of
its children.

Finally, the last method that you review in this example is jQuery’s clone() method.

 <div class=’tmpWrapper’>
 <p>
 jQuery’s clone() method can be used to duplicate elements. Setting
 its first argument to true also duplicates those elements’ event
 handlers.
 </p>
 <form action=’javascript:void(0);’ method=’post’>
 <div id=’tmp’ class=’tmpRow’>
 <input type=’text’ name=’tmpItem’ value=’’ size=’25’ />
 </div>

162

Part I: jQuery API

 <div>
 <input type=’submit’ id=’tmpAddInput’ value=’Add Input’ />
 </div>
 </form>
 </div>

When you click on the button labeled “Add Input” in the preceding snippet of markup, the following
script is executed:

 $(‘input#tmpAddInput’).click(
 function($e) {
 $e.preventDefault();

 $(‘div#tmp’)
 .clone(true) // Copy the <div>
 .removeAttr(‘id’) // Remove the id
 .insertAfter(‘div.tmpRow:last’) // Insert after the last <div>
 .find(‘input’) // Get the input
 .val(‘’); // Remove the value
 }
);

In the preceding script, you begin by selecting the <div> element with ID name tmp, which is used as
a template for duplicating the text input fields. Calling clone(true) duplicates the <div> element, its
descendents, its event handlers, and the event handlers of its descendents, which means that the focus
and blur events attached to the text <input> elements are copied as well. The id attribute is removed
with the removeAttr() method, which maintains the uniqueness of the IDs used in the document and
thus also prevents unwanted bugs from popping up. The new copied and modified <div> element is
then inserted after the last <div> element with class name tmpRow. jQuery’s special :last pseudo-class
is invoked so that the last element in the selection is the one selected, ensuring that the new <div>
element being inserted is always last. Then the <div> element’s <input> element is selected using
jQuery’s find() method, and its value is removed, which ensures that the new <input> element is
pristine and unused.

Summary
In this chapter, you learned about a variety of jQuery’s manipulative abilities. The content discussed in
this chapter is documented in detail in the Quick Reference appearing in Appendix E. You began this
chapter by learning about jQuery’s attribute manipulation method attr(), which lets you specify attri-
butes in a variety of ways, with the attribute as the first argument, and the value as the second, or via an
object literal specifying arguments in key, value pairs, and also by using callback functions. jQuery’s
removeAttr() method can be used to remove attributes completely.

You also learned how jQuery helps you immensely with manipulating class names. jQuery’s addClass()
method can be used to add a class name to an element. Its hasClass() method can be used to deter-
mine whether a class name is present. Its removeClass() method can be used to remove a class name.
And its toggleClass() method can be used to toggle a class name on and off.

163

Chapter 4: Manipulating Content and Attributes

You learned about various jQuery methods used to manipulate text and HTML content. You can get
or set text or HTML content for elements using jQuery’s text() and html() methods. You can append
or prepend HTML content to other elements using jQuery’s append() or prepend() methods. jQuery’s
after(), before(), insertAfter(), and insertBefore() methods can all be used to insert content
beside other content. And jQuery’s wrap(), wrapAll(), and wrapInner() methods can be used to
wrap elements with wrapper elements.

Finally, jQuery’s replaceWith() and replaceAll() methods can be used to completely replace one or
more elements with other content. Its empty() method can be used to completely remove an element’s
children and descendants. Its remove() methods can be used to completely delete an element and all of
its contents. And its clone() method can be used to duplicate content, and optionally, event handlers
that exist within that content.

Exercises
 1. Write sample code that might be used to set both the value and the class attributes of an

<input> element.

 2. If you want to set the href attribute for an <a> element to www.example.com using jQuery, what
might the JavaScript look like?

 3. What jQuery method is used to completely remove attributes from elements?

 4. What jQuery method would you use to determine whether a class name is present for an
element?

 5. If an element contains HTM content and you retrieve the content of that element using jQuery’s
text() method, will the HTML tags be present in the returned value?

 6. If you set an element’s content using jQuery’s text() method and that content contains HTML
tags, will the HTML tags be visible in the rendered output displayed in your browser’s
viewport?

 7. Describe one bug that jQuery’s append() and prepend() methods work around in IE when
compared to innerHTML.

 8. Describe one bug that jQuery’s append() and prepend() methods work around in Firefox
when compared to innerHTML.

 9. If you want to insert existing content within a document before other existing content within a
document, what jQuery method might be best suited for this task?

 10. What jQuery method might you use if you needed to wrap multiple items in a document in a
single element?

 11. jQuery’s replaceWith() method is most similar to what de facto standard JavaScript property?

 12. What jQuery method would you use if you want to completely remove an item and all of its
children from your document?

 13. What jQuery function call would you make if you wanted to duplicate an element and its event
handlers and insert the duplicate element elsewhere in the document?

5
Arrays and Iteration

In this chapter, I talk about the methods that jQuery provides that help you work with arrays.
Historically, working with arrays in JavaScript often required you to come up with your own
helper methods and to deal with writing tedious redundant code every time you wanted to enu-
merate over the contents of an array.

As you saw in Chapter 4, jQuery provides a rich, robust, and helpful API for various tasks associ-
ated with manipulating the content in a document. In this chapter, you see that jQuery also does
not leave much to be desired in what it offers for dealing with arrays.

Basic Iteration
In this section, you learn a whole new way to approach the task of iterating over an array of val-
ues using jQuery’s $.each() method. Up to now, when it comes to looking at each individual
value contained within an array, you’re probably used to dealing with a loop that looks some-
thing like this:

var $items = document.getElementsByTagName(‘div’);

for (var $i = 0; $i < $items.length; $i++) {
 // Do something with each item
 alert($item[$i].innerHTML);
}

You have an array of items, or a static node list, or a live node list. Then you make a for loop, you
define a counter, and you proceed to iterate over the contents of your array or list.

27794c05.indd 165 3/16/09 11:19:01 AM

166

Part I: jQuery API

jQuery makes this completely unnecessary, by providing a way to iterate over an array or list using a
function call instead of a for loop, and a callback function that’s used to actually look at each individ-
ual item. The function that jQuery uses, again, is called each(), and it is demonstrated in the following
document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-1.js’></script>
 <link type=’text/css’ href=’Figure 5-1.css’ rel=’stylesheet’ />
 </head>
 <body>

 </body>
</html>

The preceding markup document is linked to the following style sheet:

body {
 font: 16px sans-serif;
}
The following script demonstrates jQuery’s each() method.
$(document).ready(
 function() {
 var $items = [
 ‘John Lennon’,
 ‘Paul McCartney’,
 ‘George Harrison’,
 ‘Ringo Starr’
];

 $($items).each(
 function() {
 $(‘ul’).append(“” + this + “”);
 }
);
 }
);

In the preceding script, you create an ad hoc array and assign that array to the variable $items. The
variable $items is passed to jQuery’s dollar sign method, then jQuery’s each() method is chained onto
the end of that. You pass an anonymous function to jQuery’s each() method, which is executed once for
each item in the array; upon each execution, the current item is passed to the anonymous function within
the this keyword.

Figure 5-1 shows that the element is populated with four new items via script.

27794c05.indd 166 3/16/09 11:19:01 AM

167

Chapter 5: Arrays and Iteration

Figure 5-1

In the preceding example, you see how jQuery is able to eliminate the traditional for construct that
you’d typically use for iterating the contents of an array or list. Instead, you pass an array to jQuery’s
dollar sign method, so that you have the full power of jQuery at your disposal for use with that array.
Then you chain a call to jQuery’s each() method, which takes a callback function as its one and only
argument. That callback function then is executed once for each item in the array, eliminating the need
for a counter, since the current item is passed to the function with each iteration in the this keyword.

Calling each() Directly
You don’t have to write a call to each() exactly like you see in the preceding example; however, you can
also pass your array to a direct call to jQuery’s each() method. The following document demonstrates
this variation:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-2.js’></script>
 <link type=’text/css’ href=’Figure 5-2.css’ rel=’stylesheet’ />
 </head>
 <body>

 </body>
</html>

The preceding document is linked to the following style sheet:

body {
 font: 16px sans-serif;
}

27794c05.indd 167 3/16/09 11:19:02 AM

168

Part I: jQuery API

The following script demonstrates how you call each() directly.

$(document).ready(
 function() {
 $.each(
 [‘Groucho’, ‘Chico’, ‘Harpo’, ‘Zeppo’],
 function() {
 $(‘ul’).append(“” + this + “”);
 }
);
 }
);

In the preceding example, you call the each() method directly, using $.each(), and you pass the array
you want to iterate over as its first value and the callback function as its second value. Figure 5-2 shows
the preceding example rendered in a browser.

Figure 5-2

It doesn’t really matter which way you use jQuery’s each() method. Use whichever way makes the
most sense for you.

Variable Scope
Scope can be a tricky thing since different languages define scope differently. In a nutshell, scope limits
what variables you can access depending on the context in which they’re used. Variables defined glob-
ally in JavaScript (with or without the var keyword) — globally meaning outside a function, object, or
closure — can be accessed anywhere in your document, globally or from within any function. Variables
that are defined locally within a function without a var keyword are also considered to be global vari-
ables. Variables that you define locally, within a function with the var keyword, can only be accessed
within that function … or from within anonymous functions defined within that function.

Knowing how scope works helps you cope much more easily with using jQuery’s each() method for
array iteration, since you find that you can access local variables defined outside the anonymous func-
tion you pass to the each() method.

27794c05.indd 168 3/16/09 11:19:02 AM

169

Chapter 5: Arrays and Iteration

The following document demonstrates the concept of variable scope:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-3.js’></script>
 <link type=’text/css’ href=’Figure 5-3.css’ rel=’stylesheet’ />
 </head>
 <body>

 </body>
</html>

The following style sheet is linked to the preceding markup document:

body {
 font: 16px sans-serif;
}
ul {
 list-style: none;
}

The following script demonstrates variable scope as it applies to locally defined variables and anony-
mous functions that are defined in the same function:

$(document).ready(
 function() {
 var $append = “ Marx”;

 $([‘Groucho’, ‘Chico’, ‘Harpo’, ‘Zeppo’])
 .each(
 function() {
 $(‘ul’).append(“” + this + $append + “”);
 }
);
 }
);

In the preceding script, you see that the $append variable is defined with the string Marx; then the
each() method is used to iterate over the contents of an array. In the anonymous function that is passed
to the each() method, you see that you are able to access the $append variable from within that sepa-
rately defined function. Figure 5-3 shows the rendered output of the preceding JavaScript, CSS, and
HTML documents.

27794c05.indd 169 3/16/09 11:19:02 AM

170

Part I: jQuery API

Figure 5-3

Aside from being able to access locally defined variables from within your iterator function, there are
two items left to talk about that you’re used to doing in traditional for constructs: using the break and
continue keywords, which are the topics discussed in the next section.

Emulating break and continue
Emulating the functionality of the break and continue keywords in jQuery’s each() method is handled in
a very intuitive way. All you have to do is write a return statement in your anonymous function. Returning
Boolean false stops the iteration, just like using a break keyword in a normal loop, and returning Boolean
true continues the iteration, just like using a continue keyword. The following document demonstrates
how the break and continue keywords are emulated using jQuery’s each() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-4.js’></script>
 <link type=’text/css’ href=’Figure 5-4.css’ rel=’stylesheet’ />
 </head>
 <body>

 </body>
</html>

The following style sheet is linked to the preceding markup document:

body {
 font: 16px sans-serif;
}
ul {
 list-style: none;
}

27794c05.indd 170 3/16/09 11:19:02 AM

171

Chapter 5: Arrays and Iteration

The following script demonstrates how Boolean return values are used to simulate the continue and
break keywords:

$(document).ready(
 function() {
 $([‘Groucho’, ‘Chico’, ‘Harpo’, ‘Zeppo’])
 .each(
 function() {
 if (this == ‘Groucho’) {
 // Continue
 return true;
 }

 $(‘ul’).append(
 “” + this + “”
);
 }
);

 $([‘John’, ‘Paul’, ‘George’, ‘Ringo’])
 .each(
 function() {
 if (this == ‘Ringo’) {
 // Break
 return false;
 }

 $(‘ul’).append(
 “” + this + “”
);
 }
);
 }
);

In the preceding script, you see with the first array that the script looks to see if the current array value
is Groucho, in which case the function returns true, which causes each() to proceed directly to the next
value in the array. In the second array iteration, the script checks to see if the current value is Ringo, in
which case the function returns false, which simulates a break, and each() ceases iteration. Figure 5-4
shows the rendered output of the preceding Javascript, CSS, and HTML documents.

Figure 5-4

27794c05.indd 171 3/16/09 11:19:02 AM

172

Part I: jQuery API

Iterating a Selection
jQuery’s each() method doesn’t have to be applied to an array; however, it can also be applied to a
selection of elements. The following document demonstrates how each() can be used to iterate over a
selection of elements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-5.js’></script>
 <link type=’text/css’ href=’Figure 5-5.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Rubber Soul</h4>

 Drive My Car
 Norwegian Wood (This Bird Has Flown)
 You Won’t See Me
 Nowhere Man
 Think for Yourself
 The Word
 Michelle
 What Goes On
 Girl
 I’m Looking Through You
 In My Life
 Wait
 If I Needed Someone
 Run for Your Life

 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 0;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 0;
}
li.tmpSong {
 background: #a0cde5;
 border: 4px solid #99c6dd;
}

27794c05.indd 172 3/16/09 11:19:02 AM

173

Chapter 5: Arrays and Iteration

In the following script, you see that jQuery’s each() method can be chained onto a selection like any
other method, and you are able to iterate over the items of the selection:

$(document).ready(
 function() {
 $(‘li’).each(
 function() {
 $(this).addClass(‘tmpSong’);
 }
);
 }
);

Iterating a selection is essentially the same as iterating an array, only this time, when you’re working
with the callback function, the this keyword contains an individual element from the selection. If you
want to use jQuery methods within the callback function, you’ll have to wrap the this keyword with a
call to the dollar sign method. In the example, each element is selected, iterated using the each()
method, and given the class name tmpSong. Figure 5-5 shows a screenshot of the preceding example in a
browser.

Figure 5-5

Filtering Selections and Arrays
There are two methods that can be associated with filtering an array or a selection in jQuery’s API. One
method is called filter(), and it is used for filtering items from a selection exclusively. The other method
is called grep(), and it is used for filtering items from an array exclusively.

27794c05.indd 173 3/16/09 11:19:03 AM

174

Part I: jQuery API

Filtering a Selection
filter() is used to remove items from a selection using a selector or a callback function. The following
document demonstrates how filter() can use a selector to reduce items in a selection:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-6.js’></script>
 <link type=’text/css’ href=’Figure 5-6.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Rubber Soul</h4>

 <li class=’Paul’>Drive My Car
 <li class=’John’>Norwegian Wood (This Bird Has Flown)
 <li class=’Paul’>You Won’t See Me
 <li class=’John’>Nowhere Man
 <li class=’George’>Think for Yourself
 <li class=’John’>The Word
 <li class=’Paul’>Michelle
 <li class=’John’>What Goes On
 <li class=’John’>Girl
 <li class=’Paul’>I’m Looking Through You
 <li class=’John’>In My Life
 <li class=’John’>Wait
 <li class=’George’>If I Needed Someone
 <li class=’John’>Run for Your Life

 </body>
</html>

The preceding markup document includes the following style sheet:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 0;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 0;
}
li.tmpSelected {
 background: #a1e6b2;
 border: 4px solid #93daa4;
}

27794c05.indd 174 3/16/09 11:19:03 AM

175

Chapter 5: Arrays and Iteration

The following script demonstrates how the filter() method uses a selector to indicate which items
should be in the selection:

$(document).ready(
 function() {
 $(‘li’)
 .filter(‘.George’)
 .addClass(‘tmpSelected’);
 }
);

In the preceding script, the selector .George reduces the selection to include only the elements
that have a class name of George; then the class name tmpSelected is added to each of those ele-
ments. Figure 5-6 shows a screenshot of this example in Safari.

Figure 5-6

Filtering a Selection with a Callback Function
The filter() method can also be used with a callback function. When it is used in this way, filter() is
very similar to each(), in that it allows a callback function to be specified that is subsequently executed
once for every item present in a selection.

With the each() method, you learned that returning a Boolean value simulates continue and break
statements. With the filter() method, returning a Boolean value decides whether an item should be
kept or removed from the selection. Returning true keeps the item in the selection, and returning false
removes the item from the selection. Using filter() with a callback function is demonstrated in the
following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />

27794c05.indd 175 3/16/09 11:19:03 AM

176

Part I: jQuery API

 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-7.js’></script>
 <link type=’text/css’ href=’Figure 5-7.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Rubber Soul</h4>

 <li class=’Paul’>Drive My Car
 <li class=’John’>Norwegian Wood (This Bird Has Flown)
 <li class=’Paul’>You Won’t See Me
 <li class=’John’>Nowhere Man
 <li class=’George’>Think for Yourself
 <li class=’John’>The Word
 <li class=’Paul’>Michelle
 <li class=’John’>What Goes On
 <li class=’John’>Girl
 <li class=’Paul’>I’m Looking Through You
 <li class=’John’>In My Life
 <li class=’John’>Wait
 <li class=’George’>If I Needed Someone
 <li class=’John’>Run for Your Life

 </body>
</html>

The preceding markup document links to the following style sheet:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 0;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 0;
}
li.tmpSelected {
 background: #a1e6b2;
 border: 4px solid #93daa4;
}

The following script demonstrates how jQuery’s filter() method can use a callback function to reduce
items present in a selection:

$(document).ready(
 function() {
 $(‘li’)
 .filter(
 function() {
 return $(this).hasClass(‘John’) || $(this).hasClass(‘Paul’);

27794c05.indd 176 3/16/09 11:19:03 AM

177

Chapter 5: Arrays and Iteration

 }
)
 .addClass(‘tmpSelected’);
 }
);

In the preceding script, the filter() method iterates over each item present in the original selection. It
looks at each individual element and checks to see if the element has a class name of John or
a class name of Paul; if either class name is present, the callback function returns true, indicating that
the item should be kept in the selection. Each item kept in the selection then receives a class name of
tmpSelected. Figure 5-7 shows a screenshot of this example in Safari. Each song written primarily by
John or Paul has a green background with a slightly darker green border.

Figure 5-7

Filtering an Array
As I indicated previously, arrays are filtered using a different method called grep(). The grep() method
can only be called directly, which is to say, you may only call it as $.grep() or jQuery.grep(). Wrapping
an array in the dollar sign method and then calling grep() doesn’t work, at least as of the version of jQuery
I’m using as I write this. The following document demonstrates how grep() is used to filter arrays:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-8.js’></script>

27794c05.indd 177 3/16/09 11:19:03 AM

178

Part I: jQuery API

 <link type=’text/css’ href=’Figure 5-8.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Rubber Soul</h4>
 <ul id=’tmpAlbum’>
 <li class=’Paul’>Drive My Car
 <li class=’John’>Norwegian Wood (This Bird Has Flown)
 <li class=’Paul’>You Won’t See Me
 <li class=’John’>Nowhere Man
 <li class=’George’>Think for Yourself
 <li class=’John’>The Word
 <li class=’Paul’>Michelle
 <li class=’John’>What Goes On
 <li class=’John’>Girl
 <li class=’Paul’>I’m Looking Through You
 <li class=’John’>In My Life
 <li class=’John’>Wait
 <li class=’George’>If I Needed Someone
 <li class=’John’>Run for Your Life

 <ul id=’tmpFiltered’>

 </body>
</html>

The preceding markup document is linked to the following style sheet:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 0;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 0;
}

The following script demonstrates the grep() method:

$(document).ready(
 function() {
 var $items = [];

 $(‘li’).each(
 function() {
 $items.push($(this).text());
 }
);

 var $filtered = $.grep(
 $items,
 function($value, $key) {
 return ($value.indexOf(‘You’) != -1);

27794c05.indd 178 3/16/09 11:19:04 AM

179

Chapter 5: Arrays and Iteration

 }
);

 $(‘ul#tmpAlbum’).hide();

 $($filtered).each(
 function() {
 $(‘ul#tmpFiltered’).append(“” + this + “\n”);
 }
);
 }
);

The preceding script begins by creating a new array and assigning that array to the variable $items.
The script then selects all elements and assigns the text of each element as a new item in the
$items array using push(). The end result is that the $items array contains the titles for all the songs
on Rubber Soul.

Then, a new variable is created called $filtered, which will contain the filtered array. The grep()
method is called directly as $.grep(), with the $items array as the first argument and a callback func-
tion as the second argument. In the callback function, you return a Boolean value to indicate whether
each item should be kept in the array or removed. Returning true indicates that the value should be kept;
returning false indicates that the item should be discarded. You can also change the value being kept
as well — simply return the replacement value you want to use, and it will replace any previous value.

In the example, the callback function checks to see if each song title contains the word you, using
JavaScript’s indexOf() method. If it does, the song title is kept; if not, the song title is discarded.

The element with ID name tmpAlbum is hidden by selecting it, then making a call to jQuery’s
hide() method.

Finally, the script iterates over the new $filtered array using each(), and the four song titles contain-
ing the word you are appended as new elements to the element with ID name tmpFiltered.
Figure 5-8 shows the results of the preceding example in a browser.

Figure 5-8

The grep() method also allows an optional third argument called invert to be specified; if it is set to
true, the values of the filtered array are reversed.

27794c05.indd 179 3/16/09 11:19:04 AM

180

Part I: jQuery API

Mapping a Selection or an Array
As was the case with filtering, there are two different contexts in which you can map one collection of
items to another, in a selection or with an arbitrary array of items. This time, however, both contexts use
a function that goes by the same name, map(). In the following sections, you learn more about the map()
method as applied within either context.

Mapping a Selection
The concept of mapping is taking one set of values and modifying one or more of those values to create a
new set of values. No items are removed from the set during a mapping, so it’s expected that you’ll have
a set of values of the same length when you finish mapping as when you started — the idea being more
or less that you can arbitrarily replace values as needed with new ones. The following document demon-
strates how you’d map a selection with jQuery:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-9.js’></script>
 <link type=’text/css’ href=’Figure 5-9.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Rubber Soul</h4>
 <ul id=’tmpAlbum’>
 <li class=’Paul’>Drive My Car
 <li class=’John’>Norwegian Wood (This Bird Has Flown)
 <li class=’Paul’>You Won’t See Me
 <li class=’John’>Nowhere Man
 <li class=’George’>Think for Yourself
 <li class=’John’>The Word
 <li class=’Paul’>Michelle
 <li class=’John’>What Goes On
 <li class=’John’>Girl
 <li class=’Paul’>I’m Looking Through You
 <li class=’John’>In My Life
 <li class=’John’>Wait
 <li class=’George’>If I Needed Someone
 <li class=’John’>Run for Your Life

 <ul id=’tmpMapped’>

 </body>
</html>

27794c05.indd 180 3/16/09 11:19:04 AM

181

Chapter 5: Arrays and Iteration

The preceding markup document is styled with the following style sheet:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 0;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 0;
}
ul li {
 position: relative;
 background: #eff557;
 border: 1px solid black;
 padding: 3px;
 margin: 2px 0;
}
i {
 position: absolute;
 top: 3px;
 right: 3px;
}

The following script demonstrates how a selection is mapped to a new array:

$(document).ready(
 function() {
 var $mapped = $(‘li’).map(
 function($key) {
 switch (true) {
 case ($(this).hasClass(‘John’)): {
 return $(this).text() + “ <i>John Lennon</i>”;
 }
 case ($(this).hasClass(‘Paul’)): {
 return $(this).text() + “ <i>Paul McCartney</i>”;
 }
 case ($(this).hasClass(‘George’)): {
 return $(this).text() + “ <i>George Harrison</i>”;
 }
 }
 }
);

 $(‘ul#tmpAlbum’).hide();

 $($mapped).each(
 function() {
 $(‘ul#tmpMapped’).append(“” + this + “\n”);
 }
);
 }
);

27794c05.indd 181 3/16/09 11:19:04 AM

182

Part I: jQuery API

The preceding script begins by selecting all elements in the document. Then a call to the map()
method is chained onto that selection, and a callback function is provided as the first argument to the
map() method.

The callback function provided to the map() method, as with the other methods you’ve observed in this
chapter, passes each item to its callback function in the this keyword. If you need to reference it, the
index or key or counter (whatever you choose to call it) is accessible in the first argument that you pro-
vide to your callback function. Each item is numbered offset from zero, and that counter is accessible in
that first argument. In the preceding example, I named the first argument $key.

Inside the callback function, a switch construct looks to see what class name each element has. If a
 element has a class name of John, for example, the callback function returns the name of the song
with the HTML <i>John Lennon</i> appended to the end. The callback function attaches the name of
the more prominent writer of each song for each song present, building a new array that is assigned to
the variable $mapped.

The first list with ID name tmpAlbum is then hidden by selecting it and making a call to jQuery’s
hide() method.

The each() method is then used to iterate the contents of the $mapped variable, appending each mapped
value to the second element with the ID name tmpMapped. Figure 5-9 shows the final product.

Figure 5-9

27794c05.indd 182 3/16/09 11:19:04 AM

183

Chapter 5: Arrays and Iteration

Mapping an Array
Mapping an array basically employs the same logic that you observed in Figure 5-9 with mapping a
selection — you’re just using an array instead of a selection. So, you can call jQuery’s map() method with
an array, the same way that you were able to call the each() method, by either passing an array to the
dollar sign method or by calling the map() method directly, with an array as its first argument and a
callback function as its second argument. The following document shows an example of the map()
method as it is applied to an array:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-10.js’></script>
 <link type=’text/css’ href=’Figure 5-10.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Revolver</h4>
 <ul id=’tmpMapped’>

 </body>
</html>

The following style sheet is applied to the preceding markup:

body {
 font: 16px sans-serif;
}
h4 {
 margin: 0;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 0;
}
ul li {
 position: relative;
 background: #a9c1ff;
 border: 2px solid #9ab6fc;
 padding: 3px;
}

27794c05.indd 183 3/16/09 11:19:04 AM

184

Part I: jQuery API

The following script demonstrates how jQuery’s map() method is used with an array instead of a
selection:

$(document).ready(
 function() {
 var $items = [
 ‘Taxman’,
 ‘Eleanor Rigby’,
 ‘I\’m Only Sleeping’,
 ‘Love You To’,
 ‘Here, There and Everywhere’,
 ‘Yellow Submarine’,
 ‘She Said, She Said’,
 ‘Good Day Sunshine’,
 ‘And Your Bird Can Sing’,
 ‘For No One’,
 ‘Doctor Robert’,
 ‘I Want to Tell You’,
 ‘Got to Get You into My Life’,
 ‘Tomorrow Never Knows’
];

 var $i = 0;

 var $mapped = $($items).map(
 function($key) {
 $i++;
 return ($i < 10? ‘0’ + $i : $i) + ‘ ‘ + this;
 }
);

 $($mapped).each(
 function() {
 $(‘ul#tmpMapped’).append(“” + this + “\n”);
 }
);
 }
);

In the preceding script, an array of song titles of the Beatles’ album Revolver are placed in an array and
assigned to the variable $items. Then a new variable named $i is created and set to a value of zero.

 The $items variable is then passed to a call to the dollar sign method, and the map() method is called.

In the callback function passed to the map() method, the $i variable is incremented; it’s going to be
used as a counter. The callback function then checks to see if $i is less than 10 using a ternary expres-
sion; if it is, a leading zero is prepended to the value; otherwise, no leading zero is prepending. This
portion becomes the track number.

A single space is inserted between the track number and the song title, and the new array containing
song titles with track numbers prefixed is assign to the variable $mapped.

27794c05.indd 184 3/16/09 11:19:04 AM

185

Chapter 5: Arrays and Iteration

Finally, the array assigned to the $mapped variable is iterated using the each() method, and the modi-
fied song titles with track name prefixes are appended as elements to the element in the doc-
ument. The result of the preceding example appears in Figure 5-10.

Figure 5-10

The following “Try It Out” reiterates the various methods used for iteration that you’ve learned about
up to this point:

Try It Out A Review of Iteration

Example 5-1
To review the array iteration methods that you’ve been learning about, follow these steps:

1. Enter the following HTML document in a new document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Example 5-1.js’></script>
 <link type=’text/css’ href=’Example 5-1.css’ rel=’stylesheet’ />
 </head>

27794c05.indd 185 3/16/09 11:19:05 AM

186

Part I: jQuery API

 <body>
 <div class=’tmpAlbum tmpAlbumBeatles’>
 <h4>The Beatles’ Sgt. Pepper’s Lonely Hearts Club Band</h4>
 <ul class=’tmpBeatles’>
 Sgt. Pepper’s Lonely Hearts Club Band
 With a Little Help from My Friends
 Lucy in the Sky With Diamonds
 Getting Better
 Fixing a Hole
 She’s Leaving Home
 Being for the Benefit of Mr. Kite
 Within You, Without You
 When I’m Sixty-Four
 Lovely Rita
 Good Morning, Good Morning
 Sgt. Pepper’s Lonely Hearts Club Band (Reprise)
 A Day in the Life

 <ul class=’tmpBeatlesMapped’>

 </div>
 <div class=’tmpAlbum tmpAlbumELO’>
 <h4>Electric Light Orchestra’s Time</h4>
 <ul class=’tmpELO’>
 Prologue
 Twilight
 Yours Truly, 2095
 Ticket to the Moon
 The Way Life’s Meant To Be
 Another Heart Breaks
 Rain Is Falling
 From the End of the World
 The Lights Go Down
 Here Is the News
 21st Century Man
 Hold On Tight
 Epilogue
 The Bouncer
 When Time Stood Still
 Julie Don’t Live Here

 <ul class=’tmpELOMapped’>

 </div>
 <div class=’tmpActions’>
 <p>
 jQuery’s each() method can be used to arbitrary iterate over
 an array or a selection.
 </p>
 <input type=’submit’ id=’tmpEach’ value=’Each’ />
 <p>
 jQuery’s filter() method can be used to remove items from a
 selection using a selector.
 </p>

27794c05.indd 186 3/16/09 11:19:05 AM

187

Chapter 5: Arrays and Iteration

 <input type=’submit’ id=’tmpFilter’ value=’Filter’ />
 <p>
 jQuery’s filter() method can also be used to remove items from
 a selection using a callback function.
 </p>
 <input type=’submit’ id=’tmpFilterCallback’ value=’Filter Callback’ />
 <p>
 jQuery’s grep() method() can be used to remove items from an
 array.
 </p>
 <input type=’submit’ id=’tmpGrep’ value=’Filter Array’ />
 <p>
 jQuery’s map() method can be used to translate a selection into an
 array.
 </p>
 <input type=’submit’ id=’tmpMap’ value=’Map Selection’ />
 <p>
 jQuery’s map() method can also be used to translate an array
 into another array.
 </p>
 <input type=’submit’ id=’tmpMapArray’ value=’Map Array’ />
 </div>
 </body>
</html>

 2. Save the preceding document as Example 5-1.html.

 3. Enter the following CSS document in a new document in your text editor:

body {
 font: 16px sans-serif;
}
body,
html {
 padding: 0;
 margin: 0;
}
div.tmpAlbum {
 width: 50%;
 float: left;
 position: relative;
}
div.tmpActions {
 clear: left;
 padding: 5px;
}
h4 {
 margin: 5px;
}
ul {
 margin: 5px;
 padding: 0;
 list-style: none;
 border: 1px solid black;
}

27794c05.indd 187 3/16/09 11:19:05 AM

188

Part I: jQuery API

ul.tmpBeatlesFiltered {
 border: 1px solid blue;
 color: blue;
}
ul.tmpELOFiltered {
 border: 1px solid crimson;
 color: crimson;
}
ul li {
 padding: 3px;
}
ul.tmpBeatles li.tmpSong {
 background: #a6c7fa;
}
ul.tmpELO li.tmpSong {
 background: #dba6fa;
}
li.tmpContainsThe {
 opacity: 0.6;
}
ul.tmpBeatlesMapped {
 background: lightblue;
 border: 1px solid #000;
 display: none;
}
ul.tmpELOMapped {
 background: pink;
 border: 1px solid #000;
 display: none;
}

 4. Save the preceding document as Example 5-1.css.

 5. Enter the following JavaScript document in a new document in your text editor:

$(document).ready(
 function() {
 $(‘input#tmpEach’).click(
 function($e) {
 $e.preventDefault();

 $(‘li’).each(
 function() {
 $(this).addClass(‘tmpSong’);
 }
);
 }
);

 $(‘input#tmpFilter’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul’)
 .filter(‘ul.tmpBeatles’)

27794c05.indd 188 3/16/09 11:19:05 AM

189

Chapter 5: Arrays and Iteration

 .addClass(‘tmpBeatlesFiltered’);
 }
);

 $(‘input#tmpFilterCallback’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul’)
 .filter(
 function() {
 return $(this).hasClass(‘tmpELO’);
 }
)
 .addClass(‘tmpELOFiltered’);
 }
);

 $(‘input#tmpGrep’).click(
 function($e) {
 $e.preventDefault();

 var $items = $(‘li’).get();

 var $filtered = $.grep(
 $items,
 function($value, $key) {
 return (
 $($value).text().indexOf(‘the’) != -1 ||
 $($value).text().indexOf(‘The’) != -1
) ;
 }
);

 $($filtered).each(
 function() {
 $(this).addClass(‘tmpContainsThe’);
 }
);
 }
);

 $(‘input#tmpMap’).click(
 function($e) {
 $e.preventDefault();

 var $songs = $(‘ul.tmpBeatles li’).map(
 function($i) {
 $i++;
 return ($i < 10? ‘0’ + $i : $i) + ‘. ‘ + $(this).text();
 }
);

 $(‘ul.tmpBeatles’).hide();

27794c05.indd 189 3/16/09 11:19:05 AM

190

Part I: jQuery API

 $(‘ul.tmpBeatlesMapped’).show();

 $($songs).each(
 function() {
 $(‘ul.tmpBeatlesMapped’).append(“” + this + “”);
 }
);

 }
);

 $(‘input#tmpMapArray’).click(
 function($e) {
 $e.preventDefault();

 var $songs = [
 ‘Eldorado Overture’,
 ‘Can\’t Get It Out of My Head’,
 ‘Boy Blue’,
 ‘Laredo Tornado’,
 ‘Poor Boy (The Greenwood)’,
 ‘Mister Kingdom’,
 ‘Nobody\’s Child’,
 ‘Illusions in G Major’,
 ‘Eldorado’,
 ‘Eldorado Finale’,
 ‘Eldorado Instrumental Medley’,
 ‘Dark City’
];

 var $mapped = $($songs).map(
 function($i) {
 $i++;
 return ($i < 10? ‘0’ + $i : $i) + ‘. ‘ + this;
 }
);

 $(‘ul.tmpELO’).hide();
 $(‘ul.tmpELOMapped’).show();

 $($mapped).each(
 function() {
 $(‘ul.tmpELOMapped’).append(“” + this + “”);
 }
);

 $(‘div.tmpAlbumELO h4’).text(‘Electric Light Orchestra\’s Eldorado’);
 }
);
 }
);

 6. Save the preceding document as Example 5-1.js.

27794c05.indd 190 3/16/09 11:19:05 AM

191

Chapter 5: Arrays and Iteration

The preceding example should look something like what you see in Figure 5-11.

Figure 5-11

In Example 5-1, you reviewed the various array iteration methods provided by jQuery, which again uses
song names from popular albums to help demonstrate each method’s purpose.

The first method that you review is jQuery’s each() method.

 <p>
 jQuery’s each() method can be used to arbitrary iterate over
 an array or a selection.
 </p>
 <input type=’submit’ id=’tmpEach’ value=’Each’ />

When you click on the button labeled “Each” in the preceding snippet of markup, you execute the fol-
lowing section of JavaScript:

 $(‘input#tmpEach’).click(
 function($e) {
 $e.preventDefault();

 $(‘li’).each(

27794c05.indd 191 3/16/09 11:19:06 AM

192

Part I: jQuery API

 function() {
 $(this).addClass(‘tmpSong’);
 }
);
 }
);

In the preceding script, you iterate over each element present in the document, adding the class
name tmpSong. Upon adding the class name to each element, the following style-sheet rules are applied:

ul.tmpBeatles li.tmpSong {
 background: #a6c7fa;
}
ul.tmpELO li.tmpSong {
 background: #dba6fa;
}

The second method that you review in Example 5-1 is jQuery’s filter() method when used with a
selector.

 <p>
 jQuery’s filter() method can be used to remove items from a
 selection using a selector.
 </p>
 <input type=’submit’ id=’tmpFilter’ value=’Filter’ />

When you click on the button labeled “Filter” in the preceding snippet of markup, the following script
is executed:

 $(‘input#tmpFilter’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul’)
 .filter(‘ul.tmpBeatles’)
 .addClass(‘tmpBeatlesFiltered’);
 }
);

First, you select each element in the document; there are four total. Then you call the filter()
method with the selector ul.tmpBeatles as its first argument, which removes any element that
does not have a class name of tmpBeatles, which leaves just one element. That element then
receives the class name tmpBeatlesFiltered, which applies the following style-sheet rule:

ul.tmpBeatlesFiltered {
 border: 1px solid blue;
 color: blue;
}

27794c05.indd 192 3/16/09 11:19:06 AM

193

Chapter 5: Arrays and Iteration

The third method that you review in the preceding example is jQuery’s filter() method when used
with a callback function.

 <p>
 jQuery’s filter() method can also be used to remove items from
 a selection using a callback function.
 </p>
 <input type=’submit’ id=’tmpFilterCallback’ value=’Filter Callback’ />

When you click the button labeled “Filter Callback” in the preceding snippet of markup, the following
script is executed:

 $(‘input#tmpFilterCallback’).click(
 function($e) {
 $e.preventDefault();

 $(‘ul’)
 .filter(
 function() {
 return $(this).hasClass(‘tmpELO’);
 }
)
 .addClass(‘tmpELOFiltered’);
 }
);

Each element is selected again. That’s four total, and each is passed to the filter() method’s call-
back function. Only those elements with a class name of tmpELO are allowed to remain in the selec-
tion, leaving just one element. The remaining element receives the class name tmpELOFiltered,
which results in the application of the following style-sheet rule:

ul.tmpELOFiltered {
 border: 1px solid crimson;
 color: crimson;
}

The next method that you review in this example is jQuery’s grep() method.

 <p>
 jQuery’s grep() method() can be used to remove items from an
 array.
 </p>
 <input type=’submit’ id=’tmpGrep’ value=’Filter Array’ />

When you click on the button labeled “Filter Array” in the preceding snippet of markup, the following
script is executed:

 $(‘input#tmpGrep’).click(
 function($e) {

27794c05.indd 193 3/16/09 11:19:06 AM

194

Part I: jQuery API

 $e.preventDefault();

 var $items = $(‘li’).get();

 var $filtered = $.grep(
 $items,
 function($value, $key) {
 return (
 $($value).text().indexOf(‘the’) != -1 ||
 $($value).text().indexOf(‘The’) != -1
);
 }
);

 $($filtered).each(
 function() {
 $(this).addClass(‘tmpContainsThe’);
 }
);
 }
);

In the preceding script, an array of all elements is stored in the $items variable. Then, the $items
array is filtered based on whether each element’s text contains the word the or The, which is necessary
since indexOf() is case-sensitive. If either variation is present, the callback function provided to grep()
returns true, and the item is placed in the array assigned to the variable $filtered; if not, the element
is discarded. Finally, you iterate over each item present in the array stored in the $filtered variable,
adding the class name tmpContainsThe to each element making the final cut, which results in the
application of the following style-sheet rule:

li.tmpContainsThe {
 opacity: 0.6;
}

Next, you review jQuery’s map() method, as it is applied to a selection.

 <p>
 jQuery’s map() method can be used to translate a selection into an
 array.
 </p>
 <input type=’submit’ id=’tmpMap’ value=’Map Selection’ />

When you click on the button labeled “Map Selection” in the preceding snippet of markup, the follow-
ing script is executed:

 $(‘input#tmpMap’).click(
 function($e) {
 $e.preventDefault();

 var $songs = $(‘ul.tmpBeatles li’).map(
 function($i) {
 $i++;
 return ($i < 10? ‘0’ + $i : $i) + ‘. ‘ + $(this).text();
 }

27794c05.indd 194 3/16/09 11:19:06 AM

195

Chapter 5: Arrays and Iteration

);

 $(‘ul.tmpBeatles’).hide();
 $(‘ul.tmpBeatlesMapped’).show();

 $($songs).each(
 function() {
 $(‘ul.tmpBeatlesMapped’).append(“” + this + “”);
 }
);
 }
);

In the preceding script, you begin by selecting each element that is a descendant of the ele-
ment with class name tmpBeatles (or all of the Beatles songs). Then you call the map() method. In the
callback function passed to the map() method, the first argument is named $i, which indicates the
element’s offset position within the selection. The variable $i is incremented so that it can be used for
the track number (since it would ordinarily begin numbering from zero). The callback function returns
the song title with the track number prepended, including the leading zero. Each of the modified song
titles is stowed away in the variable $songs.

Next, the element with class name tmpBeatles is hidden with a call to hide(), and the with
class name tmpBeatlesMapped is revealed with a call to show().

Then, each of the modified song titles is appended to the element with class name
tmpBeatlesMapped.

Finally, you review jQuery’s map() method, as it is used with an array.

 <p>
 jQuery’s map() method can also be used to translate an array
 into another array.
 </p>
 <input type=’submit’ id=’tmpMapArray’ value=’Map Array’ />

When you click on the button labeled “Map Array” in the preceding snippet of markup, the following
script is executed:

 $(‘input#tmpMapArray’).click(
 function($e) {
 $e.preventDefault();

 var $songs = [
 ‘Eldorado Overture’,
 ‘Can\’t Get It Out of My Head’,
 ‘Boy Blue’,
 ‘Laredo Tornado’,
 ‘Poor Boy (The Greenwood)’,
 ‘Mister Kingdom’,
 ‘Nobody\’s Child’,
 ‘Illusions in G Major’,
 ‘Eldorado’,
 ‘Eldorado Finale’,

27794c05.indd 195 3/16/09 11:19:06 AM

196

Part I: jQuery API

 ‘Eldorado Instrumental Medley’,
 ‘Dark City’
];

 var $mapped = $($songs).map(
 function($i) {
 $i++;
 return ($i < 10? ‘0’ + $i : $i) + ‘. ‘ + this;
 }
);

 $(‘ul.tmpELO’).hide();
 $(‘ul.tmpELOMapped’).show();

 $($mapped).each(
 function() {
 $(‘ul.tmpELOMapped’).append(“” + this + “”);
 }
);

 $(‘div.tmpAlbumELO h4’).text(‘Electric Light Orchestra\’s Eldorado’);
 }
);

In the preceding script, you begin by creating a new array of songs for a completely different ELO album,
Eldorado. Each song title is stored in the variable named $songs. Next, you pass the $songs variable to the
dollar sign method and chain a call to map() onto it. In the callback function that you pass to map(), you
do the same thing you did with the Beatles album, prepend the track number to each song title, storing
the modified song titles in a new variable called $mapped.

Then, like with the last example, you hide the element with class name tmpELO with a call to hide()
and show the element with class name tmpELOMapped with a call to show().

And finally, you append each of the modified song titles as new elements under the with class
name tmpELOMapped, and you change the text of the <h4> element to reflect the new album’s name.

Array Utility Methods
jQuery also provides a few utility methods that are useful for probing information from an array. In the
following sections, I briefly cover each of jQuery’s utility methods:

$.makeArray(❑ data) — Transforms any data into a true array.

$.inArray(needle, haystack) ❑ — Finds the index associated with the first occurrence of
needle within the haystack.

$.merge(first, second) ❑ — Merges two arrays together.

$.unique(array) ❑ — Removes any duplicate values from the array.

get() ❑ — Retrieves a selection as an array.

concat() ❑ — Joins an array to another.

27794c05.indd 196 3/16/09 11:19:06 AM

197

Chapter 5: Arrays and Iteration

Most of jQuery’s array utility methods must be called directly, using the dollar sign dot function name, as
you see documented in the preceding list, with the exception of get() and concat(). All of the methods
covered in this chapter are documented in the Quick Reference that appears in Appendix F, with the
exception of the filter() method, which is documented in Appendix C.

Making an Array
jQuery’s makeArray() method does just what the name implies — it takes any data and transforms it into
a true array. The following example shows how a string can be made into an array using this method:

 var $item = ‘The Beatles’;

 var $transformed = $.makeArray($item);

 alert(typeof($transformed.push));

The preceding code puts up the JavaScript alert that you see in Figure 5-12.

Figure 5-12

In the script, the string The Beatles is assigned to the variable $item. The variable $item is passed to
makeArray(), and the result is assigned to the variable $transformed. Then, you check the typeof of
the object $transformed.push. If the value assigned to $transformed is truly an array, the function
push will be present, since that’s a method that is always available on array objects, and the alert dia-
logue will say function, which it does.

Finding a Value within an Array
jQuery’s inArray() method works just like JavaScript’s indexOf() method. It returns the position of an
item within an array. If it is present, offset from zero, and if the item is not present, the function returns
minus one. The following example demonstrates how jQuery’s inArray() method works:

 var $items = [
 ‘Taxman’,
 ‘Eleanor Rigby’,
 ‘I\’m Only Sleeping’,
 ‘Love You To’,
 ‘Here, There and Everywhere’,
 ‘Yellow Submarine’,
 ‘She Said, She Said’,

27794c05.indd 197 3/16/09 11:19:06 AM

198

Part I: jQuery API

 ‘Good Day Sunshine’,
 ‘And Your Bird Can Sing’,
 ‘For No One’,
 ‘Doctor Robert’,
 ‘I Want to Tell You’,
 ‘Got to Get You into My Life’,
 ‘Tomorrow Never Knows’
];

 alert($.inArray(‘Love You To’, $items));

 alert($.inArray(‘Strawberry Fields Forever’, $items));

The preceding script throws the respective JavaScript alerts that you see in Figure 5-13.

Figure 5-13

Merging Two Arrays
jQuery’s $.merge() method can be used to glue two arrays together, to make a single array. The follow-
ing script demonstrates how this works:

$(document).ready(
 function() {
 var $vegetables = [
 ‘Carrots’,
 ‘Tomatoes’,
 ‘Lettuce’
];

 var $fruits = [
 ‘Oranges’,
 ‘Apples’,

27794c05.indd 198 3/16/09 11:19:07 AM

199

Chapter 5: Arrays and Iteration

 ‘Cherries’
];

 $merged = $.merge($vegetables, $fruits);

 var $string = ‘’;

 $($merged).each(
 function() {
 $string += this + “\n”;
 }
);

 alert($string);
 }
);

The preceding script results in the alert dialogue that you see pictured in Figure 5-14.

Figure 5-14

As you can see, jQuery’s merge() method is pretty straightforward.

Removing Duplicate Items
Finally, jQuery’s $.unique() method, at first glance, would seem to have the purpose of removing
duplicate items from any array. The following script tests this hypothesis:

$(document).ready(
 function() {
 var $vegetables = [
 ‘Carrots’,
 ‘Tomatoes’,
 ‘Lettuce’,
 ‘Tomatoes’
];

 var $before = ‘’;

 $($vegetables).each(

27794c05.indd 199 3/16/09 11:19:07 AM

200

Part I: jQuery API

 function() {
 $before += this + “\n”;
 }
);

 var $vegetables = $.unique($vegetables);

 var $after= ‘’;

 $($vegetables).each(
 function() {
 $after += this + “\n”;
 }
);

 alert(
 “Before:\n” +
 $before + “\n” +
 “After:\n” +
 $after
);
 }
);

The preceding script throws the alert dialogue that you see in Figure 5-15, where you see that the
script did not produce the expected results. The $.unique() method does not remove the duplicate item
tomatoes from the array. After checking and double-checking my example script, I read jQuery’s official
documentation more closely, which describes its $.unique() method as having the following purpose:

Remove all duplicate elements from an array of elements.

The key word in that statement is elements. jQuery’s $.unique() method is only intended to remove
duplicate items from an array of elements.

Figure 5-15

27794c05.indd 200 3/16/09 11:19:07 AM

201

Chapter 5: Arrays and Iteration

The following document demonstrates jQuery’s $.unique() method as it is intended to be used … to
remove duplicate items from an array of elements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 5-16.js’></script>
 <link type=’text/css’ href=’Figure 5-16.css’ rel=’stylesheet’ />
 </head>
 <body>
 <p id=’tmpParagraph-1’>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut convallis orci et felis feugiat suscipit. Etiam euismod
 mattis nunc. Pellentesque justo. Morbi commodo mattis velit.
 Aliquam nulla felis, fringilla nec, pharetra in, sollicitudin
 quis, erat.
 </p>
 <p id=’tmpParagraph-2’>
 Vestibulum rutrum dapibus felis. Sed non urna quis pede
 convallis sodales.
 </p>
 <p id=’tmpParagraph-3’>
 Aenean vel nisl nec tellus sollicitudin tempus. Donec risus
 est, gravida in, dapibus ac, gravida nec, sapien.
 </p>
 </body>
</html>

The preceding markup document links to the following style sheet:

body {
 font: 16px sans-serif;
}

The following script demonstrates how to remove duplicate items from an array with $.unique(), in
addition to jQuery’s get() and concat() methods:

$(document).ready(
 function() {
 var $p = $(‘p’).get();

 var $before = “Before:\n”;

 $($p).each(

27794c05.indd 201 3/16/09 11:19:07 AM

202

Part I: jQuery API

 function() {
 $before += this.id + “\n”;
 }
);

 $p = $p.concat(
 $(‘#tmpParagraph-1, #tmpParagraph-2’).get()
);

 var $merged= “\nMerged:\n”;

 $($p).each(
 function() {
 $merged += this.id + “\n”;
 }
);

 $p = $.unique($p);

 var $after = “\nAfter\n”;

 $($p).each(
 function() {
 $after += this.id + “\n”;
 }
);

 alert(
 $before + $merged + $after
);
 }
);

The preceding script introduces a few new methods. The script begins with the following line:

var $p = $(‘p’).get(

The get() method in the preceding line retrieves the jQuery selection as a true array and assigns that
array to a new variable, $p.

The next few lines record what’s in the $p variable so far, by taking the ID of each <p> element and stor-
ing it in the variable named $before:

 var $before = “Before:\n”;

 $($p).each(
 function() {
 $before += this.id + “\n”;
 }
);

27794c05.indd 202 3/16/09 11:19:07 AM

203

Chapter 5: Arrays and Iteration

At this point, the $p variable should contain three elements; each of the <p> elements present in the
markup document and the variable $before should contain three ID names for each of those <p>
elements.

In the next few lines, jQuery’s concat() method is used to merge a new array from a new selection in
with the three items that were already present in the variable $p:

 $p = $p.concat(
 $(‘#tmpParagraph-1, #tmpParagraph-2’).get()
);

After the preceding code, the variable $p should contain five elements, the three originally selected and
two duplicates.

The next few lines record what the array stored in the $p variable looks like so far. Each ID of each <p>
element present in the array stored in the $p variable is recorded as a string in the variable $merged.

 var $merged= “\nMerged:\n”;

 $($p).each(
 function() {
 $merged += this.id + “\n”;
 }
);

In the next line, duplicate elements are removed from the array stored in the $p variable using jQuery’s
$.unique() method.

 $p = $.unique($p);

Since two duplicate items were intentionally added to the array, the array should now contain only
three items again.

In the next few lines, you look at what the array stored in the $p variable looks like after making it
unique by storing each ID from each <p> element as a string in a new variable called $after:

 var $after = “\nAfter\n”;

 $($p).each(
 function() {
 $after += this.id + “\n”;
 }
);

Finally, an alert dialogue is summoned (see Figure 5-16) so that the values stored in the $before,
$merged, and $after variables can be viewed, which you see in Figure 5-17.

27794c05.indd 203 3/16/09 11:19:07 AM

204

Part I: jQuery API

Figure 5-16

Figure 5-17

Finally, vis-à-vis the text in the alert dialogue displayed in Figure 5-17, you see that jQuery’s $.unique()
method does work, when used for its stated purpose.

Summary
In this chapter, I presented several methods associated with iterating and working with arrays and
selections.

You learned how jQuery’s each() method is a less-verbose, easier-to-use alternative for iterating over
an array or selection when compared to using a for construct and a counter. You learned how to emu-
late break and continue keywords with the each() method by returning a Boolean value. You learned
that jQuery’s each() method can be called directly or chained to a selection or an array that’s wrapped
in a call to the dollar sign method. You learned that you don’t have to worry about variable scope with

27794c05.indd 204 3/16/09 11:19:07 AM

205

Chapter 5: Arrays and Iteration

anonymous callback functions, and that you can access variables defined within the scope of the function
an anonymous function is contained within. For more in-depth discussions about topics like variable
scope, I again recommend Nicholas C. Zakas’s excellent book Professional JavaScript for Web Developers
(Wiley, 2005; 2nd ed., 2009).

You learned how a selection can be filtered using jQuery’s filter() method with either a selector or a
callback function. An array can be filtered using jQuery’s grep() method, which must be called directly.

You learned how one array can be mapped to another array and how one selection can be mapped to an
array using jQuery’s map() method, which exists to translate one set of values to another set of values.

Finally, you learned about jQuery’s various array utility methods. $.makeArray() is used to turn any
data into a true array. $.inArray() is used to find the position of a value within an array, offset from
zero, and works just like JavaScript’s indexOf() method, with –1 (minus one) indicating that a value is
not present within the array. $.merge() is used to glue two separate arrays together into just one array.
$.unique() is used to remove duplicate elements from an array of elements, the key word there being
elements: $.unique() does not work on arrays consisting of values that are not elements. $.get() is used
to return a jQuery selection as a true array. $.concat() can be used on an array created by jQuery to
join one array to another, similar to jQuery’s $.merge() method.

Exercises
 1. What might the JavaScript code look like if you wanted to iterate over the following collection

of elements using jQuery’s each() method?

$elements = document.getElementsByTagName(‘div’);

 2. What statement would you write inside a callback function provided to jQuery’s each()
method if you wanted to simulate a break statement?

 3. When filtering a selection using filter(), what does providing a selector to the filter()
method do?

 4. When filtering a selection using filter() with a callback function, what does returning true do?

 5. What value does a callback function provided to jQuery’s grep() method have to return in
order to keep an item in the array?

 6. What happens to the value returned by a callback function provided to jQuery’s map()
method?

 7. What does –1 (minus one) mean when returned by jQuery’s $.inArray() method?

 8. Describe the purpose of jQuery’s $.unique() method.

27794c05.indd 205 3/16/09 11:19:07 AM

6
CSS

When working with CSS from JavaScript, there are a few minor points of verbosity and inconsis-
tency where jQuery lends a helping hand. First, jQuery makes it easier to manipulate CSS from
JavaScript. jQuery’s approach allows you to define styles for multiple CSS properties at once, or
one CSS property at a time. But instead of setting CSS properties one element at a time, you can
set the style on one or many elements at once.

As I mentioned in Chapter 4 and in Chapter 1, it’s generally good practice to avoid mixing style
(CSS) with behavior (JavaScript) and/or structure (HTML). You want to keep CSS, JavaScript, and
HTML partitioned as cleanly as possible into their respective documents.

In some cases, however, it is unavoidable to bring presentation into your JavaScript programming.
In these cases, the style changes dynamically in such a way that it is impractical and unreasonable
to keep CSS only in a style sheet, and not directly modify style with JavaScript programming. In
this short chapter, I cover the methods that jQuery exposes that let you work with style-sheet
properties and values.

The css() Method
Instead of messing around with the style property as you’re used to doing with traditional
JavaScript, when you want to access style information or modify style information with jQuery,
you use jQuery’s css() method. The css() method can be used in three different ways:

To return a property’s value from the first element matched in a selection ❑

To set a property’s value on one or more elements ❑

To set multiple properties on one or more elements ❑

When you simply want to get a property’s value for an element, this is what you do:

var $backgroundColor = $(‘div’).css(‘backgroundColor’);

Once you’ve made a selection, you call the css() method chained to the selection with the prop-
erty that you want the value for. Properties are accessed in the same way that you would use were

27794c06.indd 207 3/16/09 11:20:47 AM

208

PartI: jQuery API

you using the style property directly; that is to say, hyphenated properties are named with camelCase
instead of hyphens, so, for example, the property “background-color” is accessed as “backgroundColor.”
The snippet of code here returns the backgroundColor for the first <div> element of the selection, so if
there are five <div> elements present in a document, the preceding code would return the background-
Color for the first one.

If you want to set a single property, that’s done like this:

$(‘div’).css(‘backgroundColor’, ‘lightblue’);

In the preceding example, the backgroundColor of all <div> elements in the document is set to lightblue.

Setting multiple properties for multiple elements is done like this:

$(‘div’).css({
 backgroundColor: ‘lightblue’,
 border: ‘1px solid lightgrey’,
 padding: ‘5px’
});

An object literal with key, value pairs is passed to the css() method. In the preceding example, the
backgroundColor is set to lightblue, the border is set to 1px solid lightgrey, and the padding is set
to 5px for all of the <div> elements in the document.

The outerWidth() and
outerHeight() Methods

In traditional JavaScript, when you want to get the width of an element — which includes the CSS width,
in addition to border width, and padding width — you use the property offsetWidth. Using jQuery, this
information is available when you call the method outerWidth(), which provides the offsetWidth of
the first element in a selection. This gives you a pixel measurement including width, border, and pad-
ding. The following example illustrates how these methods work:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <link type=’text/css’ href=’Figure 6-1.css’ rel=’stylesheet’ />
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 </script>
 <script type=’text/javascript’ src=’Figure 6-1.js’></script>
 </head>
 <body>
 <div></div>
 </body>
</html>

27794c06.indd 208 3/16/09 11:20:47 AM

209

Chapter 6: CSS

The following style sheet is included in the preceding document:

body {
 font: 16px sans-serif;
}
div {
 width: 200px;
 height: 200px;
 padding: 10px;
 border: 1px solid rgb(200, 200, 200);
 background: lightblue;
}

The following JavaScript outputs the values returned by the outerHeight() and the outerWidth()
methods for the <div> element:

$(document).ready(
 function() {
 alert(
 ‘outerWidth: ‘ + $(‘div’).outerWidth() + “\n” +
 ‘outerHeight: ‘ + $(‘div’).outerHeight()
);
 }
);

The preceding example results in the document that you see in Figure 6-1.

Figure 6-1

In the preceding example, you see that the script puts up an alert dialogue that outputs the values for
outerHeight() and outerWidth(). Each value is 222, which takes the width, 200 pixels, plus 10 pixels
of padding on each side, or 20 pixels, and 1 pixel of border on each side, or 2 pixels, for 222 pixels total.
Then the same is done to get the outerHeight(). If you want the element’s margin to be accounted for

27794c06.indd 209 3/16/09 11:20:48 AM

210

PartI: jQuery API

as well, you can provide an argument to each method that tells each method to put in the margin as well.
The preceding example’s CSS is modified so that some margin is specified for the <div> element:

body {
 font: 16px sans-serif;
}
div {
 width: 200px;
 height: 200px;
 padding: 10px;
 border: 1px solid rgb(200, 200, 200);
 background: lightblue;
 margin: 10px;
}

Then the JavaScript is also modified to specify that margin should be returned as part of the value:

$(document).ready(
 function() {
 alert(
 ‘outerWidth: ‘ + $(‘div’).outerWidth({margin: true}) + “\n” +
 ‘outerHeight: ‘ + $(‘div’).outerHeight({margin: true})
);
 }
);

The example changes only slightly — an object literal is passed to both the outerWidth() and
outer Height() methods with an option margin: true to indicate that margin should be included in
the return value. This gives you the output that you see in Figure 6-2.

Figure 6-2

The preceding output is shown in Firefox because a bug in the current version of jQuery reports an incor-
rect value for outerWidth() when run in Safari or Google Chrome. jQuery developers are already
working to resolve this bug. The new value output in the alert dialogue shows 242 pixels, which
includes the 10 pixels of left and right margin that you added to the style sheet.

To demonstrate how you would use the css(), outerWidth(), and outerHeight() methods in a real-
world-oriented example, the following “Try It Out” shows you how to make a custom context menu that

27794c06.indd 210 3/16/09 11:20:48 AM

211

Chapter 6: CSS

leverages these methods to set a custom context menu’s position within the document. The context menu
is the menu your browser provides when you click on the right button on a three-button mouse, when
you click and hold, or when you hold down the [Ctrl] key and click on older Mac systems. This menu
always pops up at the location of your mouse cursor.

Try It Out Making a Custom Context Menu

Example 6-1
To make a custom context menu, follow these steps:

 1. Create the following XHTML document as Example 6-1.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <link type=’text/css’ href=’Example 6-1.css’ rel=’stylesheet’ />
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 </script>
 <script type=’text/javascript’ src=’Example 6-1.js’></script>
 </head>
 <body>
 <div id=’tmpContextMenu’></div>
 <div class=’tmpContextItem’></div>
 <div class=’tmpContextItem’></div>
 <div class=’tmpContextItem’></div>
 <div class=’tmpContextItem’></div>
 <div class=’tmpContextItem’></div>
 <div class=’tmpContextItem’></div>
 </body>
</html>

 2. Create the following CSS as Example 6-1.css:

body {
 font: 16px sans-serif;
}
div.tmpContextItem {
 width: 100px;
 height: 100px;
 padding: 10px;
 border: 1px solid rgb(200, 200, 200);
 background: lightblue;
 margin: 10px;
 float: left;
}
div#tmpContextMenu {
 width: 150px;
 height: 150px;
 background: yellowgreen;
 border: 1px solid rgb(128, 128, 128);

27794c06.indd 211 3/16/09 11:20:48 AM

212

PartI: jQuery API

 padding: 10px;
 position: absolute;
 left: 0;
 right: 0;
 display: none;
}

 3. Create the following JavaScript as Example 6-1.js:

var tmpContextMenuOn = false;

$(document).ready(
 function() {
 $(‘div.tmpContextItem’).bind(
 ‘contextmenu’,
 function($e) {
 $e.preventDefault();

 // The contextmenu doesn’t work in Opera.
 // Guess those four users will just have to do without.
 var $menu = $(‘div#tmpContextMenu’);

 $menu.show();

 // The following bit gets the dimensions of the viewport
 var $vpx, $vpy;

 if (self.innerHeight) {
 // all except Explorer
 $vpx = self.innerWidth;
 $vpy = self.innerHeight;
 } else if (document.documentElement &&
 document.documentElement.clientHeight) {
 // Explorer 6 Strict Mode
 $vpx = document.documentElement.clientWidth;
 $vpy = document.documentElement.clientHeight;
 } else if (document.body) {
 // other Explorers
 $vpx = document.body.clientWidth;
 $vpy = document.body.clientHeight;
 }

 // Reset offset values to their defaults
 $menu.css({
 top: ‘auto’,
 right: ‘auto’,
 bottom: ‘auto’,
 left: ‘auto’
 });

 /**
 * If the height or width of the context menu is greater than the amount
 * of pixels from the point of click to the right or bottom edge of the
 * viewport adjust the offset accordingly
 */

27794c06.indd 212 3/16/09 11:20:48 AM

213

Chapter 6: CSS

 if ($menu.outerHeight() > ($vpy - $e.pageY)) {
 $menu.css(‘bottom’, ($vpy - $e.pageY) + ‘px’);
 } else {
 $menu.css(‘top’, $e.pageY + ‘px’);
 }

 if ($menu.outerWidth() > ($vpx - $e.pageX)) {
 $menu.css(‘right’, ($vpx - $e.pageX) + ‘px’);
 } else {
 $menu.css(‘left’, $e.pageX + ‘px’);
 }
 }
);

 $(‘div#tmpContextMenu’).hover(
 function() {
 tmpContextMenuOn = true;
 },
 function() {
 tmpContextMenuOn = false;
 }
);

 $(document).mousedown(
 function() {
 if (!tmpContextMenuOn) {
 $(‘div#tmpContextMenu’).hide();
 }
 }
);
 }
);

The preceding example produces output similar to the screenshot in Figure 6-3.

Figure 6-3

27794c06.indd 213 3/16/09 11:20:48 AM

214

PartI: jQuery API

Before I explain the concepts in this example, I put forth one word of warning… . While replacing the
context menu that your browser provides can be used to provide useful functionality that can go much
further in making your web-based applications look and feel like desktop applications, you should be
cautious about the scenarios that you choose to invoke custom context menu functionality. The context
menu is also heavily used by browser users to do simple things like navigate forward or backward from
their present location, to reload the current page, or to do other useful tasks associated with using the
browser. But if your web application recklessly takes control of the context menu, you risk alienating or
annoying your user base, since your application prevents the user from accessing and interacting with
his or her browser in the way he or she normally would. Additionally, disabling the browser’s context
menu will not prevent users from seeing your application’s source code, since you can still go to the
browser’s main menu and click on the View Source option. More savvy users can bypass JavaScript by
disabling it, or even directly access your source code through other means, such as via your browser’s
cache or by accessing the source code from your website directly from the command line or a script. If
you’re considering disabling the context menu for this purpose, you may want to reconsider publishing
your web application for public consumption, as this method of preventing access to your website’s
source code is ineffective and is subject to numerous work-arounds. Remember, content you place on
the Web is, by design, made to be publicly consumed and transportable to browsers of all kinds resid-
ing on platforms of all kinds.... The key thing to keep in mind is that rendering your markup and exe-
cuting your JavaScript is entirely optional.

That said, the preceding example takes a <div> with perfectly square dimensions that takes the place of
your browser’s default context menu. When you click on one of the six <div> elements with class name
tmpContextItem, the <div> acting as the context menu is repositioned based on where the click occurred.

First, you set up the event that fires when the user accesses the context menu. This is done using jQuery’s
bind() method, since jQuery does not provide a contextmenu() method. It should also be noted that
the Opera browser does not support the contextmenu event, and contextmenu events can be disabled
in Firefox, although they are enabled by default.

The following code thus far disables the browser’s default context menu when the user tries to access the
context menu with the mouse cursor over one of the <div> elements with class name tmpContextItem:

 $(‘div.tmpContextItem’).bind(
 ‘contextmenu’,
 function($e) {
 $e.preventDefault();

Next, the <div> element that will act as the context menu is selected and assigned to the $menu variable,
and that <div> element is made visible with jQuery’s show() method.

 // The contextmenu doesn’t work in Opera.
 // Guess those four users will just have to do without.
 var $menu = $(‘div#tmpContextMenu’);

 $menu.show();

When you’re creating your own context menu, you want to have the position of your context menu
change depending on where in the browser window the context menu is accessed. If the user accesses

27794c06.indd 214 3/16/09 11:20:48 AM

215

Chapter 6: CSS

the context menu close to the left and top sides of the window, you want your context menu to position
itself from the left and the top. If the user accesses the context menu from the right and bottom of the
window, then you want the context menu to intelligently reposition from the right and bottom, and do
this without any part of the context menu being obstructed. In order to make the context menu so that it
dynamically repositions itself depending on where it is accessed, you need to do a little bit of math. The
first bits of data that you need to do that math are the dimensions of the viewport. You’ll use the dimen-
sions of the viewport to help determine how the context menu should be positioned relative to the place
where the user accesses it. Getting the viewport’s dimensions, unfortunately, is one of those fringe areas
where different browsers differ, but frameworks like jQuery don’t yet provide a neat, unified method of
patching over those differences. The following code intelligently obtains the viewport’s dimensions
depending on the browser’s implementation:

 // The following bit gets the dimensions of the viewport
 var $vpx, $vpy;

 if (self.innerHeight) {
 // all except Explorer
 $vpx = self.innerWidth;
 $vpy = self.innerHeight;
 } else if (document.documentElement &&
 document.documentElement.clientHeight) {
 // Explorer 6 Strict Mode
 $vpx = document.documentElement.clientWidth;
 $vpy = document.documentElement.clientHeight;
 } else if (document.body) {
 // other Explorers
 $vpx = document.body.clientWidth;
 $vpy = document.body.clientHeight;
 }

Before you actually position the context menu, you need to re-set your context menu’s offset positions
to the defaults. All four offsets have to be re-set, because the next portion of code will set at least two of
the offset properties to the right values, and the two that are set can vary depending on where the user
accesses the context menu. You don’t, for example, want the positions you set the last time the user
accessed the context menu to persist to this time, since that may create a conflict. In order to re-set each
offset position, you use jQuery’s css() method to set the top, right, bottom, and left offset properties
back to each property’s default value, auto.

 // Reset offset values to their defaults
 $menu.css({
 top: ‘auto’,
 right: ‘auto’,
 bottom: ‘auto’,
 left: ‘auto’
 });

Now you’re ready to mathematically determine the proper position for the context menu. To get the
right position, you want to know if the offsetHeight of the <div> element you’re using for the menu
exceeds the browser’s viewport height minus the vertical point of the mouse cursor’s position, relative
to the document. If the offsetHeight [provided by jQuery’s outerHeight() method] is bigger than this

27794c06.indd 215 3/16/09 11:20:48 AM

216

PartI: jQuery API

calculation, it means that the menu should be positioned from the bottom, rather than from the top;
otherwise, the menu would be clipped.

 /**
 * If the height or width of the context menu is greater than the amount
 * of pixels from the point of click to the right or bottom edge of the
 * viewport adjust the offset accordingly
 */
 if ($menu.outerHeight() > ($vpy - $e.pageY)) {
 $menu.css(‘bottom’, ($vpy - $e.pageY) + ‘px’);
 } else {
 $menu.css(‘top’, $e.pageY + ‘px’);
 }

The same calculation is done for the horizontal portion. If the offsetWidth [provided by jQuery’s
outer Width() method] of the menu is greater than the width of the viewport minus the horizontal
coordinate of the mouse cursor’s position, relative to the document, the menu should be positioned
from the right, rather than the left; otherwise, the menu would be clipped horizontally.

 if ($menu.outerWidth() > ($vpx - $e.pageX)) {
 $menu.css(‘right’, ($vpx - $e.pageX) + ‘px’);
 } else {
 $menu.css(‘left’, $e.pageX + ‘px’);
 }

As far as positioning the context menu correctly depending on where the user clicks in the document,
that’s all there is to it. The additional code handles revealing and hiding the context menu at the right
moments. At the beginning of the document, you declare the following variable:

var tmpContextMenuOn = false;

The preceding variable is used to track whether or not the user’s mouse cursor is over the context menu
when it is active. When the user’s mouse cursor leaves the context menu, this variable is set to false;
when the user’s mouse cursor is present, this variable is set to true. This Boolean value is then used to
toggle the menu off when the user clicks on an area outside of the context menu, and keeps the menu
active when the user clicks on the menu itself.

The following code handles the part that sets the tmpContextMenuOn variable to either true or false via
passing two event handlers to jQuery’s hover() method:

 $(‘div#tmpContextMenu’).hover(
 function() {
 tmpContextMenuOn = true;
 },
 function() {
 tmpContextMenuOn = false;
 }
);

27794c06.indd 216 3/16/09 11:20:48 AM

217

Chapter 6: CSS

Then the following code hides the menu when the user clicks anywhere outside of the menu, since the
variable is false in that case, and keeps the menu on when the user actually clicks on the menu.

 $(
 document).mousedown(
 function() {
 if (!tmpContextMenuOn) {
 $(‘div#tmpContextMenu’).hide();
 }
 }
);

jQuery’s API as it relates to CSS is documented in Appendix H.

Summary
In this chapter, you learned how to get the value of an element’s CSS property using jQuery’s css()
method. You also learned how to manipulate an element’s style using the same css() method, which
can be done by passing a property and value to the css() method as two separate strings, or by passing
an object literal with one or more property, value pairs.

jQuery provides the offsetHeight and offsetWidth properties by calling the methods outerHeight()
or outerWidth(). These methods return an element’s pixel width or height, including padding and bor-
ders. You can also specifically add margin to the value returned by these methods, but adding margin
does not work in the Safari or Google Chrome browsers at the time of this writing.

Finally, I reiterated these methods with a real-world-oriented example that shows you how to replace the
browser’s default context menu with your own. In this situation, you want to use jQuery’s css() method
to set CSS property values, rather than a style sheet, since the values being set are set dynamically.

Exercises
 1. What script would you use if you wanted to obtain the value of the color property for a <div>

element using jQuery?

 2. If you wanted to set the background color of a web page using jQuery, what code would you use?

 3. If you needed to set padding, margin, and a border on a set of <div> elements using jQuery,
what would the code look like?

 4. What is the jQuery method that returns an element’s pixel width, including border and pad-
ding dimensions, called?

 5. If you wanted to obtain a <div> element’s pixel height, including border, padding, and mar-
gins, using jQuery, what would the code look like?

27794c06.indd 217 3/16/09 11:20:48 AM

7
AJAX

AJAX is the technology that encompasses the ability to make arbitrary HTTP requests from
JavaScript to obtain new data without the need for reloading a document. AJAX stands for
“Asynchronous JavaScript and XML.” The name is misleading, though, since you don’t have to
use XML at all. XML is just one of many possible formats that you can use to transmit data from
a server to a client-side JavaScript.

Using AJAX it becomes possible to make web documents behave much less like documents and
much more like completely self-contained desktop applications. The advantages of web-based
applications have come to be recognized en masse in recent years with the mainstream adoption
in ever-greater frequency of AJAX to make seamless, cross-platform, ubiquitously available web-
based portals like Google’s gmail service and numerous other web-based offerings, or Apple’s
MobileMe service. With a web-based application, updates are much easier to propagate, since
everyone upgrades immediately upon their next visit to the website. No longer do companies
have to worry about maintaining legacy software and users — with a web-based application,
everyone is pushed to the latest version. It also becomes easier for a user to access these applica-
tions. Since a separate installation is not required on every computer where the application’s use
is desired, all that is required is a capable browser on top of moderately capable hardware. Browsers
strive to blur the line between desktop applications and web-based applications even more, since
browsers like Firefox and Google’s Chrome browser make it easier to make a web-based applica-
tion available as a desktop application via placing an icon on the user’s desktop, dock, start menu,
or quick-launch bar. In Firefox’s case, this functionality is experimental, but in the case of Chrome,
the feature is already a reality. Then there is Adobe’s AIR run time, which allows you to develop
desktop applications using Web standards. Since AIR is built on top of WebKit — which is the
rendering engine used in Safari, Chrome, Android, iPhone, and Apple’s OSX Dashboard, among
others — AIR is capable of making sophisticated, complex desktop applications using a robust
standards-compliant rendering engine. So, if these companies have anything to say about it, web-
based applications will become more popular and increasingly take over certain tasks that desktop
applications once served.

Another advantage of web-based application development, which some people may perceive as
nefarious, is that web-based applications are immune to piracy, at least in the traditional sense. It’s
impossible to obtain a web-based application’s services without payment, since a user can simply
be locked out if payment is not made. Up until now, this aspect hasn’t been much of a problem,
though, since web-based applications are often supported with advertisements that make them free.

27794c07.indd 219 3/16/09 11:23:02 AM

220

Part I: jQuery API

Then another advantage still is that you can make a web-based application available to many more oper-
ating systems and browsers than you might have otherwise with a self-contained desktop application.
You can target Safari, Chrome, Firefox, Internet Explorer, and Opera and reach more than 99 percent of
your browsing audience easily. Frameworks like jQuery make this even easier since it eliminates many
browser inconsistencies and headaches that might otherwise present as roadblocks to cross-browser
development.

AJAX has become a powerful and increasingly essential component of web development; in this chapter,
I cover jQuery’s built-in methods for making AJAX requests. As you would expect, jQuery takes some-
thing that is moderately verbose and complex and boils it down into a much simpler, easier-to-grasp
API that gets you started writing AJAX-capable web applications much more quickly.

Making a Server Request
As you’re probably already aware, the Web works through a protocol called HTTP. When you navi-
gate to a web page, your browser fires off a request to a remote HTTP server that’s running Apache or
Microsoft IIS or some other HTTP server software, using the HTTP communication protocol. AJAX makes
it so that you can fire off those HTTP requests programmatically, without having to reload the entire
web page again. Once your JavaScript makes a request and receives a response, you can then take that
data and manipulate the content that’s in front of the user based on the response that you receive. Using
the HTTP protocol, there are two ways that you can request data from the server — the GET and the
POST methods.

What’s the Difference between GET and POST?
At face value, the GET and POST methods seem identical: Both allow you to request a web page and send
data along with that request. Most of the time, for AJAX requests, you want to use the GET method since
it is slightly faster from a performance standpoint where AJAX in concerned, but there are other differ-
ences that you should be aware of that address semantic differences between the two, as well as techni-
cal and security differences. The following outlines these differences:

The GET method is intended for requests that have no tangible, lasting effect on the state of ❑

anything (the HTTP specification calls this type of request idempotent). For example, when you
make a request and you’re simply retrieving data from a database, GET is properly suited for
this type of request. If a request results in a change to the database via an insertion, update, or
delete — for example, when managing content or making an order or uploading data — the
POST method is best suited. This difference, however, is merely semantic.

Using the POST method will cause a browser to automatically prevent re-submitting a form if the ❑

user navigates back to a submitted form using the browser’s Back button, since the POST method
is intended to be used for situations in which manipulation occurs. This is a technical difference
put in place to prevent re-submission of form data. But this automatic prevent is ineffective since
you still have to design your server-side programs to account for possible re-submissions … any-
thing that can go wrong, will! Users can be impatient and click the Submit button multiple times
or refresh submitted forms, ignoring a browser’s warnings. On the other hand, the GET method
provides no automatic protection against re-submission. This difference is mostly inconsequen-
tial to AJAX programming because there is no way for a user to re-submit a POST request with-
out you specifically designing the ability into your program.

27794c07.indd 220 3/16/09 11:23:02 AM

221

Chapter 7: AJAX

The GET method has a much lower limitation on request length imposed than the POST method. ❑

This difference is a technical difference that can have an effect on your applications. The limita-
tion of the length a GET request can be varies among browsers, but RFC 2068 states that servers
should be cautious about depending on URI lengths greater than 255 bytes. Since GET request
data is included as part of the URI (the web page’s address), then the GET request is really lim-
ited by the length of the URI a browser supports. Internet Explorer can support a URL up to 2,083
characters in length, which is ridiculously long. The POST method, on the other hand, theoreti-
cally has no limitation on length other than what your server is configured to accept. PHP, for
example, is configured to accept a POST request that’s 8 MB or less in size, by default. This set-
ting and others, such as how long a script can execute and how much memory it can consume,
collectively define how big your POST requests can be; on the client side, however, a POST
request has no hard limitation defined, other than the limits of the client’s hardware, network,
and server capabilities.

The POST and GET methods can be encoded differently, again a technical difference. I’m not ❑

going to go into this difference in great detail, since it is outside the scope of this book. This dif-
ference applies when you want to upload files via the POST method, but since AJAX is incapable
of handling file uploads, this difference does not apply to AJAX. I cover how to upload a file
using an AJAX-like technique later in this chapter.

The distinction between the POST and GET methods is mostly moot when it comes to making a request
originating from an AJAX script. Since the user is not involved with the request, the automatic protec-
tion portion becomes unnecessary, which leaves only the semantic differences and the limitations in
length. For the most part, you can get away with making GET requests for everything, which has been
said to have a slight performance advantage over the POST method. Personally, I tend to honor the
semantic differences out of simple habit from years of working with forms in client-side programming.
More information about the performance aspect is available on the Yahoo Developer website at
http://developer.yahoo.com/performance/rules.html.

Formats Used to Transport Data with an AJAX Request
Although the name implies that you use XML to transport data with an AJAX Request, this is entirely
optional. Besides XML, there are two other common ways that data is transmitted from the server to a
client-side JavaScript application: JSON (or JavaScript Object Notation) and HTML. You are not limited
to these formats, however, since you can conceivably take any data you like from the server and transmit
it to the client. These formats are the most popular because JavaScript provides you with tools for work-
ing with these types of data. XML can be easily queried using DOM tools and methods. HTML can be
sent in incomplete snippets that can be effortlessly inserted into a document using the innerHTML prop-
erty, or via jQuery’s html() method.

You can also transmit JavaScript from the server and the JavaScript will be be evaluated in the client-side
application, executing it and making whatever variables, functions, objects, and so on available. JSON is
a subset of the syntax allowed for JavaScript Object Literals, and therefore a subset of JavaScript itself. It
is considered to be its own format for data transmission, however. Many popular languages have the
ability to both read and send JSON-formatted data.

There are potential security issues that are associated with the JSON format that you should consider
that result from using eval() to execute JavaScript code from the server. eval() should only be used if
you are certain that the data being eval’d cannot be manipulated and cannot contain malicious code. In
the case of your web application, you should take precautions before using the eval() method to execute

27794c07.indd 221 3/16/09 11:23:02 AM

222

Part I: jQuery API

anything that has been user-provided, since it’s possible that a user can have malicious intentions. Since
a portion of your code is available for all to see on the client side, any user can discover what methods
you use to transmit and receive data. If you’re using JSON to transmit user-supplied data that originates
from your input forms, a user could maliciously craft the data submitted in your forms to be executed
alongside your JSON-formatted code. One exploit a malicious user could take advantage of in this way
would be to execute JavaScript that takes other users’ session data and transmits that data back to the
malicious user’s server. This type of exploit is known as an XSS, or Cross-Site Scripting vulnerability, alterna-
tively known as Cross-Site Scripting Forgery. Since session data is not tied to a user’s computer but, instead,
relies on very long strings of numbers and letters that are mathematically difficult to reproduce, once a
malicious user obtains another user’s session ID, it then becomes possible for that malicious user to imper-
sonate other users and steal their sensitive data or log in to your server and obtain privileged informa-
tion. So great care and thought must be placed into what code is safe to eval() and what code is not.

Throughout this chapter, I provide examples of all three popular methods for transmitting data with AJAX.
For more information about this and other AJAX-related topics, pick up a copy of Nicholas C. Zakas, Jeremy
McPeak, and Joe Fawcett’s excellent, critically acclaimed Professional AJAX, 2nd ed. (Wiley, 2007).

Making a GET Request with jQuery
Having talked about some of the nuts and bolts of what an AJAX Request is, the next topic up for dis-
cussion is making your first GET request with AJAX using jQuery.

Of course, AJAX is typically used to create dynamic web applications that have a server-side component
written in something like PHP, Java, ASP.NET, Ruby, or whatever. The server-side portion of this is out-
side the scope of this book, so, instead of linking an AJAX Request to a server-side application, I link
these requests to hard-coded documents that provide the same response every time. If you’d like to
learn more about the server-side components that are involved, Wrox has an excellent selection of books
covering just about every language under the sun.

That said, jQuery makes a few methods available that initiate a GET request from a server; the method
that you use depends on the data you’re getting. The generic method, which you can use to make any
type of GET request, is called, easily enough, get(). Each method is a member of the jQuery object, so
you’d call the get() method like this: $.get().

Requesting Data Formatted in XML
The first example I demonstrate shows you how to request data from a server that formats the response as
XML. The following source code demonstrates an input form for an address in which the country field
causes the state field to be dynamically updated when the country selection is changed, and the country’s
flag to change as well. Each list of states is dynamically fetched from the server using an AJAX Request.
However, this only happens for three of the country selections — the United States, Canada, and the
United Kingdom — since the information is being fed from static XML files, rather than a database-
driven server. If I were to create an XML file for all 239 country options, I would at least be able to
change the flag for that country, even if no administrative subdivision similar to a state exists for that
country. The following is the HTML portion of this example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

27794c07.indd 222 3/16/09 11:23:03 AM

223

Chapter 7: AJAX

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’>
 </script>
 <script type=’text/javascript’ src=’Figure 7-1.js’></script>
 <link type=’text/css’ href=’Figure 7-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <form action=’javascript:void(0);’ method=’post’>
 <fieldset>
 <legend>Address</legend>
 <div id=’hLocationCountryIDWrapper’>
 <label for=’hLocationCountryID’>

 </label>
 <select id=’hLocationCountryID’ size=’1’
 name=’hLocationCountryID’ class=’hFormSelectInput’>
 <option value=’0’>Please select a country</option>
 <option value=’1’>Afghanistan</option>
 <option value=’2’>Albania</option>
 <option value=’3’>Algeria</option>
 <option value=’4’>American Samoa</option>
 <option value=’5’>Andorra</option>

The very long list of countries has been snipped out. The complete file is available as part of this book’s
free source code download materials available from www.wrox.com.

 <option value=’222’>United Kingdom</option>
 <option value=’223’ selected=’selected’>United States</option>
 <option value=’224’>United States Minor Outlying Islands</option>
 <option value=’225’>Uruguay</option>
 <option value=’226’>Uzbekistan</option>
 <option value=’227’>Vanuatu</option>
 <option value=’228’>Vatican City State (Holy See)</option>
 <option value=’229’>Venezuela</option>
 <option value=’230’>Vietnam</option>
 <option value=’231’>Virgin Islands (British)</option>
 <option value=’232’>Virgin Islands (U.S.)</option>
 <option value=’233’>Wallis and Futuna Islands</option>
 <option value=’234’>Western Sahara</option>
 <option value=’235’>Yemen</option>
 <option value=’236’>Yugoslavia</option>
 <option value=’237’>Zaire</option>
 <option value=’238’>Zambia</option>
 <option value=’239’>Zimbabwe</option>
 </select>
 </div>
 <div>
 <label for=’hLocationStreetAddress’>Street Address:</label>
 <textarea name=’hLocationStreetAddress’
 id=’hLocationStreetAddress’ rows=’2’ cols=’50’></textarea>

27794c07.indd 223 3/16/09 11:23:03 AM

224

Part I: jQuery API

 </div>
 <div>
 <label for=’hLocationCity’>City:</label>
 <input type=’text’ name=’hLocationCity’ id=’hLocationCity’ size=’25’ />
 </div>
 <div>
 <label for=’hLocationStateID’>State:</label>
 <select name=’hLocationStateID’ id=’hLocationStateID’>
 </select>
 </div>
 <div>
 <label for=’hLocationPostalCode’>Postal Code:</label>
 <input type=’text’ name=’hLocationPostalCode’
 id=’hLocationPostalCode’ size=’10’ />
 </div>
 <div id=’hLocationButtonWrapper’>
 <input type=’submit’ id=’hLocationButton’
 name=’hLocationButton’ value=’Save’ />
 </div>
 </fieldset>
 </form>
 </body>
</html>

The preceding HTML is styled with the following CSS:

body {
 font: 16px sans-serif;
}
fieldset {
 background: #93cdf9;
 border: 1px solid rgb(200, 200, 200);
}
fieldset div {
 padding: 10px;
 margin: 5px;
}
fieldset label {
 float: left;
 width: 200px;
 text-align: right;
 padding: 2px 5px 0 0;
}
div#hLocationCountryIDWrapper img {
 position: relative;
 top: -4px;
}

Then, the following JavaScript is included in the preceding HTML document:

27794c07.indd 224 3/16/09 11:23:03 AM

225

Chapter 7: AJAX

The following JavaScript does not function in Internet Explorer without accessing the entire example
via an HTTP server, that is, opening and executing the documents locally in IE causes the AJAX por-
tion of the code to fail. However, this code works fine in Firefox, Safari, and so on, without the aid of an
HTTP server.

$(document).ready(
 function() {
 $(‘select#hLocationCountryID’).click(
 function() {
 $.get(
 ‘Figure 7-1 ‘ + this.value + ‘.xml’,
 function($xml) {
 // Make the XML query-able with jQuery
 $xml = $($xml);

 // Get the ISO2 value, that’s used for the
 // file name of the flag.
 var $iso2 = $xml.find(‘hLocationCountryISO2’).text();

 // Swap out the flag image
 $(‘img[alt=Country]’).attr(
 ‘src’,
 ‘../../../Images/Flags/’ + $iso2.toLowerCase() + ‘.png’
);

 // Remove all of the options
 $(‘select#hLocationStateID’).empty();

 // Set the states…
 $xml.find(‘hLocationState’).each(
 function() {
 $(‘select#hLocationStateID’).append(
 “<option value=’” + $(this).attr(‘hLocationStateID’) + “‘>” +
 $(this).text() +
 “</option>”
);
 }
);

 // Change the label
 $(‘label[for=hLocationStateID]’).text(
 $xml.find(‘hLocationStateLabel’).text() + ‘:’
);
 },
 ‘xml’
);
 }
);
 }
);

Then for the AJAX Requests to succeed, you need to create some XML files for the response content.
When you change the country in the <select> element, an AJAX Request is sent off via the GET method
for the file Figure 7-1<CountryID>.xml, where <CountryID> is the numeric ID of the country selected from

27794c07.indd 225 3/16/09 11:23:03 AM

226

Part I: jQuery API

the dropdown list. I’ve prepared XML files for three countries with the IDs 38, 222, and 223, those being
the respective IDs of Canada, the United Kingdom, and the United States. Each XML file looks similar
to the following, which is Canada’s:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<response>
 <hLocationCountryISO2>CA</hLocationCountryISO2>
 <hLocationCountryISO3>CAN</hLocationCountryISO3>
 <hLocationStateLabel>Province</hLocationStateLabel>
 <hLocationState hLocationStateID=’0’> </hLocationState>
 <hLocationState hLocationStateID=”66”>Alberta</hLocationState>
 <hLocationState hLocationStateID=”67”>British Columbia</hLocationState>
 <hLocationState hLocationStateID=”68”>Manitoba</hLocationState>
 <hLocationState hLocationStateID=”69”>Newfoundland</hLocationState>
 <hLocationState hLocationStateID=”70”>New Brunswick</hLocationState>
 <hLocationState hLocationStateID=”71”>Nova Scotia</hLocationState>
 <hLocationState hLocationStateID=”72”>Northwest Territories</hLocationState>
 <hLocationState hLocationStateID=”73”>Nunavut</hLocationState>
 <hLocationState hLocationStateID=”74”>Ontario</hLocationState>
 <hLocationState hLocationStateID=”75”>Prince Edward Island</hLocationState>
 <hLocationState hLocationStateID=”76”>Quebec</hLocationState>
 <hLocationState hLocationStateID=”77”>Saskatchewan</hLocationState>
 <hLocationState hLocationStateID=”78”>Yukon Territory</hLocationState>
</response>

Each XML file is structured identically, providing an ISO2 and ISO3 country code, a label, and the list of
administrative subdivisions, which I have simply called states, even though that’s not always technically
correct.

The preceding example looks like what you see in Figure 7-1, when you select United Kingdom from
the country dropdown.

Figure 7-1

27794c07.indd 226 3/16/09 11:23:03 AM

227

Chapter 7: AJAX

In the JavaScript file, things get under way with adding a click event to the <select> element with ID
name hLocationCountryID. Within the handler for the click event, you begin your AJAX Request using
jQuery’s $.get() method. The first argument specifies the path that you want to request, which is the
XML file, dynamically substituting the country ID in the filename. The second argument is a callback
function that you want to execute when your script has received the server’s response, and the third
argument is the type of AJAX Request that you want to make. For a complete overview of the API of
the $.get() method, see Appendix G.

The callback method that you specified has one argument specified, $xml. This variable contains the
XML data that the server has sent back. This data is then made into a jQuery object, which makes it
much easier to extract data from it:

 // Make the XML query-able with jQuery
 $xml = $($xml);

The next thing to do is to fetch the ISO2 code from the XML document, which is used to fetch the
updated flag for the selected country:

var $iso2 = $xml.find(‘hLocationCountryISO2’).text();

Just as you would do in a normal HTML document, you are able to use jQuery’s find() method to locate
the XML element <hLocationCountryISO2> and retrieve its text content via jQuery’s text() method. In
the context of the three countries I’ve created XML files for, the $iso2 variable would contain CA for
Canada, GB for the United Kingdom, or US for the United States. The next step is to set the src attribute
of the element referencing the country flag:

 // Swap out the flag image
 $(‘img[alt=Country]’).attr(
 ‘src’,
 ‘../../../Images/Flags/’ + $iso2.toLowerCase() + ‘.png’
);

The element is located by querying the DOM for an element with an alt attribute having
the value Country. Then the element’s src attribute is set using jQuery’s attr() method, and the
path is defined taking into account the structure of files in this book’s source code download materials.
Then the filename is appended, and the ISO2 code is converted to lowercase, since each flag image is
named using lowercase characters. This may not be a problem for some servers, like Windows or some
Mac servers that are case-insensitive, but UNIX and Linux servers, including some Mac servers (depend-
ing on how the Macs have been formatted) are case-sensitive, and having the incorrect case for the file-
name would cause the image to fail to load.

The next step is to remove all state options. First you query for the <select> element with ID name
hLocationStateID, then call jQuery’s empty() method to remove all options.

 // Remove all of the options
 $(‘select#hLocationStateID’).empty();

27794c07.indd 227 3/16/09 11:23:03 AM

228

Part I: jQuery API

The next step is to add the administrative subdivisions from the XML file as options. jQuery’s find()
method locates all of the <hLocationState> elements in the XML file. Then you enumerate over each
<hLocationState> element using the each() method.

 // Set the states…
 $xml.find(‘hLocationState’).each(
 function() {
 }
);

Now you create each <option> element and append each element to the <select> element:

 $(‘select#hLocationStateID’).append(
 “<option value=’” + $(this).attr(‘hLocationStateID’) + “‘>” +
 $(this).text() +
 “</option>”
);

Since you’re working within the callback function provided to the each() method, each
<hLocation State> element is passed to that callback function as this. Now to access jQuery’s methods,
you have to wrap this in a call to the jQuery object, like so: $(this). You set the value attribute for each
<option> element, which will be the unique numeric ID passed in each <hLocationState> element as
the attribute hLocationStateID=”0”, where zero is the unique ID. To get to that ID, all you have to do is
call jQuery’s attr() method with the attribute’s name as the first argument. Then all that’s left to do is
set the option’s label, which is done with a simple call to jQuery’s text() method, which retrieves the
text content of the <hLocationState> element.

The last item is to set the label for the “state.” Since Canadians use provinces, Britons use counties,
and Americans use states, you need to use the right label, which is provided in the XML file as the
<hLocation StateLabel> element. To find the <label> element you want to change, you query the
DOM for the <label> element with a for attribute having the value hLocationStateID. Then you set
that <label> element’s text content to the text content of the <hLocationStateLabel> element from
the XML document.

 $(‘label[for=hLocationStateID]’).text(
 $xml.find(‘hLocationStateLabel’).text() + ‘:’
);

As you can see with the preceding example, jQuery does not disappoint with its well-thought-out
AJAX-handling abilities. With traditional JavaScript and DOM methods, the preceding would have
been much more verbose and much more difficult to get working. jQuery’s ability to bind itself to an
XML response makes parsing and working with XML documents just like working with HTML docu-
ments, dead easy.

The iTunes-like flags included in the source code download originated from the following website,
where you may also obtain higher-quality images:

www.bartelme.at/journal/archive/flag_button_devkit/.

27794c07.indd 228 3/16/09 11:23:03 AM

229

Chapter 7: AJAX

Sending Data along with a Request
Let’s say in that last example that you were really working with a database-driven server; in that case, how
you would have constructed the request would be slightly different in the preceding example. Instead of
dynamically creating the filename of the XML file you want to retrieve using the country’s ID, you would
instead need to pass that information separately. jQuery accommodates passing data in the $.get()
method. In the context of the preceding example, you started out making a call to the $.get() method,
that looked like this, with the extra code snipped out to made the example easier to understand:

 $.get(‘Figure 7-1.xml’, function($xml) {}, ‘xml’);

The first argument is the path of the file you’re requesting — this can be any URL value. Typically, you’ll
want to reference some server-side script that can output data for you. The second argument is the call-
back function that the server’s response XML will be passed to, and the third argument is the type of
request being made, which is one of xml, html, script, json, jsonp, or text. This argument is set
depending on the type of data that you expect coming back from the server.

When you want to send additional data with the request, another argument is added:

$.get(
 ‘Figure 7-1.xml’,
 {hLocationCountryID: this.value}
 function($xml) {

 },
 ‘xml’
);

The new argument comes after the filename and before the function reference, and this is an object lit-
eral that contains the data you want to pass along in the GET request to the server. In the preceding
example, I’ve modified the filename to be simply Figure 7-1.xml, and I’ve created an object literal with
one property, hLocationCountryID, and its value becomes this.value, as passed from the <select>
element. So, behind the scenes, this modification will cause the request to the server to look like this:
Figure 7-1.xml?hLocationCountryID=223. jQuery takes the items in the object literal and builds the
GET request. Since GET requests include data as part of the URL that you are calling, that data gets
appended to the end of the URL. The question mark in the URL indicates that what follows is GET
request data; then values are passed in name/value pairs, where each name and value is separated by
an equals sign; and then if there is more than one value, additional values are appended subsequently
by appending an ampersand character to the last name/value pair, like so:

Figure 7-1.xml?hLocationCountryID=223&someThingElse=thisothervalue

Then this data is also specially encoded for transport to the HTTP server. Once at the HTTP server, how
this data is read depends on the server-side language that you’re using to read it.

Requesting JSON Formatted Data
In this section, I revisit the example of the last section, but this time use JSON as the format for data
transport, instead of XML. I could use the same jQuery method, $.get(), to do this, and change the last
argument from xml to json, but as it turns out, jQuery offers another method called $.getJSON() for

27794c07.indd 229 3/16/09 11:23:03 AM

230

Part I: jQuery API

retrieving JSON-formatted data. This method is just like the $.get() method, except that the data for-
mat returned by the server is obviously expected to be JSON.

Using JSON as the data transportation format makes the code even leaner and easier to work with than
XML, in addition to significantly reducing the size of the response from the server as well. The follow-
ing example is the same example that you saw in the last section, where when you select Canada, the
United States, or the United Kingdom from the dropdown, the flag, administrative subdivisions, and
administrative subdivision label all swap out, presenting data relevant to the country you’re looking at.
The HTML portion remains the same, and just a few modifications are made to the JavaScript portion.

$(document).ready(
 function() {
 $(‘select#hLocationCountryID’).click(
 function() {
 $.getJSON(
 ‘Figure 7-2 ‘ + this.value + ‘.json’,
 function(json) {
 // Get the ISO2 value, that’s used for the
 // file name of the flag.
 // Swap out the flag image
 $(‘img[alt=Country]’).attr(
 ‘src’,
 ‘../../../Images/Flags/’ + json.ISO2.toLowerCase() + ‘.png’
);

 // Remove all of the options
 $(‘select#hLocationStateID’).empty();

 // Set the states…
 $.each(
 json.states,
 function() {
 var $state = this.split(‘:’);
 $(‘select#hLocationStateID’).append(
 “<option value=’” + $state[0] + “‘>” +
 $state[1] +
 “</option>”
);
 }
);

 // Change the label
 $(‘label[for=hLocationStateID]’).text(json.label + ‘:’);
 }
);
 }
);
 }
);

In the preceding JavaScript, things function similarly to the example that you saw in the last section
where the server response was formatted as XML, only this time you’re initiating an AJAX Request
using the $.getJSON() method instead of the $.get() method. These two methods are very similar,
except that you don’t have to specify the last argument, specifying the format of the server response

27794c07.indd 230 3/16/09 11:23:04 AM

231

Chapter 7: AJAX

with the $.getJSON() method. Another difference is that you are requesting a file with a .json exten-
sion instead of .xml, and also, like in the last example, the file requested depends on which country is
selected from the dropdown menu. The JSON object is formatted like so in the file being requested:

{
 ISO2: ‘CA’,
 ISO3: ‘CAN’,
 label : ‘Province’,
 states : [
 ‘0: ‘,
 ‘66:Alberta’,
 ‘67:British Columbia’,
 ‘68:Manitoba’,
 ‘69:Newfoundland’,
 ‘70:New Brunswick’,
 ‘71:Nova Scotia’,
 ‘72:Northwest Territories’,
 ‘73:Nunavut’,
 ‘74:Ontario’,
 ‘75:Prince Edward Island’,
 ‘76:Quebec’,
 ‘77:Saskatchewan’,
 ‘78:Yukon Territory’
]
}

As you can see, the JSON format uses object literal syntax that you’re already familiar with in JavaScript.
The whole object is wrapped in curly braces but isn’t itself assigned a name, which makes it easy for frame-
works like jQuery to take the JSON-formatted data and assign it directly to an object. In the JavaScript, the
preceding JSON was passed to the event handler for the $.getJSON() method as the json argument. All
the data that you see in the JSON-formatted document is available inside of that json variable. You access
the ISO2 information as json.ISO2, the label as json.label, and the states array as json.states. Using
JSON, you’ve removed a step that would otherwise be required if you were working with XML data, which
is querying the data within the response; with JSON, the data is fed directly to an object and is available
immediately. You’ll also note how much leaner the JSON file is compared to the verbose XML document.
(Admittedly, the XML document didn’t have to be that verbose — the example you saw was formatted
based on the structure of my database, which is heavily namespaced with various name prefixes.)

Like the $.get() method, if you want to pass data to the server, you can provide that data in the same
optional data argument.

$.getJSON(
 ‘Figure 7-2.json’,
 {hLocationCountryID: this.value}
 function($xml) {

 }
);

The preceding produces Figure 7-2 (not shown here) and is identical to what you would have done for
the $.get() method, should you have had the need to send additional data along with the request, minus
the inclusion of the last argument.

27794c07.indd 231 3/16/09 11:23:04 AM

232

Part I: jQuery API

Making a POST Request
POST requests are identical to GET requests in jQuery, save the name of the method. Instead of $.get(),
you use $.post(). Since a POST method request is reserved for modifying the state of the data in some
way, you’re probably more often than not going to want to pass some data along with your POST request,
and that data will probably come from a form of some kind. It just so happens that jQuery makes it really
easy to grab form data and pass that along to the server. The method jQuery provides for this is called the
serialize() method. The serialize() method takes data for the input elements that you specify (which
encompasses <input>, <textarea>, and <select> elements) and processes the values in those fields into
a query string. This is demonstrated by adding a new event to the JavaScript that you’ve seen demon-
strated in the last two sections for GET and JSON requests. The following is what the updated JavaScript
looks like:

$(document).ready(
 function() {
 $(‘select#hLocationCountryID’).click(
 function() {
 $.getJSON(
 ‘Figure 7-3 ‘ + this.value + ‘.json’,
 function(json) {
 // Get the ISO2 value, that’s used for the
 // file name of the flag.
 // Swap out the flag image
 $(‘img[alt=Country]’).attr(
 ‘src’,
 ‘../../../Images/Flags/’ + json.ISO2.toLowerCase() + ‘.png’
);

 // Remove all of the options
 $(‘select#hLocationStateID’).empty();

 // Set the states…
 $.each(
 json.states,
 function() {
 var $state = this.split(‘:’);
 $(‘select#hLocationStateID’).append(
 “<option value=’” + $state[0] + “‘>” +
 $state[1] +
 “</option>”
);
 }
);

 // Change the label
 $(‘label[for=hLocationStateID]’).text(json.label + ‘:’);
 }
);
 }
);

 $(‘input#hLocationButton’).click(
 function($e) {
 $e.preventDefault();

27794c07.indd 232 3/16/09 11:23:04 AM

233

Chapter 7: AJAX

 $.post(
 ‘Figure 7-3.xml’,
 $(‘form :input’).serialize(),
 function(xml) {
 // Process the server’s response
 if (parseInt($(xml).text()) > 0) {
 alert(‘Data successfully posted!’);
 }
 },
 ‘xml’
);
 }
);
 }
);

When you make the preceding modifications, load up the new document, and click on the Save button,
you should see something like the screenshot that you see in Figure 7-3.

Figure 7-3

You’ve added a new event to the <input> element with ID name hLocationButton. When you click on the
<input> element, a POST request is initiated using jQuery’s $.post() method. Of course, you have no
HTTP server set up to transmit this data to, so, instead, you simply reference a static XML file that lets
you know the POST request succeeded at least as far as requesting the specified document. In the sec-
ond argument to the $.post() method, you supply the data that you want to transmit to the server, just
like you can do with the $.get() and $.getJSON() methods that you saw in the previous two sec-
tions. However, instead of passing an object literal, this time you search the document for all <input>
elements by using a special, jQuery-specific selector, form :input. The selector says to find all input

27794c07.indd 233 3/16/09 11:23:04 AM

234

Part I: jQuery API

elements that are descendent of the <form> element, via specifying jQuery’s :input pseudo-class, which
applies to all input elements, which is to say, <input> elements (and all of its variants, like password,
checkbox, radio, etc.), <textarea>, and <select> elements; these are all considered input elements. That
selection is then passed to jQuery’s serialize() method, which finds the right names and values from
the various input elements, formatting that data like so:

hLocationCountryID=223&hLocationStreetAddress=123+Main+Street&hLocationCity=
Springfield&hLocationStateID=23&hLocationPostalCode=12345

This data is now ready to be posted to the server, so all you have to do is pass this formatted data in the
data argument of the $.post() method. This also works for jQuery’s other AJAX Request methods as
well, and jQuery is smart enough to know when you’re passing an object literal, as I demonstrated pre-
viously, and when you’re passing a formatted query string, like you are here. Then, on the server side, all
you have to do is access the posted data as you would normally work with POST request data. Again, if
you’re not versed in server-side programming, Wrox Press offers many books on a plethora of server-
side programming languages that can help get you right up to speed.

Try It Out Working with AJAX Requests

Example 7-1
For a recap of jQuery’s AJAX capabilities as discussed thus far, follow these steps:

 1. Enter the following markup document as Example 7-1.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Example 7-1.js’></script>
 <link type=’text/css’ href=’Example 7-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <form action=’javascript:void(0);’ method=’post’>
 <fieldset>
 <legend>jQuery AJAX Recap</legend>
 <p>
 jQuery’s $.get() method can be used to retrieve XML-formatted
 data, which jQuery makes incredibly easy to work with by
 allowing you to use jQuery’s rich selector API on XML documents.
 </p>
 <div>
 <label for=’tmpFirstName’>First Name:</label>
 <input type=’text’ name=’tmpFirstName’
 id=’tmpFirstName’ size=’25’ />
 </div>

27794c07.indd 234 3/16/09 11:23:04 AM

235

Chapter 7: AJAX

 <div>
 <label for=’tmpLastName’>Last Name:</label>
 <input type=’text’ name=’tmpLastName’
 id=’tmpLastName’ size=’25’ />
 </div>
 <div class=’tmpButton’>
 <input type=’submit’ name=’tmpFetchName’
 id=’tmpFetchName’ value=’Fetch Name’ />
 </div>
 <p>
 jQuery also has first-class support for JSON, a data trasport
 format that is fast-rising in popularity and use.
 JSON-formatted requests are even easier and less verbose to
 work with.
 </p>
 <div>
 <label for=’tmpTitle’>Title:</label>
 <input type=’text’ name=’tmpTitle’
 id=’tmpTitle’ size=’25’ />
 </div>
 <div>
 <label for=’tmpCompany’>Company:</label>
 <input type=’text’ name=’tmpCompany’
 id=’tmpCompany’ size=’25’ />
 </div>
 <div class=’tmpButton’>
 <input type=’submit’ name=’tmpFetchOther’
 id=’tmpFetchOther’ value=’Fetch Title & Company’ />
 </div>
 <p>
 Finally, jQuery makes it very easy to post data back to the
 server, via its serialize() method.
 </p>
 <div class=’tmpButton’>
 <input type=’submit’ name=’tmpPostData’
 id=’tmpPostData’ value=’Post Data’ />
 </div>
 <div id=’tmpPostedData’>

 </div>
 </fieldset>
 </form>
 </body>
</html>

 2. Enter the following CSS as Example 7-1.css:

body {
 font: 16px sans-serif;
}

27794c07.indd 235 3/16/09 11:23:04 AM

236

Part I: jQuery API

fieldset {
 border: 1px solid rgb(200, 200, 200);
 background: yellow;

}
fieldset div {
 padding: 10px;
 margin: 5px;
}
fieldset label {
 float: left;
 width: 200px;
 text-align: right;
 padding: 2px 5px 0 0;
}
div#hLocationCountryIDWrapper img {
 position: relative;
 top: -4px;
}
div.tmpButton {
 text-align: right;
}

 3. Enter the following JavaScript as Example 7-1.js:

$(document).ready(
 function() {
 $(‘input#tmpFetchName’).click(
 function($e) {
 $e.preventDefault();
 $.get(
 ‘Example 7-1.xml’,
 function(xml) {
 $(‘input#tmpFirstName’).val($(xml).find(‘firstName’).text());
 $(‘input#tmpLastName’).val($(xml).find(‘lastName’).text());
 }
);
 }
);

 $(‘input#tmpFetchOther’).click(
 function($e) {
 $e.preventDefault();
 $.getJSON(
 ‘Example 7-1.json’,
 function(json) {
 $(‘input#tmpTitle’).val(json.title);
 $(‘input#tmpCompany’).val(json.company);
 }
);
 }

27794c07.indd 236 3/16/09 11:23:04 AM

237

Chapter 7: AJAX

);

 $(‘input#tmpPostData’).click(
 function($e) {
 $e.preventDefault();

 var $data = $(‘form :input’).serialize();

 $(‘div#tmpPostedData’).html(
 “<h4>Posted Data:</h4>” +
 $data
);

 $.post(
 ‘Example 7-1 Post.xml’,
 $data,
 function(xml) {
 if (parseInt($(xml).text()) > 0) {
 alert(‘Data successfully posted!’);
 }
 }
);
 }
);
 }
);

 4. Create the following XML document as Example 7-1.xml:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<response>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
</response>

 5. Create the following JSON document as Example 7-1.json:

{
 company : ‘Springfield Electronics’,
 title : ‘Chief Widget Maker’
}

 6. Finally, create the following document as Example 7-1 Post.xml:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<response>1</response>

When you run the preceding documents in a browser, you should see something like what you see in
Figure 7-4.

27794c07.indd 237 3/16/09 11:23:04 AM

238

Part I: jQuery API

Figure 7-4

In this example, you recap everything you’ve learned about jQuery’s AJAX capabilities up to this point.
You begin with a demonstration of requesting an XML-formatted document via the GET method with
jQuery’s $.get() method. The HTML side sets up two input fields and a button:

 <div>
 <label for=’tmpFirstName’>First Name:</label>
 <input type=’text’ name=’tmpFirstName’
 id=’tmpFirstName’ size=’25’ />
 </div>
 <div>
 <label for=’tmpLastName’>Last Name:</label>
 <input type=’text’ name=’tmpLastName’
 id=’tmpLastName’ size=’25’ />
 </div>
 <div class=’tmpButton’>
 <input type=’submit’ name=’tmpFetchName’
 id=’tmpFetchName’ value=’Fetch Name’ />
 </div>

27794c07.indd 238 3/16/09 11:23:05 AM

239

Chapter 7: AJAX

In the JavaScript, a click event is attached to the button. When it is clicked, a GET request is initiated
for the Example 7-1.xml document, which defines two elements, <firstName> and <lastName> for Mr.
John Doe.

 $(‘input#tmpFetchName’).click(
 function($e) {
 $e.preventDefault();
 $.get(
 ‘Example 7-1.xml’,
 function(xml) {
 $(‘input#tmpFirstName’).val($(xml).find(‘firstName’).text());
 $(‘input#tmpLastName’).val($(xml).find(‘lastName’).text());
 }
);
 }
);

Retrieving the data contained in the XML document is effortless because jQuery allows you to query the
XML document with its various selection and filtering methods. The text content of the <firstName>
element is assigned as the value of the <input> element with ID name tmpFirstName, via jQuery’s val()
method, and the same is done with the <lastName> element, placing its text content in the value of the
<input> element with ID name tmpLastName.

In the next set of input elements, you have a field for title and a field for company, and when you click
on the button labeled “Fetch Title & Company,” another AJAX Request is made, this time using jQuery’s
getJSON() method.

 $(‘input#tmpFetchOther’).click(
 function($e) {
 $e.preventDefault();
 $.getJSON(
 ‘Example 7-1.json’,
 function(json) {
 $(‘input#tmpTitle’).val(json.title);
 $(‘input#tmpCompany’).val(json.company);
 }
);
 }
);

This time you fetch the Example 7-1.json document, which contains two bits of data — the company and
the title. The JSON example is easier to work out and less verbose since it requires less overhead than the
XML method. jQuery automatically makes the object that you defined in Example 7-1.json available in
the callback function as its first argument, which in this example is named json. The title is available as
json.title and json.company, respectively, and each is assigned as the value of the appropriate
<input> element.

27794c07.indd 239 3/16/09 11:23:05 AM

240

Part I: jQuery API

The last example demonstrates posting the data of your input form back to the server, although again,
since you’re not working with an actual HTTP server, we’ll have to pretend that the data is actually passed
on and simulate how the server might respond, which is what the purpose of the Example 7-1 Post.xml
document is.

 $(‘input#tmpPostData’).click(
 function($e) {
 $e.preventDefault();

 var $data = $(‘form :input’).serialize();

 $(‘div#tmpPostedData’).html(
 “<h4>Posted Data:</h4>” +
 $data
);

 $.post(
 ‘Example 7-1 Post.xml’,
 $data,
 function(xml) {
 if (parseInt($(xml).text()) > 0) {
 alert(‘Data successfully posted!’);
 }
 }
);
 }
);

The first thing that you do, after preventing the default action of the button (so the form isn’t actually
submitted), is grab all the data present in the various input elements in the form. You do this by craft-
ing a special selector syntax that uses jQuery’s :input pseudo-class to grab all the <input>, <select>,
and <textarea> elements. Then that selection is passed to the serialize() method, which actually
grabs all the relevant names and values from the form and constructs a query string that you can then
pass in the second argument to the $.post() method. But before you pass that data on to the $.post()
method, first you output the serialized data to the web page by setting the innerHTML of the <div> ele-
ment with ID name tmpPostedData. This allows you to see what happens when the serialize() method
is called and see for yourself all the heavy lifting that jQuery is doing on your behalf.

Finally, after passing the data to the $.post() method, a JavaScript alert lets you know that the AJAX
Request completed successfully.

The various methods covered in this chapter are documented in the API reference that appears in
Appendix G.

Loading HTML Snippets from the Server
In the previous sections, you’ve seen how to request data from the server using the XML and JSON
data transport formats. The other popular way of transporting data from the server to the client asyn-
chronously is via HTML snippets. Using this method, you request small chunks of HTML as you need
them, without the <html>, <head>, and <body> tags.

27794c07.indd 240 3/16/09 11:23:05 AM

241

Chapter 7: AJAX

The following example demonstrates how to load snippets of HTML with jQuery’s load() method:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 7-5.js’></script>
 <link type=’text/css’ href=’Figure 7-5.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=’hFinderTree’>
<ul class=’hFinderTree’>

 <div class=’hFinderTreeDirectory hFinderTreeRoot’
 id=’hFinderTreeDirectory-1’ title=’/’>
 Macintosh HD
 </div>
 <ul class=’hFinderTreeDirectoryBranchOn’ id=’hFinderTreeDirectoryBranch-1’>
 <li class=’hFinderTreeDirectoryBranch’>
 <div class=’hFinderTreeDirectory’ id=’hFinderTreeDirectory-5175’
 title=’/Applications’>
 <div class=’hFinderTreeIcon’></div>
 Applications
 </div>
 <img src=’../../../Images/Finder/Right.png’ class=’hFinderTreeHasChildren’
 id=’hFinderTreeIcon-5175’ alt=’+’ title=’Click to expand.’ />
 <div class=’hFinderTreeBranchWrapper’>
 </div>

 <li class=’hFinderTreeDirectoryBranch hFinderTreeServer’>
 <div class=’hFinderTreeDirectory’ id=’hFinderTreeDirectory-5198’
 title=’/Library’>
 <div class=’hFinderTreeIcon’></div>
 Library
 </div>
 <img src=’../../../Images/Finder/Right.png’ class=’hFinderTreeHasChildren’
 id=’hFinderTreeIcon-5198’ alt=’+’ title=’Click to expand.’ />
 <div class=’hFinderTreeBranchWrapper’></div>

 <li class=’hFinderTreeDirectoryBranch’>
 <div class=’hFinderTreeDirectory’ id=’hFinderTreeDirectory-3667’
 title=’/System’>
 <div class=’hFinderTreeIcon’></div>
 System
 </div>
 <img src=’../../../Images/Finder/Right.png’ class=’hFinderTreeHasChildren’
 id=’hFinderTreeIcon-5198’ alt=’+’ title=’Click to expand.’ />
 <div class=’hFinderTreeBranchWrapper’></div>

27794c07.indd 241 3/16/09 11:23:05 AM

242

Part I: jQuery API

 <li class=’hFinderTreeDirectoryBranch’>
 <div class=’hFinderTreeDirectory’ id=’hFinderTreeDirectory-5185’
 title=’/Users’>
 <div class=’hFinderTreeIcon’></div>
 Users</div>
 <img src=’../../../Images/Finder/Right.png’
class=’hFinderTreeHasChildren’
 id=’hFinderTreeIcon-5185’ alt=’+’ title=’Click to expand.’ />
 <div class=’hFinderTreeBranchWrapper’>
 </div>

 </div>
 </body>
</html>

This markup is styled with the following style sheet:

body {
 font: 13px “Lucida Grande”, Arial, sans-serif;
 background: rgb(214, 221, 229);
}
div#hFinderTree ul {
 list-style: none;
 padding: 0;
 margin: 0;
}
div.hFinderTreeRoot {
 height: 28px;
 background: url(‘../../../Images/Finder/Hard Drive.png’) no-repeat left;
 padding: 4px 0 0 35px;
}
li.hFinderTreeDirectoryBranch {
 position: relative;
 padding: 0 0 0 20px;
 zoom: 1;
}
img.hFinderTreeHasChildren {
 position: absolute;
 top: 3px;
 left: 0;
}
div.hFinderTreeIcon {
 background: url(‘../../../Images/Finder/Folder.png’) no-repeat left;
 width: 16px;
 height: 16px;
 margin: 0 5px 0 0;
 float: left;
}
div.hFinderTreeBranchWrapper {
 display: none;
}

27794c07.indd 242 3/16/09 11:23:05 AM

243

Chapter 7: AJAX

Then the following JavaScript demonstrates how folders in a tree structure are loaded asynchronously.
Each folder is an HTML snippet that loads separately from the server, which makes the initial down-
load much smaller and the overall application much more efficient.

$(document).ready(
 function() {
 $(‘img.hFinderTreeHasChildren’).click(
 function() {
 if (!$(this).next().children(‘ul’).length) {
 $(this).next().load(
 ‘AJAX%20Request%20Documents/’ +
 $(this).prev().attr(‘id’).split(‘-’).pop() + ‘.html’,
 function() {
 $(this).show();
 $(this).prev().attr(
 ‘src’,
 ‘../../../Images/Finder/Down.png’
);
 }
);
 } else {
 $(this).next().toggle();

 $(this).attr(
 ‘src’,
 ‘../../../Images/Finder/’ +
 ($(this).attr(‘src’).indexOf(‘Down’) != -1? ‘Right’ : ‘Down’) + ‘.png’
);
 }
 }
);
 }
);

All put together, the preceding code looks like Figure 7-5 when it is tested in a browser.

In the preceding script, a click event is attached to each element in the HTML document. When
the user clicks on the element, which is a gray arrow; the script first checks to see whether the
folder’s contents have already been requested. The script checks to see if a folder’s contents have already
been requested by checking to see if the element’s next sibling, the <div> element with class
name hFinderTreeBranchWrapper, has a child element. Whether or not that element exists is
determined by the following expression:

!$(this).next().children(‘ul’).length

The next() method traverses the selection from the to the <div> element, and the children()
method looks at the children of the <div> method. Then the length property is used to determine how
many children elements exist. If there is a element, that means that the folder’s contents have
already been requested from the server and loaded into the document. If there is not a element,
then the folder’s contents are requests from the server.

27794c07.indd 243 3/16/09 11:23:05 AM

244

Part I: jQuery API

Figure 7-5

Loading directly in the document is done based on a selection. In this script, you select the <div> element
with the class name hFinderTreeBranchWrapper, which is done with the call to $(this).next(). this ref-
erences the element, and next() causes the next sibling element to be selected, which is the <div>
element. Then the load() method is chained directly to that selection. By chaining the load() method
to the selection, you’re telling jQuery where you want the HTML snippet to be inserted in the DOM.

The load() method otherwise works similarly to the other AJAX Request methods that jQuery provides:
You specify the URL of the document you want to request in the first argument. You can include an
optional second argument that includes data that you want to send to the server via a GET request, and
the third parameter is a callback function that is executed upon success of the request. Both providing
data to send to the server and specifying a callback function are optional — if you like, you can simply
call the load() method with only a URL, and that will work just fine as well.

27794c07.indd 244 3/16/09 11:23:05 AM

245

Chapter 7: AJAX

The server responds with a snippet of HTML that is loaded directly into the document. The following is
what the HTML snippet being loaded looks like:

<ul id=”hFinderTreeDirectoryBranch-31490s”>
 <li class=”hFinderTreeDirectoryBranch”>
 <div class=”hFinderTreeDirectory” id=”hFinderTreeDirectory-31491s”
 title=”/Users/Shared”>
 <div class=”hFinderTreeIcon”></div>
 Shared
 </div>
 <img src=”../../../Images/Finder/Right.png” class=”hFinderTreeHasChildren”
 id=”hFinderTreeIcon-31491s” alt=”+” title=”Click to expand.”>
 <div class=”hFinderTreeBranchWrapper”></div>

 <li class=”hFinderTreeDirectoryBranch hFinderTreeServer”>
 <div class=”hFinderTreeDirectory” id=”hFinderTreeDirectory-698482s”
 title=”/Users/johnappleseed”>
 <div class=”hFinderTreeIcon”></div>
 johnappleseed
 </div>
 <img src=”../../../Images/Finder/Right.png” class=”hFinderTreeHasChildren”
 id=”hFinderTreeIcon-698482s” alt=”+” title=”Click to expand.”>
 <div class=”hFinderTreeBranchWrapper”></div>

The preceding is the HTML snippet that is loaded upon clicking on the arrow for the /Users folder. I’ve
prepared HTML snippets for each of the top-level folders. In the source code download for this book,
each of these is named using a numeric directory ID. For example, /Applications has the ID 5175, and /
Library has the ID 5198, and so on. Each of these numeric IDs is embedded in the id attribute of the
<div> element with class name hFinderTreeDirectory that is present in the structure for each folder.
Upon requesting the folder contents, the embedded numeric ID is extracted with the following:

$(this).prev().attr(‘id’).split(‘-’).pop()

The preceding starts out at the element, where the click originated, which is the $(this) portion
of the code. Then you navigate to the preceding sibling with the prev() method and access its id attribute
with attr(‘id’). Then you split the id along the hyphens, creating an array. The pop() method returns
the last item from that array, which leaves you with just the numeric portion of the id attribute. That’s
used to construct the filename of the HTML snippet to be loaded, which again wouldn’t normally be
requested as a static HTML file — for this kind of thing, you really want a server-side script to do the
heavy lifting. Each HTML snippet is located in a subfolder called AJAX Request Documents. Note the
spaces in that filename. I’m very fond of naming items in a realistic, human-readable way. Many web
professionals avoid allowing spaces in the names of web-based content, not really because of any tech-
nical limitation, but because some browsers uglify spaces in filenames by URL-encoding %20 in their
place. Firefox is one that lets the spaces be spaces and simply encodes the spaces with %20 transparently,
behind the scenes, and keeps the spaces in the address bar as spaces, which I like a lot. In any case,

27794c07.indd 245 3/16/09 11:23:06 AM

246

Part I: jQuery API

however you prefer to name your files, you should be aware that jQuery doesn’t allow spaces to be placed
directly in the URL of this method, and if you want spaces in the URL, you’ll have to encode them your-
self. This is not true of jQuery’s other AJAX Request methods. The reason for the difference here is that
jQuery allows you to include a selector in the URL that you pass to the load() method, which is then,
in turn, used to filter the selection that you’ve made. Personally, I think this is overkill, since jQuery
already offers so many methods for filtering, but the functionality is there if you desire it.

Once the request is made, the following callback function is executed:

 function() {
 $(this).show();
 $(this).prev().attr(
 ‘src’,
 ‘../../../Images/Finder/Down.png’
);
 }

The callback function is executed within the context of the <div> element with class name
hFinderTreeBrachWrapper; this refers to that <div> element. By default, all of the <div> elements with
class name hFinderTreeBranchWrapper are hidden by the inclusion of display: none in the style sheet;
calling jQuery’s show() method makes the <div> visible. Now all that’s left to do is to change the orienta-
tion of the arrow from pointing right to pointing down to indicate that the folder is open, which is what
the second bit of code in the callback function does — it changes the image referenced in the src attri-
bute of the <div> element’s preceding sibling, which is the element housing the arrow.

That leaves what happens if the folder is already loaded:

 } else {
 $(this).next().toggle();

 $(this).attr(
 ‘src’,
 ‘../../../Images/Finder/’ +
 ($(this).attr(‘src’).indexOf(‘Down’) != -1? ‘Right’ : ‘Down’) + ‘.png’
);
 }
 }

If the folder already exists, then you want to toggle the display of the folder on and off with each click
of the arrow. The call to $(this).next().toggle() does exactly that: If the <div> element is visible, it’s
made invisible, and vice versa. The second bit of code toggles the orientation of the arrow by toggling
between the Right.png and Down.png images.

The following “Try It Out” exercise takes the load() method that you’ve learned about in this section
and puts it in the context of a more real-world-oriented example, which is the beginnings of a web-
based Apple iCal clone.

Reminder: You can obtain full source code examples in this book’s source code
download materials available free from www.wrox.com.

27794c07.indd 246 3/16/09 11:23:06 AM

247

Chapter 7: AJAX

Try It Out Loading HTML Snippets Asynchronously

Example 7-2
To recap jQuery’s load() method, follow these steps:

 1. Create the following HTML document as Example 7-2.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Example 7-2.js’></script>
 <link type=’text/css’ href=’Example 7-2.css’ rel=’stylesheet’ />
 <link type=’text/css’ href=’Exanple 7-2 Controls.css’ rel=’stylesheet’ />
 <!--[if lt IE 8]>
 <link type=’text/css’ href=’Example 7-2.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body id=’hCalendarTemplate’>
<div id=’hCalendar’>
 <table class=’hCalendar’>
 <thead>
 <tr>
 <th class=’hCalendarMonth’ colspan=’7’>
 September
 2008
 </th>
 </tr>
 <tr>
 <th class=’hCalendarWeekday’>Sunday</th>
 <th class=’hCalendarWeekday’>Monday</th>
 <th class=’hCalendarWeekday’>Tuesday</th>
 <th class=’hCalendarWeekday’>Wednesday</th>
 <th class=’hCalendarWeekday’>Thursday</th>
 <th class=’hCalendarWeekday’>Friday</th>
 <th class=’hCalendarWeekday’>Saturday</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class=’hCalendarDay hCalendarLastMonth’>
 31
 </td>
 <td class=’hCalendarDay hCalendarThisMonth hCalendarFirst’>
 1
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 2
 </td>

27794c07.indd 247 3/16/09 11:23:06 AM

248

Part I: jQuery API

 <td class=’hCalendarDay hCalendarThisMonth’>
 3
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 4
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 5
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 6
 </td>
 </tr>
 <tr>
 <td class=’hCalendarDay hCalendarThisMonth’>
 7
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 8
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 9
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 10
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 11
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 12
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 13
 </td>
 </tr>
 <tr>
 <td class=’hCalendarDay hCalendarThisMonth’>
 14
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 15
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 16
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 17
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 18
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 19
 </td>

27794c07.indd 248 3/16/09 11:23:06 AM

249

Chapter 7: AJAX

 <td class=’hCalendarDay hCalendarThisMonth’>
 20
 </td>
 </tr>
 <tr>
 <td class=’hCalendarDay hCalendarThisMonth’>
 21
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 22
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 23
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 24
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 25
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 26
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 27
 </td>
 </tr>
 <tr>
 <td class=’hCalendarDay hCalendarThisMonth’>
 28
 </td>
 <td class=’hCalendarDay hCalendarThisMonth’>
 29
 </td>
 <td class=’hCalendarDay hCalendarThisMonth hCalendarLast’>
 30
 </td>
 <td class=’hCalendarDay hCalendarNextMonth’>
 1
 </td>
 <td class=’hCalendarDay hCalendarNextMonth’>
 2
 </td>
 <td class=’hCalendarDay hCalendarNextMonth’>
 3
 </td>
 <td class=’hCalendarDay hCalendarNextMonth’>
 4
 </td>
 </tr>
 </tbody>
 </table>
</div>
<div id=’hCalendarControls’>
 <div id=’hCalendarControlPrevious’></div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorOne’></div>

27794c07.indd 249 3/16/09 11:23:06 AM

250

Part I: jQuery API

 <div id=’hCalendarControlDay’ class=’hCalendarControlToggle’></div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorTwo’></div>
 <div id=’hCalendarControlWeek’ class=’hCalendarControlToggle’></div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorThree’>
 <div></div>
 </div>
 <div id=’hCalendarControlMonth’ class=’hCalendarControlToggle’>
 <div class=’hCalendarControlOn’></div>
 </div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorFour’>
 <div></div>
 </div>
 <div id=’hCalendarControlNext’></div>
</div>
 </body>
</html>

 2. Create the following style sheet as Example 7-2.css:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(200, 200, 200);
 color: rgb(50, 50, 50);
}
div#hCalendar {
 position: absolute;
 top: 10px;
 right: 10px;
 bottom: 40px;
 left: 190px;
 background: #fff;
 border: 1px solid rgb(128, 128, 128);
 overflow: hidden;
}
div#hCalendar table.hCalendar {
 width: 100%;
 height: 100%;
 border-collapse: collapse;
}
div#hCalendar table.hCalendar tbody td {
 overflow: hidden;
 border: 1px solid rgb(200, 200, 200);
 font-size: 12px;
 height: 15%;
 width: 14.28%;
}
div#hCalendar table.hCalendar td.hCalendarDay {
 vertical-align: top;
 padding: 5px;
 text-align: right;
}
div#hCalendar table.hCalendar td.hCalendarLastMonth,
div#hCalendar table.hCalendar td.hCalendarNextMonth {
 color: rgb(200, 200, 200);
 background: rgb(244, 244, 244);
}

27794c07.indd 250 3/16/09 11:23:06 AM

251

Chapter 7: AJAX

div#hCalendar table.hCalendar th.hCalendarMonth {
 height: 25px;
 font-size: 17px;
}
div#hCalendar table.hCalendar th.hCalendarWeekday {
 height: 16px;
 font-weight: normal;
 font-size: 11px;
}

 3. Create the following style sheet as Example 7-2 Controls.css:

div#hCalendarControls {
 position: absolute;
 left: 50%;
 bottom: 8px;
 width: 188px;
 height: 25px;
 margin: 0 0 0 -94px;
}
div#hCalendarControls div {
 position: absolute;
 height: 25px;
 top: 0;
 left: 0;
 background: url(‘../../../Images/Calendar/Navigation.png’) no-repeat top left;
}
div#hCalendarControls div div {
 width: 100%;
 height: 100%;
 background: url(‘../../../Images/Calendar/Navigation.png’) no-repeat top left;
}
div div#hCalendarControlPrevious {
 width: 23px;
}
div div#hCalendarControlPrevious div {
 background-position: 0 -50px;
}
div div#hCalendarControlDay {
 width: 46px;
 left: 24px;
 background-position: -24px 0;
}
div div#hCalendarControlDay div.hCalendarControlOn {
 background-position: -24px -25px;
}
div div#hCalendarControlDay div {
 background-position: -24px -50px;
}
div div#hCalendarControlWeek {
 width: 46px;
 left: 71px;
 background-position: -71px 0;
}

27794c07.indd 251 3/16/09 11:23:06 AM

252

Part I: jQuery API

div div#hCalendarControlWeek div.hCalendarControlOn {
 background-position: -71px -25px;
}
div div#hCalendarControlWeek div {
 background-position: -71px -50px;
}
div div#hCalendarControlMonth {
 width: 46px;
 left: 118px;
 background-position: -118px 0;
}
div div#hCalendarControlMonth div.hCalendarControlOn {
 background-position: -118px -25px;
}
div div#hCalendarControlMonth div {
 background-position: -118px -50px;
}
div div#hCalendarControlNext {
 width: 23px;
 left: 165px;
 background-position: -165px 0;
}
div div#hCalendarControlNext div {
 background-position: -165px -50px;
}
div#hCalendarControls div.hCalendarSeparator {
 left: 23px;
 width: 1px;
 background-position: -23px 0;
}
div#hCalendarControls div.hCalendarSeparator div {
 background-position: -23px -50px;
}
div#hCalendarControls div#hCalendarSeparatorTwo {
 left: 70px;
}
div#hCalendarControls div#hCalendarSeparatorThree {
 left: 117px;
}
div#hCalendarControls div#hCalendarSeparatorFour {
 left: 164px;
}

 4. Create the following style sheet as Example 7-2.IE.css:

html, body {
 padding: 0;
 margin: 0;
 width: 100%;
 height: 100%;
}
div#hCalendar {
 height: expression(document.body.offsetHeight - 50);
 width: expression(document.body.offsetWidth - 200);
}

27794c07.indd 252 3/16/09 11:23:07 AM

253

Chapter 7: AJAX

 5. Create the following JavaScript as Example 7-2.js:

$(document).ready(
 function() {
 $(‘div#hCalendarControls > div’).mousedown(
 function() {
 if (!$(this).hasClass(‘hCalendarSeparator’)) {
 $(this).html(“<div></div>”);
 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);
 }
 }
).mouseup(
 function() {
 if (!$(this).hasClass(‘hCalendarSeparator’)) {
 if ($(this).hasClass(‘hCalendarControlToggle’)) {
 $(‘div#hCalendarControls div’).not(this).empty();
 $(this).find(‘div’).addClass(‘hCalendarControlOn’);
 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);
 } else {
 $(this).empty();

 if (!$(this).prev().prev().find(‘div’).length) {
 $(this).prev().empty();
 }

 if (!$(this).next().next().find(‘div’).length) {
 $(this).next().empty();
 }

 var $isNext = ($(this).attr(‘id’).indexOf(‘Next’) != -1);

 $(‘div#hCalendar’).load(
 ‘Example%207-2%20’ + ($isNext? ‘Next’ : ‘Previous’) + ‘.html’
);
 }
 }
 }
);
 }
);

 6. Using the structure in Example 7-2.html, create calendar tables for August and October 2008.
Name the table for August Example 7-2 Previous.html and the table for October Example 7-2 Next
.html. The structure for August 2008 is provided in the following code; use the same code to
create October 2008, editing the relevant days, class names, and so on. These files are also pro-
vided in this book’s source code download.

<table class=”hCalendar”>
 <thead>
 <tr>
 <th class=”hCalendarMonth” colspan=”7”>
 August
 2008

27794c07.indd 253 3/16/09 11:23:07 AM

254

Part I: jQuery API

 </th>
 </tr>
 <tr>
 <th class=”hCalendarWeekday”>Sunday</th>
 <th class=”hCalendarWeekday”>Monday</th>
 <th class=”hCalendarWeekday”>Tuesday</th>
 <th class=”hCalendarWeekday”>Wednesday</th>
 <th class=”hCalendarWeekday”>Thursday</th>
 <th class=”hCalendarWeekday”>Friday</th>
 <th class=”hCalendarWeekday”>Saturday</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class=”hCalendarDay hCalendarLastMonth”>
 27
 </td>
 <td class=”hCalendarDay hCalendarLastMonth”>
 28
 </td>
 <td class=”hCalendarDay hCalendarLastMonth”>
 29
 </td>
 <td class=”hCalendarDay hCalendarLastMonth”>
 30
 </td>
 <td class=”hCalendarDay hCalendarLastMonth”>
 31
 </td>
 <td class=”hCalendarDay hCalendarThisMonth hCalendarFirst”>
 1
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 2
 </td>
 </tr>
 <tr>
 <td class=”hCalendarDay hCalendarThisMonth”>
 3
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 4
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 5
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 6
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 7
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 8
 </td>

27794c07.indd 254 3/16/09 11:23:07 AM

255

Chapter 7: AJAX

 <td class=”hCalendarDay hCalendarThisMonth”>
 9
 </td>
 </tr>
 <tr>
 <td class=”hCalendarDay hCalendarThisMonth”>
 10
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 11
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 12
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 13
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 14
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 15
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 16
 </td>
 </tr>
 <tr>
 <td class=”hCalendarDay hCalendarThisMonth”>
 17
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 18
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 19
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 20
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 21
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 22
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 23
 </td>
 </tr>
 <tr>
 <td class=”hCalendarDay hCalendarThisMonth”>
 24
 </td>

27794c07.indd 255 3/16/09 11:23:07 AM

256

Part I: jQuery API

 <td class=”hCalendarDay hCalendarThisMonth”>
 25
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 26
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 27
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 28
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 29
 </td>
 <td class=”hCalendarDay hCalendarThisMonth”>
 30
 </td>
 </tr>
 <tr>
 <td class=”hCalendarDay hCalendarThisMonth hCalendarLast”>
 31
 </td>
 <td class=”hCalendarDay hCalendarNextMonth”>
 1
 </td>
 <td class=”hCalendarDay hCalendarNextMonth”>
 2
 </td>
 <td class=”hCalendarDay hCalendarNextMonth”>
 3
 </td>
 <td class=”hCalendarDay hCalendarNextMonth”>
 4
 </td>
 <td class=”hCalendarDay hCalendarNextMonth”>
 5
 </td>
 <td class=”hCalendarDay hCalendarNextMonth”>
 6
 </td>
 </tr>
 </tbody>
</table>

The preceding example results in the rendering that you see in Figure 7-6.

27794c07.indd 256 3/16/09 11:23:07 AM

257

Chapter 7: AJAX

Figure 7-6

As you’ve probably figured out by now, the preceding example does a little more than just demonstrate
another way that you can use jQuery’s load() method. What you see is the beginnings of a web-based
iCal clone, which I refer back to in later examples in this book. This example is incomplete; you can only
navigate one month forward or one month backward. It is assumed that the calendar is generated on
the server side, since you’re using the load() method to request the previous or next month via an
AJAX Request. You could forego the server-side part and force your calendar to be generated on the cli-
ent side with JavaScript too, which really is a matter of personal taste. Since it is assumed that the server
will generate this calendar, the example crudely simulates what might happen if you had a server-side
language involved.

It’s difficult to convey one concept, like AJAX, without also showing others — at least to make examples
that are in any way useful and representative of the real world. So in addition to demonstrating another
way you might use AJAX, in providing a server-generated calendar, you also see some of the design
challenges that you face in styling such an application. So this admittedly long, but very worthwhile
example shows a few of the challenges that you confront on the design side. One challenge is getting
the calendar to display as intended in all the popular browsers. You’ll have noticed, for example, that a
few hacks were required to get IE to display the calendar correctly.

Another challenge I’ve demonstrated is an advanced CSS concept that works with jQuery to make the
bottom row of buttons provide different states, depending on user interaction, and that concept is CSS
sprites. CSS sprites were originally introduced to the web development world in an article on the “A List
Apart” website way back in 2004 by Dave Shea. Sprites are several smaller images stuck in the same
image file together, then individually displayed in a program without separating the images into
smaller files. I defer to the “A List Apart” article for further esoteric reasoning for sprites, and further
defaults on the origin of sprites: http://alistapart.com/articles/sprites.

27794c07.indd 257 3/16/09 11:23:07 AM

258

Part I: jQuery API

Figure 7-7 shows the sprites image file used in Example 7-2.

Figure 7-7

Each of the states for the bottom row of buttons is contained in the single file that you see in Figure 7-7.
The immediate, tangible benefit of sprites for web development has to do with three things primarily:

Individual image files suck up more file space and bandwidth. Individual image files each require ❑

a certain amount of minimum overhead simply to create a file. One image sliced into many indi-
vidual files will total more in file size than all of those individual images placed into the same file.

Toggling between different images in response to user interaction becomes much more ❑

responsive since the browser doesn’t have to download images at the time a user clicks on a
button or mouses over something — since each state is contained in the same image file, you
don’t have to.

More HTTP requests from the server results in more lag, since every HTTP request that you make ❑

has some overhead and latency associated with it. A slightly larger file size in a single request
loads much more quickly than several individual files in several individual requests.

jQuery’s role in making the user states demonstrated in these buttons functional is minimal. The brunt
of the work needed to make functional buttons actually takes place in the style sheet. But first things
first: The following HTML sets up the skeleton structure that your buttons will occupy:

<div id=’hCalendarControls’>
 <div id=’hCalendarControlPrevious’></div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorOne’></div>
 <div id=’hCalendarControlDay’ class=’hCalendarControlToggle’></div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorTwo’></div>
 <div id=’hCalendarControlWeek’ class=’hCalendarControlToggle’></div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorThree’>
 <div></div>
 </div>
 <div id=’hCalendarControlMonth’ class=’hCalendarControlToggle’>
 <div class=’hCalendarControlOn’></div>
 </div>
 <div class=’hCalendarSeparator’ id=’hCalendarSeparatorFour’>
 <div></div>
 </div>
 <div id=’hCalendarControlNext’></div>
</div>

The preceding snippet of HTML takes a collection of <div> elements and wraps them in a single <div>
element with ID name hCalendarControls. Within that <div> element, individual <div> elements exist for
each individual sprite. To loyally simulate Apple’s user interface, each button must have a 1-pixel-wide
separator that changes color depending on the state of the buttons around it, so there are <div> elements

27794c07.indd 258 3/16/09 11:23:07 AM

259

Chapter 7: AJAX

for each separator as well. The Day, Week, and Month buttons have the ability to be activated and remain
turned on. In iCal, these buttons are used to change the view of the calendar. Since these buttons have
an extra state compared to the Previous and Next buttons, you need some way to be able to pick out those
buttons from the rest, so they receive a class name, hCalendarControlToggle. The default view, Month, is
made active by default by adding a child <div> element with the class name hCalendarControlOn. As I
explain the JavaScript and CSS portions of this example, the reasoning behind this HTML structure will
become clearer. The style sheet Example 7-2 Controls.css contains all the CSS handling the presentational
aspects of these buttons, and the high wire act that splits the CSS sprite image into smaller images via
some well-placed kung-fu kicks. So, let’s review each rule in that style sheet to see how that works. The
first rule doesn’t do much of anything special. It takes the <div> element with ID name hCalendarControls,
and it centers it along the bottom of the window. If you remember from Chapter 2, that’s done by posi-
tioning from the left 50 percent, then setting a negative left margin equal to half of the fixed width.

div#hCalendarControls {
 position: absolute;
 left: 50%;
 bottom: 8px;
 width: 188px;
 height: 25px;
 margin: 0 0 0 -94px;
}

The next rule lays the foundation for CSS sprites. Each child <div> element contained in the <div> ele-
ment with ID name hCalendarControls is positioned absolutely. Then you give each a fixed height of 25
pixels, which is equal to the height of an individual sprite image. Each row of images in the image in
Figure 7-7 has a height of 25 pixels. Finally, you set the background of each individual <div> element to
that one image that contains all of the individual sprites.

div#hCalendarControls div {
 position: absolute;
 height: 25px;
 top: 0;
 left: 0;
 background: url(‘../../../Images/Calendar/Navigation.png’) no-repeat top left;
}

Then the subsequent rule styles a nested <div> element, its dimensions are set to 100 percent of its par-
ent, and it too is given a background image that contains the master sprites image. This nested <div>
element will be used to display the toggled on and the mousedown (or active) image states present in
the master file.

div#hCalendarControls div div {
 width: 100%;
 height: 100%;
 background: url(‘../../../Images/Calendar/Navigation.png’) no-repeat top left;
}

The following two rules set up the first button, the Previous button. All you have to do to display the
default image is set the width of the <div> element to 23 pixels. To display the mousedown state, its
only other state, all you have to do is adjust the background position of the Y-axis by –50 pixels. This

27794c07.indd 259 3/16/09 11:23:07 AM

260

Part I: jQuery API

adjustment causes the last row of images to be displayed from the master sprite file, and with jQuery’s
help, that means that the image displayed for the button changes when the user presses the button.

div div#hCalendarControlPrevious {
 width: 23px;
}
div div#hCalendarControlPrevious div {
 background-position: 0 -50px;
}

And that’s the secret to making sprites with CSS — all you have to do is adjust the background position
to the portion of the master image that you want to display.

The following three rules define the Day button: It has one extra rule, since it has one more state than the
Previous button. In addition to the mousedown state, it can also be toggled on. The first rule defines the
location of the button within its parent <div> container. So that you don’t overlap the Previous button,
you set the left property to 24 pixels, which accounts for the width of the Previous button, plus 1 pixel
for the separator that appears between the two. The width of the Day button is 46 pixels in the master
sprite file, so you set the width of this <div> element to 46 pixels. Finally, to display the right part of that
master sprite file, you adjust the horizontal position of the background image, –24 pixels, which is the
same as your offset left position, again accounting for the position of the Previous button. The other two
rules adjust the background position for each of the other states. Toggled on adjusts the vertical position
of the background image by –25 pixels, and it is given a class name, hCalendarControlOn, to distinguish
it from the mousedown state. And like you did for the Previous button, you create another rule for the
mousedown state that adjusts the vertical position of the background image by –50 pixels.

div div#hCalendarControlDay {
 width: 46px;
 left: 24px;
 background-position: -24px 0;
}
div div#hCalendarControlDay div.hCalendarControlOn {
 background-position: -24px -25px;
}
div div#hCalendarControlDay div {
 background-position: -24px -50px;
}

This concept would be much less verbose if browsers ubiquitously supported the ability to independently
adjust the background position via the background-position-x and background-position-y properties.
These properties were originally proprietary to IE but have since been defined in the CSS3 Borders and
Backgrounds draft specification. When all browsers support the background-position-y properties,
it’ll be possible to make a simpler style sheet that doesn’t have so much redundancy.

In the next block, you do the same thing that you did for the Day button, but position further to the left to
account for the preceding buttons and separators. At this point, it might help to get out a calculator to help
you determine the correct left offset position and the correct background offset position for each button.

div div#hCalendarControlWeek {
 width: 46px;
 left: 71px;
 background-position: -71px 0;
}

27794c07.indd 260 3/16/09 11:23:08 AM

261

Chapter 7: AJAX

div div#hCalendarControlWeek div.hCalendarControlOn {
 background-position: -71px -25px;
}
div div#hCalendarControlWeek div {
 background-position: -71px -50px;
}
div div#hCalendarControlMonth {
 width: 46px;
 left: 118px;
 background-position: -118px 0;
}
div div#hCalendarControlMonth div.hCalendarControlOn {
 background-position: -118px -25px;
}
div div#hCalendarControlMonth div {
 background-position: -118px -50px;
}

For the next two rules, you complete the strip of buttons with the addition of the Next button. These
rules are just like the other ones that you’ve done, but like the Previous button, there is no toggled on
state, so you only need two rules.

div div#hCalendarControlNext {
 width: 23px;
 left: 165px;
 background-position: -165px 0;
}
div div#hCalendarControlNext div {
 background-position: -165px -50px;
}

The final block of rules positions each of the individual separators:

div#hCalendarControls div.hCalendarSeparator {
 left: 23px;
 width: 1px;
 background-position: -23px 0;
}
div#hCalendarControls div.hCalendarSeparator div {
 background-position: -23px -50px;
}
div#hCalendarControls div#hCalendarSeparatorTwo {
 left: 70px;
}
div#hCalendarControls div#hCalendarSeparatorThree {
 left: 117px;
}
div#hCalendarControls div#hCalendarSeparatorFour {
 left: 164px;
}

All that’s left to do is make the buttons functional with jQuery. But, before I describe how the JavaScript
portion works, let’s rewind to the main focus of this example — the big calendar that takes up most of
the window! In terms of the CSS and markup structure, there isn’t anything truly advanced or out of

27794c07.indd 261 3/16/09 11:23:08 AM

262

Part I: jQuery API

the ordinary about this example, save a few rendering quirks that present themselves when loading up
the calendar in IE. The visual goal is pretty simple: You want a calendar that can expand and contract in
response to resizing the window. Each cell of the table should resize in proportion to its available space,
and that’s easy enough to accommodate. The first thing you do is create the <div> element with ID name
hCalendar. It’s absolutely positioned and uses the four offset properties to imply its dimensions, that is,
specifying both the top and bottom properties in tandem results in the <div> being stretched to both
the top and bottom positions that you specify. And the same thing for the left and right properties
— specifying both causes the <div> to be stretched horizontally to both of the positions that you spec-
ify. Then once you have that, you can set the <table> element that holds the calendar information to
have 100 percent width and height, so that it takes up the whole <div> element it is contained within,
and presto, you have a calendar that expands and contracts in response to the browser window being
resized, and a calendar that looks very similar to Apple’s native desktop-based iCal software, or even
Outlook’s calendar.

div#hCalendar {
 position: absolute;
 top: 10px;
 right: 10px;
 bottom: 40px;
 left: 190px;
 background: #fff;
 border: 1px solid rgb(128, 128, 128);
 overflow: hidden;
}

There are a few flaws in this logic when you want to render the example in IE, though. IE6 doesn’t support
specifying opposing offset properties to imply width or height. So, putting both a top and a bottom
property on the same <div> element with a pixel position doesn’t result in the <div> getting stretched
in IE6. To overcome this glitch, I use CSS expressions to specify the width and height of the <div> using
JavaScript within a condition comment style sheet that only IE6 and IE7 can see. Another problem that
presents itself is that IE6 and IE7 don’t display the <table> correctly and don’t make it take up 100 per-
cent of the height of its containing <div>. It turns out that setting the width and height of the contain-
ing <div> element using a CSS expression also helps to fix this problem. Oddly enough, even though
the <div> element clearly has explicit width and height set, you also have to set the width and height
of the <html> and <body> elements to 100 percent … then the table is fixed up properly and takes up 100
percent of the height of its parent <div> element.

html, body {
 padding: 0;
 margin: 0;
 width: 100%;
 height: 100%;
}
div#hCalendar {
 height: expression(document.body.offsetHeight - 50);
 width: expression(document.body.offsetWidth - 200);
}

Now I can finally explain the JavaScript portion of the example, which is surprisingly concise and simple.
The first part of the JavaScript attaches mousedown events to each of the children <div> elements residing
within the <div> element with ID name hCalendarControls. This portion handles the mousedown states
for each of the buttons at the bottom, making the CSS sprites functional. First, the code checks to see

27794c07.indd 262 3/16/09 11:23:08 AM

263

Chapter 7: AJAX

that the <div> element the user has begun a click on is not a separator. If the <div> element isn’t a sepa-
rator, a child <div> element is added to it and its preceding and following sibling elements. This causes
the mousedown state of the button defined in the style sheet to become active for the button and the
separators immediately before and after it.

 $(‘div#hCalendarControls > div’).mousedown(
 function() {
 if (!$(this).hasClass(‘hCalendarSeparator’)) {
 $(this).html(“<div></div>”);
 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);
 }
 }
)

When you add the child <div> element, you trigger one of the rules like the following, depending on
which button you pressed:

div div#hCalendarControlWeek div {
 background-position: -71px -50px;
}

The style sheet has already set up rules for each child <div> element, making the background of each
correspond with the last row of images in the master sprite file. So from jQuery all you have to do is
dynamically add or remove a child <div> element from each button to reveal the button pressed, mouse-
down style. In the next bit of JavaScript, you complete the button effects. When the user releases the mouse
button, as mouseup, first you check to see that the button element is not a separator, then you check to
see if the button <div> element has the class name hCalendarControlToggle, indicating that it’s one of the
three buttons — Day, Week, or Month — that can be toggled on or off. If the button element does have
this class name, that means that you want the button to remain on after it’s been pressed. In terms of style,
that means that it should display the images present in the second row of the master CSS sprite image file.

 .mouseup(
 function() {
 if (!$(this).hasClass(‘hCalendarSeparator’)) {
 if ($(this).hasClass(‘hCalendarControlToggle’)) {
 $(‘div#hCalendarControls div’).not(this).empty();
 $(this).find(‘div’).addClass(‘hCalendarControlOn’);
 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);
 } else {
 $(this).empty();

 if (!$(this).prev().prev().find(‘div’).length) {
 $(this).prev().empty();
 }

 if (!$(this).next().next().find(‘div’).length) {
 $(this).next().empty();
 }

 var $isNext = ($(this).attr(‘id’).indexOf(‘Next’) != -1);

 $(‘div#hCalendar’).load(

27794c07.indd 263 3/16/09 11:23:08 AM

264

Part I: jQuery API

 ‘Example%207-2%20’ + ($isNext? ‘Next’ : ‘Previous’) + ‘.html’
);
 }
 }
 }
);

To make sure the button stays on, you do the following. First, you remove the child <div> element from
every sibling element except the one that’s being pressed. You do this by using jQuery’s not() method,
and passing this (the element that’s been pressed) to be excluded from the selection. Then you call the
empty() method to remove any children or descending elements. That makes sure that the other buttons
don’t remain on when the current button is set to on, since only one of Day, Week, or Month can be acti-
vated but not more than one.

$(‘div#hCalendarControls div’).not(this).empty();

To set the current button’s style to toggled on, you add the class name hCalendarControlOn to the current
button’s child <div> element. That’s the same <div> element that you dynamically added when the but-
ton was first pressed with the mousedown event.

$(this).find(‘div’).addClass(‘hCalendarControlOn’);

Now all that’s left to complete the “toggled on” effect is to style the adjacent separators, so that they
complement the “toggled on” button. This is done simply by adding a child <div> element to the imme-
diately preceding and following separators just like you did in the mousedown portion of the code.

 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);

Otherwise, if the button being pressed does not have the class name hCalendarControlToggle, that means
you’re dealing with the Next or Previous buttons, which do not have a toggled on state, and once you
have pressed one of these buttons, the button should revert back to its off state. To do this, you simply
remove the child <div> element from the button being pressed to remove the style.

$(this).empty();

Then, you remove the style from the adjacent separator, but only if the adjacent button is not toggled on,
because if you remove the style from the adjacent separator and the adjacent button is toggled on, you’ll
mess up its style. To tell if the adjacent button is toggled on, you traverse to it using two calls to either
prev() or next(), then look inside that element (two elements over from the Next or Previous button)
with the find() method to see if it has a child <div> element. If it has one, that means that it’s on, and
you don’t want to remove style from the adjacent separator.

 if (!$(this).prev().prev().find(‘div’).length) {
 $(this).prev().empty();
 }

 if (!$(this).next().next().find(‘div’).length) {
 $(this).next().empty();
 }

27794c07.indd 264 3/16/09 11:23:08 AM

265

Chapter 7: AJAX

And lastly, since you are dealing with pressing the Next or Previous button, this is also the place to
place your AJAX Request to change the main calendar to the previous or following month.

 var $isNext = ($(this).attr(‘id’).indexOf(‘Next’) != -1);

 $(‘div#hCalendar’).load(
 ‘Example%207-2%20’ + ($isNext? ‘Next’ : ‘Previous’) + ‘.html’
);

As I mentioned previously, this example only crudely simulates what a script hooking into a real server-
side script would do. First, you determine whether the button being pressed is the Next or Previous but-
ton, then you load up the file Example 7-2 Next.html or Example 7-2 Previous.html, depending on what
is actually the case. By chaining the call to load() onto the end of a selection, you are telling jQuery to
replace the innerHTML of the element or elements in the selection with the HTML being requested from
the server. For this example, you’ve crafted HTML structurally identical to the calendar that’s present in
the main file in the <table> element for the months preceding and following September 2008, allowing
you to simulate one click forward or one click backward.

Dynamically Loading JavaScript
Another useful and innovative feature of jQuery is its ability to dynamically and asynchronously load
JavaScript documents using its AJAX API. As I covered in Chapter 1, it is a recommended best practice
to split JavaScript development into smaller, easier-to-digest modules that have narrowly focused tasks.
Another technique that goes hand-in-hand with modular JavaScript development is loading the minimal
required JavaScript at the initial page load and dynamically loading additional JavaScript via AJAX as it
is needed to save page load time and to make applications more responsive.

Besides modular JavaScript development, another reason you may want to load JavaScript via AJAX is to
have JavaScript that changes dynamically, depending on user actions, or when you have need of loading
more-complex applications that vary depending on user input or context.

Whatever use you find for this functionality, in this section, I walk you through the API that jQuery
provides for loading JavaScript via its AJAX interface using its $.getScript() method. The following
example demonstrates how to load jQuery’s Color API asynchronously and then use that API to pro-
duce an animation that transitions between two colors. To demonstrate this, you add a few lines of
JavaScript to the calendar you made in Example 7-2.

$(document).ready(
 function() {
 $(‘div#hCalendarControls > div’).mousedown(
 function() {
 if (!$(this).hasClass(‘hCalendarSeparator’)) {
 $(this).html(“<div></div>”);
 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);
 }
 }
).mouseup(
 function() {

27794c07.indd 265 3/16/09 11:23:08 AM

266

Part I: jQuery API

 if (!$(this).hasClass(‘hCalendarSeparator’)) {
 if ($(this).hasClass(‘hCalendarControlToggle’)) {
 $(‘div#hCalendarControls div’).not(this).empty();
 $(this).find(‘div’).addClass(‘hCalendarControlOn’);
 $(this).prev().html(“<div></div>”);
 $(this).next().html(“<div></div>”);
 } else {
 $(this).empty();

 if (!$(this).prev().prev().find(‘div’).length) {
 $(this).prev().empty();
 }

 if (!$(this).next().next().find(‘div’).length) {
 $(this).next().empty();
 }

 var $isNext = ($(this).attr(‘id’).indexOf(‘Next’) != -1);

 $(‘div#hCalendar’).load(
 ‘Figure%207-8%20’ + ($isNext? ‘Next’ : ‘Previous’) + ‘.html’
);
 }
 }
 }
);

 $.getScript(
 ‘../../../Source Code/jQuery/jQuery.color.js’,
 function() {
 $(‘table.hCalendar td’).click(
 function() {
 $(this)
 .animate({backgroundColor: ‘lightgrey’}, 1000)
 .animate({backgroundColor: ‘lightblue’}, 1000);
 }
);
 }
);
 }
);

The new JavaScript demonstrates how an external script is loaded via jQuery’s $.getScript() method.
The $.getScript() method takes two arguments, the path to the script that you want to load, and like
jQuery’s other AJAX Request method, it also allows a callback function, which is executed when the
script has been loaded and successfully executed.

The screenshot in Figure 7-8 shows a snapshot after the animation that takes place when you click on a
day in the calendar. The colors shift between all the variations of blue between the lightgrey and
lightblue color keywords. I cover jQuery’s animate() method in more detail in Chapter 19.

27794c07.indd 266 3/16/09 11:23:08 AM

267

Chapter 7: AJAX

Figure 7-8

The script that you load for the example, jQuery.color.js, along with the source code for the example
itself, is available with this book’s source code download materials at www.wrox.com.

This example is inspired via a similar concept that appears in jQuery’s official documentation at
www.jquery.com.

The JavaScript being loaded via the $.getScript() method is merely an example of loading additional
script from JavaScript via the $getScript() method; should you take this example further, you could
perhaps modify the script to not request that JavaScript until it is actually needed, such as the first time
you click on one of the days in the calendar, for example.

AJAX Events
In this section, I cover what jQuery calls AJAX Events. AJAX Events are milestones that occur during an
AJAX Request that can give you feedback about the status of your request or allow you to execute code
when each milestone occurs. Examples of milestones are when a request starts, when a request stops, when
a request has been sent, when a request has failed, when a request is completed, and when a request is
completely successful. I don’t go into exhaustive detail about each of these events, but Appendix G has a
full listing of all of the AJAX methods, properties, and AJAX Events supported by jQuery.

But one example is how to show a “Loading” message while some remote content is being fetched. There
are three ways to do this. One method allows you to globally set AJAX Events for all AJAX Requests, and
there are two ways to set AJAX Events per individual request using jQuery’s ajax() method or jQuery’s
individual AJAX Event methods. In this section, I describe how to make a loading message using each
of these methods.

27794c07.indd 267 3/16/09 11:23:09 AM

268

Part I: jQuery API

Adding jQuery AJAX Events globally is very easy — all you have to do is call jQuery’s ajaxSetup()
method. To demonstrate how this is done, I’ve modified the Finder example from Figure 7-5. First, you
need an activity indicator to show that something is taking place. Typically, an animated GIF is good
enough to get the job done. In the following snippet from the Finder example, I’ve added an animated
GIF to display while activity is taking place:

 <li class=’hFinderTreeDirectoryBranch’>
 <div class=’hFinderTreeDirectory’ id=’hFinderTreeDirectory-5185’
 title=’/Users’>
 <div class=’hFinderTreeIcon’></div>
 Users</div>
 <img src=’../../../Images/Finder/Right.png’ class=’hFinderTreeHasChildren’
 id=’hFinderTreeIcon-5185’ alt=’+’ title=’Click to expand.’ />
 <div class=’hFinderTreeBranchWrapper’>
 </div>

<div id=’hFinderActivity’>

</div>
 </div>
 </body>
</html>

Then, some CSS is added to the example to put the activity indicator in the lower-right-hand part of the
window.

div.hFinderTreeIcon {
 background: url(‘../../../Images/Finder/Folder.png’) no-repeat left;
 width: 16px;
 height: 16px;
 margin: 0 5px 0 0;
 float: left;
}
div.hFinderTreeBranchWrapper {
 display: none;
}
div#hFinderActivity {
 position: absolute;
 bottom: 5px;
 right: 5px;
 display: none;
}

Then finally, the JavaScript is modified so that the activity indicator is dynamically revealed when an
AJAX Request takes place and hidden when the request concludes:

$.ajaxSetup({
 beforeSend : function() {
 $(‘div#hFinderActivity’).show();
 },
 success : function() {

27794c07.indd 268 3/16/09 11:23:09 AM

269

Chapter 7: AJAX

 $(‘div#hFinderActivity’).hide();
 }
});

$(document).ready(
 function() {
 $(‘img.hFinderTreeHasChildren’).click(
 function() {
 if (!$(this).next().children(‘ul’).length) {
 $(this).next().load(
 ‘AJAX%20Request%20Documents/’ +
 $(this).prev().attr(‘id’).split(‘-’).pop() + ‘.html’,
 function() {
 $(this).show();
 $(this).prev().attr(
 ‘src’,
 ‘../../../Images/Finder/Down.png’
);
 }
);
 } else {
 $(this).next().toggle();

 $(this).attr(
 ‘src’,
 ‘../../../Images/Finder/’ +
 ($(this).attr(‘src’).indexOf(‘Down’) != -1? ‘Right’ : ‘Down’) + ‘.png’
);
 }
 }
);
 }
);

This modification looks like what you see in Figure 7-9, when you make an AJAX Request. Since you’re
requesting a file from your own local computer, the activity indicator will be revealed and hidden almost
instantaneously. So this technique is obviously better suited for requesting content from a remote server
where there may be some latency.

Figure 7-9

27794c07.indd 269 3/16/09 11:23:09 AM

270

Part I: jQuery API

In the JavaScript, you make a call to $.ajaxSetup() to define an event called beforeSend and another
one called success. Each of these events is defined inside a JavaScript object literal that is passed to the
$.ajaxSetup() method. By attaching a callback function to the beforeSend property, you are telling
jQuery to execute the specified function before every AJAX Request. In this case, you cause the activity
indicator to be displayed by calling jQuery’s show() method. Then, once the request has completed suc-
cessfully, you hide the activity indicator by attaching a callback function to the success property, which,
in turn, is executed upon a successful request. These are but a few of the properties that you can specify
using this method to define AJAX defaults globally for jQuery. All of the options that can be specified
here are outlined in detail in Appendix G.

You are not, of course, limited to this use of jQuery’s AJAX Events. jQuery’s AJAX Events can also be
used to modify the HTTP headers that will be used in the request or to do other low-level things with
jQuery’s AJAX API.

The preceding example defined how to define events globally using the $.ajaxSetup() method. In the
following example (which produces Figure 7-10, not shown here) I demonstrate how to do the same
using individual jQuery AJAX Event methods. This time only the JavaScript has been modified, and the
remainder is the same as shown in Figure 7-9.

$(document).ready(
 function() {
 $(‘img.hFinderTreeHasChildren’).click(
 function() {
 if (!$(this).next().children(‘ul’).length) {
 $(this).next()
 .ajaxSend(
 function() {
 $(‘div#hFinderActivity’).show();
 }
)
 .ajaxSuccess(
 function() {
 $(‘div#hFinderActivity’).hide();
 }
)
 .load(
 ‘AJAX%20Request%20Documents/’ +
 $(this).prev().attr(‘id’).split(‘-’).pop() + ‘.html’,
 function() {
 $(this).show();
 $(this).prev().attr(
 ‘src’,
 ‘../../../Images/Finder/Down.png’
);
 }
);
 } else {
 $(this).next().toggle();

 $(this).attr(
 ‘src’,

27794c07.indd 270 3/16/09 11:23:09 AM

271

Chapter 7: AJAX

 ‘../../../Images/Finder/’ +
 ($(this).attr(‘src’).indexOf(‘Down’) != -1? ‘Right’ : ‘Down’) + ‘.png’
);
 }
 }
);
 }
);

The preceding modification gives you the same outcome demonstrated in Figure 7-9, only this time the
functions that reveal and hide the activity indicator are limited to occurring on the specific AJAX Requests
associated with fetching the contents of each folder. To achieve the same result, you moved the callback
function for the beforeSend property to inside the call to the ajaxSend() method, and the callback
function for the success property to inside the call to the ajaxSuccess() method. And those methods,
are, of course, chainable like most of jQuery’s other methods.

The last way that you can attach events is via a call to jQuery’s more low-level ajax() method. The
ajax() method is used internally, within jQuery, to construct AJAX Requests for jQuery’s other AJAX
Request methods, like $.get(), $getJSON(), $.post(), and so on. jQuery’s $.ajax() method gives you
the ability to set as many low-level AJAX Request options as you like. The following example demon-
strates how to use $.ajax() to mimic the same results as the preceding two examples:

$(document).ready(
 function() {
 $(‘img.hFinderTreeHasChildren’).click(
 function() {
 if (!$(this).next().children(‘ul’).length) {
 var self = $(this);

 $.ajax({
 beforeSend : function() {
 $(‘div#hFinderActivity’).show();
 },
 success : function() {
 $(‘div#hFinderActivity’).hide();
 },
 complete : function($response, $status) {
 if ($status == “success” || $status == “notmodified”) {
 self.next().html($response.responseText);

 self.next().show();
 self.attr(
 ‘src’,
 ‘../../../Images/Finder/Down.png’
);
 }
 },
 url : ‘AJAX%20Request%20Documents/’ +
 self.prev().attr(‘id’).split(‘-’).pop() + ‘.html’
 });
 } else {

27794c07.indd 271 3/16/09 11:23:09 AM

272

Part I: jQuery API

 $(this).next().toggle();

 $(this).attr(
 ‘src’,
 ‘../../../Images/Finder/’ +
 ($(this).attr(‘src’).indexOf(‘Down’) != -1? ‘Right’ : ‘Down’) + ‘.png’
);
 }
 }
);
 }
);

The preceding example (which produces Figure 7-11, not shown here) is functionally identical to the
last two examples that you’ve seen in this section. Just like those other two examples, you are request-
ing the contents of each folder with each AJAX Request, and you’re showing an activity indicator that
appears while the AJAX Request is taking place and is hidden when it completes. Since the $.ajax()
method works by calling that method of the jQuery object directly, you have to change your approach
from using the load() method. First, since you want to load HTML, you need to remember what ele-
ment you want to load that HTML into.

var self = $(this);

this is assigned to a variable called self so that you can reference the variable self from within the
callback functions that you assign to the various options of the $.ajax() method. If you remember
from Figure 7-5, this refers to the element containing the arrows that appear beside each folder.
The $.ajax() method itself takes various options defined as an object literal, which again are docu-
mented in Appendix G. You again define the beforeSend and success options that contain functions
that reveal and hide the activity indicator, but this time in the context of the AJAX Request that you’re
making instead of globally. The complete option defines a callback function that is executed upon com-
pletion of the AJAX Request … this would be the callback function that was executed for jQuery’s other
AJAX Request methods like load(), $.get(), or $.post(). The callback function that you define is
more low level, though, since you pass the XMLHttpRequest response object in the first argument and
the status of the request in the second argument. If the $status variable is success or notmodified,
that means your request was successful; the rest of the code carries on like the code from Figure 7-5,
and the element is contained in the variable self. The responseText property contains the text
content of the response, in this case, the HTML snippet containing all the subfolders. If this were an
XML request, you’d be interested in working with the responseXML object. The HTML snippet is loaded
into the next sibling <div> element that appears after the element, then that <div> element is
made visible with the show() method, and then the orientation of the arrow is changed by swapping
the arrow image from Right.png to Down.png.

jQuery’s $.ajax() method is intended for use internally within jQuery or when you need to make lots
of low-level modifications to how the request will carry on and the default methods don’t do the trick.

Making an AJAX-Style File Upload
I’ve decided to throw this topic in along with my discussion of jQuery’s AJAX Request methods,
because many novice programmers do not know that it isn’t possible to upload a file from a client via
an AJAX Request. It is, however, possible to make a file upload look as though it completed via an

27794c07.indd 272 3/16/09 11:23:09 AM

273

Chapter 7: AJAX

AJAX Request, seamlessly and without requiring your document to reload. Prior to the ubiquitous
AJAX XMLHttpRequest API, you could still do AJAX-like interaction with a server, but if you wanted
to do it in a cross-browser-compatible way, you had to simulate what would happen with an AJAX
Request with a hidden <iframe> element. This, of course, didn’t offer much in the way of the low-
level HTTP request-tweaking that is possible with the XMLHttpRequest API, but it let you update
content in a document without reloading the document. The XMLHttpRequest API, however, does not
account in any way for file uploads. The primary reason for this is that it’s a security risk. You can’t
upload files from the user’s computer without the user specifically initiating the file upload. I would
imagine that some future revision of the XMLHttpRequest API might find a way to offer AJAX file
uploads without compromising the user’s security. Until then we’re stuck with an ad hoc method that
involves targeting a <form> element to a hidden <iframe> element. This method keeps security, since
the user still must specifically initiate the file upload, but it also lets you keep the Web 2.0, AJAXy
desktop application feel, by allowing the file upload to take place without causing the user’s page to
reload. In the following example, I demonstrate the client-side components that you would need for
such an application, but I am obviously unable to demonstrate how the server-side component works,
since different languages work with file uploads differently, and that portion of the discussion is out-
side the scope of this book.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 7-12.js’></script>
 <link type=’text/css’ href=’Figure 7-12.css’ rel=’stylesheet’ />
 </head>
 <body>
 <iframe src=’about:blank’ name=’hFinderUpload’
 id=’hFinderUpload’></iframe>
 <form action=’Figure 7-12 Upload.html’ method=’post’
 enctype=’multipart/form-data’ target=’hFinderUpload’>
 <fieldset>
 <legend>Upload a File</legend>
 <div id=’hFinderUploadFileWrapper’>
 <label for=’hFinderUploadFile’>File:</label>
 <input type=’file’ name=’hFinderUploadFile’
 id=’hFinderUploadFile’ size=’25’ />
 </div>
 <div id=’hFinderButtonWrapper’>
 <input type=’submit’ id=’hFinderButton’
 name=’hFinderButton’ value=’Upload File’ />
 </div>
 </fieldset>
 </form>
 </body>
</html>

27794c07.indd 273 3/16/09 11:23:09 AM

274

Part I: jQuery API

In the preceding HTML, you see a bare-bones recipe for a file upload. You include a <form> element
with the enctype attribute set to multipart/form-data, and an <input> element with the type attri-
bute set to file. The <form> element has its target attribute set to hFinderUpload, which is the name
of the <iframe> element. When you submit the form, it will post its results to the URL specified in the
action attribute, and the response from that request will load in the <iframe> element.

In the style sheet, you hide the <iframe> element with the declaration display: none;:

body {
 font: 16px sans-serif;
}
fieldset {
 background: #93cdf9;
 border: 1px solid rgb(200, 200, 200);
}
fieldset div {
 padding: 10px;
 margin: 5px;
}
fieldset label {
 float: left;
 width: 200px;
 text-align: right;
 padding: 2px 5px 0 0;
}
div#hFinderButtonWrapper {
 text-align: right;
}
iframe {
 display: none;
 position: absolute;
 bottom: 5px;
 right: 5px;
}

The file Figure 7-12 Upload.html simulates what your server might provide as a response to the file upload:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 </head>
 <body>
 <p>
 This file would load upon requesting your form.
 <script type=’text/javascript’>
 top.hFinder.onFileUpload();
 </script>
 </p>
 </body>
</html>

27794c07.indd 274 3/16/09 11:23:09 AM

275

Chapter 7: AJAX

In the HTML, there is embedded JavaScript that calls the top object, which references the parent docu-
ment of the document loaded into the <iframe>. Back in the main HTML file, you included a JavaScript,
Figure 7-12.js, which has the following script inside it:

var hFinder = {
 onFileUpload : function()
 {
 alert(‘File uploaded!’);
 }
};

The preceding is executed after the file is successfully uploaded, via the response you sent from the
server. As you can see, without discussing the server-side portion of a file upload, it is relatively pain-
less to simulate an AJAX Request for a file upload.

This example gives you results similar to what you see in Figure 7-12.

Figure 7-12

Summary
In this chapter, I took you on a tour of jQuery’s built-in AJAX capabilities. You saw the differences between
a GET and a POST HTTP request, learning that a GET request has a limit on its length, in addition to being
semantically suited for requests that result in no lasting modification or effect on the server. POST requests,
in contrast, should be reserved for requests that shouldn’t be arbitrarily repeated and do have some kind
of lasting impact on the server. In terms of AJAX, GET requests have a slight performance advantage.

jQuery offers the $.get() method to make GET requests and the $.post() method to make POST
requests. When you’re working with XML, jQuery makes it super-easy to extract information from an
XML document by giving you full access to jQuery’s various selection methods for querying your XML
responses. The JSON format can be even easier to work with, but extra care must be taken to ensure that
you don’t make yourself vulnerable to a cross-site forgery. For working with JSON data, jQuery offers
the $getJSON() method.

27794c07.indd 275 3/16/09 11:23:09 AM

276

Part I: jQuery API

The load() method can be used to insert HTML snippets requested from the server into elements that
you select with jQuery.

I also presented a complex real-life-oriented example in which you used jQuery in conjunction with
CSS and markup to create a cross-platform, AJAX-driven calendar that uses CSS sprites for buttons and
jQuery’s load() method to change the calendar’s month.

I described how to load script asynchronously with jQuery’s $.getScript() method. This was demon-
strated by loading jQuery’s color script, which was applied to the calendar you made in Example 7-2,
and provided a nifty animated effect when you clicked on the various days in the calendar.

I talked about jQuery’s AJAX Events and described the different ways you can use AJAX Events to add
an activity indicator to the Finder example that you saw in Figure 7-5.

Finally, I described how you can simulate an AJAX style of request for a file upload via the use of a hid-
den <iframe> element.

Exercises
 1. In terms of an AJAX Request, is there any difference between a GET and a POST HTTP

request?

 2. How would you provide extra data with a request using jQuery’s $.get() method?

 3. How would you access a JSON object in a callback function provided to the $.getJSON() method?

 4. Given the following XML, how would you access the contents of the <response> element,
assuming you used jQuery’s $.get() method to request the XML document?

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<response>Yes!</response>

 5. If you wanted to load an HTML snippet into a selection of elements, what jQuery method
would you use?

 6. In the following JavaScript, describe what happens:

$.ajaxSetup({
 beforeSend : function() {
 $(‘div#hFinderActivity’).show();
 },
 success : function() {
 $(‘div#hFinderActivity’).hide();
 }
});

 7. If you wanted to attach AJAX Events to apply only in the context of an individual AJAX Request,
rather than globally, what methods does jQuery provide to attach events in this way?

 8. What jQuery method would you use if you wanted to get the value of every input element
within a form?

27794c07.indd 276 3/16/09 11:23:10 AM

8
Effects

Up to this point, you’ve been learning about jQuery’s nuts and bolts. jQuery does a lot to make
the life of a developer easier, but jQuery does not stop at making it easier to traverse the DOM, or
manipulate, or iterate, or all of the other very cool things you’ve learned about in the preceding
chapters. It also gives you the tools to make your documents look very polished, professional, and
sophisticated via animation and some rudimentary special effects. In this chapter, I present how to
work with the API that jQuery provides for dealing with effects.

As you’ve seen in examples in previous chapters, jQuery can toggle the display of elements
between hidden and displayed states using its show() and hide() methods. What you may not
have already learned is that those methods also have the ability to animate between hidden and
displayed states via a short animation.

jQuery also gives you the ability to animate an element between hidden and displayed states by
animating an element’s height, in addition to the ability to fade elements on and off via an anima-
tion of an element’s opacity, all with a simple and trivial function call.

Finally, jQuery also has the ability to animate objects in your document between arbitrary
numeric styles, which gives you the ability to create your own, custom animations.

Showing and Hiding Elements
jQuery provides three methods for showing and hiding elements — show(), hide(), and toggle().
You’ve seen examples of show() and hide() in previous chapters. Those two methods simply
make an object visible or invisible by toggling that element’s CSS display property. These meth-
ods simply make it easier to turn elements on or off. What you haven’t learned about these prop-
erties already is that you can also supply arguments to these methods that make elements fade on
and off, by animating the element’s opacity, in combination with an animation of the element’s
width and height. You can also supply a callback function in the second argument, which is exe-
cuted when the animation completes. The following document demonstrates how to show and
hide documents using jQuery’s show() and hide() methods:

278

Part I: jQuery API

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 8-1.js’></script>
 <link type=’text/css’ href=’Figure 8-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <input type=’submit’ id=’tmpOpen’ value=’Open Dialogue’ />
 <div id=’tmpDialogue’>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut
 vestibulum ornare augue. Fusce non purus vel libero mattis aliquet.
 Vivamus interdum consequat risus. Integer feugiat fringilla est.
 Vivamus libero. Vestibulum imperdiet arcu vitae nunc. Nunc est velit,
 varius sed, faucibus quis,
 </p>
 <div id=’tmpButtons’>
 <input type=’submit’ id=’tmpClose’ value=’Close Dialogue’ />
 </div>
 </div>
 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 16px sans-serif;
}
div#tmpDialogue {
 display: none;
 position: absolute;
 top: 50%;
 left: 50%;
 width: 500px;
 height: 200px;
 margin: -101px 0 0 -251px;
 background: rgb(233, 233, 233);
 border: 1px solid rgb(128, 128, 128);
}
div#tmpDialogue p {
 padding: 5px;
 margin: 5px;
}
div#tmpButtons {
 position: absolute;
 bottom: 5px;
 right: 5px;
}

279

Chapter 8: Effects

The following script demonstrates the animations provided by jQuery’s show() and hide() methods:

$(document).ready(
 function() {
 $(‘input#tmpOpen’).click(
 function($e) {
 $(‘div#tmpDialogue’).show(‘slow’);
 }
);

 $(‘input#tmpClose’).click(
 function($e) {
 $(‘div#tmpDialogue’).hide(5000);
 }
);
 }
);

In the preceding script, you see how jQuery’s show() method can take a string argument indicating the
speed at which jQuery should animate revealing the element. There are four possible arguments that you
can pass to indicate the speed of the animation for the show(), hide(), or toggle() method: “slow”,
“normal”, or “fast”, or the time in milliseconds. Figure 8-1 displays a screenshot of the preceding
example as it appears in Safari.

Figure 8-1

Sliding Elements
jQuery also provides the ability to animate an element by sliding. Sliding is defined in jQuery as animat-
ing an element’s height. So, sliding down means to animate an element’s height from nothing to its nor-
mal height. Sliding up, on the other hand, means to animate an element’s height from its normal height
to nothing. Sliding is another way to reveal and hide elements. You’re just using different animation to

280

Part I: jQuery API

accomplish the task. jQuery’s slideDown() and slideUp() methods are demonstrated in the following
script, which is applied to the same markup document in Figure 8-1:

$(document).ready(
 function() {
 $(‘input#tmpOpen’).click(
 function($e) {
 $(‘div#tmpDialogue’).slideDown(‘slow’);
 }
);

 $(‘input#tmpClose’).click(
 function($e) {
 $(‘div#tmpDialogue’).slideUp(5000);
 }
);
 }
);

The preceding script results in the same document that you see in Figure 8-1 and can be accessed in the
free source code download materials available for this book at www.wrox.com, in the folder named
Figure 8-2.

When you click on the input button labeled Open Dialogue, you see that the <div> with ID name
tmpDialogue has its height animated slowly from nothing until it reaches its full height. When you click
on the button labeled Close Dialogue, the <div> element with ID name tmpDialogue again has its height
animated, but this time in reverse, from full height to nothing, over the course of 5 seconds.

The speeds that are allowed are the same as those allowed for jQuery’s show() and hide() methods.
Additionally, you can optionally provide a callback function in the second argument passed to the
slideDown() or slideUp() method, which is executed once the animation completes, once for each ele-
ment selected.

Finally, there is also a slideToggle() method, which alternates between slideUp() and slideDown().

Fading Elements
Fading elements is yet another variation that jQuery offers for revealing and hiding elements. The API is
the same as the methods of the preceding two sections; only the names of those methods and the anima-
tion used by those methods are different. jQuery’s fadeIn() method reveals an element by animating its
opacity from fully transparent, to fully opaque; and jQuery’s fadeOut() method, of course, does the
same thing in reverse, animating an element from fully opaque to fully transparent.

$(document).ready(
 function() {
 $(‘input#tmpOpen’).click(
 function($e) {
 $(‘div#tmpDialogue’).fadeIn(‘slow’);
 }

281

Chapter 8: Effects

);

 $(‘input#tmpClose’).click(
 function($e) {
 $(‘div#tmpDialogue’).fadeOut(5000);
 }
);
 }
);

Again, just like the hide(), show(), slideUp(), and slideDown() methods, you have the option of spec-
ifying two arguments — the speed of the animation and a callback function that is executed when the
animation completes. The preceding script can be found in the source code download as Figure 8-3.

Custom Animation
jQuery also provides an API that facilitates custom animation, in the method called animate(). jQuery’s
animate method intuitively transitions CSS properties with numeric values over a specified duration. For
example, if you have a <div> element and that <div> element has a width of 300 pixels (300px), when
you call jQuery’s animate() method with a width of 500px and a duration of 3 seconds, the animate
method will automatically adjust the <div> element’s width from 300px to 500px smoothly over a
period of 3 seconds. The animate() method is demonstrated in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’ src=’Figure 8-4.js’></script>
 <link type=’text/css’ href=’Figure 8-4.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=’tmpDialogue’>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut
 vestibulum ornare augue. Fusce non purus vel libero mattis aliquet.
 Vivamus interdum consequat risus. Integer feugiat fringilla est.
 Vivamus libero. Vestibulum imperdiet arcu vitae nunc. Nunc est velit,
 varius sed, faucibus quis,
 </p>
 <div id=’tmpButtons’>
 <input type=’submit’ id=’tmpAnimate’ value=’Animate Dialogue’ />
 </div>
 </div>
 </body>
</html>

282

Part I: jQuery API

The following style sheet is applied to the preceding markup document. Take note of the width (500px)
and left margin (-251px) of the <div> with ID name tmpDialogue.

body {
 font: 16px sans-serif;
}
div#tmpDialogue {
 position: absolute;
 top: 50%;
 left: 50%;
 width: 500px;
 height: 200px;
 margin: -101px 0 0 -251px;
 background: rgb(233, 233, 233);
 border: 1px solid rgb(128, 128, 128);
}
div#tmpDialogue p {
 padding: 5px;
 margin: 5px;
}
div#tmpButtons {
 position: absolute;
 bottom: 5px;
 right: 5px;
}

The preceding script demonstrates how the animate() method is used to transition between two style
properties with numeric values.

$(document).ready(
 function() {
 $(‘input#tmpAnimate’).click(
 function($e) {
 $(‘div#tmpDialogue’).animate({
 width: ‘600px’,
 marginLeft: ‘-301px’
 }, 3000
);
 }
);
 }
);

In the preceding script, you animate the <div> element with ID name tmpDialogue upon pressing the
button labeled Animate Dialogue. Two arguments are provided to the animate() method. In the first
argument, an object literal consisting of styles is provided. The two properties specified in that object
literal are a width of 600px and a left margin of -301px. When the animate() method is executed, the
script takes the starting value of 500px for the width property and animates that width until the value
of 600px is reached, all the while doing the same with the marginLeft property. It begins with a value
of -251px and animates until it reaches the value -301px. The value 3,000 is provided in the second param-
eter passed to the animate() method, which is the length of the animation in milliseconds (ms): 3,000
ms = 3 seconds. Figure 8-4 shows the beginning state of the <div> element, and Figure 8-5 shows the
ending state of the <div> element.

283

Chapter 8: Effects

Figure 8-4

Figure 8-5

Summary
In this chapter, you learned how jQuery’s animation elements work to hide and display elements, either
by using jQuery’s various built-in animations or by making a custom animation.

You learned how jQuery’s hide() and show() methods can be provided a speed in their first argument,
which can be “slow”, “normal”, or “fast”, or the time specified in milliseconds. When used without
any arguments specified, jQuery’s show() and hide() methods simply show and hide an element by
toggling the CSS display property. Specifying the first argument causes these methods to use an ani-
mation to transition between the hidden and displayed states.

jQuery offers a few alternative animations that essentially provide the same function, toggling between
a hidden and displayed state. jQuery’s slideDown(), slideUp(), and slideToggle() methods animate
an element’s height to hide and display an element. jQuery’s fadeIn() and fadeOut() methods animate
an element’s opacity to hide and display an element.

284

Part I: jQuery API

Finally, you learned about jQuery’s animate() method, which lets you transition between the styles an
element already has to styles that you specify. The styles that can be animated are, at the time of this
writing, limited to CSS properties that allow numeric values.

jQuery Effects are documented in detail in Appendix M.

Exercises
 1. When specifying the speed of an animation, what options are allowed?

 2. What does jQuery’s slideDown() method do?

 3. What method would you use to display an element using an animation of that element’s opacity?

 4. What method would you use to create a custom animation?

 5. How is jQuery’s animate() method limited at the time of this writing?

9
Plugins

Beyond making many scripting tasks much easier, jQuery also makes itself very easy to extend
with new functionality. This is done with a very easy-to-understand Plugin API. Using jQuery’s
Plugin API, you can make your own chainable jQuery methods and even write entire complex
client-side applications completely as jQuery plugins.

There are lots of things you can do with plugins. Some of the more useful and prominent examples
of jQuery plugins are found in the jQuery UI library, which I begin discussion of in Chapter 10.
Plugins in the jQuery UI library help you to implement functionality like drag-and-drop or select-
ing elements, and a variety of other functionality. There is also a thriving third-party development
community for jQuery that produces plugins for just about anything you can think of. jQuery’s
thriving plugin community exists largely thanks to how ridiculously easy it is to write plugins
for jQuery.

In this chapter, I demonstrate how to use jQuery’s Plugin API and cover the basic concepts you’ll
need to understand to start writing plugins of your own. Beyond what you learn about jQuery
plugin basics in this chapter, you’ll also see more examples that use jQuery’s Plugin API later in
the book.

Writing a Plugin
jQuery plugins are very easy to implement. All you need to do is pass an object literal containing
the methods you want to extend jQuery with to the $.fn.extend() method. The following code
demonstrates how this is done:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />

286

Part I: jQuery API

 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 9-1.js’></script>
 <link type=’text/css’ href=’Figure 9-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>John Candy Movies</h4>

 The Great Outdoors
 Uncle Buck
 Who’s Harry Crumb
 Canadian Bacon
 Home Alone
 Space Balls
 Plans, Trains, and Automobiles

 <p>
 Select All
 </p>
 </body>
</html>

The following CSS document is used to style the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 5px;
 padding: 5px;
}
li {
 padding: 3px;
}
li.tmpSelected {
 background: yellow;
}
p {
 text-align: right;
 padding: 5px;
}

287

Chapter 9: Plugins

The following JavaScript demonstrates how to use jQuery’s Plugin API to write custom plugins for jQuery:

$.fn.extend({
 Select: function() {
 return $(this).addClass(‘tmpSelected’);
 },
 Unselect: function() {
 return $(this).removeClass(‘tmpSelected’);
 },
 MyApplication: {
 Ready: function() {
 $(‘p a’).click(
 function($e) {
 $e.preventDefault();
 $(‘li’).Select();
 }
);

 $(‘li’).click(
 function() {
 $(this).hasClass(‘tmpSelected’)?
 $(this).Unselect() : $(this).Select();
 }
);
 }
 }
});

$(document).ready(
 function() {
 $.fn.MyApplication.Ready();
 }
);

The preceding code results in the screenshot that you see in Figure 9-1 when you click on individual
movie titles.

Figure 9-1

288

Part I: jQuery API

And you get the result that you see in Figure 9-2 when you click on the “Select All” link.

Figure 9-2

In the preceding example, you see how jQuery plugins are written using the $.fn.extend() method. A
jQuery plugin is passed as an object literal to the $.fn.extend() method. Some plugins are written to
be called directly on element objects. For example, you make a selection with jQuery like $(‘li’) or
$(this) and then call the plugin method, like $(‘li’).Select(). When the method is called, the selec-
tion of elements that you’ve made is passed to the plugin method as an array, in the this keyword.

 Select: function() {
 return $(this).addClass(‘tmpSelected’);
 },

In the preceding snippet, the Select() method is a custom jQuery plugin, and it expects an array of
element objects to be present in the this keyword. The this keyword is wrapped in a call to jQuery,
then the addClass() method is called, which adds a class name to one or more items … allowing the
Select() method to work whether one item is passed or several. Then at the end of your plugin
method, you return the jQuery object, so that you preserve chainability of methods.

There are two components that are universally applicable to jQuery plugin development: The this key-
word contains an array of one or more items, and the function returns the jQuery object. These two
components let you include your custom plugin just like any other jQuery function call and allow you
to make a selection, call your custom method, then chain additional methods onto that function call.

Another way that plugins are used is to call plugin methods directly. In the preceding example, you
see an object called MyApplication, which contains a method called Ready(). The Ready() method is
called directly at the jQuery ready() event by using the code $.fn.MyApplication.Ready(). The call
to $.fn.MyApplication.Ready() is an example of a plugin that is called directly rather than via a
chain to a selection, as was the case with the Select() method.

In the following “Try It Out,” you try writing a jQuery plugin for yourself:

289

Chapter 9: Plugins

Try It Out Writing a jQuery Plugin

Example 9-1
To write your first jQuery plugin, follow these steps.

 1. Key in the following HTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 9-1.js’></script>
 <link type=’text/css’ href=’Example 9-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div>
 <p>
 jQuery plugins give you the ability to extend jQuery’s functionality,
 quickly and seamlessly. In this example you see how to make a context
 menu plugin, that handles everything you need to make a context menu
 widget in self-contained jQuery plugin.
 </p>

 This is a context menu item.

 </div>
 </body>
</html>

 2. Save the preceding HTML document as Example 9-1.html.

 3. Enter the following CSS document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
body,
html {
 width: 100%;
 height: 100%;
 margin: 0;
 padding: 0;
}
div {
 position: absolute;

290

Part I: jQuery API

 width: 100%;
 height: 100%;
}
p {
 padding: 5px;
}
ul.tmpContextMenu {
 list-style: none;
 margin: 0;
 padding: 5px;
 border: 1px solid rgb(200, 200, 200);
 position: absolute;
 top: 0;
 left: 0;
 background: lightblue;
 width: 200px;
 min-height: 200px;
 display: none;
}
li {
 padding: 3px;
}

 4. Save the preceding style sheet as Example 9-1.css.

 5. Enter the following JavaScript document:

$.fn.extend({
 ContextMenu: function() {
 this.each(
 function() {
 $(this).addClass(‘tmpContextMenu’);

 $(this).hover(
 function() {
 $.data(this, ‘ContextMenu’, true);
 },
 function() {
 $.data(this, ‘ContextMenu’, false);
 }
);

 // Only attach the following event once.
 if (!$.data(document, ‘MouseDown’)) {
 $.data(document, ‘MouseDown’, true);
 $(document).mousedown(
 function() {
 $(‘.tmpContextMenu’).each(
 function() {
 if (!$.data(this, ‘ContextMenu’)) {
 $(this).hide();
 }
 }
);
 }

291

Chapter 9: Plugins

);
 }

 $(this).parent().bind(
 ‘contextmenu’,
 function($e) {
 $e.preventDefault();

 // The contextmenu doesn’t work in Opera.
 // Guess those four users will just have to do without.
 var $menu = $(this).find(‘.tmpContextMenu’);

 $menu.show();

 // The following bit gets the dimensions of the viewport
 var $vpx, $vpy;

 if (self.innerHeight) {
 // all except Explorer
 $vpx = self.innerWidth;
 $vpy = self.innerHeight;
 } else if (document.documentElement &&
 document.documentElement.clientHeight) {
 // Explorer 6 Strict Mode
 $vpx = document.documentElement.clientWidth;
 $vpy = document.documentElement.clientHeight;
 } else if (document.body) {
 // other Explorers
 $vpx = document.body.clientWidth;
 $vpy = document.body.clientHeight;
 }

 // Reset offset values to their defaults
 $menu.css({
 top: ‘auto’,
 right: ‘auto’,
 bottom: ‘auto’,
 left: ‘auto’
 });

 /**
 * If the height or width of the context menu is greater than the amount
 * of pixels from the point of click to the right or bottom edge of the
 * viewport adjust the offset accordingly
 */
 if ($menu.outerHeight() > ($vpy - $e.pageY)) {
 $menu.css(‘bottom’, ($vpy - $e.pageY) + ‘px’);
 } else {
 $menu.css(‘top’, $e.pageY + ‘px’);
 }

 if ($menu.outerWidth() > ($vpx - $e.pageX)) {
 $menu.css(‘right’, ($vpx - $e.pageX) + ‘px’);
 } else {

292

Part I: jQuery API

 $menu.css(‘left’, $e.pageX + ‘px’);
 }
 }
);
 }
);

 return $(this);
 },
 MyApplication: {
 Ready: function() {
 $(‘ul’).ContextMenu();
 }
 }
});

$(document).ready(
 function() {
 $.fn.MyApplication.Ready();
 }
);

 6. Save the preceding document as Example 9-1.js. The preceding code results in the image that
you see in Figure 9-3.

Figure 9-3

In Example 9-1, you took the context menu example that you learned about in Chapter 6 and learned how
to turn that into an extensible, reusable jQuery plugin called ContextMenu. The plugin that you made
allows you to make any item in a document into a context menu by simply calling the ContextMenu()
method on that item and defining a few styles in your style sheet.

293

Chapter 9: Plugins

The math and logic that take place in this example do expect a context menu that’s positioned relative to
the viewport, but you begin to see how you might make a reusable jQuery plugin that attempts to do as
much of the grunt work as possible, leaving you with just the aesthetic details.

The plugin that you create expects to make whatever elements you select into context menus. Those ele-
ments’ parent element is automatically affixed with the contextmenu event. The context menu logic causes
the item that you make into a context menu to be revealed as the context menu whenever a right click is
made on that element’s parent element.

You begin by defining your plugin with the $.fn.extend() method. In this example, you pass an object
literal to that method, which contains two items, a ContextMenu() method and a MyApplication object.
When the ready event fires, the Ready() method of the MyApplication object is executed.

$(document).ready(
 function() {
 $.fn.MyApplication.Ready();
 }
);

In the Ready() method of the MyApplication object, all elements in the document are made into
context menus. First, all elements are selected, then the ContextMenu() method is called.

 MyApplication: {
 Ready: function() {
 $(‘ul’).ContextMenu();
 }
 }

The call to the ContextMenu() method conjures up your home-brewed jQuery plugin. The first bits of
logic that occur within the ContextMenu() method immediately begin an iteration using jQuery’s each()
method, iterating over the one or more items present in the this keyword. The this keyword at this
point is expected to contain just one element, but you could have selected multiple elements,
and the plugin logic supports that scenario as well.

$.fn.extend({
 ContextMenu: function() {
 this.each(
 function() {

Each item selected to be a context menu is given the class name tmpContextMenu, which gives you the
ability to style your context menu with CSS.

 $(this).addClass(‘tmpContextMenu’);

The next block adds a jQuery hover event to your context menu that’s used to track whether the mouse
cursor is over the context menu or not. To keep track of whether the mouse cursor is over your context
menu, you use jQuery’s $.data() method, which is provided by jQuery for temporarily storing data
associated with an object or element. To store a value, the $.data() method takes three arguments: the

294

Part I: jQuery API

element you want the data associated with, the name you want to associate with the data you’re storing,
and the value you want to store. You can think of this feature like adding a custom property or attribute
to an element. In this case, you use jQuery’s hover event to set the value of ContextMenu to true when
the mouse cursor is over the context menu, and conversely, you set the value of ContextMenu to false
when the mouse cursor leaves the context menu.

 $(this).hover(
 function() {
 $.data(this, ‘ContextMenu’, true);
 },
 function() {
 $.data(this, ‘ContextMenu’, false);
 }
);

As you did in Chapter 6 by setting a global variable called tmpContextMenu to true or false, the pre-
ceding snippet of code provides the same functionality, but allows you to have multiple context menus,
since it associates the toggle with each context menu individually, rather than a single global variable.
Tracking the position of the mouse cursor helps you to implement closing the context menu when the
user clicks anywhere in the document outside the context menu. Closing an inactive context menu is
handled by the next snippet of code.

In the following snippet of code, you first check to see if the value of MouseDown is false, and if it is, you
set it to true, then you attach a new mousedown event. Setting MouseDown to true prevents the mousedown
event from being attached more than once, since this event only needs to be attached once per docu-
ment regardless of how many context menus you add to the document.

 // Only attach the following event once.
 if (!$.data(document, ‘MouseDown’)) {
 $.data(document, ‘MouseDown’, true);
 $(document).mousedown(
 function() {
 $(‘.tmpContextMenu’).each(
 function() {
 if (!$.data(this, ‘ContextMenu’)) {
 $(this).hide();
 }
 }
);
 }
);
 }

When a mousedown event occurs, the preceding code iterates through each context menu element and
checks the value of ContextMenu as attached to each of those elements using the $.data() method. If
the value of ContextMenu is false, that means the mouse cursor is not over the context menu element,
which means the user has clicked on the document outside the context menu, meaning the context
menu should be closed.

295

Chapter 9: Plugins

The final bits of code handle the contextmenu event and positioning the context menu itself. The logic
within the following code expects you to right-click on the context menu’s parent element to trigger
the context menu, and from the standpoint of logic and math, it also expects the context menu to be
positioned relative to the viewport, rather than relative to its parent. This is typically how you want an
application to work. Context menus are positioned globally with respect to your viewport; however, you’ll
have to take this into account while laying out your document, as you won’t be able to absolutely posi-
tion those parent elements, lest you change the positioning of the context menu. If you don’t like that
idea, it’s easy to come up with new logic that expects you to make all context menus children of the
<body> element, and specify the elements you want that context menu to be used on.

 $(this).parent().bind(
 ‘contextmenu’,
 function($e) {
 $e.preventDefault();

The logic and math behind the positioning of the context menu itself remains basically the same as you
saw in Chapter 6.

Good Practice for jQuery Plugin Development
There are just a few things you should keep in mind while developing your own jQuery plugins:

When developing jQuery plugins, it’s considered good practice to always expect one or more ❑

items to be passed to your plugin, and to always return the jQuery object, whenever it makes
sense and is possible to do so.

I name my jQuery plugins using capital letters to avoid potential naming conflicts with other ❑

jQuery plugins. If you plan on using third-party jQuery plugins, you’ll want to consider name-
spacing your own plugins in some way, so that your naming choices don’t conflict with those of
third-party plugins. I capitalize my plugin names because I find that capitalizing plugin names
isn’t very common among third-party developers and naturally lends itself to distinguishing my
own local plugins from the ones obtained through third-party sources. Of course, this may not
be enough, or you might not like that approach.

If you’re interested in developing official third-party jQuery plugins that follow all the ❑

recommended best practices put out by jQuery’s developers, see the document located at
http://docs.jquery.com/Plugins/Authoring.

Finally, I’m not a big fan of having to write ❑ $.fn to refer to my plugin methods, so I choose to alias
that to two dollar signs. So instead of writing $.fn.MyApplication, I write $$.MyApplication,
which is made possible by writing var $$ = $.fn. I use this in the preceding chapters of this
book, but this is another thing that I like doing personally that you may not like doing. I advo-
cate doing whatever makes sense to you.

296

Part I: jQuery API

Summary
In this chapter, you learned the basic concepts needed to author your own jQuery plugin. You learned
how jQuery plugins are created by passing an object literal to jQuery’s $.fn.extend() method.

You learned how jQuery plugins expect to have one or more items passed to them, which are always
present in the this keyword.

When you write jQuery plugins, you should return the jQuery object (when it makes sense and is pos-
sible to do so), since this preserves jQuery’s magical ability to chain method calls onto one another.

Exercises
 1. What method do you use to add a plugin to jQuery?

 2. How are items you’ve selected with jQuery made available in your custom plugin?

 3. What value should your plugin return?

Part II

jQuery UI

Chapter 10: Implementing Drag-and-Drop

Chapter 11: Drag-and-Drop Sorting

Chapter 12: Selection by Drawing a Box

Chapter 13: Accordion UI

Chapter 14: Datepicker

Chapter 15: Dialogs

Chapter 16: Tabs

10
Implementing Drag-and-Drop

Beginning with this chapter, I shift discussion to the jQuery UI library. The jQuery UI library is a
collection of reusable components that let you make user-interface functionality more quickly. The
jQuery UI library handles a variety of tasks, like making elements in a document draggable or
making a list of items that you can rearrange by drag-and-drop, and many other UI tasks that you
learn about in the remaining chapters of this book.

The jQuery UI library is functionality that exists outside jQuery’s core framework that you’ve
been using and learning about throughout the preceding chapters of this book. The jQuery UI
library is a series of jQuery plugins that each handles these different UI tasks, which in the spirit
of jQuery’s API, makes certain UI tasks much easier to implement.

You can download jQuery UI library components from http://ui.jquery.com/download. The
website lets you customize your download based on which UI components you want to use, and
it offers this customization so that you can add the least amount of JavaScript possible, which, in
turn, reduces overhead like file size and bandwidth. The source code download for this book avail-
able free from www.wrox.com includes the entire jQuery UI package, which comprises all jQuery
UI library plugins. For testing and learning purposes, this is fine; however, if you want to use UI
library components in a real, production website, you should customize your jQuery UI library
download to include only the components that you will use in your application, since the entire
library is a sizable file weighing in at 229.56 KB packed (all white space, comments, and line breaks
removed), or 347.82 KB fully unpacked and uncompressed … a fairly large file download.

In this chapter, I begin coverage of the jQuery UI library with the Draggable library. The Draggable
library gives you the ability to make any element on a page draggable. In the most rudimentary
sense, that means you can move elements around in a document with your mouse and arrange
those elements however you like.

300

Part II: jQuery UI

Making Elements Draggable
The jQuery UI library provides the ability to drag elements around in a document via its Draggables
plugin. Making an element draggable is really easy: First, you need to include the UI library that
includes the Draggables plugin; then, once you’ve made a selection with jQuery, you simply chain the
method draggable() to the selection, like so:

$(‘div#tmpSomeElement’).draggable();

The preceding code makes the <div> element with ID name tmpSomeElement, a draggable element,
which means that you can move the element anywhere in the document with your mouse. The ability
to make elements draggable gives you more options in terms of how your applications function, giving
you many of the same options that you have developing desktop applications.

The actual code behind the scenes, enabling the drag operation, isn’t too terribly complex, but it’s yet
another thing that jQuery allows you to take several lines of code and compress them into very little
code. In this case, it’s a simple function call!

To let you grasp just how easy it is to make an element draggable, the following “Try It Out” presents
an example in which you create a file manager that looks like Mac OS X Leopard’s Finder.

Try It Out Implementing Drag-and-Drop Folders

Example 10-1
To try out jQuery’s Draggables plugin, follow these steps:

 1. Create the following markup document as Example 10-1.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 10-1.js’></script>
 <link type=’text/css’ href=’Example 10-1.css’ rel=’stylesheet’ />
 <!--[if lt IE 7]>
 <link type=’text/css’ href=’Example 10-1.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <div id=”hFinderFiles”>
 <div class=”hFinderDirectory” title=”/Applications”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Applications
 </div>
 </div>

301

Chapter 10: Implementing Drag-and-Drop

 <div class=”hFinderDirectory” title=”/Library”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Library
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Network”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Network
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Sites”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Sites
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/System”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 System
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Users”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Users
 </div>
 </div>
 </div>
 </body>
</html>

 2. Add the following style sheet as Example 10-1.css:

html,
body {
 width: 100%;
 height: 100%;
}
body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
div#hFinderFiles {
 border-bottom: 1px solid rgb(64, 64, 64);
 background: #fff;
 position: absolute;
 top: 0;
 right: 0;
 bottom: 23px;
 left: 0;

302

Part II: jQuery UI

 overflow: auto;
}
div.hFinderDirectory {
 float: left;
 width: 150px;
 height: 100px;
 overflow: hidden;
}
div.hFinderIcon {
 height: 56px;
 width: 54px;
 margin: 10px auto 3px auto;
}
div.hFinderIcon div {
 background: url(‘../../../Images/Finder/Folder 48x48.png’)
 no-repeat center;
 width: 48px;
 height: 48px;
 margin: auto;
}
div.hFinderIconSelected {
 background-color: rgb(196, 196, 196);
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}
div.hFinderDirectoryName {
 text-align: center;
}
span.hFinderDirectoryNameSelected {
 background: rgb(56, 117, 215);
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
 color: white;
 padding: 1px 7px;
}

 3. Create the following document as Example 10-1.IE.css:

div#hFinderFiles {
 height: expression(document.body.offsetHeight - 23);
 width: expression(document.body.offsetWidth);
}
div.hFinderIcon div {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=’../../../Images/Finder/Folder 48x48.png’, sizingMethod=’crop’);
}

 4. Create the following document as Example 10-1.js.

$(document).ready(
 function() {
 $(‘div.hFinderDirectory’).mousedown(
 function() {
 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderIcon’)

303

Chapter 10: Implementing Drag-and-Drop

 .removeClass(‘hFinderIconSelected’);

 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);
 }
)
 .draggable();
 }
);

The preceding source code results in the document that you see in Figure 10-1.

Figure 10-1

In the preceding example, you created a layout of folders that resembles Mac OS X Finder in Leopard. The
only difference you’ll notice between browsers is that the rounded-corner effect present on selected fold-
ers only comes through on WebKit and Gecko browsers, while IE and Opera show square corners. This is
because I’ve used the experimental CSS properties -moz-border-radius and -webkit-border-radius
to produce this effect, which only works in Gecko and WebKit browsers, respectively. If I were to go the
extra mile and produce that effect in all browsers, I would have to use static background images and
possibly still more markup. Additionally, highlighting the filename with rounded corners would be more
difficult, if not impossible to pull off, since this requires the rounded corners to be applied to inline ele-
ments, like the element in this example, where if the name of the folder wraps to a new line, you
have the background applied to each line and only to the background of the text. In other words, the
background hugs the text, like you see in Figure 10-2.

Figure 10-2

304

Part II: jQuery UI

In Figure 10-2, you see that the blue background with rounded corners hugs the text, causing the width
of the background to vary with the width of the text. Figure 10-2 shows what Safari does with its rounded
corners, and even this is inconsistent with what the real Finder does, which is shown in Figure 10-3.

Figure 10-3

So, given that making the look true to the real Finder is a bit of a tall order and, given the limitations of
the browsers involved, to avoid that complication, I simply accept that IE and Opera have square boxes.

In a nutshell, the gist of this example allows you to select a single folder at a time and drag those folders
around to any position in the window.

To make the elements draggable, you included the jQuery UI library, which includes all of the jQuery UI
plugins, including the Draggables plugin.

 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>

The markup in this example is pretty straightforward. The individual folders are all contained in the
<div> element with ID name hFinderFiles; this container element is needed to assist in controlling the
presentation of the folders.

<div id=”hFinderFiles”>

Each folder resides in a container <div> element with the class name hFinderDirectory, with the path to
the directory being contained in the title attribute, which could then be used to implement AJAX
functionality, where the path of the folder is submitted asynchronously to the server and the server
responds with the contents of that folder. Each folder has an icon and a name, so markup is put in place
for each of these. The reasoning behind this specific structure makes more sense once you examine the
style sheet, but you create one <div> element for the icon, which contains a nested <div> element. The
outer <div> element controls the position of the icon and sets the dimensions for the highlighted style.
Then the name of the folder is contained in another <div> element, which has the name of the folder
nested in a element. The element is used so that the when the folder is highlighted, the
background is applied to an inline element, and the background hugs the text, even if the text takes up
multiple lines, as you saw in Figure 10-1.

 <div class=”hFinderDirectory” title=”/Applications”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Applications
 </div>
 </div>

305

Chapter 10: Implementing Drag-and-Drop

The style sheet does all the work of making this raw lump of structural markup into a Finder-imitating
document. The following reviews each rule in the style sheet and explains why each is needed:

In this example, you put each folder in a container <div> element, which will be absolutely positioned
later in the style sheet. The styles that position that <div> element rely on the specification of opposing
offset properties to imply width and height, and as you already saw in the iCal-clone that I presented in
Chapter 7, that technique doesn’t work in IE6. So, as you did in that example, you must give the <html>
and <body> elements 100 percent width and height, so that the presentation in IE can be fixed. This is
needed because, in the IE style sheet that you made, the container <div> element is given dimensions
that are based on the dimensions of the <body> element, and for that to work, you need the <body> ele-
ment to take up the entire viewport, which is why you apply the following rule:

html,
body {
 width: 100%;
 height: 100%;
}

In the next rule, you give the Finder a Lucida Grande font, which is a Mac font used for many Mac
applications. If that font isn’t around, you fall back on Arial, which is present on Windows, or other-
wise, if that font is not present, you fall back on the generic sans-serif font. The background is set to
gray, then an image is tiled across the bottom of the window so that this document looks just like the
real Finder. The font color is set to a very dark gray, and finally, the default padding and margin are
removed from the <body> element.

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}

The next rule positions the <div> element with ID name hFinderFiles, which contains all the folders.
This <div> element is positioned absolutely and is set to take up the entire viewport, except the bot-
tom 23 pixels, and that is done by specifying opposing offset properties to imply width and height. The
background is set to white, there is a dark gray border placed across the bottom of the container, and
finally, the overflow: auto; declaration is added so that when you have more folders and files than the
container can hold, a scrollbar appears so you can access everything.

div#hFinderFiles {
 border-bottom: 1px solid rgb(64, 64, 64);
 background: #fff;
 position: absolute;
 top: 0;
 right: 0;
 bottom: 23px;
 left: 0;
 overflow: auto;
}

306

Part II: jQuery UI

The remaining style-sheet declarations set up the folders themselves. The next rule puts the folders
side-by-side and gives each fixed dimensions. The overflow: hidden; declaration prevents long folder
names from extending outside the bounds of the container.

div.hFinderDirectory {
 float: left;
 width: 150px;
 height: 100px;
 overflow: hidden;
}

The next two rules handle the display of the folder icon. You need an inner and an outer <div> to display
the folder icon. This could actually be done with a single <div> element, if it weren’t for the fact that IE6
doesn’t handle PNG transparency, and, to force IE into displaying the PNG image correctly, you have to
use IE’s proprietary filter property, which doesn’t allow you to center the image. So, the outer <div>
element sets the dimensions of the icon with the highlighting effect in mind, and the gray background
applied to a selected folder is applied to this outer <div> element. The inner <div> element has the same
dimensions of the background image that’s being loaded, the folder icon, and it is centered within the
outer <div> element using the margin: auto; declaration. The result is a folder icon that looks like the
real Finder in Mac OS X.

div.hFinderIcon {
 height: 56px;
 width: 54px;
 margin: 10px auto 3px auto;
}
div.hFinderIcon div {
 background: url(‘../../../Images/Finder/Folder 48x48.png’)
 no-repeat center;
 width: 48px;
 height: 48px;
 margin: auto;
}

The following rule defines the style for a selected folder. The class name hFinderIconSelected is applied to
the <div> element with class name hFinderIcon dynamically using jQuery.

div.hFinderIconSelected {
 background-color: rgb(196, 196, 196);
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}
The next rule centers the name of the folder.
div.hFinderDirectoryName {
 text-align: center;
}

And finally, the last rule sets the style for the selected folder’s name. A blue background, a little padding,
white text, and rounded corners are added to make the folder name look more like the real Finder.

span.hFinderDirectoryNameSelected {
 background: rgb(56, 117, 215);
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;

307

Chapter 10: Implementing Drag-and-Drop

 color: white;
 padding: 1px 7px;
}

The IE style sheet fixes a couple of display glitches in IE6. The first rule sets the dimensions of the
div#hFinderFiles so that the <div> element has dimensions based on those of the <body> element,
which you previously made take up the entire viewport with 100 percent width and height, removing
both default padding and margin. This is because some browsers apply default padding to <body> and
others apply default margin to <body>. The width and height of the <div> are set by using a CSS expres-
sion, which is IE-proprietary. CSS expressions should be used sparingly, if used at all, since they can affect
performance and lead to difficult-to-locate JavaScript errors. JavaScript errors occurring in CSS expres-
sions come up in an alert in IE, complaining about an error in the main HTML file, at line 1, instead of
the relevant line of the CSS file in which the error appears. You may be better off correcting glitches
like this from JavaScript, instead of CSS. On the other hand, this fix is limited to IE6 — a browser that
is becoming obsolete (let’s hope as soon as possible). In any case, if you do use CSS expressions, just
remember to check your IE style sheet if you see that JavaScript error.

div#hFinderFiles {
 height: expression(document.body.offsetHeight - 23);
 width: expression(document.body.offsetWidth);
}

The second rule in the IE style sheet fixes the PNG transparency of the folder icon by using IE’s propri-
etary filter property. The background image is removed, and the filter is applied using the same image.
This gets rid of the light-blue/gray background around the folder icon, making that part of the image
transparent.

div.hFinderIcon div {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=’../../../Images/Finder/Folder 48x48.png’, sizingMethod=’crop’);
}

And as you’ve no doubt come to expect, the JavaScript portion of this example is very simple. You start
with the code that’s required to make a folder selectable, which is done by adding a mousedown event. A
mousedown event is used instead of, say, a click event, because you want a selection to take place even if
the user moves the mouse cursor outside the boundaries of the folder while the button is pressed. If the
user moves the cursor while the button is pressed, that causes the element to be dragged, and because
of that, you want the folder to be selected to show the user that the folder they are dragging is selected.

 $(‘div.hFinderDirectory’).mousedown(
 function() {
 }
)

Inside that mousedown event, you write some logic for selecting the folder. This is done by
selecting every folder except the one that’s being clicked on, and removing the class name
hFinderIconSelected from the div.hFinderIcon element inside each folder. Then you make the
same selection again, but this time, you remove the class name hFinderDirectoryNameSelected from the
div.hFinderDirectoryName span of every folder, except the one that’s being clicked on. Then you add
those same class names to the div.hFinderIcon and div.hFinderDirectoryName span of the folder
that’s being selected.

308

Part II: jQuery UI

 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderIcon’)
 .removeClass(‘hFinderIconSelected’);

 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);

Then, finally, you made each folder draggable, by chaining the method draggable() to the call to
mousedown(). The jQuery UI draggable() method lets you move the folders in the document to any
position you like, kind of how Mac OS X’s Finder works by default, allowing you to arrange the folders
however you like. But the jQuery UI draggable() method lets you do much more than just this.

Making Elements Draggable with Ghosting
Let’s say that you want to make the folder icons in Example 10-1 behave in a more sane and useful way,
as, for example, if you wanted to make your folders so that you can drag-and-drop one folder onto
another. The jQuery UI draggable() method lets you do this too. In fact, the jQuery UI draggable()
method has a lot of options that you can tinker with to customize how a drag operation works. Like the
$.ajax() method that you saw in Chapter 7 or the css() method that you saw in Chapter 6, you can pass
an object literal to the draggable() method, which defines options that tweak how the draggable()
method works.

One option that you have available to use is called ghosting. Ghosting occurs when you start dragging an
element, and instead of moving the original element, a clone of the original element is created, with the
same dimensions and look and feel, and that element is dragged instead. One example of this is when
you open Finder, or Explorer on Windows, and move a folder. When you drag a folder, a semitranspar-
ent copy of the folder is created, and you can drag that image around, usually, to drop it on another folder
icon so that you move the folder to a new location. Figure 10-4 shows an example of ghosting in
Leopard’s Finder.

To add the ghosting effect to your faux Finder, the JavaScript you need looks like this:

$(‘div.hFinderDirectory’).draggable({
 helper: ‘clone’,
 opacity: 0.5
});

You need to specify two options — helper and opacity. The helper option can take one of two string
values, original or clone. The value original produces the same effect that you observed in Example
10-1, which lets you move the elements around the document. The value clone causes the drag to pro-
duce the ghosting effect that you see in Figure 10-4, where a copy of the item is made. The other option,
opacity, controls the transparency of the element you’re dragging. Just like the CSS opacity property

309

Chapter 10: Implementing Drag-and-Drop

supported by various browsers, this option takes a float between 0, which is fully transparent, and 1,
which is fully opaque. A value of 0.5 produces 50 percent transparency. The following “Try It Out” adds
this code to your Finder clone:

Figure 10-4

Try It Out Adding a Ghosting Effect to Your Finder

Example 10-2
To add ghosting to your Finder, follow these steps:

 1. Copy the files from Example 10-1 to Example 10-2.html, Example 10-2.css, Example 10-2.IE.css,
Example 10-2.js, and so on.

 2. In the newly copied Example 10-2.html, update the file references to Example 10-2.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 10-2.js’></script>
 <link type=’text/css’ href=’Example 10-2.css’ rel=’stylesheet’ />
 <!--[if lt IE 7]>
 <link type=’text/css’ href=’Example 10-2.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>

310

Part II: jQuery UI

 3. Modify Example 10-2.js, adding new code to the call to draggable():

$(document).ready(
 function() {
 $(‘div.hFinderDirectory’).mousedown(
 function() {
 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderIcon’)
 .removeClass(‘hFinderIconSelected’);

 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);
 }
)
 .draggable({
 helper: ‘clone’,
 opacity: 0.5
 });
 }
);

The preceding improvements result in what you see in Figure 10-5.

Figure 10-5

In the preceding example, you see the first part of what you need to make a drag-and-drop user inter-
face for a file manager, which, at this point comes to exactly four lines of code in your application, and
the inclusion of the jQuery UI Draggables plugin. The helper option, with a value of clone, gives you
the same ghosting effect that you observe in your Operating System’s native file manager. This is

311

Chapter 10: Implementing Drag-and-Drop

combined with the opacity option, which lets your effect mirror the native file manager’s effect. And
that’s all there is to it!

Dragging between Windows in Safari
As I was preparing the material for this chapter, I noticed that the jQuery UI Draggables plugin fails to
use Safari on Mac OS X’s native Drag-and-Drop API. The only reason that I feel this is worth mentioning,
is Safari’s native Drag-and-Drop API lets you do something very cool: It lets you drag-and-drop items not
only within the same browser window, but also between completely separate browser windows. This
capability lets you have web-based file management that really mimics native OS file management in just
about every way. And beyond just file management, it also makes for some other interesting UI scenarios,
for example, dragging and dropping image thumbnails from one window to another to manage content.

The simple elegance of this technique is also too juicy to pass on, because it requires ridiculously
minimal modifications to take advantage of. Unfortunately, for you Windows folks and even users of
browsers other than Safari on the Mac, there is no comparable technique available. However, I thought
the concept was worth presenting all the same in the hopes of raising awareness that we as developers
need features like this to make truly compelling and usable web-based applications, and just because
you can’t use the technique in all browsers doesn’t mean that you can’t provide the sugar for the browser
that does support it … simply out of convenience to those users.

The following “Try It Out” shows you how to make the drag portion of a drag-and-drop implementa-
tion work between windows in Safari. Unfortunately, this technique is incompatible with the jQuery UI
Draggables implementation, so if you want to offer this feature, you’ll need to work around this in your
code. The following shows you how to do this:

Try It Out Implementing Safari’s Native Drag-and-Drop API

Example 10-3
To implement Safari’s native Drag-and-Drop API, follow these steps:

 1. Copy the files you made for Example 10-2 to Example 10-3.html, Example 10-3.css, Example
10-3.IE.css, and Example 10-3.js.

 2. Modify the Example 10-3.html file you just created, so that the file references each point to the
right file.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>

312

Part II: jQuery UI

 <script type=’text/javascript’ src=’Example 10-3.js’></script>
 <link type=’text/css’ href=’Example 10-3.css’ rel=’stylesheet’ />
 <!--[if lt IE 7]>
 <link type=’text/css’ href=’Example 10-3.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>

 3. Modify the style sheet, Example 10-3.css. The modifications that you make will enable Safari’s
native Drag-and-Drop API.

div.hFinderDirectory {
 float: left;
 width: 150px;
 height: 100px;
 overflow: hidden;
 -khtml-user-drag: element;
}
div.hFinderDirectory:-khtml-drag {
 opacity: 0.5;
}

 4. Modify Example 10-3.js like so:

$(document).ready(
 function() {
 $(‘div.hFinderDirectory’).mousedown(
 function() {
 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderIcon’)
 .removeClass(‘hFinderIconSelected’);

 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);
 }
);

 if (!($.browser.safari && navigator.appVersion.indexOf(‘Mac’) != -1)) {
 $(‘div.hFinderDirectory’).draggable({
 helper: ‘clone’,
 opacity: 0.5
 });
 }
 }
);

These modifications make it so that you can drag a folder from one browser window to another, which
you see in Figure 10-6.

313

Chapter 10: Implementing Drag-and-Drop

Figure 10-6

In Example 10-3, you enable Safari’s native Drag-and-Drop API. Unfortunately, this API only works in
the Mac version of Safari and doesn’t work in the Windows version of Safari, or Google Chrome. I expect
that will change with some future iteration of WebKit. Using Safari’s native Drag-and-Drop API gives you
one big advantage for users of that browser on a Mac, in that it lets you drag elements between multiple
windows, instead of confining you to only one browser window. The implementation is very easy, so it’s
not too much of a hassle to make the added functionality available, and users of other browsers still get
the jQuery UI Draggables plugin. The first thing you did to enable this functionality is add a single dec-
laration to the following rule:

div.hFinderDirectory {
 float: left;
 width: 150px;
 height: 100px;
 overflow: hidden;
 -khtml-user-drag: element;
}

The declaration -khtml-user-drag: element; makes each folder draggable. Then, to style the element
being dragged, you added a new rule:

div.hFinderDirectory:-khtml-drag {
 opacity: 0.5;
}

314

Part II: jQuery UI

The preceding rule uses the pseudo-class :-khtml-drag to style the element being dragged; the style
you apply is the same that you applied for the draggable() method, 50 percent opacity via the declara-
tion opacity: 0.5.

In the JavaScript, you wrap some browser detection around the call to the draggable() method so that
method is executed for every browser except Safari Mac.

 if (!($.browser.safari && navigator.appVersion.indexOf(‘Mac’) != -1)) {
 $(‘div.hFinderDirectory’).draggable({
 helper: ‘clone’,
 opacity: 0.5
 });
 }

jQuery lets you detect the browser via $.browser and then a subproperty. $.browser.safari checks for
not only Safari, but any WebKit browser. Then you look inside the navigator.appVersion string to
see what OS the script is executing on, looking for the string Mac. And thus it is that you allow Safari’s
native Drag-and-Drop API in Safari on OS X, and use the jQuery UI Draggables plugin for all the other
browsers. The modifications needed were extremely minimal, just six additional lines of code.

Delegating Drop Zones for Dragged Elements
Typically when you implement dragging on elements in your document, you want to delegate somewhere
else for the elements being dragged to be dropped. jQuery UI provides another plugin for handling the
drop portion, called Droppables. The jQuery UI Droppables plugin lets you create and manipulate a
variety of things associated with dropping one element onto another, including what happens while you’re
dragging one element over a drop zone and what happens when a drop takes place. jQuery allows you
to have precision control over drag-and-drop, which lets you create a very basic drag-and-drop imple-
mentation or a very polished drag-and-drop implementation.

As you’ve already seen for the Draggables API, jQuery UI provides a concise, easy-to-use API for han-
dling the drop side. To make an element into a droppable element, all you have to do is make a selection
and call the droppable() method with the appropriate options. Like the draggable() method, options
are provided via an object literal consisting of key, value pairs. The following example shows you what
a droppable implementation looks like in the context of the Finder clone you’ve been building throughout
this chapter:

 $(‘div.hFinderDirectory’).draggable({
 helper: ‘clone’,
 opacity: 0.5
 })
 .droppable({
 accept: ‘div.hFinderDirectory’,
 hoverClass: ‘hFinderDirectoryDrop’
 });

In the preceding code example, you have a really basic implementation of the Droppables API. Each
<div> element with the class name hFinderDirectory is made into a drop zone, so that any directory can
be dragged and dropped onto any other directory. To make the drop portion function properly, you

315

Chapter 10: Implementing Drag-and-Drop

pass some options to the droppable() method. The accept option lets you specify a selector that will
be used to match what elements you want to allow to be dropped onto the drop zone; in this case, you
only want to allow <div> elements with the class name hFinderDirectory to be dropped. Using this filter,
you can add other drag-and-drop functionality in the same document, without having conflict between
different drag-and-drop implementations. The hoverClass option allows you to change the style of the
drop zone as a draggable element is being dragged over the droppable element. You simply specify a
class name as the value, then set up the appropriate styles in your style sheet.

In the following “Try It Out,” you take the basic concept of the Droppables API that I just demonstrated
and apply the droppable() method to the Finder clone you’ve been building, complete with hacks for
Internet Explorer 6 and an independently implemented Drag-and-Drop API for Safari on Mac OS X:

Try It Out Adding Drop Zones

Example 10-4
To add droppable functionality to the Finder clone, follow these steps:

 1. Copy the files you made for Example 10-3 to Example 10-4.html, Example 10-4.css, Example
10-4.IE.css, and Example 10-4.js.

 2. Modify the Example 10-4.html file you just created, so that the file references each point to the
right file.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 10-4.js’></script>
 <link type=’text/css’ href=’Example 10-4.css’ rel=’stylesheet’ />
 <!--[if lt IE 7]>
 <link type=’text/css’ href=’Example 10-4.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>

 3. Make the following modifications to Example 10-4.css:

html,
body {
 width: 100%;
 height: 100%;
}
body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;
 color: rgb(50, 50, 50);

316

Part II: jQuery UI

 margin: 0;
 padding: 0;
}
div#hFinderFiles {
 border-bottom: 1px solid rgb(64, 64, 64);
 background: #fff;
 position: absolute;
 top: 0;
 right: 0;
 bottom: 23px;
 left: 0;
 overflow: auto;
}
div.hFinderDirectory {
 float: left;
 width: 150px;
 height: 100px;
 overflow: hidden;
 -khtml-user-drag: element;
}
div.hFinderDirectory:-khtml-drag {
 opacity: 0.5;
}
div.hFinderIcon {
 height: 56px;
 width: 54px;
 margin: 10px auto 3px auto;
}
div.hFinderIcon div {
 background: url(‘../../../Images/Finder/Folder 48x48.png’)
 no-repeat center;
 width: 48px;
 height: 48px;
 margin: auto;
}
div.hFinderIconSelected,
div.hFinderDirectoryDrop div.hFinderIcon {
 background-color: rgb(196, 196, 196);
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}
div.hFinderDirectoryDrop div.hFinderIcon div {
 background-image:
 url(‘../../../Images/Finder/Open Folder 48x48.png’);
}
div.hFinderDirectoryName {
 text-align: center;
}
span.hFinderDirectoryNameSelected,
div.hFinderDirectoryDrop span {
 background: rgb(56, 117, 215);
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
 color: white;
 padding: 1px 7px;
}

317

Chapter 10: Implementing Drag-and-Drop

 4. Modify Example 10-4.js like so:

$(document).ready(
 function() {
 $(‘div.hFinderDirectory’).mousedown(
 function() {
 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderIcon’)
 .removeClass(‘hFinderIconSelected’);

 $(‘div.hFinderDirectory’).not(this)
 .find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);
 }
);

 if (!($.browser.safari && navigator.appVersion.indexOf(‘Mac’) != -1)) {
 $(‘div.hFinderDirectory’).draggable({
 helper: ‘clone’,
 opacity: 0.5
 })
 .droppable({
 accept: ‘div.hFinderDirectory’,
 hoverClass: ‘hFinderDirectoryDrop’,
 over: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css({
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Open Folder 48x48.png’,” +
 “sizingMethod=’crop’)”
 });
 }
 },
 out: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css({
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Folder 48x48.png’,” +
 “sizingMethod=’crop’)”
 });
 }
 },
 drop: function(e, ui) {
 var $path = ui.draggable.attr(‘title’);
 // Do something with the path

 // Remove the element that was dropped.

318

Part II: jQuery UI

 ui.draggable.remove();
 }
 });
 } else {
 // Safari Mac OS X Native API
 var dragElement;

 $(‘div.hFinderDirectory’).each(
 function() {
 // jQuery’s event API does not provide the dataTransfer
 // object.
 this.addEventListener(
 ‘dragstart’,
 function($e) {
 // The setData method lets you save some data
 // for the element being dragged.
 $e.dataTransfer.setData(‘Text’, $(this).attr(‘title’));

 // Remeber the drag element.
 dragElement = $(this);
 }, false
);

 this.addEventListener(
 ‘dragenter’,
 function($e) {
 // Browser default behavior is canceled.
 $e.preventDefault();
 }, false
);

 this.addEventListener(
 ‘dragover’,
 function($e) {
 $e.preventDefault();
 // Add the style for the folder being dragged over
 // But not if the drag element is being dragged over itself.
 if (dragElement.attr(‘title’) != $(this).attr(‘title’)) {
 $(this).addClass(‘hFinderDirectoryDrop’);
 }
 }
);

 this.addEventListener(
 ‘dragleave’,
 function($e) {
 $e.preventDefault();
 // Remove the style when the drag item leaves the
 // drop zone.
 $(this).removeClass(‘hFinderDirectoryDrop’);
 }
);

 this.addEventListener(

319

Chapter 10: Implementing Drag-and-Drop

 ‘drop’,
 function($e) {
 var $path = $e.dataTransfer.getData(‘Text’);
 // Do something with the path

 // Delete the drag element.
 dragElement.remove();
 $e.preventDefault();
 }, false
);
 }
);
 }
 }
);

The preceding source code gives you output like you see in Figure 10-7, in Safari on Mac OS X.

Figure 10-7

Figure 10-8 shows you what this example looks like in Internet Explorer 8 Beta 2 on Windows Vista.

320

Part II: jQuery UI

Figure 10-8

In the preceding example, you added the jQuery UI droppable() method to the Finder clone, which lets
you delegate areas where draggable elements can be dropped, and a series of methods that use Safari’s
native Drag-and-Drop API for Safari on Mac OS X. Of course, you don’t have to use Safari’s native API,
if you don’t want to. The jQuery UI Draggables and Droppables plugins both work in Safari (however,
jQuery UI uses its own API); the only reason I’ve implemented the native Drag-and-Drop API is so that
folders can be dragged and dropped between completely separate browser windows on that platform.

In order to set up the document for the Droppables library, you added a few rules to the style sheet, which
define what an element looks like while you’re dragging one element over another. From here on, I refer
to the action of dragging one element over another element as the dragover event. jQuery UI simply
refers to this event as over, but the native Drag-and-Drop API in IE and Safari both call this event
dragover.

In essence, the style that you use for dragover is simply the same style that you’re already using to high-
light a folder to indicate its selection, with just one difference: You swap out the default folder icon with an
open folder icon. In the JavaScript portion, changing the dragover style in the style sheet is made pos-
sible by the addition of the class name, hFinderDirectoryDrop. This class name is added to the <div> ele-
ment with class name hFinderDirectory. jQuery dynamically adds or removes the hFinderDirectoryDrop
class name to or from this <div> element, allowing you to define a different style upon dragover.

So, you’re reusing the “selected folder style” for folders where the dragover event is taking place.
Reusing that style is done simply by adding additional selectors that reference the <div> element with
the dragover class name hFinderDirectoryDrop to the style sheet.

div.hFinderIconSelected,
div.hFinderDirectoryDrop div.hFinderIcon {
 background-color: rgb(196, 196, 196);
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}

321

Chapter 10: Implementing Drag-and-Drop

div.hFinderDirectoryDrop div.hFinderIcon div {
 background-image:
 url(‘../../../Images/Finder/Open Folder 48x48.png’);
}
div.hFinderDirectoryName {
 text-align: center;
}
span.hFinderDirectoryNameSelected,
div.hFinderDirectoryDrop span {
 background: rgb(56, 117, 215);
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
 color: white;
 padding: 1px 7px;
}

The preceding reuses the selected folder style for dragover elements. To replace the default folder icon
with an open folder icon, you use a more specific selector. The following selector is used to add the
default folder icon:

div.hFinderIcon div

The following selector overrides the preceding selector when a dragover event is taking place, provid-
ing an open folder icon instead of the default folder icon:

div.hFinderDirectoryDrop div.hFinderIcon div

The IE style sheet, Example 10-4.IE.css, doesn’t add a similar style-sheet rule, though. If you recall from
the preceding examples in this chapter, IE6 doesn’t properly display transparent PNG images without a
hack that makes use of its proprietary CSS filter property. It turns out that if you add a new rule mir-
roring what you’ve done in the main style sheet, IE6 encounters some kind of internal style-sheet parsing
bug and does not render the folder icons correctly. To work around this, you swap out the folder icon
directly from JavaScript using browser detection. Unfortunately, in this case, IE6 makes it impossible to
keep its styles in the style sheet and out of your JavaScript.

The IE hack makes use of some of the other options that jQuery UI allows for working with Droppable
elements. If you recall from earlier in this section, you saw how you can pass an object literal to the
droppable() method. Within the object literal, you specify options via key, value pairs, which, in turn,
give you fine-grained control over how a drop operation works. In the portion of JavaScript that calls
droppable(), you have options like accept, which as you saw previously in this section, lets you filter
which elements are allowed in the drop zone by specifying a selector.

 .droppable({
 accept: ‘div.hFinderDirectory’,

The next option specifies the class name that is added to the drop element when a dragover event takes
place. As you already saw, this option causes the class name hFinderDirectoryDrop to be added to the
<div> element with class name hFinderDirectory when a dragover event takes place.

 hoverClass: ‘hFinderDirectoryDrop’,

322

Part II: jQuery UI

The following option lets you set a callback function that is executed when a dragover event takes
place; the name of this option is simply over. This callback function specified here fixes the IE6 glitch
that prevents you from putting the dragover style in the IE style sheet. Since IE produces a bug when
you add a new rule to the IE style sheet with a new filter image for dragover, you have to fix that manu-
ally with JavaScript. So the following JavaScript checks to see that the browser is IE6; then it queries for
the <div> element that houses the folder image, removes the background, and applies the transparent
PNG image via IE’s proprietary filter property. This hack lets you use PNG images with transparent
parts in IE6, which doesn’t support transparency in PNG images natively. IE7, on the other hand, does
implement support for transparency in PNG images, so you don’t have to apply the fix to newer ver-
sions of Internet Explorer.

 over: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css({
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Open Folder 48x48.png’,” +
 “sizingMethod=’crop’)”
 });
 }
 },

The next option specifies a function that occurs at the dragleave event, when the dragged element has
left the boundaries of a drop zone. jQuery UI calls the option for specifying this event out. The code
within this callback function finishes the IE6 hack by restoring the default folder image, again using
IE’s proprietary filter property.

 out: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css({
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Folder 48x48.png’,” +
 “sizingMethod=’crop’)”
 });
 }
 },

In the last option passed to the droppable() method, you specify a function that occurs at the drop event,
which occurs when an element has been dragged over a drop zone and the mouse button released. Within
this function is where you’ll want to do whatever it is the act of dragging and dropping is intended to
provide. In this case, you’d want to remove the folder being dropped, then make an AJAX call to the
server, where on the server side you’d have code that actually moves the folder to the new location.

 drop: function(e, ui) {
 var $path = ui.draggable.attr(‘title’);
 // Do something with the path

 // Remove the element that was dropped.
 ui.draggable.remove();
 }
 });

323

Chapter 10: Implementing Drag-and-Drop

In the preceding drop event, you are able to access properties associated with the drag-and-drop operation
by specifying a second argument in your callback function. In the preceding examples, the second argu-
ment is named ui; then the ui.draggable object gives you access to the element that has been dragged
and dropped on this element. In the example, you access the title attribute of the element being dragged,
which contains the folder’s absolute path, which you could then send to the server, along with the path
to the folder that the folder has been dropped on, and actually move that folder to the new location pro-
grammatically. The function ends with the dragged element being deleted, which would be the final
operation that you would do upon implementing a drag-and-drop folder UI.

The preceding described what you need to do to use the jQuery UI Droppable library. The remaining
JavaScript code deals with implementing Safari’s native Drag-and-Drop API on Mac OS X, which has a
slightly different approach. For the native API implementation, you first declare a variable that is used
to remember the element being dragged. This is used so that you can access the element being dragged
from the various events that fire on the element acting as a drop zone. Unlike jQuery, the native Drag-
and-Drop API does not provide the draggable element in either the event object or another argument
passed to the callback functions.

 var dragElement;

 $(‘div.hFinderDirectory’).each(
 function() {
 // jQuery’s event API does not provide the dataTransfer
 // object.

First, you set up the dragstart event. This event fires when a drag on an element begins. Safari and IE
both support drag-and-drop events; however, IE does not provide support for drag-and-drop via CSS,
as you saw previously in this chapter with the -khtml-user-drag property. Aside from the events them-
selves, another feature shared by the IE and Safari implementations is the dataTransfer object, which
lets you store data in a clipboard for the drag-and-drop operation. You can set data at any point in the
process, but you may only access data in the clipboard when a drop event has taken place.

 this.addEventListener(
 ‘dragstart’,
 function($e) {
 // The setData method lets you save some data
 // for the element being dragged.
 $e.dataTransfer.setData(‘Text’, $(this).attr(‘title’));

 // Remeber the drag element.
 dragElement = $(this);
 }, false
);

In the callback function for the dragstart event, the path to the folder being dragged is saved to the
clipboard using the setData() method of the dataTransfer object. While I’m not going to go into
great detail about the setData() method, I will summarize its purpose by saying that Safari lets you
pass plain text, whereas you specify the type of data in the first argument, as Text, and the data in the
second argument. Another type of data that you can specify is a URL. These are the two data types sup-
ported by both Internet Explorer and Safari. Safari also supports specifying MIME types in the first
argument, such as text/plain or image/jpeg. MIME, short for Multipurpose Internet Mail Extension, is a
standard, similar to file extensions, that is used for identifying data within a file. For example, a PNG

324

Part II: jQuery UI

image has the extension .png, but also has the MIME type image/png. So, in Safari, it is also possible to
transmit data using the setData() method, where you are able to provide a MIME type for the data
you’re transmitting, and thus not be limited to plain text or a URL.

In the preceding code, the data passed to the setData() method is the path of the folder being dragged.
You don’t really need to pass this data since you also set the variable dragElement with a reference to the
element being dragged. I have provided the setData() method simply to let you know about its existence.

Next, you attach a dragenter event. Nothing is really happening with this event, except the default
action of the browser is being canceled. This is done so that you don’t inadvertently conflict with some-
thing the browser supports by default with a drag-and-drop operation.

 this.addEventListener(
 ‘dragenter’,
 function($e) {
 // Browser default behavior is canceled.
 $e.preventDefault();
 }, false
);

In the next snippet of code, you attach a dragover event. Here, basically, you’re reproducing the same
thing that’s going on with the jQuery UI code. You check to see if the folder is being dragged over itself;
if it is, you do nothing; if it isn’t, you apply the hFinderDirectoryDrop class name to the drop folder. This
does the same thing that you saw with the droppable() method’s hoverClass option, giving the drop
folder the selected style, in addition to swapping out the default folder icon with an open folder icon.
And you again prevent the default action of the browser with a call to preventDefault() so that you
don’t conflict with something the browser does by default when the user does a drag-and-drop.

 this.addEventListener(
 ‘dragover’,
 function($e) {
 $e.preventDefault();
 // Add the style for the folder being dragged over
 // But not if the drag element is being dragged over itself.
 if (dragElement.attr(‘title’) != $(this).attr(‘title’)) {
 $(this).addClass(‘hFinderDirectoryDrop’);
 }
 }
);

The next event that you attach is the dragleave event, when the dragged element leaves the boundaries
of the drop element; you remove the class hFinderDirectoryDrop from the folder and, again, prevent the
default action.

 this.addEventListener(
 ‘dragleave’,
 function($e) {
 $e.preventDefault();

325

Chapter 10: Implementing Drag-and-Drop

 // Remove the style when the drag item leaves the
 // drop zone.
 $(this).removeClass(‘hFinderDirectoryDrop’);
 }
);

Finally, you come to the drop event, which is where you will complete the drag-and-drop operation.
You can get the path that you passed to the dataTransfer.getData() method, by specifying the same
type of data that you set when you saved that data to the clipboard. Again, you are only able to call the
getData() method from the drop event, which is a security precaution that prevents you from having
arbitrary access to the user’s system clipboard. Here is where you might make an AJAX Request to the
server, sending both the drag-and-drop path so that the folder move is completed. Finally, you also pre-
vent the browser’s default action again.

 this.addEventListener(
 ‘drop’,
 function($e) {
 var $path = $e.dataTransfer.getData(‘Text’);
 // Do something with the path

 // Delete the drag element.
 dragElement.remove();
 $e.preventDefault();
 }, false
);
 }
);
 }

In the preceding example, you’ve seen how the jQuery UI droppable() method works in a real-life-
oriented demonstration of a drag-and-drop implementation. You’ve also seen how the jQuery UI
droppable() method, which works in all popular browsers, contrasts with Safari and IE’s native drag-
and-drop capabilities, which if the work going on in HTML5 is any indication, will soon become the
universal Drag-and-Drop API standard supported by all browsers. No doubt when that occurs, jQuery
will be adjusted to take advantage of the native API, keeping with its vision of letting you do more with
less code.

A comprehensive jQuery UI Draggable and Droppable reference is available in
Appendix J, including all of the options that you can pass to both the draggable()
and droppable() methods, and the ui object that you can optionally specify in the
second argument to draggable and droppable event handlers.

326

Part II: jQuery UI

Summary
In this chapter, you learned how to use the jQuery UI Draggables and Droppables plugins, which you
are able to download à la carte from www.jquery.com. The jQuery website provides à la carte down-
loading for UI components so that you can include only the plugins that you need to use, which, in
turn, helps keep your applications lean and efficient.

Throughout this chapter, you worked on building a clone of Mac OS X’s Finder and saw how you are
able to make folders into draggable elements. You also learned how to use Safari’s native Drag-and-Drop
API in Safari on Mac OS X, which is based on IE’s Drag-and-Drop API, with some compelling and use-
ful extensions. You saw how you are able to control the nuisances of a drag-and-drop implementation
via the options that jQuery UI allows you to pass to both the draggable() and droppable() methods,
which help you to control what kind of drag operation you want, what the drag element looks like,
what the drop element looks like, and the event handlers you can specify to execute code during spe-
cific events that take place during a drag-and-drop operation.

In the next chapter, I present another drag-and-drop UI concept that jQuery provides, called Sortables.

Exercises
 1. If you wanted to have a UI that allows users to drag elements around in a document and posi-

tion those elements wherever they like, what would you use? (Hint: what function call?)

 2. If you wanted to create draggable elements that work similarly to your Operating System’s file
manager, where the original element remains in place, but when a drag operation starts, you
drag around a clone of that element, how would you do that with jQuery UI? (Hint: what func-
tion call?)

 3. If you wanted to make an element into a drop zone for draggable elements, what function call
would you use?

 4. Write the function call that you would use to add a class name to a drop zone while an element
was being dragged over the top of it.

 5. What option would you provide to the droppable() method if you wanted to limit the drag
elements that can be dropped on the drop element? Also, what type of value would you pro-
vide to that option?

 6. List the events that you would use for a native drag-and-drop implementation.

11
Drag-and-Drop Sorting

In Chapter 10, I introduced how jQuery UI provides plugins that make implementing drag-and-drop
UI very easy to implement. In this chapter, I present another jQuery UI plugin called Sortables, which
enables you to make items in a list of some kind sortable, or “rearrangable.”

The need for sorting items comes up often in Website Development. There’s always going to be,
through either need or convenience, the desire to change the order that items appear in. An
example would be the order in which products appear in a navigation or side menu.

Without drag-and-drop, it’s still possible to give users the ability to tweak the order of items. You
can offer up or down arrows for shifting items in a list, for example, but drag-and-drop sorting is
the fastest, most intuitive way to implement this type of user interface.

Making a List Sortable
As you’ve seen throughout this book, jQuery takes complex programming tasks and makes them
easy. Sometimes you can do a lot by adding just one line of code or even chaining one addition
function call to a selection! Once you experience how easy jQuery makes common programming
tasks, it becomes near impossible to return to boring, bloated, plain-vanilla JavaScript. In Chapter
10, you saw how making elements draggable amounts to making a selection, then making a single
function call. Making a list of items sortable via drag-and-drop is just as easy — you make a selec-
tion of elements, then you make a single function call. The function that you call in this case is
called sortable(). Like the drag-and-drop examples that I presented in Chapter 10, you have the
ability to tweak element sortability via fine-grained options that you can pass to the sortable()
method via a JavaScript object literal. Each of the options that jQuery UI provides for the Sortables
plugin is defined in detail in Appendix K.

328

Part II: jQuery UI

The following code demonstrates a very remedial example of making elements sortable by drag-and-drop
and how ridiculously easy jQuery UI makes this task. The following markup shows a simple unordered
list of elements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 11-1.js’></script>
 <link type=’text/css’ href=’Figure 11-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Delicious nutty snacks</h4>

 Almonds
 Cashews
 Peanuts
 Walnuts
 Pine nuts

 </body>
</html>

The preceding markup is accompanied by the following CSS:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 width: 250px;
 margin: 5px;
 padding: 0;

}
li {
 background: lightblue;
 padding: 3px;
 width: 250px;
 border: 1px solid #90c5d6;
}

329

Chapter 11: Drag-and-Drop Sorting

And the following JavaScript completes the example:

$(document).ready(
 function() {
 $(‘ul’).sortable();
 }
);

The preceding example shows you just how easy it is to make a sortable list. The CSS and markup are
pretty routine, nothing particularly exciting or interesting. The JavaScript included in the example
gives you the ability to sort the items within the element via drag-and-drop in any browser. All
you needed to make this possible was to include the relevant jQuery UI plugin, Sortables, then make a
selection with jQuery and chain a call to the function sortable() onto that selection. The Sortables plugin
requires that you select the container element, whose immediate children will be sortable by drag-and-
drop. The container is, of course, the element, and the sortable children are the elements con-
tained within that element. You should see output similar to what you see in Figure 11-1 when you load
this example and try sorting.

Figure 11-1

And naturally, this functionality works in all modern browsers — IE6, IE7, IE8, Firefox, Safari, and Opera.

In the preceding example, you see that utilizing the Sortables plugin is really very easy. In the follow-
ing “Try It Out,” I put the concept of sortability into context with a more real-world-oriented applica-
tion, where you are sorting files through a GUI interface, which you might use in a corporate Content
Management System (CMS), to control things like sorting links in a sidebar or dropdown menu, or the
order products appear in a catalog. You’ll also return to this example throughout this chapter to exam-
ine other aspects of file sorting that jQuery UI provides through its Sortables plugin.

Try It Out Implementing a Sortable List

Example 11-1
To make a list of sortable files, follow these steps:

 1. Create the following markup document as Example 11-1.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

330

Part II: jQuery UI

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 11-1.js’></script>
 <link type=’text/css’ href=’Example 11-1.css’ rel=’stylesheet’ />
 <!--[if lt IE 7]>
 <link type=’text/css’ href=’Example 11-1.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <ul id=’hFinderCategoryFiles’>
 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Using CoreImage to Resize and Change Formats on the Fly
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/apple/CoreImage.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Exploring Polymorphism in PHP
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/php/Polymorphism.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 A PHP Shell Script for Backups
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/php/Backup Script.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 HTML 5 DOCTYPE
 </h5>

331

Chapter 11: Drag-and-Drop Sorting

 <div class=”hFinderCategoryFilePath”>

 /Blog/web/html5_doctype.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 First Impressions of IE 8 Beta 2
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/web/ie8_beta2.html

 </div>

 </body>
</html>

 2. Create the following style sheet as Example 11-1.css:

html,
body {
 width: 100%;
 height: 100%;
}
body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
ul#hFinderCategoryFiles {
 position: absolute;
 top: 0;
 bottom: 22px;
 left: 0;
 width: 300px;
 border-bottom: 1px solid rgb(64, 64, 64);
 border-right: 1px solid rgb(64, 64, 64);
 background: #fff;
 list-style: none;
 margin: 0;
 padding: 0;
}
li.hFinderCategoryFile {
 clear: both;
 padding: 5px 5px 10px 5px;
 min-height: 48px;
 width: 290px;
}

332

Part II: jQuery UI

li.hFinderCategoryFile h5 {
 font: normal 12px “Lucida Grande”, Arial, sans-serif;
 margin: 0;
}
div.hFinderCategoryFileIcon {
 float: left;
 width: 48px;
 height: 48px;
 background: url(‘../../../Images/Finder/Safari Document.png’) no-repeat;
}
h5.hFinderCategoryFileTitle,
div.hFinderCategoryFilePath {
 padding-left: 55px;
}
li.hFinderCategoryFileSelected {
 background: rgb(24, 67, 243)
 url(‘../../../Images/Backgrounds/Selected Item.png’) repeat-x bottom;
 color: white;
}
li.hFinderCategoryFileSelected a {
 color: lightblue;
}

 3. Create the following style sheet as Example 11-1.IE.css:

ul#hFinderCategoryFiles {
 height: expression(document.body.offsetHeight - 23);
}
div.hFinderCategoryFileIcon {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=’../../../Images/Finder/Safari Document.png’,
sizingMethod=’crop’);
}

 4. Create the following JavaScript document as Example 11-1.js:

$(document).ready(
 function() {
 $(‘li.hFinderCategoryFile’).mousedown(
 function() {
 $(‘li.hFinderCategoryFile’).not(this)
 .removeClass(‘hFinderCategoryFileSelected’);

 $(this).addClass(‘hFinderCategoryFileSelected’);
 }
);

 $(‘ul#hFinderCategoryFiles’).sortable();
 }
);

The preceding source code gives you results like those you see in Figure 11-2.

333

Chapter 11: Drag-and-Drop Sorting

Figure 11-2

In the preceding example, you have a more realistic demonstration of the jQuery UI Sortables plugin,
with an application that provides file sorting, which can have a variety of applications, as I mentioned
just prior to presenting the “Try It Out” example.

In this example, you have five files. Each has a file icon, a title, and a clickable link to the file. I have, again,
borrowed from Mac OS X for the look and feel, to make an application that feels more like a native desk-
top application. If I were to extend this concept, I could also provide alternative templates that mirror the
look and feel of other operating systems. A server-side language that can detect the user’s operating
system, combined with different style sheets for each OS, makes that a viable option, which will make
your users feel more at home with your web-based application.

In the markup, you set things up so that the content can be styled with CSS. Each file item is represented
as a element. Since you’re working with a list of items, semantically speaking, it makes the most
sense to set up your sortable list as a element, with each list item, , representing each file.

The file icon is placed in a <div> element. You use a <div> so that you can provide the icon via the CSS
background property, and because I am using a PNG image with variable alpha transparency, this also
helps you to hack IE6 so that it properly handles transparency in the PNG image. This approach is simi-
lar to what you used in Chapter 10 for the Finder clone that you created.

The text content is wrapped within an <h5> and a <div> element so that you are able to control the mar-
gin and padding using block elements, instead of inline elements like . You’ll see how this is help-
ful as I explain how the style sheet works in this example. Then, you also gratuitously give each element
class names, which makes it much easier to apply style or behavior to those specific elements, in addi-
tion to making it easier to identify the purpose of the element from the standpoint of semantics. Each
class name is chosen so that it conveys the exact purpose of the element.

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Using CoreImage to Resize and Change Formats on the Fly
 </h5>
 <div class=”hFinderCategoryFilePath”>

334

Part II: jQuery UI

 /Blog/apple/CoreImage.html

 </div>

The application is designed so that sortable elements are contained in a single column that spans the left
side, and the column is created by using the top and bottom offset properties in tandem to imply height,
which, in turn, lets you have a stretchy column that will re-size fluidly with the size of the viewport.

Just as you did in Chapter 10 for the Finder example, you must set the scene so that IE6 and IE7 can also
be whipped into shape, presentationally speaking. First, you give the <html> and <body> elements 100
percent width and height, and remove any default margin or padding from the <body> element (some
browsers apply default margin, some apply default padding). This is an essential part of making the
column display correctly in IE6 and IE7. You saw a similar hack in Chapter 10 in the Finder example.

html,
body {
 width: 100%;
 height: 100%;
}
body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}

In the next style-sheet rule, you create the left column by styling the element with ID name
hFinder CategoryFiles so that it spans the height of the left side of the document. The declaration top: 0;
combined with the declaration bottom: 22px; causes the element to span the entire height of the
viewport, except for the bottom 22 pixels, which has a gradient background applied to that space. The
 element is given a fixed width of 300 pixels; otherwise, you would have shrink-to-fit width, since
the element is absolutely positioned.

ul#hFinderCategoryFiles {
 position: absolute;
 top: 0;
 bottom: 22px;
 left: 0;
 width: 300px;
 border-bottom: 1px solid rgb(64, 64, 64);
 border-right: 1px solid rgb(64, 64, 64);
 background: #fff;
 list-style: none;
 margin: 0;
 padding: 0;
}

335

Chapter 11: Drag-and-Drop Sorting

As you did in Chapter 10, you have to apply a hack for IE6 so that the column correctly spans the height
of the viewport, since it does not support specifying offset properties in tandem. This is done in a sepa-
rate style sheet that specifically targets IE6. In that style sheet, you use an IE proprietary CSS expression
to fix the height of the column. The CSS expression defines the height of the column by getting the
offsetHeight of the <body> element and subtracting 23 pixels from that height.

ul#hFinderCategoryFiles {
 height: expression(document.body.offsetHeight - 23);
}

It should be noted that IE’s proprietary CSS expressions have been discontinued in IE8; however, the
fringe use cases, like this, that might call for the use of this feature have thankfully been fixed. IE7 does
support specifying opposing offset properties to imply height, but it has some bugs and does not cor-
rectly handle this particular use case until the <body> and <html> elements are each given 100 percent
width and height, which is contrary to the CSS2.1 specification.

Each element first has the declaration clear: both applied, which is needed to clear the left float-
ing of each file icon (the <div> element with class name hFinderCategoryFileIcon). Without this declaration,
you’d have a jumbled unintelligible mess, as each element tried to float up to the right of the icon of
the preceding element, and the element preceding that one, float up to the right of the icon of
the element before that one, and so on. The clear: left declaration cancels floating, so that the icon
floats to the left, and only the text content within the element floats up to the right of that icon.

Each element is given a fixed width of 290 pixels. You do this because when you drag a ele-
ment, the element loses its width and shrinks. It does that because without an explicit width, each
element’s width is based on the parent, , element’s width. When you drag a element, its parent
is no longer the element, but the <body> element. The element is moved with the mouse cursor
through CSS; it is positioned absolutely, relative to the viewport, and its position is constantly updated
based on where the mouse cursor is going via the jQuery UI Sortables plugin. Otherwise, as an abso-
lutely positioned element, the element would have shrink-to-fit width, so by giving the ele-
ment a fixed width, you allow it to maintain its dimensions as it is dragged from one point to another.
The min-height property keeps the spacing within the element consistent, but also allows each
 element to expand vertically to accommodate additional text content.

li.hFinderCategoryFile {
 clear: both;
 padding: 5px 5px 10px 5px;
 min-height: 48px;
 width: 290px;
}

The next item of interest in the style sheet is the icon, which is defined by the following rule:

div.hFinderCategoryFileIcon {
 float: left;
 width: 48px;
 height: 48px;
 background: url(‘../../../Images/Finder/Safari Document.png’) no-repeat;
}

336

Part II: jQuery UI

The file icon is set to have a width and height of 48 pixels, which is a size that is consistent with the set-
tings and icons offered by operating systems. In fact, the Safari icon that you see is the same icon that
Safari actually uses for HTML documents on Mac OS X. It has just been converted to PNG and sized
down to 48 by 48 pixels. Staying consistent with desktop OS icons lets you reuse desktop OS icons, if
you want to, or to even use one of the many free icon packages available on the Internet. In the pre-
ceding rule, the <div> element is floated to the left with the declaration float: left;. That declara-
tion causes the text content to float to the right of the icon, as I explained previously. The clear: both;
declaration of the previous rule that I explained cancels this declaration on each element, so that
only the text content is affected. The icon is set as the background using the background property. This
approach to displaying the icon does a few things for you. An element is more verbose and
causes more redundancy in code, and it lets you easily use transparent PNG images, since this approach
lends itself to easy hacking for IE6, which unfortunately can’t properly display transparent PNG images
by default. In the IE style sheet, transparency in the PNG image is fixed with the following rule:

div.hFinderCategoryFileIcon {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=’../../../Images/Finder/Safari Document.png’, sizingMethod=’crop’);
}

The last items of interest in the style sheet define the look for selected files. That’s done in the following
two rules:

li.hFinderCategoryFileSelected {
 background: rgb(24, 67, 243)
 url(‘../../../Images/Backgrounds/Selected Item.png’) repeat-x bottom;
 color: white;
}
li.hFinderCategoryFileSelected a {
 color: lightblue;
}

The preceding two rules are for elements with the class name hFinderCategoryFileSelected. This class
name is dynamically added and removed from elements by JavaScript with jQuery. This addition
of this class name lets your users see which file is currently selected. Beyond providing a visual cue for
selection, this also lets you implement the ability to add a Delete button, which when pressed would
remove the selected item or implement some other functionality that is contingent on the selection of
an element.

The JavaScript for this example is very lean and to the point. The JavaScript basically does two
things. It provides the ability to select a element by adding and removing the class name
hFinderCategory FileSelected as appropriate to indicate selection. And it makes the elements
sortable using the jQuery UI Sortables plugin.

When the DOM is ready, the first task is to attach a mousedown event to each element. You’ll use this
event to implement an indication of which element is selected.

 $(‘li.hFinderCategoryFile’).mousedown(
 function() {
 $(‘li.hFinderCategoryFile’).not(this)

337

Chapter 11: Drag-and-Drop Sorting

 .removeClass(‘hFinderCategoryFileSelected’);

 $(this).addClass(‘hFinderCategoryFileSelected’);
 }
);

The script selects every element with class name hFinderCategoryFile. The class name is added to the
selection, even though as it stands, you could just select every element without a class name and get
the same result, so that your application can be easily extended. You might bring in more functionality
that involves adding elements that are completely unrelated to what you’re doing here. Adding the
class name to the selector makes the selection more specific and gives you the ability to expand your
application’s functionality more effortlessly. So every element with class name hFinderCategoryFile
is selected, then the element on which the mousedown event is taking place is filtered out using
.not(this), and the class name hFinderCategoryFileSelected is removed from every element,
except the element on which the mousedown event is taking place.

This is actually not the most efficient way to implement selection, especially if you have a very long list.
Selecting every element is inefficient and can make your script slow if you have a lot of items in the
list. So having showed you the wrong way to do selection, a better approach is to create a global variable,
and every time a selection is made, store the currently selected element in that variable. The following
code is what this approach looks like in the context of Example 11-1:

$(document).ready(
 function() {
 var $selectedFile;

 $(‘li.hFinderCategoryFile’).mousedown(
 function() {
 if ($selectedFile && $selectedFile.length) {
 $selectedFile.removeClass(‘hFinderCategoryFileSelected’);
 }

 $selectedFile = $(this);
 $selectedFile.addClass(‘hFinderCategoryFileSelected’);
 }
);

 $(‘ul#hFinderCategoryFiles’).sortable();
 }
);

The selected item is stored in the variable $selectedItem. When the mousedown event fires, the
script first checks to see if there is an element stored in the $selectedItem variable; if there is, the
hFinderCategory FileSelected class name is removed from that element, since that element is the previously
selected element.

Then the element on which the mousedown event is being fired, referenced by the this keyword, is
made into a jQuery object by wrapping this in a call to the dollar sign function, and the class name
hFinder CategoryFileSelected is added to the element on which the mousedown event is being fired. Presto,
you have a leaner, more efficient selection API.

338

Part II: jQuery UI

Then the last item that happens in the script (and the point of this example) is every element being
made sortable with a call to the sortable() method:

 $(‘ul#hFinderCategoryFiles’).sortable();

Customizing Sortables
In this section, I talk about some of the visual tweaks that you can make to sortable lists and how you link
one list to another, so that you have sorting between multiple, separate lists. The jQuery UI sortable()
method, like draggable() and droppable(), also allows you to specify an object literal as its first argu-
ment, which lets you tweak how sorting works, in addition to providing callback functions that are exe-
cuted during specific events that occur as sorting is taking place. I discuss just a few of the options that
jQuery UI exposes for its Sortables plugin in this section; however, you can find a complete list of
options in the API reference for Sortables that appears in Appendix K.

The first option I present is called placeholder. The placeholder option gives you the ability to style the
placeholder that appears within a sortable list as a drag is taking place to indicate where the item will be
dropped, if the mouse is released. By default, from Example 11-1, you can see that the placeholder is
simply empty white space, sized relatively to the element being dragged. The placeholder option
accepts a class name as its value, which, in turn, is applied to the placeholder element.

The second option I present describes how you can customize the element being dragged; the process
for doing this can also be applied to the jQuery UI draggable() method. By default, jQuery UI dis-
plays the element the user picked for sorting as the element that the user drags, which, of course,
makes sense for most scenarios. You do, however, have the option of using a completely different ele-
ment for display as the drag element, if you so choose. Customizing the element that’s displayed dur-
ing a drag is done with the helper option. In jQuery UI, helper, as applied to drag-and-drop, whether in
the Sortables plugin or the Dragables plugin, or other plugins, is the term used for the element that is
displayed while a drag is taking place. The helper option takes two arguments: The first argument is
the event object, and the second argument references the element the user picked for sorting. Aside
from completely replacing the element displayed during the drag event, you can also use this option
to simply tweak the display of the element that the user picked. The following example demonstrates
how to use the placeholder and helper options.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 11-3.js’></script>
 <link type=’text/css’ href=’Figure 11-3.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Lord of the Rings Characters</h4>

339

Chapter 11: Drag-and-Drop Sorting

 Frodo
 Sam
 Pippin
 Meriadoc
 Gandalf
 Aragorn
 Arwen
 Gimli
 Legolas
 Boromir
 Faramir
 Gollum

 </body>
</html>

The preceding markup is linked to the following style sheet:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 width: 250px;
 margin: 5px;
 padding: 0;
 border: 1px solid rgb(110, 59, 28);
 border-bottom: none;
}
li {
 background: rgb(218, 191, 162);
 padding: 3px;
 width: 244px;
 border-bottom: 1px solid rgb(110, 59, 28);
}
li.tmpPlaceholder {
 background: rgb(110, 59, 28);
 height: 22px;
}
li.tmpHelper {
 border: 1px solid rgb(110, 59, 28);
}

Then, the following JavaScript document is also included in the preceding markup document:

$(document).ready(
 function() {
 $(‘ul’).sortable({

340

Part II: jQuery UI

 placeholder: ‘tmpPlaceholder’,
 helper: function(e, element) {
 return $(element).clone().addClass(‘tmpHelper’);
 }
 });
 }
);

The preceding example provides the result you see in Figure 11-3 when loaded into a browser.

Figure 11-3

In the preceding example, you saw how the placeholder and helper options can be used to tweak the
presentation of the dynamic components of a sortable list. In the example, you set the placeholder
option with the class name tmpPlaceholder. This class name can then be used in the style sheet to tweak
the look of the element that acts as a placeholder for sortable items while a sort is taking place. In the
style sheet, the placeholder is given a dark-brown background and a fixed height.

Then, the helper option is provided with a callback function, which has two arguments: The first
argument references the event object, and the second argument, element, references the element that
the user picked for sorting. In the JavaScript, the element the user picked for sorting is cloned, then the
class name tmpHelper is added to the clone, and the clone is returned from the callback function.
Adding this class name lets you control the style of the helper element from the style sheet. It is neces-
sary to add a class name in this way because jQuery UI does not have an option to set the class name of
the helper element, as you saw with the placeholder option.

Adding a class name to the helper element lets you control its style. In the context of the previous
example, this is beneficial for the way the border is applied to each element. In the style sheet, only
a bottom border is specified. This is combined with a left, right, and top border applied to the ele-
ment, and that’s done so that only 1 pixel of border surrounds each element. Adding the tmpHelper
class name to the helper element is used to change the border so that the border is applied to all sides of
the helper element, rather than just the bottom, which makes the helper element look more natural.

341

Chapter 11: Drag-and-Drop Sorting

As I mentioned previously, you don’t have to use the element that the user picked as the element dis-
played for the helper element. You can, if you so choose, return a completely different element from
that callback function, and that will be the element that the user drags around on the screen.

In the following “Try It Out,” you extend the file-sorting application that you created in Example 11-1,
with some options, like the placeholder and helper options that you learned about in this section. You
also add another option that gives you the ability to sort elements between multiple lists.

Try It Out Customizing Sortable Lists

Example 11-2
To see how multiple sortable lists are implemented, follow these steps:

 1. Using Example 11-1.html as the basis, create the following markup document as Example 11-2.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 11-2.js’></script>
 <link type=’text/css’ href=’Example 11-2.css’ rel=’stylesheet’ />
 <!--[if lt IE 8]>
 <link type=’text/css’ href=’Example 11-2.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <div id=’hFinderCategoryFileWrapper’>
 <ul id=’hFinderCategoryFiles’>
 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Using CoreImage to Resize and Change Formats on the Fly
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/apple/CoreImage.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Exploring Polymorphism in PHP
 </h5>
 <div class=”hFinderCategoryFilePath”>

342

Part II: jQuery UI

 /Blog/php/Polymorphism.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 A PHP Shell Script for Backups
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/php/Backup Script.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 HTML 5 DOCTYPE
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/web/html5_doctype.html

 </div>

 <li class=”hFinderCategoryFile”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 First Impressions of IE 8 Beta 2
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/web/ie8_beta2.html

 </div>

 <ul id=’hFinderOtherCategoryFiles’>

 </div>
 </body>
</html>

 2. Using the style sheet in Example 11-1.css, make the following modifications and save the results
in a new file, as Example 11-2.css:

html,
body {
 width: 100%;
 height: 100%;
}
body {
 font: normal 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;

343

Chapter 11: Drag-and-Drop Sorting

 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
div#hFinderCategoryFileWrapper {
 position: absolute;
 top: 0;
 right: 0;
 bottom: 23px;
 left: 0;
}
ul#hFinderCategoryFiles,
ul#hFinderOtherCategoryFiles {
 float: left;
 height: 100%;
 width: 300px;
 border-bottom: 1px solid rgb(64, 64, 64);
 border-right: 1px solid rgb(64, 64, 64);
 background: #fff;
 list-style: none;
 margin: 0;
 padding: 0;
}
li.hFinderCategoryFile {
 clear: both;
 padding: 5px 5px 10px 5px;
 min-height: 48px;
 width: 290px;
}
li.hFinderCategoryFile h5 {
 font: normal 12px “Lucida Grande”, Arial, sans-serif;
 margin: 0;
}
div.hFinderCategoryFileIcon {
 float: left;
 width: 48px;
 height: 48px;
 background: url(‘../../../Images/Finder/Safari Document.png’) no-repeat;
}
h5.hFinderCategoryFileTitle,
div.hFinderCategoryFilePath {
 padding-left: 55px;
}
li.hFinderCategoryFileSelected {
 background: rgb(24, 67, 243)
 url(‘../../../Images/Backgrounds/Selected Item.png’) repeat-x bottom;
 color: white;
}
li.hFinderCategoryFileSelected a {
 color: lightblue;
}
.hFinderCategoryFilePlaceholder {
 background: rgb(230, 230, 230);
 height: 58px;
}

344

Part II: jQuery UI

 3. Starting with Example 11-1.IE.css, create the following style sheet and save the modified style
sheet as Example 11-2.IE.css:

ul#hFinderCategoryFiles,
ul#hFinderOtherCategoryFiles {
 height: expression(document.body.offsetHeight - 23);
}
div.hFinderCategoryFileIcon {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=’../../../Images/Finder/Safari Document.png’,
sizingMethod=’crop’);
}

 4. Starting with the JavaScript file you created in Example 11-1.js, make the following modifica-
tions and save the new JavaScript file as Example 11-2.js:

$(document).ready(
 function() {
 var $selectedFile;

 $(‘li.hFinderCategoryFile’).mousedown(
 function() {
 if ($selectedFile && $selectedFile.length) {
 $selectedFile.removeClass(‘hFinderCategoryFileSelected’);
 }

 $selectedFile = $(this);
 $selectedFile.addClass(‘hFinderCategoryFileSelected’);
 }
);

 $(‘ul#hFinderCategoryFiles’).sortable({
 connectWith : [
 ‘ul#hFinderOtherCategoryFiles’
],
 placeholder: ‘hFinderCategoryFilePlaceholder’,
 opacity: 0.8,
 cursor: ‘move’
 });

 $(‘ul#hFinderOtherCategoryFiles’).sortable({
 connectWith : [
 ‘ul#hFinderCategoryFiles’
],
 placeholder: ‘hFinderCategoryFilePlaceholder’,
 opacity: 0.8,
 cursor: ‘move’
 });
 }
);

The preceding gives you something similar to what you see in Figure 11-4.

345

Chapter 11: Drag-and-Drop Sorting

Figure 11-4

In Example 11-2, you added a few options to the sortable() method and tweaked the presentation of
the document to accommodate multiple lists.

Presentationally speaking, there was one unique challenge in having the correct rendering in IE6 and
IE7 as you have in other browsers. In Example 11-1, the files are contained in a element, and that
element is made into an absolutely positioned column. It turns out that IE z-index bugs prevent you from
using that technique to make columns with sortable lists. This can also be a bug in the Sortables plugin,
but the gist of the matter is that, with absolutely positioned columns, it is impossible for the draggable
elements to have the right z-index with respect to the other column, even after explicitly setting a z-index
on each absolutely positioned column. What happens when you try this approach is, when dragging an
element to a separate list, the drag element goes behind the list, instead of staying on top, as it is supposed
to do. To work around this bug, I took a different approach for making columns, using CSS floating rather
than positioning. The first step in implementing the alternative approach is to create a wrapper element
in the markup that contains both columns.

 <div id=’hFinderCategoryFileWrapper’>
 <ul id=’hFinderCategoryFiles’>

The <div> element contains two elements; each, in turn, is a sortable list. Each element is also
made into a column that spans the height of the <div> element. The following CSS is used to prepare
the <div> element so that the elements within it can become columns.

div#hFinderCategoryFileWrapper {
 position: absolute;
 top: 0;
 right: 0;
 bottom: 23px;
 left: 0;
}

The <div> element is positioned absolutely, and the four offset properties are used to imply width and
height, causing the <div> element to take up the entire viewport, save the bottom 23 pixels. Then syles
are applied to each element. Each element is floated to the left and given fixed dimensions.

346

Part II: jQuery UI

This styling manages to turn both elements into columns, matching the visual look and feel that
you saw in Example 11-1, but also managing to work around the annoying IE z-index bug that rears its
ugly head when you try to sort between the two lists.

ul#hFinderCategoryFiles,
ul#hFinderOtherCategoryFiles {
 float: left;
 height: 100%;
 width: 300px;
 border-bottom: 1px solid rgb(64, 64, 64);
 border-right: 1px solid rgb(64, 64, 64);
 background: #fff;
 list-style: none;
 margin: 0;
 padding: 0;
}

Going back to the JavaScript, the scripting portion should be pretty straightforward. The connectWith
option, which accepts a selector as its value, lets you connect one list to another so that you have the
ability to sort items between multiple lists.

Then, the other options — placeholder, opacity, and cursor — are each used to tweak the presenta-
tion of each sortable list. The placeholder option, as you already learned, lets you add a custom class
name to the element that acts as a placeholder during sorting. The opacity option is used to control the
opacity of the helper element, and it takes a standard CSS 3 opacity property value (that works in IE
too). The cursor option is used to change the cursor while the helper is being dragged, and it takes any
value that the CSS cursor property can take.

 $(‘ul#hFinderCategoryFiles’).sortable({
 connectWith : [
 ‘ul#hFinderOtherCategoryFiles’
],
 placeholder: ‘hFinderCategoryFilePlaceholder’,
 opacity: 0.8,
 cursor: ‘move’
 });

In the preceding snippet of code, the list with ID name hFinderCategoryFiles is connected to the
 list with ID name hFinderOtherCategoryFiles. The connectWith option specified for this list sets up
a one-way connection from the first element to the second, which lets you drag items from the first
list to the second, but not vice versa. To have two-way sorting, you need to set options on the second
 list, which you see in the following snippet:

 $(‘ul#hFinderOtherCategoryFiles’).sortable({
 connectWith : [
 ‘ul#hFinderCategoryFiles’
],
 placeholder: ‘hFinderCategoryFilePlaceholder’,
 opacity: 0.8,
 cursor: ‘move’
 });

347

Chapter 11: Drag-and-Drop Sorting

You set basically the same options on the other element, except for the connectWith option, where
you use a selector to reference the first element.

Again, I have presented just a few of the options that you can set for Sortables. All options for Sortables
are documented in Appendix K.

Saving the State of Sorted Lists
The Sortables API in jQuery UI wouldn’t be complete without one last detail — saving the state of a
sorted list. This too is covered by the Sortables plugin. In Chapter 7, you learned about jQuery’s seri-
alize() method, which automatically takes a selection of input elements for a form and serializes the
data in those input elements into a string of data that you can then submit to a server-side script with an
AJAX Request. The Sortables plugin provides a similar mechanism for retrieving data from a sortable
list. But instead of retrieving input form values, the Sortables plugin retrieves a specific attribute from
each sortable element. By default, the Sortables plugin will retrieve the value of the id attribute. So in the
context of the examples you’ve completed in this chapter, you’d give each element an id attribute,
then use the Sortables plugin’s mechanism for serializing the data present in each id attribute into a string
that you can pass on to an AJAX Request to a server-side script, so you can save the sort. The following
code snippet shows the code you’d use on the JavaScript side:

var $data = $(‘ul’).sortable(
 ‘serialize’, {
 key: ‘listItem[]’
 }
);

In the preceding code, to serialize the data present in the id attribute of each element, you call
the sortable() method, with the first argument set to ‘serialize’, and for the second argument, you
specify an object literal of options. The key option specifies the name you want to use for each query
string argument. I’ve used the name listItem[], which in PHP and some other server-side scripts will
cause the query string of sorted items to be translated into an array or hash.

To better illustrate how you serialize data using the sortable() method, the following document dem-
onstrates how that works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 11-5.js’></script>
 <link type=’text/css’ href=’Figure 11-5.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>Lord of the Rings Characters</h4>

348

Part II: jQuery UI

 <li id=’tmpFrodo’>Frodo
 <li id=’tmpSam’>Sam
 <li id=’tmpPippin’>Pippin
 <li id=’tmpMeriadoc’>Meriadoc
 <li id=’tmpGandalf’>Gandalf
 <li id=’tmpAragorn’>Aragorn
 <li id=’tmpArwen’>Arwen
 <li id=’tmpGimli’>Gimli
 <li id=’tmpLegolas’>Legolas
 <li id=’tmpBoromir’>Boromir
 <li id=’tmpFaramir’>Faramir
 <li id=’tmpGollum’>Gollum

 </body>
</html>

This document uses the same CSS as Figure 11-3, so I won’t repeat that portion. The following
JavaScript demonstrates how the id attribute of each element is serialized:

$(document).ready(
 function() {
 $(‘ul’).sortable({
 placeholder: ‘tmpPlaceholder’,
 helper: function(e, element) {
 return $(element).clone().addClass(‘tmpHelper’);
 },
 update : function(e, ui) {
 alert(
 $(this).sortable(
 ‘serialize’, {
 key: ‘list[]’,
 expression: /^(.*)$/
 }
)
)
 }
 });
 }
);

The preceding results in the screenshot you see in Figure 11-5, once you try sorting an item.

Figure 11-5

349

Chapter 11: Drag-and-Drop Sorting

The serialized data is popped up on screen in a JavaScript alert.

In the preceding JavaScript, you add a new option to the configuration for the sortable list — the update
option. The update option takes a callback function that is executed every time a sort is completed. From
within the callback function that you assign to the update method, you can retrieve data from the sort-
able list, then forward that data onto a server-side script, allowing you to save sortable list data as it is
sorted, in real time. To retrieve the data, you call the sortable() method, with the first argument set to
‘serialize’; then you provide a few options in the second argument. The key option defines what name
to give the data for submission to a server-side script. The other option, expression, lets you define a
regular expression that is applied to the attribute you’re getting data from. The expression that I have
used, /^(.*)$/, says to get whatever value the attribute has, that is, the whole value, not a subset of the
value. You can use a more sophisticated regular expression to get a string from within the id attribute.
Once this method is executed, the following is the data it returns:

list[]=tmpMeriadoc&list[]=tmpGandalf&list[]=tmpFrodo&list[]=tmpAragorn&list[]=tmpSa
m&list[]=tmpBoromir&list[]=tmpFaramir&list[]=tmpArwen&list[]=tmpPippin&list[]=&list
[]=tmpLegolas&list[]=tmpGollum&list[]=tmpGimli

You see that you have a long query string of data that includes the value of each element’s id attri-
bute. This data can then be directly included in the data argument of a jQuery AJAX Request.

In the following “Try It Out,” you apply the concepts you’ve just learned to the sortable files example
that you’ve been working on throughout this chapter:

Try It Out How to Save the State of a Sorted List

Example 11-3
To see how to save the state of a sorted list, follow these steps.

 1. Using Example 11-2.html as the basis, copy the contents of that file into a new document, and
save that document as Example 11-3.html; then add a title attribute to each element, as
you see in the following markup. Don’t forget to update each file reference to Example 11-3.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 11-3.js’></script>
 <link type=’text/css’ href=’Example 11-3.css’ rel=’stylesheet’ />
 <!--[if lt IE 8]>
 <link type=’text/css’ href=’Example 11-3.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <div id=’hFinderCategoryFileWrapper’>

350

Part II: jQuery UI

 <ul id=’hFinderCategoryFiles’>
 <li class=”hFinderCategoryFile” title=”/Blog/apple/CoreImage.html”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Using CoreImage to Resize and Change Formats on the Fly
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/apple/CoreImage.html

 </div>

 <li class=”hFinderCategoryFile” title=”/Blog/php/Polymorphism.html”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 Exploring Polymorphism in PHP
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/php/Polymorphism.html

 </div>

 <li class=”hFinderCategoryFile” title=”/Blog/php/Backup Script.html”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 A PHP Shell Script for Backups
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/php/Backup Script.html

 </div>

 <li class=”hFinderCategoryFile” title=”/Blog/web/html5_doctype.html”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 HTML 5 DOCTYPE
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/web/html5_doctype.html

 </div>

 <li class=”hFinderCategoryFile” title=”/Blog/web/ie8_beta2.html”>
 <div class=”hFinderCategoryFileIcon”></div>
 <h5 class=”hFinderCategoryFileTitle”>
 First Impressions of IE 8 Beta 2
 </h5>
 <div class=”hFinderCategoryFilePath”>

 /Blog/web/ie8_beta2.html

351

Chapter 11: Drag-and-Drop Sorting

 </div>

 <ul id=’hFinderOtherCategoryFiles’>

 </div>
 </body>
</html>

 2. Copy Example 11-2.css to a new file, and save that file as Example 11-3.css.

 3. Copy Example 11-2.IE.css to a new file, Example 11-3.IE.css.

 4. Copy Example 11-2.js to a new file, Example 11-3.js, and make the following modifications:

$(document).ready(
 function() {
 var $selectedFile;

 $(‘li.hFinderCategoryFile’).mousedown(
 function() {
 if ($selectedFile && $selectedFile.length) {
 $selectedFile.removeClass(‘hFinderCategoryFileSelected’);
 }

 $selectedFile = $(this);
 $selectedFile.addClass(‘hFinderCategoryFileSelected’);
 }
);

 var saveUpdate = function(e, ui) {
 var $data = $(this).sortable(
 ‘serialize’, {
 attribute: ‘title’,
 expression: /^(.*)$/,
 key: ‘categoryFiles[]’
 }
);

 alert($data);

 // Here you could go on to make an AJAX request
 // to save the sorted data on the server, which
 // might look like this:
 //
 // $.get(‘/path/to/server/file.php’, $data);
 };

 $(‘ul#hFinderCategoryFiles’).sortable({
 connectWith : [
 ‘ul#hFinderOtherCategoryFiles’
],
 placeholder: ‘hFinderCategoryFilePlaceholder’,
 opacity: 0.8,
 cursor: ‘move’,
 update: saveUpdate

352

Part II: jQuery UI

 });

 $(‘ul#hFinderOtherCategoryFiles’).sortable({
 connectWith : [
 ‘ul#hFinderCategoryFiles’
],
 placeholder: ‘hFinderCategoryFilePlaceholder’,
 opacity: 0.8,
 cursor: ‘move’,
 update: saveUpdate
 });
 }
);

The preceding document gives you something similar to the screenshot that you see in Figure 11-6.

Figure 11-6

In Example 11-3, you add some code that retrieves data from each element. However, instead of
getting data from the id attribute, which is what jQuery UI uses by default, you’re getting data from the
title attribute.

 var saveUpdate = function(e, ui) {
 var $data = $(this).sortable(
 ‘serialize’, {
 attribute: ‘title’,
 expression: /^(.*)$/,
 key: ‘categoryFiles[]’
 }
);

 alert($data);

 // Here you could go on to make an AJAX request
 // to save the sorted data on the server, which
 // might look like this:
 //
 // $.get(‘/path/to/server/file.php’, $data);
 };

353

Chapter 11: Drag-and-Drop Sorting

You start this project by defining a new function that will act as the callback function for the update
option; this function is named saveUpdate. Within the saveUpdate function, you retrieve data from
each element by calling the sortable() method, with the serialize option. Then, in the options
you pass in the second argument to that method, you change the attribute that jQuery UI serializes
data from by using the attribute option and setting the value of that option to title. The rest is the
same: You use the expression option to retrieve the title attribute’s entire value, from beginning to
end, rather than just a substring within that value. And the key option is set to categoryFiles[], which
is used to name the data in the serialized string.

You could then go on to submit that data to the server, automatically, giving you the ability to save the
sort as a list is sorted.

Summary
In this chapter, you learned how to make sortable lists with the jQuery UI Sortables plugin. Using the
Sortables plugin, you are able to offer a drag-and-drop sorting API very effortlessly. jQuery UI provides
a plethora of options that you can use for fine-grained control.

You learned how to use options like placeholder, helper, cursor, and opacity to control the look and
feel of a sortable list. The placeholder option, you saw, takes a class name, which allows you to use CSS
to customize the look of the space that’s reserved for a sortable element as sorting is taking place. You
saw how the helper option can be provided with a callback function, where you can return the element
that the user drags around. And you saw how the opacity and cursor options both take the same val-
ues of the CSS opacity and cursor properties.

You saw how multiple lists can be connected to each other using the connectWith option, which you pro-
vide with a selector that indicates which list you want that sortable list to be able to exchange items with.
The connectWith option creates a one-way link to another list, which means that you can only drag items
to the other list, but not back to the original. To create a two-way link, you can also add the connectWith
option to the other list, with a selector that references the first list.

You’ve also learned how to save the state of sorted lists, which is also done with the sortable()
method. In the first argument, you provide the string ‘serialize’, then in the second argument, you
can provide options that determine how serialization works — for example, you provide the attribute
option if you want to get the value of any attribute other than the id attribute. Another option you can
use is the expression option, which takes a JavaScript regular expression as its value. Then, the key
option is used to name the data that’s serialized.

You also learned how the update option can be provided to sortable lists, which takes a callback func-
tion that executes once a sort is completed.

354

Part II: jQuery UI

Exercises
 1. What method do you use to make a list sortable?

 2. What kind of value do you provide to the placeholder option?

 3. What is the purpose of the placeholder option?

 4. If you want to change the cursor displayed as a sort is taking place, which option would you use?

 5. What is the purpose of the helper option?

 6. Which option do you use to connect multiple sortable lists to one another?

 7. What kind of value do you provide to the connectWith option?

 8. How do you save the state of a sortable list after every sort takes place?

12
Selection by Drawing a Box
In this chapter, I present the jQuery UI Selectables plugin. The Selectables plugin fills more of a
niche need for UI functionality. I say that because you probably won’t use this functionality very
much in your applications. The functionality provided by the Selectables plugin is the ability to
select elements by drawing a box, something you’ve probably done a few times in your operating
system’s file manager or a graphical editor like Photoshop.

The Selectables plugin’s status as niche functionality is evident in its scant documentation on the
official jQuery website at www.jquery.com and by the fact that there aren’t as many customization
options for this plugin as there are for the plugins covered in the previous two chapters.

Nonetheless, the Selectables plugin can be very useful, and I’ll show you in this chapter at least
one practical application of this plugin — a continuation of the Mac OS X Finder clone that you
started in Chapter 10.

Introducing the Selectables Plugin
The Selectables plugin works similarly to the Sortables plugin that I presented in Chapter 11, and
all jQuery UI plugins, as you’ll have recognized by now, share a clean and consistent API that is
implemented in pretty much the same way from plugin to plugin.

To make elements into Selectable elements, you call the selectable() method on any element that
contains a list of elements that you want to be selectable by drawing a box with your mouse. In the
following example, I present a very remedial proof-of-concept demonstration of the Selectables
functionality.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>

356

Part II: jQuery UI

 <script type=’text/javascript’ src=’Figure 12-1.js’></script>
 <link type=’text/css’ href=’Figure 12-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>The Beatles</h4>

 John Lennon
 Paul McCartney
 George Harrison
 Ringo Starr

 </body>
</html>

The following style sheet is included in the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 0;
 padding: 15px 5px;
}
li {
 background: gold;
 padding: 3px;
 width: 244px;
 margin: 1px;
}
li.tmpSelected {
 background: yellow;
}

The following JavaScript is also included in the preceding markup document:

$(document).ready(
 function() {
 $(‘ul’).selectable({
 selecting: function(e, ui) {
 $(ui.selecting).addClass(‘tmpSelected’);
 },
 unselecting: function(e, ui) {
 $(ui.unselecting).removeClass(‘tmpSelected’);
 }
 });
 }
);

357

Chapter 12: Selection by Drawing a Box

The preceding example results in the screenshot that you see in Figure 12-1 when you try drawing a
box within the boundaries of the element.

Figure 12-1

In the preceding example, you see how easy it is to use the jQuery UI Selectables plugin. The select-
able() method is called on an element containing a list of elements that you want to be selectable.
Naturally, in this example, the selectable() method is called on a element, so that you can select
one or more of its child elements by drawing a box. The Selectables plugin, like the other jQuery
UI plugins that I’ve presented so far, accepts an object literal in its first argument, which is used to pro-
vide options for how the plugin works. You see two options here, the selecting and the unselecting
options. The selecting option specifies a callback function that is executed as a selection is made, on each
element added to the selection. The element added to the selection is available in the second argument,
ui, as ui.selecting. The unselecting option, conversely, provides a callback function that executes as
elements are removed from the selection. Like the selecting option, the element being removed from the
selection is also available in the second, ui, argument, as ui.unselecting. In this example, these two
options are used to add and remove the class name from elements as they are included and
removed from the selection.

To put the Selectables plugin into real-world context, in the following “Try It Out,” you apply the
Selectables plugin to the Mac OS X Finder clone that you last worked on in Example 10-4, expanding
the Finder clone so that you have the ability to select multiple folders by drawing a box, just as your
desktop OS does.

Try It Out Adding Selectability to Your Finder Clone

Example 12-1
To see how you apply the jQuery UI Selectables plugin to your Finder clone, follow these steps.

 1. Copy the markup document that you made in Example 10-4.html to a new document, and
make the following modifications:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>

358

Part II: jQuery UI

 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 12-1.js’></script>
 <link type=’text/css’ href=’Example 12-1.css’ rel=’stylesheet’ />
 <!--[if lt IE 7]>
 <link type=’text/css’ href=’Example 12-1.IE.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <div id=”hFinderFiles”>
 <div class=”hFinderDirectory” title=”/Applications”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Applications
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Library”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Library
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Network”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Network
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Sites”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Sites
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/System”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 System
 </div>
 </div>
 <div class=”hFinderDirectory” title=”/Users”>
 <div class=”hFinderIcon”><div></div></div>
 <div class=”hFinderDirectoryName”>
 Users
 </div>
 </div>
 </div>
 </body>
</html>

 2. Save the preceding markup document as Example 12-1.html.

359

Chapter 12: Selection by Drawing a Box

 3. Copy the CSS document that you made in Example 10-4.css to a new document, and make the
following modifications:

html,
body {
 width: 100%;
 height: 100%;
 overflow: hidden;
}
body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: rgb(189, 189, 189)
 url(‘../../../Images/Finder/Bottom.png’) repeat-x bottom;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
div#hFinderFiles {
 border-bottom: 1px solid rgb(64, 64, 64);
 background: #fff;
 position: absolute;
 top: 0;
 right: 0;
 bottom: 23px;
 left: 0;
 overflow: auto;
}
div.hFinderDirectory {
 float: left;
 width: 150px;
 height: 100px;
 overflow: hidden;
}
div.hFinderIcon {
 height: 56px;
 width: 54px;
 margin: 10px auto 3px auto;
}
div.hFinderIcon div {
 background: url(‘../../../Images/Finder/Folder 48x48.png’)
 no-repeat center;
 width: 48px;
 height: 48px;
 margin: auto;
}
div.hFinderIconSelected,
div.hFinderDirectoryDrop div.hFinderIcon {
 background-color: rgb(196, 196, 196);
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}
div.hFinderDirectoryDrop div.hFinderIcon div {
 background-image:
 url(‘../../../Images/Finder/Open Folder 48x48.png’);
}

360

Part II: jQuery UI

div.hFinderDirectoryName {
 text-align: center;
}
span.hFinderDirectoryNameSelected,
div.hFinderDirectoryDrop span {
 background: rgb(56, 117, 215);
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
 color: white;
 padding: 1px 7px;
}
div.ui-selectable-helper {
 background: rgb(128, 128, 128) !important;
 border: 1px solid black !important;
 opacity: 0.25;
 /* IE6 and IE7 */
 filter: alpha(opacity=25);
 /* IE8 standards mode */
 -ms-filter: “alpha(opacity=25)”;
}

 4. Save the preceding document as Example 12-1.css.

 5. Copy the file you made in Example 10-4.IE.css to a new file called Example 12-1.IE.css.

 6. Copy the JavaScript file you made in Example 10-4.js, and make the following modifications:

var $$ = $.fn;

$$.extend({
 SelectElement: function() {
 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);

 $.each(
 this,
 function() {
 if ($.inArray(this, $$.Finder.SelectedElements) == -1) {
 $$.Finder.SelectedElements.push(this);
 }
 }
);

 return $;
 },

 UnselectElement: function() {
 $(this).find(‘div.hFinderIcon’)
 .removeClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 // Don’t remove the item from the array, unless it is

361

Chapter 12: Selection by Drawing a Box

 // being unselected individually (as opposed to
 // all elements being unselected)
 if (arguments[0]) {
 // Alias the selection to elements, so you can reference it
 // from within the anonymous function passed to grep.
 var elements = this;

 if ($$.Finder.SelectedElements.length) {
 $$.Finder.SelectedElements = $.grep(
 $$.Finder.SelectedElements,
 function(item, i) {
 // If the item isn’t in the selection, it should
 // be kept.
 return $.inArray(item, elements) == -1;
 }
);
 }
 }

 return $;
 },

 Finder: {
 SelectingElements: false,
 SelectedElements: [],

 UnselectSelected: function() {
 $.each(
 $$.Finder.SelectedElements,
 function() {
 $(this).UnselectElement();
 }
);

 $$.Finder.SelectedElements = [];
 },
 FolderOver: {
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Open Folder 48x48.png’,” +
 “sizingMethod=’crop’)”
 },
 FolderOut: {
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Folder 48x48.png’,” +
 “sizingMethod=’crop’)”
 },
 Ready: function() {
 $(‘div.hFinderDirectory’)
 .mousedown(
 function() {
 if (!$$.Finder.SelectingElements) {
 // Unselect all selected

362

Part II: jQuery UI

 $$.Finder.UnselectSelected();

 // Select this element.
 $(this).SelectElement();
 }
 }
)
 .draggable({
 helper: ‘clone’,
 opacity: 0.5
 })
 .droppable({
 accept: ‘div.hFinderDirectory’,
 hoverClass: ‘hFinderDirectoryDrop’,
 over: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css(
 $$.Finder.FolderOver
);
 }
 },
 out: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css(
 $$.Finder.FolderOut
);
 }
 },
 drop: function(e, ui) {
 var $path = ui.draggable.attr(‘title’);
 // Do something with the path

 // Remove the element that was dropped.
 ui.draggable.remove();
 }
 });

 // Make it possible to select folders and files by
 // drawing a box with the mouse.
 $(‘div#hFinderFiles’).selectable({
 start: function(e, ui) {
 // Selection has started, prevent the selection
 // of individual elements
 $$.Finder.SelectingElements = true;

 // Unselect anything already selected
 $$.Finder.UnselectSelected();
 },
 stop: function(e, ui) {
 // Allow the individual selection of elements again.
 $$.Finder.SelectingElements = false;
 },
 selecting: function(e, ui) {

363

Chapter 12: Selection by Drawing a Box

 if (ui.selecting) {
 $(ui.selecting).SelectElement();
 }
 },
 unselecting: function(e, ui) {
 $(ui.unselecting).UnselectElement(true);
 }
 });
 }
 }
});

$(document).ready($$.Finder.Ready);

 7. Save the preceding document as Example 12-1.js.

The preceding source code comes together to give you the document that you see in Figure 12-2.

Figure 12-2

While this example teaches you how to draw a selection box, you’ll note that you’re not able to drag the
selection once it is made, even though you have implemented drag-and-drop on the individual folders.
While this is possible, it is beyond the scope of this example.

In this example, you applied the Selectables plugin to the Mac OS X Finder Clone that you worked on in
Chapter 10. This example drops the native Safari Drag-and-Drop API that I discussed in Chapter 10, to
make the example smaller and more focused. This example also incorporates a lot of jQuery functional-
ity that you learned about in previous chapters to better demonstrate how you apply jQuery in a realis-
tic example.

You made a few changes to the style sheet. Besides dropping Safari’s native Drag-and-Drop API from
there, you added one additional rule that gives you the ability to customize the box that’s drawn when a
selection is made. jQuery’s default selection box looks like the one used in older operating systems, like

364

Part II: jQuery UI

Windows 98, which just provides a dotted box to indicate where the box is being drawn. In this example,
you changed the style of that box to look more like the selection box in Mac OS X.

div.ui-selectable-helper {
 background: rgb(128, 128, 128);
 border: 1px solid black !important;
 opacity: 0.25;
 /* IE6 and IE7 */
 filter: alpha(opacity=25);
 /* IE8 standards mode */
 -ms-filter: “alpha(opacity=25)”;
}

The selection box must be customized with the same selector that you see here, as jQuery UI does
not provide a mechanism for customizing the style of the selection box via an option. The class name
ui-selectable-helper is the class name that jQuery UI applies to the selection box internally, so the custom-
ization that you see simply exploits that fact.

The style provides a gray background and a black border, then the box is made semitransparent via the
standard opacity property supported by Safari, Firefox, and Opera; the proprietary filter property
supported by IE6 and IE7; and the proprietary -ms-filter property that’s supported by IE8 (when in
super-standards mode). The IE8 syntax for the filter property is the same as previous versions; it just
puts quotes around the property’s value and adds the vendor-specific -ms- prefix.

Aside from those modifications, the style sheet remains the same as the style sheet you made in
Chapter 10. The brunt of the elbow work in this example occurs in the JavaScript.

In this example, you re-write the example that you saw in Example 10-4 so that it leverages jQuery’s
Plugin API, and you add some functionality that deals with keeping track of selected folders.

First you alias jQuery’s plugin functionality, which you normally refer to as $.fn, to $$, or double dollar
sign, which, as I mentioned in Chapter 9, is the way that I prefer to work with jQuery’s Plugin API and is
a “take it or leave it” preference. You may prefer to simply use $.fn, or something else entirely; I think $$
makes the Plugin API more intuitive to work with.

var $$ = $.fn;

Then you call jQuery’s extend() method to add your own functionality to jQuery. You add three items
to jQuery — SelectElement(), UnselectElement(), and the Finder object.

$$.extend({

The SelectElement() method is called when you want to select a folder or a file. Since you’ve imple-
mented this function as an extension to jQuery, you can call this function using jQuery when you make
a selection or wrap a DOM node with a call to jQuery. For example, you can call SelectElement() with
$(this).SelectElement() or $(‘div.hFinderDirectory’).SelectElement(). Since SelectElement()
is a plugin, it’s designed to work just as jQuery’s built-in methods work. You can select one or many ele-
ments at once.

Within the SelectElement() method, you select the folder or file by adding the hFinderIconSelected class
name to the <div> with the class name hFinderIcon, which resides within each <div> representing a folder

365

Chapter 12: Selection by Drawing a Box

or file. Then, you add the hFinderDirectoryNameSelected class name to the element that resides
within the <div> with class name hFinderDirectoryName.

You did the same thing back in Chapter 10; however, this time, you’ve modified the selection process so
that you have the ability to select multiple files and folders, and, of course, to use jQuery’s plugin capa-
bilities. In Chapter 10, you didn’t have the ability to reuse the selection functionality, since it was included
within the anonymous function executed at the mousedown event. This time around, you’ve made the
selection functionality reusable, so that you can take advantage of that functionality not just from within
your Finder clone, but also from completely separate applications. And you begin to see how a jQuery
application can evolve and how you should think about things like reusing code you’ve already written
and making your applications as extensible as possible.

Why did I add Directory to the class name of the element? Wouldn’t this template apply to files as well? I
add Directory to the class name for two reasons. One, I might want to have the ability to style directories
differently from files; and two, I need some way of distinguishing directories from files, so that if a user
double-clicks on a file, I can have one action take place, like opening or downloading the file, and when a
user double-clicks on a directory, I can replace the contents of the window with the contents of that direc-
tory. Of course, there are several ways that you can approach this, and you might have a better way of
doing it. Having said that, I often do find a better way of doing things after writing an implementation,
but for the sake of argument, that’s my reasoning behind the naming.

After the class names are added, each selected item is added to the $$.Finder.SelectedElements
array. I discuss the Finder object, how that works, and why I made it later in this section, but the
SelectedElements array exists to keep track of what directories and files are selected, so that they can
easily be referenced in whatever other functionality that I might write that would need to know which
items the user selected. Since you can be adding one or more items to the array, and since jQuery always
applies actions to one or more items, wherever possible, and wherever it makes sense to do so, you iter-
ate over the selection using jQuery’s each() method. And as you learned in Chapter 9, jQuery makes the
selection available to a plugin using the this keyword. Then, as you learned in Chapter 5, the anony-
mous function provided to $.each() is executed for each item in the array passed to it, and each item
from the array is available within the anonymous function using the this keyword.

Thus, you have to account for the possibility that you are working with one or more items, which are
always passed to your plugin in array form, and you want the ability to select one or more items. So, you
iterate over the selection with $.each(), and each item is added to the SelectedElements array using
push(). You ensure that the array doesn’t contain duplicate items by checking to see if the item is in the
array before actually adding the item to the array, and you do that with jQuery’s $.inArray() method,
which you learned about in Chapter 8.

Then the function returns the jQuery object, which gives you the ability to chain method calls, as you
would with any other jQuery method.

 SelectElement: function() {
 $(this).find(‘div.hFinderIcon’)
 .addClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .addClass(‘hFinderDirectoryNameSelected’);

 $.each(
 this,

366

Part II: jQuery UI

 function() {
 if ($.inArray(this, $$.Finder.SelectedElements) == -1) {
 $$.Finder.SelectedElements.push(this);
 }
 }
);

 return $;
 },

The next function is the UnselectElement() function. This function removes the hFinderIconSelected
and hFinderDirectoryNameSelected class names from the relevant elements, removing the “selected” style.
Then, it removes that/those item(s) from the SelectedElements array. Like the SelectElement() func-
tion, the UnselectElement() function is able to handle one or more items passed to it.

Removing items from the SelectedElements array is triggered when the first argument to the function is
specified in a call and has any value other than false or null. This trigger is put in place to account for
situations in which all items are unselected at once, which is done in the $$.Finder.UnselectSelected()
function. Without that toggle, you run into a chicken/egg scenario — within the UnselectSelected()
function, you iterate over the SelectedElements array to unselect every item in it, but in the Unselect
Element() function, you remove items from the SelectedElements array. Doing both at the same time
results in a breakdown because in the UnselectSelected() method, you can’t iterate over an array that’s
constantly being changed. The toggle in the UnselectElement() method lets you control whether the
item is removed from the SelectedElements array or not, preserving your ability to unselect all ele-
ments at once.

Within the section of code that removes items from the SelectedElements array, the first thing that
you do is alias the selection, which is available in the this keyword, to the variable named elements.
You alias the selection because when you filter the SelectedElements array with $.grep(), you need
to be able to reference the selection from within the anonymous function passed to that method, and
once you’re working within that anonymous function, the this keyword has a different meaning. As
you’ve seen throughout this book, jQuery typically gives the this keyword a value that is meaningful
in relation to what you’re doing. In a plugin, the this keyword refers to the elements you’ve selected
with jQuery through the $() method or the countless other methods that let you modify a selection.
Also, as you learned in Chapter 5, in jQuery’s $.each() method, in the function you pass to $.each(),
each item in the array is passed to a function, which you declare in the second argument, where the
this keyword refers to an individual item within an array. Then, within the context of events, as you
learned in Chapter 3, the this keyword refers to the node or element on which the event is taking
place, whereas if you add a click event to a <div> element and you click on that element, in the func-
tion you’ve added as an event handler, the this keyword refers to the <div> element. Thus, the this
keyword changes depending on what context you’re using it in. In this example, you have two differ-
ent contexts — the this keyword as it applies to the UnselectElement() method, which refers to the
selection; and the this keyword as it applies to the anonymous function passed to the $.grep() method,
which is undefined. To make the selection available from within that anonymous function, you assign
it to the elements variable.

The $.grep() method, as you learned in Chapter 5, is used to filter an array. In the application that you
see in this example, the $.grep() method takes two arguments — the array you want to filter and a
function that determines whether each item should be in the array. If the function returns a true value,
that is, Boolean true, or a value other than false, null, or zero, then that item should remain in the array;

367

Chapter 12: Selection by Drawing a Box

and if the function returns a false value (false, null, or zero), that item should not remain in the array. In
this example, you iterate over the entire list of items in the SelectedElements array and check to see if
an item is present in the selection passed to the UnselectElement method, which is now present in the
elements variable. If the item is present in the elements variable, then it should be removed from the
SelectedElements array. To determine whether the item is present in the elements variable, you use
$.inArray(). If the value returned is –1, the item isn’t present, and the function returns true (by virtue
of the == expression). If the item is present, an $.inArray() returns a value other than –1, and the func-
tion returns false, which causes $.grep() to remove that item from the SelectedElements array.

Once $.grep() has finished executing the anonymous function for each item in the SelectedElements
array, it returns a filtered array that is now missing the unselected items, and that new array is assigned
as the new value of SelectedElements.

 UnselectElement: function() {
 $(this).find(‘div.hFinderIcon’)
 .removeClass(‘hFinderIconSelected’);

 $(this).find(‘div.hFinderDirectoryName span’)
 .removeClass(‘hFinderDirectoryNameSelected’);

 // Don’t remove the item from the array, unless it is
 // being unselected individually (as opposed to
 // all elements being unselected)
 if (arguments[0]) {
 // Alias the selection to elements, so you can reference it
 // from within the anonymous function passed to grep.
 var elements = this;

 if ($$.Finder.SelectedElements.length) {
 $$.Finder.SelectedElements = $.grep(
 $$.Finder.SelectedElements,
 function(item, i) {
 // If the item isn’t in the selection, it should
 // be kept.
 return $.inArray(item, elements) == -1;
 }
);
 }
 }

 return $;
 },

The next thing that you do in this code is define a new object called Finder. The Finder object contains
all of the logic related to your Finder clone. I have created the Finder object as a jQuery plugin, which is
a technique that lends itself naturally to the concept of namespacing your code and limiting your impact
on the global namespace, which I discussed in Chapter 1. You want to limit your impact on the global
namespace because you want to increase the portability of your application so that you can drop your
code into a document and not worry so much about your naming choices having conflicts with whatever
naming is already present in that document. Or vice versa, you want to be able to include third-party
applications in your application without worrying about naming conflicts. By writing your applications
as jQuery plugins, you limit possible naming conflicts to jQuery’s Plugin API. Of course, lots of people

368

Part II: jQuery UI

write jQuery plugins, and you might want to use third-party plugins from time to time, so you should
also take that into consideration and name your plugins intelligently. I use capitalized names for my
plugins to limit the possibility of conflict with other plugins. You may also want to use a prefix of some
kind, like tmp or h (as I sometimes use, tmp being short for template and h referring to my own Hierophant
framework, respectively). In the Finder clone, I don’t expect to be using many third-party plugins, if any
at all, so I’m sticking to simply capitalizing my names. You’ll want to choose whatever naming conven-
tion makes the most sense to you.

As you’ve already seen, properties and methods within the Finder object are available using the
$$.Finder prefix. Thus, to access the SelectedElements array, I’d use $$.Finder.SelectedElements,
or to execute the UnselectSelected() function, I’d use $$.Finder.UnselectSelected(). If you don’t
like the $$ alias for $.fn, you’ll want to change those references accordingly, for example,
$.fn.Finder.SelectedElements.

 Finder: {

The following property, $$.Finder.SelectingElements, is a Boolean that’s used to keep track of when
the user is selecting multiple folders by drawing a box using the jQuery UI Selectables plugin. When
this property is true, a selection is taking place. You’ll see how this property is useful later in this
section.

 SelectingElements: false,

Then, as you’ve already learned, the $$.Finder.SelectedElements property contains an array of all of
the items that are currently selected, which makes it easier for this and other applications to grab the
current selection.

 SelectedElements: [],

The $$.Finder.UnselectSelected() method is used to remove all selected elements from a selection,
that is, to re-set Finder to a completely unselected state. To do this, the UnselectSelected method iter-
ates over the SelectedElements array, calling the UnselectElement() method for each item in that
array. Then it re-sets the SelectedElements array to an empty array.

 UnselectSelected: function() {
 $.each(
 $$.Finder.SelectedElements,
 function() {
 $(this).UnselectElement();
 }
);

 $$.Finder.SelectedElements = [];
 },

The next two items move CSS hacks that you wrote for IE back in Example 10-4 into two objects,
$$.Finder.FolderOver and $$.Finder.FolderOut, which each specifies CSS for the folder over (or
open) state and the default state (FolderOut). These were moved for two reasons: one, because of the

369

Chapter 12: Selection by Drawing a Box

possibility that you might want to reuse these styles; and two, because it made these lines of code
shorter, which, in turn, made it easier to fit these into this book, where space is limited.

 FolderOver: {
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Open Folder 48x48.png’, sizingMethod=’crop’)”
 },
 FolderOut: {
 background: ‘none’,
 filter:
 “progid:DXImageTransform.Microsoft.AlphaImageLoader” +
 “(src=’../../../Images/Finder/Folder 48x48.png’, sizingMethod=’crop’)”
 },

The next function, $$.Finder.Ready(), is executed when the DOM is fully loaded by virtue of the fol-
lowing line, which appears at the end of the JavaScript document:

$(document).ready($$.Finder.Ready);

The Ready() function contains all of the code that you want to be executed when the DOM is fully
loaded and available:

 Ready: function() {

The next section of code includes the drag-and-drop functionality that you saw in Chapter 10, with a
few tweaks to accommodate the selection of multiple elements and using jQuery’s Plugin API, and it
also includes the ability to select individual folders.

The mousedown() event executes a function every time a user presses his or her mouse button while over
a <div> element with class name hFinderDirectory. At present, you only want to allow an individual folder
or file to be selected on mousedown when the user isn’t making a selection by drawing a box. So, to limit
actions to when a selection isn’t being made via the Selectables plugin, you check to see if $$.Finder
.SelectingElements is false. If it is false, no selection is taking place. Then, to select an individual
folder or file, you first unselect anything already selected, by calling $$.Finder.UnselectSelected(),
then you select the element the user is clicking on by calling $(this).SelectElement().

 $(‘div.hFinderDirectory’)
 .mousedown(
 function() {
 if (!$$.Finder.SelectingElements) {
 // Unselect all selected
 $$.Finder.UnselectSelected();

 // Select this element.
 $(this).SelectElement();
 }
 }
)

370

Part II: jQuery UI

 .draggable({
 helper: ‘clone’,
 opacity: 0.5
 })

In the following block of code, one thing that is done differently from Chapter 10 is when you call
jQuery’s css() method. You include references to the objects stored in $$.Finder.FolderOver and
$$.Finder.FolderOut, instead of defining those objects directly.

 .droppable({
 accept: ‘div.hFinderDirectory’,
 hoverClass: ‘hFinderDirectoryDrop’,
 over: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css(
 $$.Finder.FolderOver
);
 }
 },
 out: function(e, ui) {
 if ($.browser.msie && $.browser.version == 6.0) {
 $(this).find(‘div.hFinderIcon div’).css(
 $$.Finder.FolderOut
);
 }
 },
 drop: function(e, ui) {
 var $path = ui.draggable.attr(‘title’);
 // Do something with the path

 // Remove the element that was dropped.
 ui.draggable.remove();
 }
 });

The last block of code makes folders and files selectable via the jQuery UI Selectables plugin. To make
the folders selectable, you call the selectable() method on the element that contains the folder elements,
which in this case is the <div> with ID name hFinderFiles.

You provide four options to the selectable() method: start, stop, selecting, and unselecting, each
providing a callback function for a selection event.

The start option lets you provide a callback function that is executed once a selection is initiated.
Within the callback function provided to the start option, you toggle the variable $$.Finder
.Selecting Elements to true, to indicate that a selection is taking place. That variable, as you’ve
already learned, is used to prevent individual selection of folders and files via the mousedown event
that you attached to each folder and file element. Once that variable is toggled, anything that’s already
selected is cleared and re-set to an unselected state by calling $$.Finder.UnselectSelected(). Calling
that method removes any existing selection once a new selection is initiated.

 // Make it possible to select folders and files by
 // drawing a box with the mouse.
 $(‘div#hFinderFiles’).selectable({

371

Chapter 12: Selection by Drawing a Box

 start: function(e, ui) {
 // Selection has started, prevent the selection
 // of individual elements
 $$.Finder.SelectingElements = true;

 // Unselect anything already selected
 $$.Finder.UnselectSelected();
 },

The stop option lets you provide a callback function that is executed when a selection is completed
(when the selection box has been drawn and the user releases the mouse button). Within the callback
function provided to the stop option, you simply toggle the variable $$.Finder.SelectingElements to
false to indicate that a selection is no longer taking place, which again allows the individual selection
of files and folders.

 stop: function(e, ui) {
 // Allow the individual selection of elements again.
 $$.Finder.SelectingElements = false;
 },

The selecting option, as you’ve already learned, allows you to specify a callback function that is executed
once for every element added to a selection, in real time, as elements are added to the selection by expand-
ing the selection box. Within the callback function here, you check to see if the ui.selecting object exists,
which refers to the object added to the selection. If the object exists, you call the SelectElement() method
on it, so that that folder is properly styled to indicate its selection.

 selecting: function(e, ui) {
 if (ui.selecting) {
 $(ui.selecting).SelectElement();
 }
 },

The unselecting option, conversely, specifies a callback function that is executed once for each element
removed from a selection or as elements are removed from a selection by shrinking the selection box.
Here, each element is present in the second argument, as ui.unselecting. The UnselectElement()
method is called on each element to remove the selected style.

 unselecting: function(e, ui) {
 $(ui.unselecting).UnselectElement(true);
 }
 });
 }
 }
});

Complete API documentation for the Selectables plugin is available in Appendix L.

372

Part II: jQuery UI

Summary
In this chapter, you learned about the jQuery UI Selectables plugin, which provides functionality for
making selections by drawing a box with your mouse cursor. You saw how the Selectables plugin can
be applied to a remedial list and to the more complex Finder clone that you made in Chapter 10.

The Selectables plugin, like jQuery UI’s other plugins, accepts an object literal of options that are speci-
fied in key, value form. The Selectables plugin lets you specify callback functions for selectable events.
Callback functions provided to the options start and stop are executed when a selection begins and
ends, respectively. Callback functions provided to the options selecting and unselecting are exe-
cuted as items are added and removed from a selection while a selection is taking place.

Exercises
 1. Which option do you use to execute callback function when a selection begins?

 2. What options do you use to execute callback functions when items are added or removed from
a selection (while a selection is taking place)?

 3. When using the selected and unselected options, how do you access each element added and
removed from the selection?

 4. What selector would you add to a style sheet to customize the look and feel of the selection box?

13
Accordion UI

So far you’ve learned about how jQuery makes dragging and dropping very easy to implement,
and you’ve learned how jQuery makes it a breeze to select items by drawing a box. And you’ve
also seen how ridiculously easy it is to implement drag-and-drop sorting with jQuery. In this
chapter, I present another very cool jQuery UI plugin, called Accordion.

The jQuery UI Accordion plugin makes it very easy to implement content that expands and folds
like your favorite polka instrument, the accordion.

Accordion UI widgets can be seen on popular websites like www.apple.com/mac. In this chapter,
you’ll find out how to use the jQuery UI Accordion plugin to make your very own Accordion
widget and customize its look.

Building an Accordion UI
In this section, I discuss how to make an Accordion UI. An Accordion UI, by definition, is a collec-
tion of content panes that each has its own header, where only one content pane is visible at a time.
When you click on the other content panes, a smooth animation transitions the visible pane to closed
by animating its height, leaving only its header visible, and animates the other element’s height,
expanding that element until it is fully visible.

Having briefly explained what an Accordion UI is, the following document begins with a basic
implementation of the jQuery UI Accordion plugin:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>

374

Part II: jQuery UI

 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 13-1.js’></script>
 <link type=’text/css’ href=’Figure 13-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>The Beatles</h4>

 John Lennon
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 Paul McCartney
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 George Harrison
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 Ringo Starr
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}

375

Chapter 13: Accordion UI

h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 0;
 padding: 15px 5px;
}
li {
 background: gold;
 padding: 3px;
 width: 244px;
 margin: 1px;
}

The following script makes the element in the markup document into an accordion with a simple
function call:

$(document).ready(
 function() {
 $(‘ul’).accordion();
 }
);

Figure 13-1 shows that, while the accordion has been created, your work here is not yet done.

Figure 13-1

In Figure 13-1, the height of each element is not correct and you can see content overflowing each
element. In the next section, I describe how to correct this problem when you see it.

Structurally speaking, jQuery’s Accordion plugin wants to be applied to a collection of elements; like a
 element, it automatically recognizes each <a> element as being the header portion of each content
pane. Later in this chapter, I discuss in more detail how to approach styling an accordion.

376

Part II: jQuery UI

Setting Auto-Height
In Figure 13-1, you saw that the content of the first pane didn’t fit within that pane, and when you try
the example in a browser, you see that the bottom of each content pane is clipped. jQuery’s Accordion
plugin, like the Selectable, Draggable, Droppable, and other plugins, lets you supply options to the
method via an object literal that you pass as the first argument to a call to the accordion() method. In
this section, I describe how to use Accordion’s autoHeight option.

The autoHeight option can be provided with a Boolean value, and its value is true, by default. The
value true causes the Accordion plugin to calculate and apply height to each content pane, based on
the highest content, which does not always provide the results you may be looking for.

Setting the value of autoHeight to false changes the way that the Accordion UI handles height with
each content pane. The following demonstrates how to modify the autoHeight option:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 autoHeight: false
 });
 }
);

The preceding script is applied to the same document that I presented in Figure 13-1; in Figure 13-2,
you can see that the height problem that you observed in Figure 13-1 has been corrected.

Figure 13-2

Setting autoHeight has no effect in Internet Explorer or Firefox. The preceding effect is only observ-
able in Safari.

377

Chapter 13: Accordion UI

Changing the Default Pane
At this point, you have a functioning Accordion UI. In this section, I show you how to change the con-
tent pane that’s displayed by default. Out-of-the-box, the Accordion plugin displays the first content
pane, but using the active option, you can force a different content pane to be displayed. The following
markup document demonstrates this concept; note the application of the class name tmpSelected to the
<a> element wrapping the text George Harrison:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 13-3.js’></script>
 <link type=’text/css’ href=’Figure 13-3.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>The Beatles</h4>

 John Lennon
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 Paul McCartney
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 George Harrison
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

378

Part II: jQuery UI

 Ringo Starr
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 0;
 padding: 15px 5px;
}
li {
 background: gold;
 padding: 3px;
 width: 244px;
 margin: 1px;
}

In the following script, you see that the selector a.tmpSelected is provided to the active option, which
causes the element that contains the <a> element with that class name in the markup document to
be used as the default content pane:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 autoHeight: false,
 active: ‘a.tmpSelected’
 });
 }
);

In Figure 13-3, you see that the content under George Harrison is now the default content.

379

Chapter 13: Accordion UI

Figure 13-3

You can also set the option active to false, which makes no content open by default; this is demon-
strated in the following script:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 autoHeight: false,
 active: false
 });
 }
);

In Figure 13-4, you see that setting the option to false causes no content to be visible by default, just
the headings.

Figure 13-4

380

Part II: jQuery UI

Toggling the alwaysOpen Option
The Accordion plugin’s alwaysOpen option is a Boolean that dictates whether a content pane has to be
open. By default, the Accordion plugin forces at least one content pane to be open. If you click on the
open item’s header, nothing happens; and if you click on a different header, the Accordion plugin transi-
tions the open one to closed, and the clicked-on item to open via an animation. The alwaysOpen option
provides you with the ability to close the open content pane by clicking on its header. The following is a
demonstration of the alwaysOpen option:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 autoHeight: false,
 active: false,
 alwaysOpen: false
 });
 }
);

When the alwaysOpen option is set to false, you are able to close the active element by clicking on its
header, which gives you the same screenshot that you see in Figure 13-4.

The preceding example is available in the code download as Figure 13-5, but not shown here.

Changing the Accordion Event
Upon setup, Accordion content panes are transitioned when you click on a header. You have the option
of changing the event that triggers the transition using the event option. The following script shows you
how to change the event to a mouseover event, from a click event:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 autoHeight: false,
 active: false,
 alwaysOpen: false,
 event: ‘mouseover’
 });
 }
);

The preceding modification makes no visible change, so you see a document that looks similar to the
one you see in Figure 13-4, but when you load it in a browser, you are able to transition between content
panes using a mouseover event instead of a click event.

The preceding example is available in the source materials as Figure 13-6, but is not shown here.

381

Chapter 13: Accordion UI

Filling the Height of the Parent Element
The next option, called fillSpace, changes the way the Accordion plugin handles height. Setting the
fillSpace option to true causes each element that contains content to fill the height of its parent
 element.

$(document).ready(
 function() {
 $(‘ul’).accordion({
 fillSpace: true,
 event: ‘mouseover’,
 active: ‘a.tmpSelected’
 });
 }
);

The height of the element is recorded prior to each content element being collapsed, the space is then
divided between the closed content panes, and the remaining open content pane receives the remaining
space. The screenshot in Figure 13-7 shows a screenshot that illustrates what happens when you set the
fillSpace option to true.

Figure 13-7

Setting the Header Elements
By default, the Accordion uses the <a> element as a header within each element. You don’t have to
use an <a> element as the header; however, the following example illustrates how to use an <h4> ele-
ment instead of an <a> element:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

382

Part II: jQuery UI

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 13-8.js’></script>
 <link type=’text/css’ href=’Figure 13-8.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>The Beatles</h4>

 <h4>John Lennon</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci.
 </p>

 <h4>Paul McCartney</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere. Aliquam
 erat volutpat. Etiam at lacus fermentum dui interdum pretium.
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </p>

 <h4 class=’tmpSelected’>George Harrison</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 <h4>Ringo Starr</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 </body>
</html>

383

Chapter 13: Accordion UI

The following style sheet is applied to the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 0;
 padding: 15px 5px;
}
ul h4,
ul p {
 margin: 5px;
}
li {
 background: gold;
 padding: 3px;
 width: 244px;
 margin: 1px;
}

In the following script, you change the element that’s used as the header for each content pane by pro-
viding a selector to the header option, in this case h4, which causes the <h4> element of each ele-
ment to be used as a header, rather than the <a> element:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 fillSpace: true,
 event: ‘mouseover’,
 active: ‘h4.tmpSelected’,
 header: ‘h4’
 });
 }
);

In the preceding script, take note that you also have to change the selector provided to the active
option, since now you want to have a content pane that uses an <h4> header to be open by default.

The screenshot shown in Figure 13-8 demonstrates that the <h4> element is used instead of an
<a> element.

384

Part II: jQuery UI

Figure 13-8

Styling Selected Panes
The next option that I present is the selectedClass option, which lets you specify a class name for the
active content pane, allowing you to style the active content pane by attaching a class name to it. The fol-
lowing document demonstrates how to style the active content pane using the selectedClass option:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 13-9.js’></script>
 <link type=’text/css’ href=’Figure 13-9.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>The Beatles</h4>

 <h4>John Lennon</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci.
 </p>

385

Chapter 13: Accordion UI

 <h4>Paul McCartney</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere. Aliquam
 erat volutpat. Etiam at lacus fermentum dui interdum pretium.
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </p>

 <h4 class=’tmpSelected’>George Harrison</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 <h4>Ringo Starr</h4>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 </body>
</html>

In the following style sheet, which is applied to the preceding markup, the rule beginning with the
selector li.tmpContentSelected defines the styles for the active content pane:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 0;
 padding: 15px 5px;
}
ul h4,
ul p {
 margin: 5px;
}

386

Part II: jQuery UI

li {
 background: gold;
 padding: 3px;
 width: 244px;
 margin: 1px;
}
li.tmpContentSelected {
 background: yellow;
 border: 1px solid #000;
 width: 242px;
}

In the following script, the option selectedClass has the value tmpContentSelected. This class name is
applied to the and <h4> elements of the active content, giving you the ability to style the active
content differently from inactive content.

$(document).ready(
 function() {
 $(‘ul’).accordion({
 fillSpace: true,
 event: ‘mouseover’,
 active: ‘h4.tmpSelected’,
 header: ‘h4’,
 selectedClass: ‘tmpContentSelected’
 });
 }
);

Figure 13-9 shows a screenshot of the document with this new modification applied, and you see that
the selected content has a yellow background with a black border, with a width that’s 2 pixels shorter to
accommodate the border.

Figure 13-9

387

Chapter 13: Accordion UI

Selecting a Content Pane by Location
jQuery also gives you the ability to change the default content pane depending on location, by having
jQuery automatically compare the URLs to content present in the Accordion, in the href attribute of
each <a> element, to the document’s location.href property. The following document demonstrates
how to change the Accordion’s default content pane, depending on location:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 13-10.js’></script>
 <link type=’text/css’ href=’Figure 13-10.css’ rel=’stylesheet’ />
 </head>
 <body>
 <h4>The Beatles</h4>

 John Lennon
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci.
 </p>

 Paul McCartney
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere. Aliquam
 erat volutpat. Etiam at lacus fermentum dui interdum pretium.
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </p>

 George Harrison
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 Ringo Starr

388

Part II: jQuery UI

 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Vestibulum luctus rutrum orci. Praesent faucibus tellus
 faucibus quam. Aliquam erat volutpat. Nam posuere.
 </p>

 <h1>John Lennon</h1>
 </body>
</html>

The preceding markup document is named john.html, and similar markup documents are created and
named paul.html, george.html, and ringo.html. The following style sheet is applied to all four markup
documents:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
 margin: 0;
 padding: 0;
}
h4 {
 margin: 5px;
}
ul {
 list-style: none;
 margin: 0;
 padding: 15px 5px;
 clear: left;
}
h4,
ul {
 float: left;
}
ul a {
 margin: 5px;
 font-weight: bold;
 display: block;
}
ul p {
 margin: 5px;
}
li {
 background: gold;
 padding: 3px;
 width: 244px;
 margin: 1px;
}
li.tmpContentSelected {
 background: yellow;

389

Chapter 13: Accordion UI

 border: 1px solid #000;
 width: 242px;
}
h1 {
 margin-left: 280px;
}

In the following script, you see how the navigation and navigationFilter options are used to change
the default content pane depending on the location.href property’s value:

$(document).ready(
 function() {
 $(‘ul’).accordion({
 fillSpace: true,
 event: ‘mouseover’,
 selectedClass: ‘tmpContentSelected’,
 navigation: true,
 navigationFilter: function() {
 return(
 decodeURIComponent(this.href).toLowerCase() ==
 decodeURIComponent(location.href.toLowerCase())
);
 }
 });
 }
);

In the preceding example, when you click on any of the four links, you see that the default content pane
changes depending on which document you navigate to, and this is done by comparing the value of the
href attribute of each <a> element to the location.href property. Triggering a location comparison is
done by setting the navigation option to true. By default, the Accordion plugin uses the following logic
to compare the location specified in each href attribute to the location.href property:

navigationFilter: function() {
 return this.href.toLowerCase() == location.href.toLowerCase();
}

The navigationFilter option gives you the ability to modify the logic that’s used for matching the location
with your own logic. I noticed in my own test, for example, that there were URL-encoded characters present
in the href attribute of each <a> element. Each space character was replaced with the URL-encoded equiva-
lent, %20, for example. But these same characters were not URL-encoded in the browser’s location.href
property. To fix this, I provided my own callback function to the navigationFilter option, which decodes
URL-encoded characters using JavaScript’s decodeURIComponent() method before attempting a compari-
son. You can also use the navigationFilter option to compare location in other ways, such as by looking
for a query string argument instead of the document’s path. You simply have to have your callback func-
tion return true to indicate a match, and return false otherwise. Figure 13-10 shows a screenshot of the
john.html page of the preceding example, where you see that the content pane “John Lennon” is open by
default in the Accordion.

390

Part II: jQuery UI

Figure 13-10

Summary
In this chapter, you learned how to create an Accordion UI and the various options that you can use to
tweak an Accordion UI implementation. You learned that the Accordion plugin takes a list of elements,
such as a element, and makes the items in that list into smoothly animated content panes, which
transition one to the other by animating the height of each item in the list. By default, headers for each
content pane are provided as <a> elements, but you can change the header element to something else by
supplying a selector to the header option.

The active option can be used to change the default content pane that’s displayed when the page first
loads. Alternatively, you can have the default content pane change dynamically using the navigation
and navigationFilter options, and if you so choose, you can have no default content pane at all by
setting the active option to false. If no default content pane is specified, the first element in the list
will be used.

Normally, the Accordion plugin requires at least one content pane to be open; the alwaysOpen option can
be used to allow closing the open content pane.

The autoHeight, clearStyle, and fillSpace options can each be used to tweak how the Accordion
plugin defines the height for each content pane. The autoHeight option takes the highest content and
uses that height as the height for all other content panes, which may not always provide the right look
and feel. The clearStyle option clears height and overflow limitations set by the Accordion plugin
during an animation after an animation completes.

The event option is used to change the event that’s used to trigger a content pane transition; click is
the default event.

391

Chapter 13: Accordion UI

Finally, the selectedClass option can be used to provide a class name for the active content pane,
which allows you to provide a different look and feel for active content as opposed to inactive content.

A quick reference of the Accordion plugin and its options appears in Appendix N.

Exercises
 1. Which option would you provide to the accordion() method to change the default content

pane?

 2. What does the alwaysOpen option do?

 3. Which three options would you consider using to change how the accordion() method
handles height?

 4. What option would you use to make the accordion() method trigger a content transition using
a mouseover event, instead of a click event?

 5. What option would you use to change the header element to an <h3> element?

 6. How would you customize the logic used to dynamically change the default content pane
depending on the value of the location.href property?

 7. What option would you use to style the active content pane differently from inactive content panes?

14
Datepicker

jQuery UI offers a sophisticated and feature-rich UI component for inputting dates into a form
field in its Datepicker plugin.

The jQuery UI Datepicker plugin provides a graphical calendar that can be set to pop up
anywhere you might need a date keyed into a form. The calendar can be customized in its look
and feel. The date format it produces can be set to mirror local customs. The text it labels fields
with can be swapped out with whatever text you like, translated into a foreign language, or
otherwise … making the plugin fully capable of localization.

In this chapter, I describe how to use and customize the Datepicker plugin.

Implementing a Datepicker
A barebones implementation of the Datepicker plugin doesn’t look like much; it’s unstyled, but it
works, more or less, from the standpoint of functionality.

The following document is a demonstration of what a basic implementation of the jQuery UI
Datepicker plugin looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 14-1.js’></script>
 <link type=’text/css’ href=’Figure 14-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <form action=’javascript:void(0);’ method=’post’>
 <fieldset>

394

Part II: jQuery UI

 <legend>Appointment Form</legend>
 <div>
 <label for=’tmpDate’>Date:</label>
 <input type=’text’ id=’tmpDate’ size=’25’ value=’’ />
 </div>
 </fieldset>
 </form>
 </body>
</html>

The following style sheet provides a little bit of styling for the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
fieldset {
 border: none;
}
input {
 background: lightblue;
}

In the following script, the datepicker() method is called on the <input> element in the markup docu-
ment, which causes a calendar to dynamically pop up for date selection whenever the <input> element
receives focus:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker();
 }
);

As you can see in Figure 14-1, the Datepicker plugin provides an unstyled calendar that is provided
each time the <input> field it is associated with is activated.

Figure 14-1

395

Chapter 14: Datepicker

Styling the Datepicker
By default, the Datepicker plugin doesn’t provide much styling. In this section, I present how to style the
Datepicker calendar. Before you can set out to style the Datepicker widget, however, you need to under-
stand how the widget is structured. A comprehensive list of customization options and a list of class
names appear in Appendix O.

The following markup is the structure used by default for the Datepicker widget:

<div id=”ui-datepicker-div”>
 <div class=”ui-datepicker-control”>
 <div class=”ui-datepicker-clear”>
 <a>Clear
 </div>
 <div class=”ui-datepicker-close”>
 <a>Close
 </div>
 </div>
 <div class=”ui-datepicker-links”>
 <div class=”ui-datepicker-prev”>
 <a><Prev
 </div>
 <div class=”ui-datepicker-current”>
 <a>Today
 </div>
 <div class=”ui-datepicker-next”>
 <a>Next>
 </div>
 </div>
 <div class=”ui-datepicker-one-month ui-datepicker-new-row”>
 <div class=”ui-datepicker-header”>
 <select class=”ui-datepicker-new-month”>
 <option value=”0”>January</option>
 <option value=”1”>February</option>
 <option value=”2”>March</option>
 <option value=”3”>April</option>
 <option value=”4”>May</option>
 <option value=”5”>June</option>
 <option value=”6”>July</option>
 <option value=”7”>August</option>
 <option value=”8”>September</option>
 <option value=”9”>October</option>
 <option value=”10” selected=”selected”>November</option>
 <option value=”11”>December</option>
 </select>
 <select class=”ui-datepicker-new-year”>
 <option value=”1998”>1998</option>
 <option value=”1999”>1999</option>
 <option value=”2000”>2000</option>
 <option value=”2001”>2001</option>
 <option value=”2002”>2002</option>
 <option value=”2003”>2003</option>
 <option value=”2004”>2004</option>
 <option value=”2005”>2005</option>
 <option value=”2006”>2006</option>

396

Part II: jQuery UI

 <option value=”2007”>2007</option>
 <option value=”2008” selected=”selected”>2008</option>
 <option value=”2009”>2009</option>
 <option value=”2010”>2010</option>
 <option value=”2011”>2011</option>
 <option value=”2012”>2012</option>
 <option value=”2013”>2013</option>
 <option value=”2014”>2014</option>
 <option value=”2015”>2015</option>
 <option value=”2016”>2016</option>
 <option value=”2017”>2017</option>
 <option value=”2018”>2018</option>
 </select>
 </div>
 <table class=”ui-datepicker” cellpadding=”0” cellspacing=”0”>
 <thead>
 <tr class=”ui-datepicker-title-row”>
 <td class=”ui-datepicker-week-end-cell”>
 Su
 </td>
 <td>
 Mo
 </td>
 <td>
 Tu
 </td>
 <td>
 We
 </td>
 <td>
 Th
 </td>
 <td>
 Fr
 </td>
 <td class=”ui-datepicker-week-end-cell”>
 Sa
 </td>
 </tr>
 </thead>
 <tbody>
 <tr class=”ui-datepicker-days-row”>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-week-end-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>

397

Chapter 14: Datepicker

 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>1
 </td>
 </tr>
 <tr class=”ui-datepicker-days-row”>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>2
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>3
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>4
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>5
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>6
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>7
 </td>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>8
 </td>
 </tr>
 <tr class=”ui-datepicker-days-row”>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>9
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>10
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>11
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>12
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>13
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>14
 </td>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>15
 </td>
 </tr>

398

Part II: jQuery UI

 <tr class=”ui-datepicker-days-row”>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>16
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>17
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>18
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>19
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>20
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>21
 </td>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>22
 </td>
 </tr>
 <tr class=”ui-datepicker-days-row”>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>23
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>24
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>25
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>26
 </td>
 <td class=”ui-datepicker-days-cell”>
 <a>27
 </td>
 <td class=”ui-datepicker-days-cell ui-datepicker-today”>
 <a>28
 </td>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>29
 </td>
 </tr>
 <tr class=”ui-datepicker-days-row”>
 <td class=”ui-datepicker-days-cell ui-datepicker-week-end-cell”>
 <a>30
 </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>

399

Chapter 14: Datepicker

 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 <td class=”ui-datepicker-days-cell
 ui-datepicker-week-end-cell
 ui-datepicker-other-month
 ui-datepicker-unselectable”> </td>
 </tr>
 </tbody>
 </table>
 </div>
 <div style=”clear: both;”></div>
</div>

The preceding markup produces Figure 14-2 (not shown).

In the following “Try It Out,” I present one way you might approach styling the Datepicker widget:

Try It Out Styling the Datepicker

Example 14-1
To style the Datepicker, follow these steps.

 1. Create the following markup document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 14-1.js’></script>
 <link type=’text/css’ href=’Example 14-1.css’ rel=’stylesheet’ />
 <!--[if IE 6]>
 <link type=’text/css’ href=’Example 14-1.IE6.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <form action=’javascript:void(0);’ method=’post’>
 <fieldset>
 <legend>Appointment Form</legend>
 <div>
 <label for=’tmpDate’>Date:</label>

400

Part II: jQuery UI

 <input type=’text’ id=’tmpDate’ size=’25’ value=’’ />
 </div>
 </fieldset>
 </form>
 </body>
</html>

 2. Save the preceding document as Example 14-1.html.

 3. Create the following style sheet:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
fieldset {
 border: none;
}
input {
 background: lightblue;
}
#ui-datepicker-div {
 width: 300px;
 border: 1px solid rgb(128, 128, 128);
 padding: 5px;
 background: lightgreen;
 display: none;
}
div.ui-datepicker-control {
 position: relative;
 height: 25px;
 background: forestgreen;
}
div.ui-datepicker-control div {
 padding: 5px;
}
div.ui-datepicker-control div a {
 color: #fff;
}
div.ui-datepicker-links {
 position: relative;
 height: 20px;
 padding: 5px 0 0 0;
 background: darkgreen;
 border-bottom: 1px solid green;
 text-align: center;
}
div.ui-datepicker-links div {
 padding: 5px;
}
div.ui-datepicker-links div a {
 color: #fff;
}
div.ui-datepicker-clear,

401

Chapter 14: Datepicker

div.ui-datepicker-prev {
 position: absolute;
 top: 0;
 left: 0;
}
div.ui-datepicker-close,
div.ui-datepicker-next {
 position: absolute;
 top: 0;
 right: 0;
}
div.ui-datepicker-current {
 display: inline;
}
div.ui-datepicker-header {
 margin-top: 5px;
 text-align: center;
}
div.ui-datepicker-header select {
 margin: 0 3px;
}
table.ui-datepicker {
 width: 250px;
 border-collapse: collapse;
 margin: 10px 0 0 0;
}
table.ui-datepicker td {
 padding: 3px;
 border: 1px solid green;
}
table.ui-datepicker thead td {
 text-align: center;
 font-weight: bold;
 background: green;
 color: lightgreen;
}
td.ui-datepicker-today {
 background: #dff6e4;
}
td.ui-datepicker-current-day {
 background: darkgreen;
 color: #fff;
}

 4. Save the preceding style sheet as Example 14-1.css.

 5. Create the following style sheet for IE6:

.ui-datepicker-cover {
 display: none; /*sorry for IE5*/
 display/**/: block; /*sorry for IE5*/
 position: absolute; /*must have*/
 z-index: -1; /*must have*/
 filter: mask(); /*must have*/
 top: -4px; /*must have*/

402

Part II: jQuery UI

 left: -4px; /*must have*/
 width: 193px; /*must have to match width and borders*/
 height: 200px; /*must have to match maximum height*/
}
#ui-datepicker-div {
 z-index: 10; /* must have */
}

 6. Save the preceding style sheet as Example 14-1.IE6.css.

 7. Create the following JavaScript:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker();
 }
);

 8. Save the preceding JavaScript as Example 14-1.js.

The preceding example results in something like the screenshot that you see in Figure 14-3 when you
load up the markup document in a browser.

Figure 14-3

In the preceding example, you learned more about how to style the default Datepicker widget. Other
aspects of the Datepicker concerning what dates you are allowed to pick from, how dates are formatted,
and what controls are present in the widget may also be customized, but you learn more about these
things later in the chapter.

In order to style the Datepicker, you reference the markup that I provided just before Example 14-1, using
the various class names to create styling for the pop-up calendar. Some corrections have to be made for
IE6; the corrections provided are the same recommended in the official documentation appearing at

403

Chapter 14: Datepicker

www.jquery.com for the Datepicker plugin. The IE6 corrections are provided in a separate style sheet, so
that your main style sheet doesn’t have to be increased in size to accommodate IE6’s shortcomings. IE7
and IE8 Beta 2, on the other hand, are able to properly display the Datepicker widget out-of-the-box
without any further modification.

The styles provided are nothing particularly extraordinary, just run-of-the-mill CSS.

Setting the Range of Allowed Dates
By default, the jQuery UI Datepicker plugin allows you to select from a range of dates that goes 10 years
into the future and 10 years into the past. You can customize the range of dates that are allowed by the
widget, however, by specifying the range via an option.

The following script demonstrates how to limit the range of selectable dates:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker({
 minDate: new Date(2000, 0, 1),
 maxDate: new Date(2002, 0, 1)
 });
 }
);

The preceding script is applied to the document that you created in Example 14-1, and Figure 14-4
shows the effects of the preceding options when viewed in a browser.

Figure 14-4

In the preceding example, you set a minimum and a maximum date. The date is supplied using a Date()
object, where you specify the year, the month offset from zero, and the day. The minimum date is passed

404

Part II: jQuery UI

to the option minDate, and the maximum is passed to the option maxDate. The date is supplied as
Date(yy, mm, dd), and again, for the month, January is numbered zero, and February is number one,
and so on. This results in having dates selectable from January 1, 2000 until January 1, 2002; the widget
won’t allow selection of January 2, 2002, for example.

Otherwise, instead of the minDate and maxDate options, you can also set a range of allowed dates via
another option called yearRange. The yearRange option sets the range of selectable dates based on which
years you want to be selectable. Whereas the minDate and maxDate options allow you fine-grained con-
trol down to the day, the yearRange option allows you to specify the selectable date only by the year. The
option allows two different ways of specifying a range of years. The following script shows you the
default range:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker({
 yearRange: “-10:+10”
 });
 }
);

The preceding sets a range relative to today’s date, setting a range of years from 10 years in the past to
10 years in the future. Aside from setting the range of years relative to today’s date, you can also set an
arbitrary range of years, which the following script demonstrates:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker({
 yearRange: “1900:2020”
 });
 }
);

The preceding script sets a range of selectable dates from 1900 until the year 2020.

Allowing a Date Range to Be Selected
You can also allow the user to select a range of dates within the widget, that is, select a beginning date
and an ending date. The following script shows how to enable the selection of a range of dates by setting
the rangeSelect option to true.

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker({
 rangeSelect: true
 });
 }
);

The preceding script is applied to the document that you created in Example 14-1. Figure 14-5 shows
that the widget now allows you to select a beginning date and an ending date.

405

Chapter 14: Datepicker

Figure 14-5

The characters that are used to separate the range are also customizable using the rangeSeparator
option; by default, the rangeSeparator option uses a space followed by a hyphen followed by a space.

Localizing the Datepicker
The Datepicker plugin has many localization options that allow you to completely change how the cal-
endar looks, the text that it uses, the date format that it uses, and the weekday the calendar starts on. In
the following sections, I describe how to localize a Datepicker implementation.

Setting the Date Format
The date format displayed as the value of the <input> element can be changed to whatever format you
like. The following script demonstrates how to change the date format so that the day is placed before
the month as is done with dates in much of the world:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker({
 dateFormat: ‘dd/mm/yy’
 });
 }
);

In the preceding script, you see that the date format is set using the dateFormat option; in this case, it
specifies the day, month, and year — the day and month with leading zeros and the year in four-digit
format. A full list of options is available in Appendix O, under “Format Options.” Figure 14-6 shows
that the day appears first, then the month, then the year.

406

Part II: jQuery UI

Figure 14-6

Localizing Datepicker Text
The following options can be used to localize, customize, or translate an implementation of Datepicker:

clearText ❑ — The text to display for the clear link. The default is “Clear”.

clearStatus ❑ — The text to display in the status bar for the clear link. The default is
“Erase the current date”.

closeText ❑ — The text to display for the close link. The default is “Close”.

closeStatus ❑ — The text to display in the status bar for the close link. The default is
“Close without change”.

prevText ❑ — The text to display for the previous month link. The default is “Prev”.

prevStatus ❑ — The text to display in the status bar for the previous month link. The default is
“Show the previous month”.

nextText ❑ — The text to display for the next month link. The default is “Next>”.

nextStatus ❑ — The text to display in the status bar for the next month link. The default is
“Show the next month”.

currentText ❑ — The text to display for the current day link. The default is “Today”.

currentStatus ❑ — The text to display in the status bar for the current day link. The default is
“Show the current month”.

monthNames ❑ — The list of full month names, as used in the month header on each Datepicker
and as requested via the dateFormat setting. The default is [“January”, “February”,
“March”, “April”, “May”, “June”, “July”, “August”, “September”, “October”,
“November”, “December”].

407

Chapter 14: Datepicker

monthNamesShort ❑ — The list of abbreviated month names, for use as requested via the
dateFormat setting. The default is [“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”,
“Aug”, “Sep”, “Oct”, “Nov”, “Dec”].

monthStatus ❑ — The text to display in the status bar for the month dropdown list. The default is
“Show a different month”.

yearStatus ❑ — The text to display in the status bar for the year dropdown list. The default is
“Show a different year”.

weekHeader ❑ — The column header for the week of the year (see showWeeks). The default is “wk”.

weekStatus ❑ — The text to display in the status bar for the week of the year. The default is
“Week of the year”.

dayNames ❑ — The list of long day names, starting from Sunday, for use as requested via the
dateFormat setting. Day names also appear as pop-up hints when hovering over the corre-
sponding column headings. The default is [“Sunday”, “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”].

dayNamesShort ❑ — The list of abbreviated day names, starting from Sunday, for use as
requested via the dateFormat setting. The default is [“Sun”, “Mon”, “Tue”, “Wed”,
“Thu”, “Fri”, “Sat”].

dayNamesMin ❑ — The list of minimized day names, starting from Sunday, for use as column
headers within the Datepicker. The default is [“Su”, “Mo”, “Tu”, “We”, “Th”, “Fr”, “Sa”].

dayStatus ❑ — The text to display in the status bar for the day of the week links. Use DD for the
full name of the day or D for its short name. The default is “Set DD as first week day”.

initStatus ❑ — The text to display in the status bar when the Datepicker is first opened. The
default is “Select a date”.

Changing the Starting Weekday
In some places in the world, the calendar begins with Monday and ends with Sunday. Whichever day
you want to use as the starting weekday is also customizable via the firstDay option. The following
script demonstrates how to change the starting weekday:

$(document).ready(
 function() {
 $(‘input#tmpDate’).datepicker({
 dateFormat: ‘dd/mm/yy’,
 firstDay: 1
 });
 }
);

In the preceding script, the firstDay option is used to change the starting calendar day from Sunday
(which is number zero) to Monday (which is number one). Figure 14-7 shows the result of the change.

408

Part II: jQuery UI

Figure 14-7

Summary
In this chapter, you learned a little about what the jQuery UI Datepicker plugin has to offer. This chapter
covered only some of the options that are allowed, owing to constraints on resources; however, a com-
prehensive reference containing all of the options that you can use with the datepicker() method
appears in Appendix O.

In this chapter, you learned that the Datepicker plugin does not come with much styling, and whatever
styling you want must be implemented by yourself. You saw how the widget’s markup is structured, and
a sample style sheet that could be applied to it.

You learned that the Datepicker can limit the range of selectable dates. For fine-grained, down-to-the-day
control, the minDate and maxDate options can be used. For an arbitrary range of years, the yearRange
option can be used.

You learned a little about the options that are available to you for localizing the Datepicker — you can
change the date format, you can change any of the text labels, and you can change the starting weekday
that’s displayed in the calendar.

Exercises
 1. Name three options that you could potentially use to limit the range of selectable dates pro-

vided in the calendar, and describe the differences between them.

 2. What option would you use to change the date format?

 3. Does the Datepicker plugin give you the ability to translate its text into Spanish?

 4. What option would you use to change the starting weekday?

15
Dialogs

In this chapter, I present how to work with the jQuery UI Dialog plugin, which provides pseudo-
pop-up windows that are created using purely markup, CSS, and script.

Unlike pop-up windows, which require that you open a new document in a separate browser
window that is increasingly saddled with security limitations, such as being unable to hide the
URL of the document and being unable to hide the status bar at the bottom of the window, dia-
logs that are created using markup, CSS, and script can be styled in any way that you like and can
impose any limitations that you like, for example, the ability to make a modal dialog, which pro-
vides a dialog and prevents the user from continuing to interact with the document until the dia-
log is closed.

Another difference between pop-up windows and dialogs (as I will now refer to this widget for the
remainder of this chapter — without reiterating the fact that they are generated by markup, CSS,
and script) is that dialogs are unable to leave the browser window in which they reside, so a dia-
log cannot be minimized to your operating system’s taskbar, although you could possibly create
your own minimization script so that the dialog can be minimized within the browser window.

As with many of the things that you’ve learned about in this book, jQuery UI again leaves very
little to be desired in its own spare-no-function implementation of dialogs.

Implementing a Dialog
As with every other jQuery UI plugin, I begin the discussion of the Dialog plugin by presenting a
barebones, unconfigured, and unstyled implementation of what the plugin looks like. The follow-
ing document demonstrates the out-of-the-box implementation:

Lipsum text can be copied and pasted from www.lipsum.com.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

410

Part II: jQuery UI

 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 15-1.js’></script>
 <link type=’text/css’ href=’Figure 15-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=’tmpExample’ title=’Lorem Ipsum’>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 </div>
 </body>
</html>

The following style sheet is applied to the preceding markup document:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}

In the following script, you see how the <div> element with ID name tmpExample is made into a dialog
by selecting that <div> element and then calling the dialog() method:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog();
 }
);

In Figure 15-1, you can see that the dialog doesn’t look like much out-of-the-box. The styling is in some
desperate need of attention. The title of the dialog is set by placing the title in the title attribute of the
element that you want to transform into a dialog. The title of the dialog may also be set by passing a
title option to the dialog() method; either method of setting the title can be used.

411

Chapter 15: Dialogs

Figure 15-1

Examining a Dialog’s Markup
Before you can learn how to style a dialog, you need to see how its underbelly is constructed and assem-
bled in markup. The following markup is the basic structure used for a run-of-the-mill jQuery UI dialog:

<div tabindex=”-1” class=”ui-dialog ui-draggable ui-resizable”>
 <div class=”ui-dialog-container”>
 <div unselectable=”on” class=”ui-dialog-titlebar”>

 This is my title

 X

 </div>
 <!-- Begin Dialog Content -->
 <div class=”ui-dialog-content” id=”tmpExample”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 </div>
 <!-- End Dialog Content -->
 </div>
 <div class=”ui-dialog-buttonpane”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-n”></div>

412

Part II: jQuery UI

 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-e”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-s”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-w”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-se”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-sw”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-ne”></div>
 <div unselectable=”on” class=”ui-resizable-handle ui-resizable-nw”></div>
</div>

The preceding markup produces Figure 15-2 (not shown).

The preceding shows what the dialog source might look like, minus the HTML comments that I added
to show where content is inserted.

In the following “Try It Out,” you apply styling to the dialog to jazz it up a bit:

Try It Out Styling a Dialog

Example 15-1
To style a dialog, follow these steps.

 1. Create the following markup document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 15-1.js’></script>
 <link type=’text/css’ href=’Example 15-1.css’ rel=’stylesheet’ />
 <!--[if IE 6]>
 <link type=’text/css’ href=’Example 15-1.IE6.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <div id=’tmpExample’ title=’Lorem Ipsum’>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 </div>
 </body>
</html>

413

Chapter 15: Dialogs

 2. Save the preceding markup document as Example 15-1.html.

 3. Create the following style sheet. Images referenced in the style sheet are available in this book’s
free source code download materials available from www.wrox.com.

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
div.ui-dialog {
 overflow: visible !important;
}
div.ui-dialog-titlebar {
 height: 23px !important;
 background: url(‘../../../Images/Dialog/titlebarRight.png’)
 no-repeat top right;
 position: relative;
 z-index: 10 !important;
}
span.ui-dialog-title {
 display: block;
 font-size: 13px;
 text-align: center;
 margin: 0 9px;
 padding: 4px 0 0 0;
 height: 19px !important;
 background: url(‘../../../Images/Dialog/titlebar.png’)
 repeat-x top;
 position: relative;
 z-index: 10;
}
div.ui-dialog-container {
 background: #fff url(‘../../../Images/Dialog/titlebarLeft.png’)
 no-repeat top left;
}
a.ui-dialog-titlebar-close {
 position: absolute;
 width: 14px;
 height: 15px;
 top: 5px;
 left: 10px;
 background: url(‘../../../Images/Dialog/closeOff.png’)
 no-repeat top left;
 z-index: 10;
}
a.ui-dialog-titlebar-close:hover {
 background: url(‘../../../Images/Dialog/closeOn.png’)
 no-repeat top left;
}
a.ui-dialog-titlebar-close span {
 display: none;
}
a.ui-dialog-titlebar-close:focus {
 border: none;
 outline: none;
}

414

Part II: jQuery UI

div.ui-dialog-content {
 padding: 10px;
 background: #fff !important;
 width: auto !important;
 height: auto !important;
 z-index: 10 !important;
 position: absolute !important;
 top: 23px;
 left: 0;
 bottom: 0;
 right: 0;
}
div.ui-resizable-handle {
 border: none !important;
 z-index: -1 !important;
}
div.ui-resizable-nw {
 background: url(‘../../../Images/Dialog/Shadow/shadow_01.png’)
 no-repeat top right !important;
 width: 117px !important;
 height: 112px !important;
 top: -50px !important;
 left: -60px !important;
}
div.ui-resizable-n {
 background: url(‘../../../Images/Dialog/Shadow/shadow_02.png’)
 repeat-x top !important;
 height: 112px !important;
 top: -52px !important;
}
div.ui-resizable-ne {
 background: url(‘../../../Images/Dialog/Shadow/shadow_03.png’)
 no-repeat top left !important;
 width: 115px !important;
 height: 112px !important;
 top: -50px !important;
 right: -60px !important;
}
div.ui-resizable-w {
 background: url(‘../../../Images/Dialog/Shadow/shadow_04.png’)
 repeat-y top left !important;
 width: 115px !important;
 left: -60px !important;
 top: 62px !important;
 bottom: 51px !important;
 height: auto !important;
}
div.ui-resizable-e {
 background: url(‘../../../Images/Dialog/Shadow/shadow_06.png’)
 repeat-y top left !important;
 width: 117px !important;
 right: -60px !important;
 top: 62px !important;

415

Chapter 15: Dialogs

 bottom: 51px !important;
 height: auto !important;
}
div.ui-resizable-sw {
 background: url(‘../../../Images/Dialog/Shadow/shadow_07.png’)
 no-repeat top right !important;
 width: 115px !important;
 height: 111px !important;
 bottom: -60px !important;
 left: -60px !important;
}
div.ui-resizable-s {
 background: url(‘../../../Images/Dialog/Shadow/shadow_08.png’)
 repeat-x bottom !important;
 height: 111px !important;
 bottom: -60px !important;
 width: auto !important;
 left: 55px !important;
 right: 57px !important;
}
div.ui-resizable-se {
 background: url(‘../../../Images/Dialog/Shadow/shadow_14.png’)
 no-repeat top right !important;
 width: 117px !important;
 height: 111px !important;
 bottom: -60px !important;
 right: -60px !important;
}

 4. Save the preceding document as Example 15-1.css.

 5. Create the following style sheet separately to fix some IE6 bugs:

div.ui-resizable-handle {
 border: none !important;
 background: #fff !important;
 filter: alpha(opacity=99);
}
div.ui-dialog-content {
 border: 1px solid rgb(128, 128, 128);
 border-top: none;
 padding: 10px 14px 10px 10px;
}
a.ui-dialog-titlebar-close {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=”../../../Images/Dialog/closeOff.png”, sizingMethod=”crop”);
}
a.ui-dialog-titlebar-close:hover {
 background: none;
 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
 (src=”../../../Images/Dialog/closeOn.png”, sizingMethod=”crop”);
}

416

Part II: jQuery UI

 6. Save the preceding document as Example 15-1.IE6.css.

 7. Create the following script:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog();
 }
);

 8. Save the preceding script as Example 15-1.js.

The preceding results in styling the jQuery UI Dialog similar to a Mac OS X Leopard application win-
dow, which features a semitransparent drop shadow in every browser but IE6, which is unable to pro-
duce a drop shadow, using PNG images, that is repeated in the background. Screenshots of the styled
dialog in Safari 3.2 and IE6 appear in Figure 15-3.

Figure 15-3

417

Chapter 15: Dialogs

In the preceding example, you learned how to apply an ambitious styling to the jQuery UI Dialog
plugin, which is made to resemble the look of application windows found on Mac OS X Leopard.
Certainly, you can do a lot without necessarily making the styling this complex, but you’re able to get
an idea of how far you can take styling a dialog.

The example that you saw in Example 15-1 works great in every browser, although there is no drop
shadow in IE6, which is not capable of repeating a semitransparent PNG background. Unfortunately,
IE6 PNG hacks may only be applied to non-repeating backgrounds. So, rather than a drop shadow in
IE6, you see a solid gray border. On the other hand, the dialog renders fine in IE7.

jQuery UI itself applies some styling of its own, and you see that many of the declarations in the style
sheet include !important, which is used to override the cascade and force the application of the rules
that !important is attached to.

Making a Modal Dialog
A modal dialog, as I mentioned in the chapter opening, is a dialog that, upon activation, prevents interac-
tion with the document until the dialog is closed. The following script demonstrates how to make a
jQuery UI Dialog into a modal dialog, which is demonstrated with the following HTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 15-4.js’></script>
 <link type=’text/css’ href=’Figure 15-4.css’ rel=’stylesheet’ />
 <!--[if IE 6]>
 <link type=’text/css’ href=’Figure 15-4.IE6.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 <div id=’tmpExample’ title=’Lorem Ipsum’>

418

Part II: jQuery UI

 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 </div>
 </body>
</html>

The preceding HTML document uses the same CSS document that you made in Example 15-1 and the
following JavaScript:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog({
 modal: true,
 overlay : {
 background: ‘#fff’,
 opacity: ‘0.7’
 }
 });
 }
);

In the preceding script, you turn on the modal option by setting it to true. When you set the modal option
to true, you disable interaction with background content while the dialog is open. The second option,
overlay, styles the overlay that’s used to disable interaction with background content so that the user
has a visual cue that the content is disabled. The overlay option accepts style properties in key, value
pairs, similarly to jQuery’s css() method discussed in Chapter 6.

In Figure 15-4, you see that the background is draped in a semitransparent white background to indi-
cate that it is disabled.

Figure 15-4

419

Chapter 15: Dialogs

Auto-Opening the Dialog
By default, upon calling the dialog() method, the dialog is automatically opened. This is easily con-
trolled by setting the autoOpen option to false. Once the autoOpen option is set to false, you can pro-
grammatically open a dialog by calling the dialog() method with the string ‘open’ in its first argument.
This is demonstrated in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 15-5.js’></script>
 <link type=’text/css’ href=’Figure 15-5.css’ rel=’stylesheet’ />
 <!--[if IE 6]>
 <link type=’text/css’ href=’Figure 15-5.IE6.css’ rel=’stylesheet’ />
 <![endif]-->
 </head>
 <body>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 <input type=’submit’ id=’tmpOpen’ value=’Open Dialog’ />
 <div id=’tmpExample’ title=’Lorem Ipsum’>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
 sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
 tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
 tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
 tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
 odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
 </p>
 </div>
 </body>
</html>

The CSS documents that you created in Example 15-1 are applied to the preceding markup document,
along with the following script:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog({
 autoOpen: false

420

Part II: jQuery UI

 });

 $(‘input#tmpOpen’).click(
 function($e) {
 $(‘div#tmpExample’).dialog(‘open’);
 }
);
 }
);

In the preceding script, you prevent the dialog from being opened automatically by setting the autoOpen
option to false. To open the dialog, you attach a click event to the <input> element, and when that event
takes place, you make a call to $(‘div#tmpExample’).dialog(‘open’) to open the dialog program-
matically. Figure 15-5 shows a screenshot of the preceding example.

Figure 15-5

Controlling Dynamic Interaction
By default, the jQuery UI Dialog plugin allows you to re-size and drag the Dialog window. Both types of
dynamic interaction with a dialog can be disabled by passing options to the dialog() method; for
example, the draggable option can be set to false to disable dragging the dialog, and the resizable
option can also be set to false to disable re-sizing a dialog. Disabling these options is demonstrated in
the following script:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog({
 resizable: false,
 draggable: false
 });
 }
);

421

Chapter 15: Dialogs

The preceding script results in something like what you see in Figure 15-6.

Figure 15-6

In Figure 15-6, you see that the drop shadow that you applied in Example 15-1 has disappeared, and
that’s because you disabled re-sizing the dialog. The re-sizing portion of the markup, however, is where
you applied each drop shadow slice. So, in order to use styling like what I presented in Example 15-1,
re-sizing must be preserved.

Animating the Dialog
Opening or closing a dialog can also be animated using one of the effects listed in Appendix M.
Animation can be introduced by providing an effect to the show option.

The following script demonstrates how to do this:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog({
 autoOpen: false,
 show: ‘explode’
 });

 $(‘input#tmpOpen’).click(
 function($e) {
 $(‘div#tmpExample’).dialog(‘open’);
 }
);
 }
);

422

Part II: jQuery UI

The preceding script applies an animation upon opening the dialog using the jQuery explode effect.
Figure 15-7 shows what this looks like in a browser.

Figure 15-7

In Figure 15-7, you see that upon clicking on the “Open Dialog” button, the dialog is opened with an
animation that has the dialog sliced into nine pieces coming together.

Working with Dialog Events
The Dialog plugin supports a variety of events. You can set up events that are executed when the dialog
is opened, when the dialog is focused, when the dialog is re-sized, when the dialog is dragged, or when
the dialog is closed. The following document demonstrates attaching a close event to the dialog, but a
full list of events is available in Appendix P:

$(document).ready(
 function() {
 $(‘div#tmpExample’).dialog({
 autoOpen: false,
 show: ‘explode’,
 close: function(e, ui) {
 alert(this.id);
 }
 });

 $(‘input#tmpOpen’).click(
 function($e) {
 $(‘div#tmpExample’).dialog(‘open’);
 }
);
 }
);

423

Chapter 15: Dialogs

The preceding script demonstrates the attachment of the close option to the dialog, which causes a
callback function to be executed when the dialog is closed. The callback function is executed within the
context of the dialog element it is attached to, making that element available in the this keyword, which
results in the screenshot that you see in Figure 15-8.

Figure 15-8

Summary
In this chapter, you learned how to implement a dialog using the jQuery UI Dialog plugin. You learned
that the Dialog plugin doesn’t come with much styling, so you learned how the markup is structured
and implemented your own styling for a dialog.

You learned how to make a modal dialog using the modal and overlay options: The modal option can
be used to prevent interaction with the document in the background, and the overlay option can be used
to style the element that’s used to disable interaction with the background to give the user a visual indi-
cation that interaction with the document is disabled.

You learned how to disable automatically opening a dialog using the autoOpen option. After auto-
matically opening a dialog has been disabled, you can programmatically open a dialog by calling
dialog(‘open’).

You can disable re-sizing a dialog and dragging a dialog using the resizable and draggable options,
but disabling re-sizing removes the drop shadow that you added to the Dialog window in Example 15-1,
since that drop shadow was tied to the markup elements that are added for re-sizing.

If you so choose, you can animate opening and closing a dialog by providing an effect (documented in
Appendix M) to the show option.

Finally, there are a variety of events associated with a dialog that you can attach callback functions to.
You saw an example of the close event, but a full list of options can be found in Appendix P.

424

Part II: jQuery UI

Exercises
 1. What option would you use to disable interaction with the document while a dialog is open?

 2. What option would you use to style the overlay used to disable a document while a dialog is open?

 3. How do you disable automatically opening a dialog?

 4. How do you open a dialog programmatically?

 5. How do you close a dialog programmatically. (Hint: see Appendix P.)

 6. How do you disable re-sizing and dragging a dialog?

 7. What option would you use to animate opening or closing a dialog?

16
Tabs

In this, the final installment of my introduction to jQuery and jQuery UI, I present how to work
with the jQuery UI Tabs plugin, a plugin that makes it easier to implement tabbed functionality, in
which you click on a series of tabs that toggles the display of content that either already exists in
the document or is loaded via an AJAX Request.

jQuery UI provides all the functional aspects that you would need to implement a tabbed user
interface, but does not provide any of the presentational aspects — you are expected to BYOSS
(“Bring Your Own Style Sheet”).

Implementing tabbed user interface, like many of the plugin functionality that jQuery UI offers, is
very easy. You need only learn about a few fundamentals, such as how to structure markup des-
tined to become tabs and, of course, the various options that the Tabs plugin offers to allow
tweaking the implementation.

In this chapter, I cover how to implement and style a tabbed user interface, and I cover a few of
the options offered by the Tabs plugin that you’re most likely to use.

Implementing Tabs
To get started, I present a barebones implementation of the jQuery UI Tabs plugin, which is the
purpose of the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>

426

Part II: jQuery UI

 <script type=’text/javascript’ src=’Figure 16-1.js’></script>
 <link type=’text/css’ href=’Figure 16-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=”tmpTabExample”>

 First Tab
 Second Tab
 Third Tab

 <div id=”tmpTab-1”>
 <p>
 First tab is activated by default.
 </p>
 </div>
 <div id=”tmpTab-2”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse
 id sapien. Suspendisse rutrum libero sit amet dui. Praesent pede elit,
 tincidunt pellentesque, condimentum nec, mollis et, lacus. Donec nulla
 ligula, tempor vel, eleifend ut, luctus nec, est. Duis imperdiet sapien
 condimentum est. Curabitur euismod. Vestibulum magna. Vivamus massa
 erat, tristique at, congue in, fringilla sed, massa. Duis posuere justo
 ac magna. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Donec ac dolor mollis lectus posuere convallis.
 </p>
 </div>
 <div id=”tmpTab-3”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse
 id sapien. Suspendisse rutrum libero sit amet dui. Praesent pede elit,
 tincidunt pellentesque, condimentum nec, mollis et, lacus. Donec nulla
 ligula, tempor vel, eleifend ut, luctus nec, est. Duis imperdiet sapien
 condimentum est. Curabitur euismod. Vestibulum magna. Vivamus massa
 erat, tristique at, congue in, fringilla sed, massa. Duis posuere justo
 ac magna. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Donec ac dolor mollis lectus posuere convallis.
 </p>
 </div>
 </div>
 </body>
</html>

The preceding document is styled with the following style sheet:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
div#tmpTab-1 {
 background: lightblue;
 padding: 5px;
}

427

Chapter 16: Tabs

div#tmpTab-2 {
 background: lightgreen;
 padding: 5px;
}
div#tmpTab-3 {
 background: yellow;
 padding: 5px;
}

The following script demonstrates a call to the jQuery UI’s tabs() method:

$(document).ready(
 function() {
 $(‘div#tmpTabExample > ul’).tabs();
 }
);

Figure 16-1 shows that the preceding actually doesn’t look like much so far.

Figure 16-1

The preceding doesn’t even appear to have created any tabs. However, appearances are deceitful. You
don’t appear to have achieved any results because the Tabs plugin doesn’t do any presentational styling
of tabbed content … it only handles the functional aspects of tabs. To get something closer to a bare-
bones implementation, you have to add a rule to the style sheet, so that the style sheet looks like this:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}

428

Part II: jQuery UI

div#tmpTab-1 {
 background: lightblue;
 padding: 5px;
}
div#tmpTab-2 {
 background: lightgreen;
 padding: 5px;
}
div#tmpTab-3 {
 background: yellow;
 padding: 5px;
}
.ui-tabs-hide {
 display: none;
}

The addition of the last rule to the style sheet hides the inactive tabs, and you get a result like what you
see in Figure 16-2.

Figure 16-2

In Figure 16-2, you can see that the second and third content panels have been hidden, and when you
click on the labels in the element, you toggle between the different content panels. You have the
freedom to style the tabs however you like, and I will describe a possible styling scenario later in this
chapter. Making tabs requires some structural rules. First, you have a list of items, and in that list you
have hyperlinks to anchors.

 First Tab
 Second Tab
 Third Tab

In the preceding snippet of markup, each hyperlink links to an anchor that appears elsewhere in the
document, by including a pound sign, followed by that element’s ID name. Structuring the document in
this way makes your scripting unobtrusive. If scripting is disabled, the user will still be able to navigate
the tabs by clicking on a link to an anchor, instead of toggling the display of a content pane.

429

Chapter 16: Tabs

Following the list, you have three <div> elements, each having an ID name that corresponds to the
anchor link, which makes those elements anchors.

 <div id=”tmpTab-1”>
 <p>
 First tab is activated by default.
 </p>
 </div>

When you call the tabs() method, jQuery looks at the list and automatically pulls the ID names from
the hyperlinks, and it automatically attaches the class name ui-tabs-hide to every tab but the first, which
is considered the active tab by default. That class name can then be used to hide inactive tabs, but as
you saw in Figure 16-2, you have to explicitly hide inactive tabs of your own accord.

Since you basically decide the structure of your tabs for yourself, rather than having the structure gen-
erated for you, you have more freedom with how to style your tabs. In the following “Try It Out,” I pre-
sent how to apply basic styling to your new jQuery UI–enabled tabs:

Try It Out Styling Tabs

Example 16-1
To style the tabs example, follow these steps.

 1. Create the following document. The “Lorem Ipsum” filler text that you see in these documents
can be copied and pasted from www.lipsum.com.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>
 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Example 16-1.js’></script>
 <link type=’text/css’ href=’Example 16-1.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=”tmpTabExample”>

 First Tab
 Second Tab
 Third Tab

 <div id=”tmpTab-1”>
 <p>
 First tab is activated by default.
 </p>
 </div>

430

Part II: jQuery UI

 <div id=”tmpTab-2”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse
 id sapien. Suspendisse rutrum libero sit amet dui. Praesent pede elit,
 tincidunt pellentesque, condimentum nec, mollis et, lacus. Donec nulla
 ligula, tempor vel, eleifend ut, luctus nec, est. Duis imperdiet sapien
 condimentum est. Curabitur euismod. Vestibulum magna. Vivamus massa
 erat, tristique at, congue in, fringilla sed, massa. Duis posuere justo
 ac magna. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Donec ac dolor mollis lectus posuere convallis.
 </p>
 </div>
 <div id=”tmpTab-3”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse
 id sapien. Suspendisse rutrum libero sit amet dui. Praesent pede elit,
 tincidunt pellentesque, condimentum nec, mollis et, lacus. Donec nulla
 ligula, tempor vel, eleifend ut, luctus nec, est. Duis imperdiet sapien
 condimentum est. Curabitur euismod. Vestibulum magna. Vivamus massa
 erat, tristique at, congue in, fringilla sed, massa. Duis posuere justo
 ac magna. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Donec ac dolor mollis lectus posuere convallis.
 </p>
 </div>
 </div>
 </body>
</html>

 2. Save the preceding markup document as Example 16-1.html.

 3. Enter the following style sheet in a new document in your text editor:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
div#tmpTab-1 {
 background: lightblue;
 padding: 5px;
}
div#tmpTab-2 {
 background: lightgreen;
 padding: 5px;
}
div#tmpTab-3 {
 background: yellow;
 padding: 5px;
}
.ui-tabs-hide {
 display: none;
}
div#tmpTabExample ul {
 list-style: none;
 padding: 0;

431

Chapter 16: Tabs

 margin: 0;
 height: 22px;
 border-bottom: 1px solid darkgreen;
}
div#tmpTabExample ul li {
 float: left;
 height: 17px;
 padding: 4px 10px 0 10px;
 margin-right: 5px;
 border: 1px solid rgb(200, 200, 200);
 border-bottom: none;
 position: relative;
 background: yellowgreen;
}
div#tmpTabExample ul li a {
 text-decoration: none;
 color: black;
}
div#tmpTabExample ul li.ui-tabs-selected {
 background: darkgreen;
}
div#tmpTabExample ul li.ui-tabs-selected a {
 color: white;
}

 4. Save the preceding document as Example 16-1.css.

 5. Create the following document in your text editor:

$(document).ready(
 function() {
 $(‘div#tmpTabExample > ul’).tabs();
 }
);

 6. Save the preceding document as Example 16-1.js.

Figure 16-3 shows the stylistic adjustments.

Figure 16-3

432

Part II: jQuery UI

In Example 16-1, you see a very remedial styling of the tabbed user interface. Since you’re able to pro-
vide your own structure, you can make your tab implementation as basic or as fancy as you like.

In the example, you see basic styling of the tabs, which are floated beside each other. There is nothing
particularly complex from the standpoint of the styles that are applied.

You do add a new class name to the style sheet that is generated by the Tabs plugin for the selected tab.

div#tmpTabExample ul li.ui-tabs-selected {
 background: darkgreen;
}

The preceding selector is written the way that it is — instead of, for example, something like this:

li.ui-tabs-selected {
 background: darkgreen;
}

because you have already applied a background to each element using a more specific selector
with the following rule:

div#tmpTabExample ul li {
 float: left;
 height: 17px;
 padding: 4px 10px 0 10px;
 margin-right: 5px;
 border: 1px solid rgb(200, 200, 200);
 border-bottom: none;
 position: relative;
 background: yellowgreen;
}

Therefore, you need to use an even more specific selector to override the background applied in the pre-
ceding rule, so that the selected tab receives a darkgreen background instead of a yellowgreen back-
ground. If you’d like to learn more about the concept of specificity as it is used in CSS, I cover this topic
in greater detail in my book Beginning CSS: Cascading Style Sheets for Web Design, 2nd ed. (Wiley, 2007).
Otherwise, the styles that are applied are basic, run-of-the-mill CSS.

Loading Remote Content via AJAX
Loading remote content instead of local content is very easy to do. The following document shows an
example of how to set up a tab that loads remote content using AJAX, instead of having that content
already loaded in your document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
 <head>

433

Chapter 16: Tabs

 <meta http-equiv=’content-type’ content=’text/html; charset=utf-8’ />
 <meta http-equiv=’content-language’ content=’en-us’ />
 <title></title>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQuery.js’></script>
 <script type=’text/javascript’
 src=’../../../Source Code/jQuery/jQueryUI.js’></script>
 <script type=’text/javascript’ src=’Figure 16-4.js’></script>
 <link type=’text/css’ href=’Figure 16-4.css’ rel=’stylesheet’ />
 </head>
 <body>
 <div id=”tmpTabExample”>

 First Tab
 Second Tab
 Third Tab
 Fourth Tab

 <div id=”tmpTab-1”>
 <p>
 First tab is activated by default.
 </p>
 </div>
 <div id=”tmpTab-2”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse
 id sapien. Suspendisse rutrum libero sit amet dui. Praesent pede elit,
 tincidunt pellentesque, condimentum nec, mollis et, lacus. Donec nulla
 ligula, tempor vel, eleifend ut, luctus nec, est. Duis imperdiet sapien
 condimentum est. Curabitur euismod. Vestibulum magna. Vivamus massa
 erat, tristique at, congue in, fringilla sed, massa. Duis posuere justo
 ac magna. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Donec ac dolor mollis lectus posuere convallis.
 </p>
 </div>
 <div id=”tmpTab-3”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse
 id sapien. Suspendisse rutrum libero sit amet dui. Praesent pede elit,
 tincidunt pellentesque, condimentum nec, mollis et, lacus. Donec nulla
 ligula, tempor vel, eleifend ut, luctus nec, est. Duis imperdiet sapien
 condimentum est. Curabitur euismod. Vestibulum magna. Vivamus massa
 erat, tristique at, congue in, fringilla sed, massa. Duis posuere justo
 ac magna. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Donec ac dolor mollis lectus posuere convallis.
 </p>
 </div>
 <div id=”tmpTab-4”>
 </div>
 </div>
 </body>
</html>

434

Part II: jQuery UI

In the preceding markup document, there are a few minor modifications made to add a new tab that
has content loaded via AJAX. You set up the tab with the href attribute referencing the document that
you want to load by AJAX and place the ID of the element, into which you want to load that content, in
the title attribute.

In the following style sheet, you add new styling for the new tab that you’ve added:

body {
 font: 12px “Lucida Grande”, Arial, sans-serif;
 background: #fff;
 color: rgb(50, 50, 50);
}
div#tmpTab-1 {
 background: lightblue;
 padding: 5px;
}
div#tmpTab-2 {
 background: lightgreen;
 padding: 5px;
}
div#tmpTab-3 {
 background: yellow;
 padding: 5px;
}
div#tmpTab-4 {
 background: pink;
 padding: 5px;
}
.ui-tabs-hide {
 display: none;
}
div#tmpTabExample ul {
 list-style: none;
 padding: 0;
 margin: 0;
 height: 22px;
 border-bottom: 1px solid darkgreen;
}
div#tmpTabExample ul li {
 float: left;
 height: 17px;
 padding: 4px 10px 0 10px;
 margin-right: 5px;
 border: 1px solid rgb(200, 200, 200);
 border-bottom: none;
 position: relative;
 background: yellowgreen;
}
div#tmpTabExample ul li a {
 text-decoration: none;
 color: black;
}

435

Chapter 16: Tabs

div#tmpTabExample ul li.ui-tabs-selected {
 background: darkgreen;
}
div#tmpTabExample ul li.ui-tabs-selected a {
 color: white;
}

The following is what appears in the tab.html file. Using a server-side script, you could also add logic at the
server side that presents this content within your normal template depending on whether scripting is enabled
on the client side. To do that, what you would do is, by default, make the link tabs.html?noscript=true.
Then, in your JavaScript, automatically remove the query string portion ?noscript=true at page load, which
would then signal your server-side script to serve only the content, rather than the content within your
template.

Then the following script is also included, which you can see has remained unchanged:

$(document).ready(
 function() {
 $(‘div#tmpTabExample > ul’).tabs();
 }
);

The preceding example results in the screenshot that you see in Figure 16-4.

Figure 16-4

There are also a few options that you can pass to the tabs() method that configure AJAX loading. The
option spinner is used to display content in the tab label of AJAX content while that content is loading;
you can specify plain text or HTML content.

Additionally, the option ajaxOptions can be passed an object of AJAX options to configure the AJAX
Request. See Appendix G for a full list of options.

436

Part II: jQuery UI

Animating Tab Transitions
Most things in jQuery UI’s plugin arsenal can be provided with fancy animated effects, and the Tabs
plugin is no exception. The following script demonstrates how to animate a tab transition:

$(document).ready(
 function() {
 $(‘div#tmpTabExample > ul’).tabs({
 fx: {
 opacity: ‘toggle’,
 duration: ‘slow’
 }
 });
 }
);

The preceding animates the opacity, fading out the tab being closed and fading in the tab being opened.
Figure 16-5 shows a screenshot of this effect in midstream.

Figure 16-5

You can also animate the height, creating a sliding effect, or both height and opacity, which create a
sliding effect while fading. The following script demonstrates combining both height and opacity
animation:

$(document).ready(
 function() {
 $(‘div#tmpTabExample > ul’).tabs({
 fx: {
 opacity: ‘toggle’,
 height: ‘toggle’,
 duration: ‘slow’
 }
 });
 }
);

437

Chapter 16: Tabs

The preceding script adds a height option, with a value of ‘toggle’; the screenshot that you see in
Figure 16-6 shows the effect produced by this script in midstream.

Figure 16-6

Summary
Several additional options can also be used with a tabs implementation; I’ve covered some of the more
useful options in this chapter, and you’ll find a full reference of all options available for the Tabs plugin
in Appendix Q.

In this chapter, you learned how to implement a tabbed user interface using the jQuery UI Tabs plugin.
By default, the Tabs plugin offers no presentational styling whatsoever and only offers the functionality
portion of a tabbed user interface. You learned how to approach styling a tabbed user interface with a
fairly basic example.

You learned that the Tabs plugin supports loading content remotely using AJAX; you need only mini-
mal modifications to accomplish this.

And finally, you also learned that the Tabs plugin supports animated transitions between tabs and sup-
ports animating the opacity or the height, or both, and the duration that an animation takes place.

What Next?
You learned a lot about jQuery and jQuery UI in this book. You’ve seen that jQuery and jQuery UI pro-
vide a comprehensive, robust, and stable API to build web applications on top of. jQuery takes care of a
lot of cross-browser development headaches that have presented as frustrating roadblocks to web devel-
opment in the past. It helps you fix events in JavaScript with an intuitive API of its own that actually
works. It helps you build applications with a rich, consistent API that strives to minimize the number of
lines of code that you need to write an application wherever possible. jQuery UI makes common UI tasks
much easier, helping you with drag-and-drop, with selection, and with dialogs and tabs.

438

Part II: jQuery UI

There are two plugins, Re-sizables and Slider, that I wasn’t able to include coverage for in the body of this
book owing to resource constraints. I have, however, included API documentation for these plugins in
Appendixes R and S.

Beyond what is officially offered by jQuery at the jQuery website at www.jquery.com, there is also a thriv-
ing community of third-party jQuery plugins, which you can learn more about at plugins.jquery.com.

I have tried to include as much of the official jQuery documentation in the appendixes of this book as
possible, for your convenience; however, it’s possible that I may have missed some material. If that is the
case, the official jQuery documentation can be found at docs.jquery.com, where you’ll find documen-
tation, code examples, and FAQ.

Going forward, I recommend that you have a look at Nicholas C. Zakas’s books: Professional JavaScript
for Web Developers (Wiley, 2005; 2nd ed., 2009) and Professional Ajax, 2nd ed. (Wiley 2007), by Nicholas C.
Zakas, Jeremy McPeak, and Joe Fawcett, which provide excellent, critically acclaimed coverage of
advanced JavaScript programming topics.

Exercises
 1. What class name do you have to create a rule for in a style sheet to hide inactive content?

 2. What class name do you have to create a rule for in a style sheet to change the styling of the
active tab?

 3. What do you have to do to load content via an AJAX call?

 4. What option can you use to animate a tab transition?

A
Answers to Exercises

Chapter 2
 1. CSS and XPath are both acceptable answers.

 2. parents()

 3. prev()

 4. find() or children(), depending on where the element exists in the hierarchy:
children() can be used for immediate children of the element, and find() can be
used for either immediate children or descendents.

 5. not()

 6. You would use the eq() method and supply the position of the element within the selec-
tion offset from zero as the first argument.

 7. siblings(), prev(), next(), prevAll(), nextAll()

 8. Using the add() method

 9. Yes

Chapter 3
 1. It is not possible to attach multiple events of the same type to the same element using the

traditional event model; however, some very keen programming creativity could over-
come this limitation, if one were so inclined.

 2. The ability to attach multiple events of the same type to the same element. There are
other items addressed in the W3C’s API, but I consider this to be the biggest.

 3. In the traditional event model, and Microsoft’s event model, each event is named with an
on prefix, for example, onclick, onsubmit, onchange, and so on. In the W3C’s event model,
the on prefix is dropped, but the names are otherwise the same.

 4. The bind() method. It has a shorter name, and it drops the third useCapture argument
used in the W3C’s Event API. Bonus points if you referred to the useCapture argument
as “mostly useless.”

440

Appendix A: Answers to Exercises

 5. You can use the trigger(‘focus’) method, or you can call the focus() method without any
arguments. Bonus points if you looked in Appendix D and discovered the triggerHandler()
method, which is just like the trigger() method but cancels the browser’s default action for
any given event.

 6. jQuery’s hover() method takes two handlers, one for mouseover, and one for mouseout, in
that order.

Chapter 4
 1. One possibility:

$(‘input’).attr(
 ‘value’ : ‘Some Value’.
 ‘class’ : ‘someClass’
);

Another possibility:

$(‘input’).addClass(‘someClass’).val(‘Some Value’);

 2. It might look like this:

$(‘a’).attr(‘href’, ‘http://www.example.com’);

 3. removeAttr()

 4. hasClass()

 5. No, HTML tags will not be present in the return value, only the element’s text content.

 6. Yes, HTML tags will be escaped and treated like text content.

 7. One bug that jQuery’s append() and prepend() methods work around in IE is how IE makes
innerHTML Read Only on <table> elements.

 8. One bug that jQuery’s append() and prepend() methods work around in Firefox is how Firefox
occasionally loses form input values when appending or prepending HTML content using
innerHTML.

 9. insertBefore()

 10. wrapAll()

 11. outerHTML

 12. remove()

 13. clone(true)

441

Appendix A: Answers to Exercises

Chapter 5
 1. It might look like this:

$($elements).each(
 function() {
 }
);

 $.each(
 $elements,
 function() {
 }
);

 2. return false;

 3. The items referenced by the selector are kept in the selection; items not referenced by the selec-
tor are discarded.

 4. Keeps the current item in the selection; returning false removes the current item from the
selection.

 5. A value that evaluates to true. Returning false will remove an item from the array.

 6. It replaces the value of the item passed to the callback function during that iteration.

 7. -1 means that the value does not exist within the array; a return value of zero or greater means
that the value exists within the array.

 8. The $.unique() method is used to remove duplicate elements from an array consisting of all
elements.

Chapter 6
 1. $(‘div’).css(‘color’);

 2. Specifying any color in the second argument, the code would look something like this:

$(‘body’).css(‘backgroundColor’, ‘yellow’);

 3. $(‘div’).css({
 padding: ‘5px’,
 margin: ‘5px’,
 border: ‘1px solid grey’
});

 4. offsetWidth()

 5. offsetHeight({margin: true})

442

Appendix A: Answers to Exercises

Chapter 7
 1. When in the context of an AJAX request, the only real difference between GET and POST

requests is that a GET request has a concrete limitation on the amount of data you can pass; the
actual limit varies from browser to browser. A GET request can also be slightly more efficient.

 2. An optional second argument to the $.get() method allows you to pass data along with the
request, either as a query string or as a JavaScript object literal.

 3. You access the JSON object in the variable that you assign to the first argument of the callback
function that you specify for the $.getJSON() method. This variable can have any name you like.

 4. Accessing the contents of the <response> element looks something like this:

$.get(
 ‘/url/to/request.xml’,
 function(xml) {
 alert($(xml).text());
 }
);

 5. The load() method

 6. In the JavaScript, jQuery sets AJAX Events globally via a call to the $.ajaxSetup() method,
which takes a list of options that are formatted as a JavaScript object literal. The beforeSend
property specifies a callback function that is executed before every AJAX request. The success
property specifies a callback function that is executed upon every successful AJAX request. Within
the callback function specified for beforeSend, the <div> element with ID name hFinderActivity
is made visible with a call to the show() method. Within the callback function specified for suc-
cess, the same <div> element is made invisible with a call to the hide() method.

 7. One method is by using jQuery’s AJAX Event methods like ajaxStart() and ajaxSuccess();
another is via jQuery’s $.ajax() method.

 8. Select the form elements you want to get the values of, then call the serialize() method.

Chapter 8
 1. slow, normal, fast, or the time specified in milliseconds

 2. The slideDown() method animates an element’s height from nothing to its normal height.

 3. fadeIn()

 4. animate()

 5. You can only animate CSS properties that have a numeric value.

443

Appendix A: Answers to Exercises

Chapter 9
 1. $.fn.extend() or jQuery.fn.extend()

 2. The selection can be accessed using the this keyword. You can use this.each() to iterate over
multiple methods.

 3. Whenever possible, you should return the jQuery object to preserve chainability.

Chapter 10
 1. Make a selection with jQuery, then apply the draggable() method, such as:

$(‘div.someElement’).draggable();

 2. Make a selection with jQuery, then apply the draggable() method with the helper option
specified, giving the helper option a value of clone, similar to this:

$(‘div.someElement’).draggable({
helper: ‘clone’
});

 3. Make a selection with jQuery, then apply the droppable() method, for example:

$(‘div.someElement’).droppable();

 4. To add a class name to a drop element while a drag element is over that element, you make a
call to the droppable() method, with the hoverClass option specified. The value you specify
for the hoverClass option is the class name you want added. This looks similar to the follow-
ing code:

$(‘div.someElement’).droppable({
 hoverClass: ‘someClassName’
});

 5. You’d use the accept option, providing a selector as the value, similar to what you see in the
following code:

$(‘div.someElement’).droppable({
 accept: ‘div.someDragElementYouWant’
});

 6. dragstart, dragenter, dragover, dragleave, drop

444

Appendix A: Answers to Exercises

Chapter 11
 1. The sortable() method

 2. A class name

 3. The placeholder option takes a class name that gives you the ability to style with CSS, the
white space that’s reserved as a sort takes place.

 4. The cursor option

 5. The helper option gives you the ability to change the element that the user drags during a sort.

 6. The connectWith option

 7. A selector

 8. You specify the update option on a sortable list, with a callback function as its value. Then in
the callback function, you do something similar to the following code:

var $data = $(‘ul’).sortable(
 ‘serialize’, {
 key: ‘list’
 }
);

$.get(‘/path/to/server/side/script.php’, $data);

Chapter 12
 1. The start option

 2. The selecting and unselecting options

 3. By specifying a second argument for the callback function (in this book’s examples and docu-
mentation, the second argument for callback functions for Selectable events is named ui). Then
you can access each element as ui.selected and ui.unselected. The property that you use to
access each element that’s added or removed always goes by the same name as the option.

 4. div.ui-selectable-helper

Chapter 13
 1. active

 2. The alwaysOpen option gives you the ability to dictate whether the open content pane can
be closed.

 3. autoHeight, clearStyle, and fillSpace

 4. event

 5. header: “h3”

445

Appendix A: Answers to Exercises

 6. Set the navigation option to true, then provide a callback function to the navigationFilter
option. Within the callback function, you can provide your own logic to determine whether the
href attribute of a given <a> element matches the location.href property, thus making that
content pane displayed by default.

 7. selectedClass

Chapter 14
 1. The minDate and maxDate options can be used to limit the range of selectable dates, down to

the day. The yearRange option can be used to limit the range of selectable dates between an
arbitrary set of years.

 2. The dateFormat option, of course!

 3. Yes, the Datepicker plugin provides fine-grained customization of every text label.

 4. The firstDay option

Chapter 15
 1. The modal option set to false

 2. The overlay option

 3. Set the autoOpen option to false.

 4. Select the dialog you want to open, then call dialog(‘open’).

 5. Select the dialog you want to close, then call dialog(‘close’).

 6. Set resizable and draggable options to false.

 7. The show option

Chapter 16

 1. ui-tabs-hide

 2. ui-tabs-selected

 3. First, you create a tab in a element. In the <a> element that you put inside of that ele-
ment, you reference the document that you want to load in the href attribute, and put the ID of
the element that content will be loaded into in the title attribute. Then you create the content
pane, like normal, with an id attribute containing the name that you specified in the title
attribute. The only thing that you do differently is not include any content, since it’s being
loaded externally.

 4. The fx option

B
Selectors Supported

by jQuery
The following table contains the selector syntax that you are able to use with jQuery’s Selector API:

Selector Description

Simple Selectors

#id Selects a single element via the ID name specified in the
element’s id attribute.

element Selects one or more elements by the element name, for
example, form, div, input, and so on.

.className Selects one or more elements via a class name present in
the element’s class attribute. Individual elements may also
have multiple class names.

* The universal or wildcard selector; selects all elements.

grouping, multiple,
selectors

Selects one or more elements by chaining multiple selectors
together with commas.

Hierarchy

ancestor descendent Selects one or more elements based on an ancestral
relationship.

parent > child Selects one or more elements based on a parent, child
relationship.

sibling +
nextAdjacentSibling

Selects the sibling immediately following an element.

sibling ~
anyProceedingSibling

Selects any siblings immediately following an element.

448

Appendix B: Selectors Supported by jQuery

Selector Description

Basic Filters

:first Selects the first element.

:last Selects the last element.

:not(selector) Selects elements based on what you don’t want.

:even Selects only elements falling within even numbering. Since
jQuery calculates position offset from zero, this actually
results in the odd-numbered items being returned. Item
one would be considered number zero, item two would be
considered number one, and so on; so even matches num-
bers zero, two, four, and so on.

:odd Selects only elements falling within odd numbering. Since
jQuery calculates position offset from zero, this actu-
ally results in even-numbered items being returned (see
:even).

:eq(index) Selects a single element based on its index; for example,
what number (offset from zero) the element would be
given when it and all of its siblings are tallied and each
assigned a number.

:gt(index) Selects all elements where each element’s index is greater
than the number specified.

:lt(index) Selects all elements where each element’s index is less than
the number specified.

:header Selects all elements that are headers, for example, h1, h2,
h3, h4, h5, or h6.

:animated Selects all elements that are currently being animated.

Content Filters

:contains(text) Selects elements based on whether the text specified is
present among the element’s content.

:empty Selects elements that have no children (including text
nodes).

:has(selector) Selects elements that match the specified selector.

:parent Selects all elements that are parents, for example, elements
that have text or other elements as children.

449

Appendix B: Selectors Supported by jQuery

Selector Description

Visibility Filters

:hidden Selects all elements that are hidden, or <input> elements
that are of type=”hidden”.

:visible Selects all elements that are visible.

Attribute Filters

[attribute] Selects all elements where the specified attribute is present.

[attribute=value] Selects all elements where the attribute has the specified
value.

[attribute!=value] Selects all elements where the attribute does not have the
specified value.

[attribute^=value] Selects all elements where the attribute’s value begins with
the specified string.

[attribute$=value] Selects all elements where the attribute’s value ends with
the specified string.

[attribute*=value] Selects all elements where the attribute’s value contains the
specified string anywhere within the value.

[attribute][attribute]
[attribute]

Selects all elements where the element has each attribute;
for example, you can chain any of the preceding attribute
selectors together to look at multiple attributes.

Child Filters

:nth-child(index/even/
odd/equation)

Selects all elements where the element is a certain index
(see :eq), or an odd, or an even child. Unlike jQuery’s eq,
this one counts offset from one instead of zero.

:first-child Selects all elements where the element is a first child of its
parent.

:last-child Selects all elements where the element is a last child of its
parent.

:only-child Selects all elements where the element is an only child of
its parent.

450

Appendix B: Selectors Supported by jQuery

Selector Description

Forms

:input Selects all <input>, <select>, <textarea>, and <button>
elements.

:text Selects all <input> elements where type=”text”.

:password Selects all <input> elements where type=”password”.

:radio Selects all <input> elements where type=”radio”.

:checkbox Selects all <input> elements where type=”checkbox”.

:submit Selects all <input> elements where type=”submit”.

:image Selects all <input> elements where type=”image”.

:reset Selects all <input> elements where type=”reset”.

:button Selects all <button> elements and <input> elements where
type=”button”.

:file Selects all <input> elements where type=”file”.

:hidden Selects all elements that are hidden, or <input> elements
where type=”hidden”.

Form Filters

:enabled Selects all elements that are enabled.

:disabled Selects all elements that are disabled.

:checked Selects all elements that are checked, for example, check-
box and radio inputs.

:selected Selects all elements that are selected, for example, options
in a Select dropdown.

C
Selecting and Filtering

The following methods are provided by jQuery for selecting and filtering elements as documented
at www.jquery.com.

Method/Property Description Return Value

jQuery Core

$(selector) Makes a selection from the document. jQuery

jQuery(selector) An alternative name for the preceding, dollar sign
method

jQuery

length The number of selected elements Number

get() Returns all selected elements as an array, rather than
as a jQuery object.

Array

get(index) Returns a single element from the selection; the index
argument is the element’s position in the selection,
offset from zero.

Element

index(subject) Searches the selection for the specified element and
returns that element’s position in the selection offset
from zero.

Number

Filtering

eq(index) Reduce a selection to a single element, where index is
the number representing the element’s position in the
selection offset from zero.

jQuery

filter(selector) Removes all elements that do not match the specified
selector.

jQuery

452

Appendix C: Selecting and Filtering

Method/Property Description Return Value

filter(function) The filter() method may alternatively accept a
function as its first argument, which works identi-
cally to the jQuery $.each() method. The function is
executed for each item selected.

The function must return a Boolean value, where true
indicates that the element should remain in the result
set, and false indicates that the element should be
removed from the result set.

jQuery

not(selector) Removes elements from the selection that match the
specified selector.

jQuery

slice(indexStart,
indexEnd)

Selects a subset of the selection, where each index is
a number representing the element’s position in the
selection offset from zero.

jQuery

Finding

add(selector) Adds more elements to the selection. jQuery

children(selector) Makes a selection within the context of the matched
elements’ children. The selector argument is
optional; to select all children of all the selected ele-
ments, simply omit the selector argument.

find(selector) Makes a selection within the context of matched ele-
ments’ descendents.

jQuery

next(selector) Selects the next sibling element; the selector argu-
ment is optional.

jQuery

nextAll(selector) Selects all subsequent sibling elements; the selector
argument is optional.

jQuery

prev(selector) Selects the previous sibling element; the selector
argument is optional.

jQuery

prevAll(selector) Selects all preceding sibling elements; the selector
argument is optional.

jQuery

siblings(selector) Selects all sibling elements; the selector argument is
optional.

jQuery

parents(selector) Selects all ancestor elements; the selector argument
is optional.

jQuery

parent(selector) Selects all immediate parent elements; the selector
argument is optional.

jQuery

Chaining

andSelf() Adds the previous selection to the current selection. jQuery

D
Events

The following table contains all of the event methods supported by jQuery as listed in jQuery’s
official documentation at www.jquery.com.

All of the event methods return the jQuery object.

Method Description

Page Load

ready(function) Attaches a function that is executed when the DOM is completely
loaded, that is, all markup, CSS, and JavaScript are loaded, but not
necessarily images.

Event Handling

bind(event, function) Attach a function that is executed when the event occurs. Multiple
events can be specified in the event argument; if you specify mul-
tiple events, each event must be separated with a single space.

bind(event, data,
function)

The bind() method accepts an optional data argument. The data
argument is an object that is passed to the event object of the
attached function as event.data.

one(event, function) Attaches a function to be fired for the specified event. The function
is only executed once. Subsequent events will not execute the speci-
fied function.

one(event, data,
function)

The one() method accepts an optional data argument. The data
argument is an object that is passed to the event object of the
attached function as event.data.

trigger(event) Triggers the specified event on matched elements.

trigger(event, data) The trigger() method accepts an optional data argument. The
data argument is an object that is passed to event object functions
being triggered as event.data.

triggerHandler(event) Triggers the specified event on matched elements while canceling
the browser’s default action for any given event.

454

Appendix D: Events

Method Description

triggerHandler(event,
data)

The triggerHandler() method accepts an optional data argument.
The data argument is an object that is passed to event object func-
tions being triggered as event.data.

unbind(event,
function)

Removes the event and function.

Event Helpers

hover(mouseover,
mouseout)

Attaches a function for mouseover, and a function for mouseout to
the same element.

toggle(function1,
function2, function3…)

Upon first click, the first function is executed; upon second click,
the second function is executed; upon third click, the third function
is executed, and so on. A minimum of two functions must be speci-
fied; an unlimited number of total functions may be specified.

Event Methods

blur() Triggers the blur event of each selected element.

blur(function) Attaches a function to the blur event of each selected element.

change() Triggers the change event of each selected element.

change(function) Attaches a function to the change event of each selected element.

click() Triggers the click event of each selected element.

click(function) Attaches a function to the click event of each selected element.

dblclick() Triggers the dblclick (double-click) event of each selected element.

dblclick(function) Attaches a function to the dblclick event of each selected element.

error() Triggers the error event of each selected element.

error(function) Attaches a function to the error event of each selected element.

focus() Triggers the focus event of each selected element.

focus(function) Attaches a function to the focus event of each selected element.

keydown() Triggers the keydown event of each selected element.

keydown(function) Attaches a function to the keydown event of each selected element.

keyup() Triggers the keyup event of each selected element.

keyup(function) Attaches a function to the keyup event of each selected element.

load(function) Attaches a function to the load event of each selected element.

mousedown(function) Attaches a function to the mousedown event of each selected element.

455

Appendix D: Events

Method Description

mousemove(function) Attaches a function to the mousemove event of each selected element.

mouseout(function) Attaches a function to the mouseout event of each selected element.

mouseover(function) Attaches a function to the mouseover event of each selected element.

mouseup(function) Attaches a function to the mouseup event of each selected element.

resize(function) Attaches a function to the resize event of each selected element.

scroll(function) Attaches a function to the scroll event of each selected element.

select() Triggers the select event of each selected element.

select(function) Attaches a function to the select event of each selected element.

submit() Triggers the submit event of each selected element.

submit(function) Attaches a function to the submit event of each selected element.

unload(function) Attaches a function to the unload event of each selected element.

Event Object Normalization
jQuery provides the following in the event object passed as the first argument to every function acting as
an event handler, in every browser, even those that wouldn’t support these otherwise:

Method/Property Description

event.type Provides the type of event, for example, click, mouseover, keyup,
and so on.

event.target The DOM element that triggered the event

event.pageX,
event.pageY

The mouse coordinates relative to the document

event.preventDefault() Prevents the browser’s default action for a given event, for example,
submitting a form, or navigating to the href attribute of an <a>
element.

event.
stopPropagation()

Stops the propagation of an event from a child or descendent ele-
ment to its parent or ancestor elements, which prevents the same
event from running on the later ancestor elements.

event.data An object passed to the function acting as an event handler. See
the data argument specified for various methods under “Event
Handling” in the previous table.

E
Manipulating Attributes

and Data Caching
Method/Property Description Return Value

attr()

attr(name) Returns the attribute value for the specified attribute
from the first element present in a selection. If no ele-
ment is present, the method returns “undefined.”

Object

attr(properties) Allows you to set attributes via the specification of
key, value pairs. For example:
attr({
 id: ‘someIDName’,
 href: ‘/example.html’,
 title: ‘Some tooltip text.’
});

jQuery

attr(key, value) Allows you to specify an attribute by providing the
name of the attribute in the key argument and its
value in the value argument.

jQuery

attr(key, function) Sets an attribute’s value depending on the return
value of the callback function that you specify. The
callback function is executed within the context of
each selected element, where each selected element
can be accessed within the function via this.

jQuery

removeAttr(name) Removes the specified attribute from the element(s). jQuery

Class Names

addClass(class) Adds the specified class name to each selected ele-
ment. Elements can have one or more class names.

jQuery

hasClass(class) Returns true if the specified class name is present on
at least one of the selected elements.

Boolean

458

Appendix E: Manipulating Attributes and Data Caching

Method/Property Description Return Value

removeClass(class) Removes the specified class name from each selected
element.

jQuery

toggleClass(class) Adds the specified class name if it is not present, and
removes the specified class name if it is present.

jQuery

HTML

html() Returns the HTML contents, or innerHTML, of the
first element of the selection. This method does not
work on XML documents, but does work on XHTML
documents.

String

html(value) Sets the HTML contents of every selected element.
This method does not work on XML documents, but
does work on XHTML documents.

jQuery

Text

text() Returns the text content of each selected element. String

text(value) Sets the text content of each selected element. HTML
source code will not be rendered.

jQuery

Value

val() Returns the contents of the value attribute for the first
element of the selection. For <select> elements with
attribute multiple=”multiple”, an array of selected
values is returned.

String, Array

val(value) When providing a single value, this method sets
the contents of the value attribute for each selected
element.

jQuery

val(values) When providing multiple values, this method checks
or selects radio buttons, checkboxes, or select options
that match the set of values.

jQuery

Data Caching

jQuery has the ability to store data with an element, which works similarly to how you would
manipulate attributes.

data(name) Returns data stored for an element by the specified
name for the selected elements.

Any

data(name, value) Stores data by the specified name with the selected
elements, and also returns the value.

Any

removeData(name) Removes the data by the specified name from the
selected elements.

jQuery

F
Manipulating Content

Method/Property Description Return Value

HTML

html() Returns the HTML contents, or innerHTML, of the
first element of the selection. This method does
not work on XML documents, but does work on
XHTML documents.

String

html(value) Sets the HTML contents of every selected ele-
ment. This method does not work on XML docu-
ments, but does work on XHTML documents.

jQuery

Text

text() Returns the text content of each selected element. String

text(value) Sets the text content of each selected element.
HTML source code will not be rendered.

jQuery

Inserting Inside

append(content) Appends the specified content to the inside of
every selected element.

jQuery

appendTo(selector) Appends all of the selected elements to the ele-
ments specified by the selector argument.

jQuery

prepend(content) Prepends the specified content to the inside of
each selected element.

jQuery

prependTo(selector) Prepends all of the selected elements to the ele-
ments specified by the selector argument.

jQuery

Inserting Outside

after(content) Inserts the specified content after each selected
element.

jQuery

insertAfter(selector) Inserts the selected elements after the elements
specified by the selector argument.

jQuery

460

Appendix F: Manipulating Content

Method/Property Description Return Value

before(content) Inserts the specified content before each selected
element.

jQuery

insertBefore(selector) Inserts the selected elements before the selectors
specified by the selector argument.

jQuery

Inserting Around

wrap(html) Wraps each selected element with the specified
HTML content.

jQuery

wrap(element) Wraps each selected element with the specified
element from the DOM.

jQuery

wrapAll(html) Wraps all of the selected elements with a single
wrapper specified as HTML.

jQuery

wrapAll(element) Wraps all of the selected elements with the speci-
fied element from the DOM.

jQuery

wrapInner(html) Wraps the inner contents of each selected ele-
ment with the specified HTML.

jQuery

wrapInner(element) Wraps the inner contents of each selected ele-
ment with the specified element from the DOM.

jQuery

Replacing

replaceWith(content) Replaces each selected element with the specified
HTML or DOM elements. This method returns
the jQuery object including the element that was
replaced.

jQuery

replaceAll(selector) Replaces the elements specified in the selector
argument with the selected elements.

jQuery

Removing

empty() Removes all child nodes from the selected
elements.

jQuery

remove(selector) Removes the selected elements from the DOM. jQuery

Copying

clone() Clones the selected elements; returns the jQuery
object including the clones you created.

jQuery

clone(true) Clones the selected elements and their event
handlers; returns the jQuery object including the
clones you created.

jQuery

G
AJAX Methods

Method Description Return Value

AJAX Requests

jQuery.ajax(options)

$.ajax(options)

Allows you to pass an object literal speci-
fying various options in key, value pairs.
For the complete list of options, see the
“Options” section. This method is used
by jQuery’s other AJAX methods to make
AJAX requests. You should only use this
method if you require finer-grained con-
trol over an AJAX request than is pos-
sible with jQuery’s other methods.

XMLHttpRequest

load(url, [data],
[function])

Loads HTML from a remote file and
inserts the HTML inside of the selected
elements. The data argument (optional)
is specified as an object literal, defin-
ing the data you want to pass to the
server in key, value pairs. The function
argument (also optional) is the callback
method that will handle the data once it
is returned from the server.

jQuery

jQuery.get(url, [data],
[function], [type])

$.get(url, [data],
[function], [type]))

Initiates an HTTP request using the GET
method.

XMLHttpRequest

jQuery.getJSON(url,
[data], [function])

$.getJSON(url, [data],
[function])

Initiates an HTTP request using the GET
method, in which the response will be
JSON-formatted data.

XMLHttpRequest

jQuery.getScript(url,
[function])

$.getScript(url,
[function])

Loads and executes a new JavaScript file
via the GET method asynchronously.

XMLHttpRequest

462

Appendix G: AJAX Methods

Method Description Return Value

jQuery.post(url, [data],
[function], [type])

$.post(url, [data],
[function], [type])

Initiates an HTTP request using the
POST method.

XMLHttpRequest

AJAX Events

ajaxComplete(function) Attaches a function to be executed when
an AJAX request is completed.

jQuery

ajaxError(function) Attaches a function to be executed when
an AJAX request fails.

jQuery

ajaxSend(function) Attaches a function to be executed before
an AJAX request is sent.

jQuery

ajaxStart(function) Attaches a function to be executed when
an AJAX request begins (if not already
active).

jQuery

ajaxStop(function) Attaches a function to be executed when
an AJAX request ends.

jQuery

ajaxSuccess(function) Attaches a function to be executed
when an AJAX request has completed
successfully.

jQuery

Miscellaneous

jQuery.ajaxSetup (options)

$.ajaxSetup (options)

Configures the default options for AJAX
requests. The option argument is passed
as an object literal, in key, value pairs.
See the “Options” section.

jQuery

serialize() Serializes a set of input elements into a
string of data.

jQuery

serializeArray() Serializes all forms and form elements
into a JSON structure.

jQuery

Options

Option Description Type

async By default, jQuery sends all AJAX requests asynchronously.
To send a synchronous request, set this property to false.

Boolean

beforeSend The function you specify for this option is executed before
the AJAX request is sent.

Function

463

Appendix G: AJAX Methods

Option Description Type

cache Whether or not the AJAX request should be cached. The
default is true, false for dataType script.

Boolean

complete This option allows you to specify a function that is executed
when the AJAX request has completed.

Function

contentType The MIME type of data being sent to the server. The default
is application/x-www-form-urlencoded.

String

data The data to be sent to the server with a GET or POST request.
Can be specified as either a string of ampersand-delimited
arguments or as an object literal in key, value pairs.

Object, String

dataFilter A function to be used to handle the raw response data of
XMLHttpRequest. This is a pre-filtering function to sanitize
the response. You should return the sanitized data. The
function has two arguments: the raw data returned from the
server and the type parameter (see dataType):
function (data, type) {
 // do something
 // return the sanitized data
 return data;
}

Function

dataType The type of data that you expect to receive in your response
from the server. jQuery automatically determines whether to
pass responseText or responseXML to the callback function
handling the response, depending on the MIME type of the
data returned by the server. See the “Types” section for a list
of allowed data types.

String

error A function that is executed if the AJAX request fails Function

global Whether or not to trigger the global AJAX event handlers
for the request, for example, the handlers set by the various
AJAX Event methods. The default is true.

Boolean

ifModified Allows the request to be successful only if the request has
been modified since the last request. This is determined by
checking the time specified in the Last-Modified HTTP
header. The default is false (ignore the Last-Modified header).

Boolean

jsonp Overrides the callback function name in a jsonp request.
This value will be used instead of ‘callback’ in the
‘callback=?’ part of the query string in the URL for a GET
or the data for a POST. So {jsonp:’onJsonPLoad’} would
result in onJsonPLoad=? passed to the server.

String

password A password to use in response to an HTTP access authenti-
cation request

String

464

Appendix G: AJAX Methods

Option Description Type

processData By default, data passed in to the data option will be pro-
cessed and transformed into a query string, fitting to the
default content-type application/x-www-form-urlencoded.
If you want to send DOMDocuments or other non-processed
data, set this option to false. The default is true.

Boolean

scriptCharset For GET requests where the dataType is set to script or
jsonp. Forces the request to be interpreted with the specified
charset. This is only needed if the charset of local content is
different from the remote content being loaded.

String

success A function that is executed upon success of the AJAX request Function

timeout Sets the amount of time in milliseconds (ms) to allow before
a time-out will occur.

Number

type The type of HTTP request, one of GET or POST. You can also
specify PUT or DELETE. However, those methods are not
supported by all browsers.

String

url The URL to request String

username A username to specify in response to an HTTP authentica-
tion required request

String

xhr Callback for creating the XMLHttpRequest object. Defaults to
the ActiveXObject when available (IE), the XMLHttpRequest
otherwise. Override to provide your own implementation for
XMLHttpRequest or enhancements to the factory.

Function

Types (allowed for the dataType option, or type argument)

Type Description

xml Returns an XML document that can be processed with jQuery.

html Returns HTML as plain text. <script> elements are evaluated upon inserting into
the DOM.

script Evaluates the response as JavaScript and returns the script as plain text to the call-
back function. Disables caching unless the cache option is used. Note: This type of
request will make POST requests into GET requests.

json Evaluates the response as JSON and returns a JavaScript object.

jsonp Loads in a JSON block using JSONP. Will add an extra ?callback=? to the end of
your URL to specify the callback.

text Returns the server response as a plain text string.

H
CSS

Method Description Return Value

CSS

css(property) Returns the specified CSS property value from the
first selected element, for example:

$(‘div’).css(‘background-color’)

String

css(properties) Sets the specified CSS properties. The properties
argument is defined as an object literal of key,
value pairs, for example:
$(‘div’).css({
 backgroundColor: ‘red’,
 marginLeft: ‘10px’
});

jQuery

css(property, value) Sets the specified CSS property value, for example:

$(‘div’).css(‘background’, ‘red’);

jQuery

Positioning

offset() Returns the offset position of the first selected ele-
ment relative to the viewport.
var $offset = $(‘div’).offset();
alert(‘Left: ‘ + $offset.left);
alert(‘Top: ‘ + $offset.top);

Object

Height and Width

height() Returns the pixel height (CSS height, excluding
borders and padding) of the first selected element.

Integer

height(value) Sets the pixel height (CSS height) of the first
selected element. If no unit of measurement is pro-
vided, px (pixels) is used.

jQuery

width() Returns the pixel width (CSS width, excluding
borders and padding) of the first selected element.

Integer

466

Appendix H: CSS

Method Description Return Value

width(value) Sets the pixel width (CSS width) of the first
selected element. If no unit of measurement is pro-
vided, px (pixels) is used.

jQuery

outerHeight(options) Returns the offsetHeight (includes the pixel
height, borders, and padding) of the first selected
element. The options argument is a JavaScript
object literal of options. See the “Options” section
for more information.

Integer

outerWidth(options) Returns the offsetWidth (includes the pixel
width, borders, and padding) of the first selected
element. The options argument is a JavaScript
object literal of options. See the “Options” section
for more information.

Integer

Options

Option Description Type

margin When set to true, the margin will be included in
the calculation for offsetWidth or offsetHeight.

Boolean

I
Utilities

Method/Property Description Return Value/Type

Browser Detection

$.browser

jQuery.browser

Contains properties for deter-
mining the make of the browser.
Each of the following are Boolean
values depending on what
browser you use to access the
property:
$.browser.safari
$.browser.opera
$.browser.msie
$.browser.mozilla

One additional property provides
the browser version:

$.browser.version

Object

$.boxModel

jQuery.boxModel

Provides whether the browser
is using the standard W3C box
model.

Boolean

Array and Object Operations

$.each(object, function)

jQuery.each(object, function)

A function that iterates over the
contents of an array or object,
passing each item to a callback
function.

Object

$.extend(target, object1…)

jQuery.extend(target, object1…)

Extends the target object with
one or more specified objects.
Returns the original, unmodified
object.

Object

468

Appendix I: Utilities

Method/Property Description Return Value/Type

$.grep(array, function, invert)

jQuery.grep(array, function,
invert)

Filters items out of an array
using a callback function. If
the optional invert argu-
ment is false or not provided,
grep returns an array of items
where the callback function has
returned true for each of those
items. If the invert argument is
true, it returns an array where
the callback function for each
item has returned false.

Array

$.makeArray(object)

jQuery.makeArray(object)

Turns anything into an array
(as opposed to an Object or a
StaicNodeList).

Array

$.map(array, function)

jQuery.map(array, function)

Translate the items in the speci-
fied array to another array via
logic provided in the callback
function.

Array

$.inArray(value, array)

jQuery.inArray(value, array)

Determines whether the specified
value appears in the specified
array.

Array

$.unique(array)

jQuery.unique(array)

Removes duplicate values from
the specified array.

Array

Test Operations

$.isFunction(item)

jQuery.isFunction(item)

Determines if the specified item
is a function.

Boolean

String Operations

$.trim(string)

jQuery.trim(string)

Removes white space (newline
characters, spaces, tabs, carriage
returns) from the beginning and
end of a string.

String

J
Draggables and Droppables

Draggable and Droppable Methods

Method Description Return Value

draggable(options) Makes the selected element(s) draggable.
Options can be specified by passing an object lit-
eral as the first argument using key, value pairs.
For a complete list of options, see the “Draggables
Options” section later in this Appendix.

jQuery

draggable(‘disable’) Disables draggable functionality on the selected
element(s).

jQuery

draggable(‘enable’) Enables draggable functionality on the selected
element(s).

jQuery

draggable(‘destroy’) Completely removes draggable functionality
from the selected element(s).

jQuery

droppable(options) Makes the selected element(s) droppable.
Options can be specified by passing an object
literal as the first argument using key, value
pairs. For a complete list of options, see the
“Droppable Options” section later in this
Appendix.

Dropset

droppable(‘disable’) Disables droppable functionality on the selected
element(s).

jQuery

droppable(‘enable’) Enables droppable functionality on the selected
element(s).

jQuery

droppable(‘destroy’) Completely removes droppable functionality
from the selected element(s).

jQuery

27794bapp10.indd 469 3/16/09 12:13:59 PM

470

Appendix J: Draggables and Droppables

Draggables Options

Option Description Type

appendTo For a draggable with a helper option specified, the
matched element passed to the appendTo option will
be used as the helper’s container. If not specified,
the helper is appended to the same container as the
draggable.

Element,
Selector

axis Contains dragging to an X- or Y-axis. Defaults to
false.

String

cancel Prevents dragging, if you start on elements matching
the selector.

Selector

containment Contains dragging within the bounds of the specified
element or selection.

Element,
Selector

cursor The CSS cursor to be used during the operation String

cursorAt Moves the dragging element/helper so the cur-
sor always appears to drag from the same position.
Coordinates can be given as an object literal using the
keys: top, left, right, bottom.

Object, Array

delay Time in milliseconds (ms) to delay the start of a drag.
This helps prevent unwanted dragging from occur-
ring when clicking on an element.

Integer

distance Tolerance in pixels for when dragging should start.
Prevents dragging from taking place until the mouse
cursor has reached the pixel distance from the point
the drag began.

Integer

grid Snaps the dragging element or helper to a grid. Integer x,
Integer y

handle Restricts the drag start to the specified element.
This lets you make a large element draggable, but
only when a smaller element within it is used as the
“handle.”

Element,
Selector

helper Allows for a helper element to be used for dragging
display. The clone option will produce a ghosting
effect. Possible values: original and clone. The
default value is original. If you supply a function, it
must return a valid DOM node.

String,
Function

opacity The CSS opacity for the element being dragged CSS Opacity

27794bapp10.indd 470 3/16/09 12:13:59 PM

471

Appendix J: Draggables and Droppables

Option Description Type

revert If set to true, the element will return to its start posi-
tion when dragging stops. Also accepts the strings
valid and invalid. If set to invalid, revert will only
occur if the draggable has not been dropped on a
droppable. If set to valid, it’s the other way around.

Boolean

revertDuration The duration of the revert animation; stable since ver-
sion 1.6.

Integer

scroll If set to true, the draggable’s container auto-scrolls
while dragging.

Boolean

scrollSensitivity Distance in pixels from the edge of the viewport after
which the viewport should scroll. Distance is relative
to the pointer, not the draggable.

Integer

scrollSpeed The speed at which the window should scroll once the
mouse pointer gets within the scrollSensitivity
distance

Integer

snap If set to a selector or to true (same as selector
.ui-draggable), the new draggable will snap to the
edges of the selected elements when coming to an
edge of the element.

Boolean,
Selector

snapMode If set, the dragged element will only snap to the outer
edges or to the inner edges of the element. Possible
values are inner and outer.

String

snapTolerance The distance in pixels from the snapping elements
before the snapping should occur

Integer

refreshPositions If set to true, all droppable positions are calculated on
every mousemove.

Caution: This solves issues on highly dynamic pages,
but dramatically decreases performance.

Boolean

zIndex The z-index value for the helper element, while it is
being dragged.

Integer

start A function that is executed when the element begins
a drag

function(e, ui)

drag A function that is executed while the element is being
dragged

function(e, ui)

stop A function that is executed when the element’s
drag ends

function(e, ui)

27794bapp10.indd 471 3/16/09 12:14:00 PM

472

Appendix J: Draggables and Droppables

Draggable UI Object Options

The callback functions specified for various draggable options specify in the second argument,
a ui object. Following are the properties exposed in the ui object:

Option Description Type

ui.options Options used to initialize the draggable element Object

ui.helper The jQuery object representing the helper
being dragged

Object

ui.position The current position of the helper as an object
literal, relative to the offset element

Object {top, left}

ui.absolutePosition The current absolute position of the helper,
relative to the page

Object {top, left}

Droppable Options

Option Description Type

accept A function that is executed each time a drag-
gable is dropped on a droppable. This lets you
filter which elements can be dropped. The func-
tion should return true if the dragged element
should be accepted, and false if it should not.

function(draggable)

accept All draggables that match the specified selector
will be accepted by the droppable.

Selector

activeClass A class name that is added to the droppable
element while a draggable element is being
dragged

className

greedy If true, this property prevents event propaga-
tion on nested droppables. The default value is
false.

Boolean

hoverClass A class name that is added to the droppable
element while a draggable element is being
dragged over the droppable element

className

tolerance Specifies which method to use for determin-
ing whether a draggable element is over a
droppable element. Possible values are fit,
intersect, pointer, or touch. The default
value is intersect.

String

activate A function that is executed any time an accept-
able draggable element begins a drag

function(e, ui)

27794bapp10.indd 472 3/16/09 12:14:00 PM

473

Appendix J: Draggables and Droppables

Option Description Type

deactivate A function that is executed any time an accept-
able draggable element’s drag ends

function(e, ui)

over A function that is executed when an acceptable
draggable element is dragged over a droppable
element (“over” is defined by the tolerance
option)

function(e, ui)

out A function that is executed when an acceptable
draggable element leaves a droppable element
(“leave” is defined by the tolerance option.)

function(e, ui)

drop A function that is executed when an accepted
draggable element is dropped on a droppable
element (“on” is defined by the tolerance
option). Within the function, this refers to the
droppable element, and ui.draggable refers to
the draggable element.

function(e, ui)

Droppable UI Object Options

The callback functions specified for various droppable options specify in the second argument,
a ui object. Following are the properties exposed by the ui object:

Option Description Type

ui.options The options used to initialize the droppable
element

Object

ui.position The current position of the draggable helper Object {top, left}

ui.absolutePosition The current absolute position of the draggable
helper

Object {top, left}

ui.draggable The current draggable element Object

ui.helper The current draggable helper Object

27794bapp10.indd 473 3/16/09 12:14:00 PM

K
Sortables

Method Description Return Value

Sortable Methods

sortable(options) Makes the selected element(s) sortable.
Options can be specified by passing an
object literal as the first argument using
key, value pairs. For a complete list of
options, see the “Sortable Options” sec-
tion later in this Appendix.

jQuery

sortable(‘disable’) Disables sortable functionality on the
selected element(s).

jQuery

sortable(‘enable’) Enables sortable functionality on the
selected element(s).

jQuery

sortable(‘destroy’) Completely removes sortable functional-
ity from the selected element(s).

jQuery

sortable(‘serialize’,
options)

Returns a string of serialized IDs for each
sortable item, which can then be used
in an AJAX request or input form. For a
complete list of options, see the “Serialize
Options” section later in this Appendix.

String

sortable(‘refresh’) Refreshes the sortable items. jQuery

sortable(‘refreshPositions’) Refreshes the cached positions of sortable
items.

jQuery

476

Appendix K: Sortables

Sortable Options

Option Description Type

appendTo Defaults to the parent; defines where the helper that
moves with the mouse is being appended to during
the drag (e.g., to resolve overlap/zIndex issues).

String

axis If specified, the items can only be dragged along
either the X- or Y-axis. Only allows the values x or y.

One of x or y

cancel Prevents sorting from beginning on elements that
match the selector.

Selector

connectWith Accepts an array of selectors, where the selector(s)
match elements that are sortable elements. If this
option is specified, the sortable element that the
option is applied to is connected one-way to the
sortable elements specified by the selector(s).

Array

containment Constrains the dragging of sortable elements within
the bounds of the specified element. Possible values
are parent or document.

One of parent
or document

cursor Specifies the cursor that should be shown while
sortable elements are being dragged.

CSS cursor

delay Defines a delay time in milliseconds (ms), which
helps to prevent unwanted drags. The default is 0.

Integer

distance A tolerance in pixels, for where the threshold sort-
ing should take place. If this option is specified,
sorting won’t take place until the mouse cursor
is dragged beyond the specified distance. The
default is 1.

Integer

dropOnEmpty If set to true, this option allows a sortable item to be
dropped from a linked selectable. The default is true.

Boolean

handle See the handle option under the “Draggables
Options” section in Appendix J.

Selector,
element

forcePlaceholderSize If true, this option forces the placeholder for the
sortable to have a size. The default is false.

Boolean

grid Snaps the dragging element/helper to a grid, every
x and y pixel.

Object {x, y}

helper This option allows a helper element to be displayed
while dragging is taking place. If a callback function
is specified, it should return a valid DOM node that
can be used for display.

Element,
function(e,
element)

477

Appendix K: Sortables

Option Description Type

tolerance This option defines how reordering behaves during
a drag event. The default value is guess. The guess
value automatically guesses whether to use
intersect or tolerance. In some applications,
pointer is more appropriate.

One of guess,
intersect,
tolerance, or
pointer

items Which items sorting should be applied to. The
default value is “> *” (all children elements).

Selector

opacity Defines the opacity of the helper while sorting using
a CSS 3 opacity value, where 0 is fully transparent,
1 is fully opaque, and floating points between are
semitransparent. For example, 0.5 would be half-
transparent (or half-opaque). The default is 1.

CSS 3 Opacity

placeholder Applies a class name to the placeholder element
(which would otherwise be empty white space).

className

revert This option triggers the dragged item to be reverted
back to its original position using a smooth anima-
tion. The default is true.

Boolean

scroll This option causes the page to scroll when a dragged
element comes to an edge. The default is true.

Boolean

scrollSensitivity This option defines how close to an edge a dragged
element must be before scrolling occurs. Measured
in pixels, the default is 20.

Integer

scrollSpeed This option defines the distance an element is
scrolled. Measured in pixels, the default is 20.

Integer

zIndex The z-index for the drag element Integer

start A function that executes when sorting begins function(e, ui)

sort A function that executes while sorting is taking place function(e, ui)

change A function that executes when a change in sorting
takes place

function(e, ui)

stop A function that executes when sorting ends function(e, ui)

beforeStop A function that executes when sorting ends, but
while the placeholder or helper is still available

function(e, ui)

update A function that executes when sorting ends and the
DOM position of the dragged element has changed

function(e, ui)

receive A function that executes when an item from a con-
nected (separate) sortable list is dragged to this sort-
able list

function(e, ul)

478

Appendix K: Sortables

Option Description Type

remove A function that executes when an item from this
sortable list is dragged to a connected (separated)
sortable list

function(e, ui)

over A function that executes when an item is moved
over a connected list

function(e, ui)

activate A function that executes when a drag on a sortable
item begins. This function propagates to all con-
nected lists.

function(e, ui)

deactivate A function that executes when sorting ends. This
function propagates to all connected lists.

function(e, ui)

Serialize Options

Option Description Type

attribute The attribute value that is retrieved from each sort-
able element. The default is id.

String

expression A regular expression used to extract a string from
within the attribute value. The default is
/(.+)[-=_](.+)/.

Regular
expression

key The key in the URL hash. If not specified, it will
take the first result of the expression.

String

L
Selectables

Method Description Return Value

Sortable Methods

selectable(options) Turns the children of selected element(s) into
selectable elements. Options can be specified by
passing an object literal as the first argument
using key, value pairs. For a complete list of
options, see the “Selectable Options” section later
in this Appendix.

jQuery

selectable(‘disable’) Disables selectable functionality on the selected
element(s).

jQuery

selectable(‘enable’) Enables selectable functionality on the selected
element(s).

jQuery

selectable(‘refresh’) Refreshes the position and size of each selected
element.

jQuery

selectable(‘toggle’) Toggles selectability (between enabled and
disabled).

jQuery

selectable(‘destroy’) Completely removes the selectable functionality. jQuery

Selectable Options

Option Description Type

autoRefresh This option determines whether to refresh (the cached)
the position and size of each selectable element at the
beginning of a select operation. If you have experienced
performance degradation (as you would if you have lots
of selectable elements), you might want to set this option
to false and refresh positions manually, as needed. The
default value is true.

Boolean

480

Appendix L: Selectables

Option Description Type

filter The matching child elements will be made into selectable
elements. The default value is * (all children elements).

Selector

selected This function is executed at the end of a select operation
(when the mouse button has been released), on each ele-
ment added to the selection. Selected elements are available
in the ui argument as ui.selected. The this keyword
refers to the parent selectable element.

function(e, ui)

selecting This function is executed as elements are selected dur-
ing a select operation (while the selection box is being
drawn). Selected elements are available in the ui argument
as ui.selecting. The this keyword refers to the parent
selectable element.

function(e, ui)

start This function is executed at the beginning of a select opera-
tion (when the mouse button is first pressed down). The
this keyword refers to the parent selectable element.

function(e, ui)

stop This function is executed at the end of a select operation
(when the mouse button is released). The this keyword
refers to the parent selectable element.

function(e, ui)

unselected This function is executed at the end of a select operation
(when the mouse button has been released), for each ele-
ment removed from the selection. The element removed
from the selection is available in the ui argument as
ui.unselected. The this keyword refers to the parent
selectable element.

function(e, ui)

unselecting This function is executed during a select operation (while
the selection box is being drawn). Selected elements are
available in the ui argument as ui.unselecting. The this
keyword refers to the parent selectable element.

function(e, ui)

Notes
In the ui argument of each of the callback functions documented here, the parent selectable element is
also available as ui.selectable.

The Selectables plugin currently does not provide a way to customize the box being drawn, by adding a
class name to it via a Selectables option, for example. Despite this limitation, you do have the ability to
customize the selection box, however, and you can do that by adding a rule to your style sheet that ref-
erences the selector, div.ui-selectable-helper. If you want to override the jQuery UI styling of the
box, like the dashed border, for example, you must add !important to override style-sheet declarations.

M
Effects

Speed
In the following table, the speed argument of each method means that any one of “slow”,
“normal”, “fast”, or the time specified in milliseconds can be specified for that argument.

Callback Function
An optional callback function may be provided in the second argument. If a callback function is
provided, it is executed when the animation completes.

Method Description Return Value

Showing and Hiding Methods

show() Displays each selected element if the element
is hidden.

jQuery

show(speed, function) Displays each selected element using an ani-
mation (see “Speed” and “Callback Function”).

jQuery

show(effect, options,
speed, function)

Uses a specific effect on an element to show
the element if the first argument is an effect
string (see “Effects”).

jQuery

hide() Hides each selected element if the element is
not already hidden.

jQuery

hide(speed, function) Hides each selected element using an anima-
tion (see “Speed” and “Callback Function”).

jQuery

hide(effect, options,
speed, function)

Uses a specific effect on an element to hide
the element if the first argument is an effect
string (see “Effects”).

jQuery

toggle() Toggles each selected element between dis-
played and hidden.

jQuery

482

Appendix M: Effects

Method Description Return Value

toggle(speed, function) Toggles each selected element between dis-
played and hidden using an animation (see
“Speed” and “Callback Function”).

jQuery

toggle(effect, options,
speed, function)

Uses a specific effect on an element to toggle
the element if the first argument is an effect
string (see “Effects”).

jQuery

effect(effect, options,
speed, function)

Uses a specific effect on an element (without
the show/hide logic) (see “Effects”).

jQuery

Sliding Methods

slideDown(speed,
function)

Displays each selected element if the element is
hidden by animating the element’s height from
nothing to its normal height (see “Speed” and
“Callback Function”).

jQuery

slideUp(speed, function) Hides each selected element if the element is
displayed by animating the element’s height
from its normal height to nothing (see “Speed”
and “Callback Function”).

jQuery

slideToggle(speed,
function)

Toggles each selected element between dis-
played and hidden by animating the element’s
height (see “Speed” and “Callback Function”).

jQuery

Fading Methods

fadeIn(speed, function) Fades in each selected element by adjusting the
element’s opacity (see “Speed” and “Callback
Function”).

jQuery

fadeOut(speed, function) Fades out each selected element by adjust-
ing the element’s opacity (see “Speed” and
“Callback Function”).

jQuery

fadeTo(speed, opacity,
function)

Fades each selected element to the specified
opacity (see “Speed” and “Callback Function”).

jQuery

Custom Animation Methods

animate(styles,
duration, easing,
function)

Animates an element’s styles, from the styles
an element begins with, to the styles specified
in an object literal provided to the first argu-
ment. At the time of this writing, only CSS
properties with numeric values are supported
(animating color transitions is not supported).
The easing argument accepts two possible val-
ues, “linear” and “swing”.

jQuery

483

Appendix M: Effects

Method Description Return Value

animate(styles, options) See the “Animate Options” section. jQuery

stop() Stops all the currently running animations on
all the specified elements.

jQuery

queue() Returns a reference to the first element’s queue
(which is an array of functions).

Array
(Function)

queue(function) Adds a new function to be executed onto the
end of the queue of all selected elements.

jQuery

queue(queue) Replaces the queue of all matched elements
with this new queue (the array of functions).

jQuery

dequeue() Removes a queued function from the front of
the queue and executes it.

jQuery

Animate Options

Option Description Type

duration Any one of “slow”, “normal”, “fast”, or the time specified in
milliseconds (ms).

String, number

easing The name of the easing effect that you want to use (plugin
required). There are two built-in values, “linear” and “swing”.

String

complete A function to be executed when the animation completes Function

step * Callback

queue Setting this to false will make the animation skip the queue
and begin running immediately.

Boolean

*No description is available in the jQuery documentation for the step option at the time of this writing.

Effects

Option Description

Effects that can be used with Show/Hide/Toggle:

blind Blinds the element away or shows it by blinding it in.

clip Clips the element on or off, vertically or horizontally.

drop Drops the element away or shows it by dropping it in.

explode Explodes the element into multiple pieces.

fold Folds the element like a piece of paper.

484

Appendix M: Effects

Option Description

puff Scale and fade out animations create the puff effect.

slide Slides the element out of the viewport.

scale Shrinks or grows an element by a percentage factor.

size Re-sizes an element to a specified width and height.

pulsate Pulsates the opacity of the element multiple times.

Effects that can only be used stand-alone:

bounce Bounces the element vertically or horizontally n-times.

highlight Highlights the background with a defined color.

shake Shakes the element vertically or horizontally n-times.

transfer Transfers the outline of an element to another.

N
Accordion

Method Description Return Value

Showing and Hiding Methods

accordion(options) Makes the selected elements into accordi-
ons (see “Accordion Options”).

jQuery

accordion(‘activate’, index) Activates a content part of the accordion
programmatically.

jQuery

accordion(‘enable’) Enables the selected accordion. jQuery

accordion(‘disable’) Disables the selected accordion. jQuery

accordion(‘destroy’) Destroys the selected accordion. jQuery

Accordion Options

Option Description Type

active Used to set the default content pane. If a selec-
tor is provided, it must reference the element
used for a header. If the value false is pro-
vided, no element will be used as the default
content pane. The default value is the first
element.

Boolean, selector, ele-
ment, number, jQuery

alwaysOpen By default, there is always one content pane
open, and the open content pane cannot be
closed. If this open is set to false, the user is
given the ability to toggle the open content
pane open or closed. The default value is true.

Boolean

animated If set to false, animation is disabled. If the
jQuery UI Easing plugin is installed, you may
use the values bounceslide or easeslide.
The default value is slide.

Boolean, slide,
bounceslide, or
easeslide

486

Appendix N: Accordion

Option Description Type

autoHeight If set to true, the highest content pane is
used as a height reference for every pane. The
default value is true.

Boolean

clearStyle If set, clears height and overflow styles after
finishing an animation, which enables accor-
dions to work with dynamic content. Won’t
work with the autoHeight option. The default
value is false.

Boolean

event The event used to trigger the accordion. The
default value is click.

Event name

fillSpace If set, the accordion completely fills the height
of the accordion container element (the ele-
ment that you call the accordion() method
on). The default value is false.

Boolean

header Selector referencing the element to use for the
header element for each content pane. The
default value is “a” (<a> elements).

Selector, element,
jQuery

icons Icons to use for headers header or
headerSelected

navigation Makes the accordion content pane that con-
tains an <a> element, whose href value
matches the location.href of the window
(the document’s current location). Allows the
accordion to adjust the default pane dynami-
cally depending on location. The default value
is false.

Boolean

navigationFilter Overrides the default location.href match-
ing used by the Accordion plugin with
logic that you provide in your own callback
function.

Function

selectedClass A class name that is applied to active content
panes, giving you the ability to style the active
content pane differently from inactive content
panes. The default value is selected.

Class name

O
Datepicker

Method Description Return Value

Datepicker Methods

datepicker(options) Makes the selected elements into
datepickers (see “Datepicker Options”).

jQuery

datepicker(“option”, settings) Changes settings for a previously
attached datepicker.

jQuery

datepicker(“dialog”, dateText,
onSelect, settings)

Opens a datepicker in a dialogue box. jQuery

datepicker(“disable”) Disables a datepicker. jQuery

datepicker(“enable”) Enables a datepicker. jQuery

datepicker(“isDisabled”) Determines whether a datepicker field
has been disabled.

Boolean

datepicker(“hide”, speed) Closes a previously open datepicker. jQuery

datepicker(“show”) Calls up a previously attached
datepicker.

jQuery

datepicker(“destroy”) Disconnects the datepicker functional-
ity from its associated control.

jQuery

datepicker(“getDate”) Retrieves the current date(s) for a
datepicker.

Date or
Date[2]

datepicker(“setDate”, date,
endDate)

Sets the current date(s) for a datepicker. jQuery

488

Appendix O: Datepicker

Datepicker Options

Option Description Type

clearText The text to display for the clear link. The default is
“Clear”.

String

clearStatus The text to display in the status bar for the clear link.
The default is “Erase the current date”.

String

mandatory true if a date must be selected, causing the Clear link
to be removed. false if the date is not required. The
default is false.

Boolean

closeText The text to display for the close link. The default is
“Close”.

String

closeStatus The text to display in the status bar for the close link.
The default is “Close without change”.

String

closeAtTop If set to true, the Clear/Close links are positioned at the
top; otherwise, if set to false, these links are posi-
tioned to the bottom. The default is true.

Boolean

prevText The text to display for the previous month link. The
default is “<Prev”.

String

prevStatus The text to display in the status bar for the previous
month link. The default is
“Show the previous month”.

String

nextText The text to display for the next month link. The default
is “Next>”.

String

nextStatus The text to display in the status bar for the next month
link. The default is “Show the next month”.

String

hideIfNoPrevText By default, the previous and next links are disabled
with not applicable; setting this attribute to true hides
them altogether. The default is false.

Boolean

currentText The text to display for the current day link. The default
is “Today”.

String

currentStatus The text to display in the status bar for the current day
link. The default is “Show the current month”.

String

gotoCurrent If true, the current day link moves to the currently
selected date instead of today. The default is false.

Boolean

navigationAsDateFormat When set to true, the formatDate function is applied
to the prevText, nextText, and currentText values
before display, allowing them to display the target
month names, for example. The default is false.

Boolean

489

Appendix O: Datepicker

Option Description Type

monthNames The list of full month names, as used in the month
header on each datepicker and as requested via the
dateFormat setting. The default is [“January”,
“February”, “March”, “April”, “May”, “June”,
“July”, “August”, “September”, “October”,
“November”, “December”].

Array

monthNamesShort The list of abbreviated month names, for use as
requested via the dateFormat setting. The default is
[“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,
“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”].

Array

changeMonth Allows you to change the month by selecting from a
dropdown list. You can disable this feature by setting
this attribute to false. The default is true.

Boolean

monthStatus The text to display in the status bar for the month drop-
down list. The default is “Show a different month”.

String

yearRange Controls the range of years displayed in the year drop-
down. Sets a range of years relative to the current year
“-nn:+nn” , where n is the number of years forward or
backward; or an arbitrary range of years “nnnn:nnnn”,
where n is the beginning and ending year. The default
is “-10:+10”.

String

changeYear Allows you to change the year by selecting from a
dropdown list. You can disable this feature by setting
this option to false. The default is true.

Boolean

yearStatus The text to display in the status bar for the year drop-
down list. The default is “Show a different year”.

String

weekHeader The column header for the week of the year (see
showWeeks). The default is “wk”.

String

weekStatus The text to display in the status bar for the week of the
year. The default is “Week of the year”.

String

dayNames The list of long day names, starting from Sunday, for
use as requested via the dateFormat setting. Day
names also appear as pop-up hints when hovering
over the corresponding column headings. The default
is [“Sunday”, “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”].

Array

dayNamesShort The list of abbreviated day names, starting from
Sunday, for use as requested via the dateFormat set-
ting. The default is
[“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”].

Array

490

Appendix O: Datepicker

Option Description Type

dayNamesMin The list of minimized day names, starting from Sunday, for
use as column headers within the Datepicker. The default
is [“Su”, “Mo”, “Tu”, “We”, “Th”, “Fr”, “Sa”].

Array

firstDay Sets the first day of the week: Sunday is 0, Monday is 1.
The default is 0.

Number

changeFirstDay Allows you to click on the day names to have the week
start on that day. You can disable this feature by set-
ting this option to false. The default is true.

Boolean

dayStatus The text to display in the status bar for the day of the week
links. Use DD for the full name of the day, or D for its short
name. The default is “Set DD as first week day”.

String

highlightWeek If true, the entire week row is highlighted when the
mouse hovers over a day. The default is false.

Boolean

showOtherMonths Displays dates in other months (non-selectable) at the
start or end of the current month. The default is false.

Boolean

dateStatus The text to display in the status bar for the date links.
Use any of the dateFormat characters (see “Format
Options”). The default is “Select DD, M d”.

String

showWeeks Displays the week of the year alongside each month.
The column header is specified by the weekHeader
setting. The week number is calculated based on the
first date shown in each row in the Datepicker, and
thus may not apply to all days in that row. The
calculateWeek setting allows you to change the
week of the year calculation from the default ISO
8601 implementation. The default is false.

Boolean

calculateWeek Performs the week of the year calculation. This func-
tion accepts a Date as a parameter and returns the
number of the corresponding week of the year. The
default implementation uses the ISO 8601 definition of
a week: Weeks start on a Monday, and the first week of
the year contains January 4. This means that up to
three days from the previous year may be included in
the first week of the current year, and that up to three
days from the current year may be included in the last
week of the previous year. The default is
$.datepicker.iso8601Week.

Function

numberOfMonths Sets how many months to show at once. The value can
be a straight integer, or it can be a two-element array
to define the number of rows and columns to display.
The default is 1.

Number,
Number[2]

491

Appendix O: Datepicker

Option Description Type

stepMonths Sets how many months to move when clicking the
Previous/Next links. The default is 1.

Number

rangeSelect Sets to true to allow the selection of a date range on
the one date picker, or false to just select a single date.
For a date range, the first click sets the start date, and a
second click sets the end date. The default is false.

Boolean

rangeSeparator Sets the text to use to separate the two dates in a date
range via the onSelect function. The default is “ - “.

String

defaultDate Sets the date to display on first opening if the field is
blank. Specifies either an actual date via a Date object,
or relative to today with a number (e.g., +7) or a string
of values and periods (‘y’ for years, ‘m’ for months,
‘w’ for weeks, ‘d’ for days; e.g., ‘+1m +7d’), or null
for today. The default is null.

Number,
string

minDate Sets a minimum selectable date via a Date object, or
relative to today with a number (e.g., +7) or a string of
values and periods (‘y’ for years, ‘m’ for months, ‘w’
for weeks, ‘d’ for days; e.g., ‘-1y -1m’), or null for no
limit. The default is null.

Number,
string

maxDate Sets a maximum selectable date via a Date object, or
relative to today with a number (e.g., +7) or a string of
values and periods (‘y’ for years, ‘m’ for months, ‘w’
for weeks, ‘d’ for days; e.g., ‘+1m +1w’), or null for no
limit. The default is null.

Number,
string

dateFormat The format for parsed and displayed dates. For a full
list of the possible formats, see “Format Options.”

String

shortYearCutoff Sets the cutoff year for determining the century for a
date (used in conjunction with dateFormat ‘y’). If a
numeric value (0–99) is provided, then this value is
used directly. If a string value is provided, then it is
converted to a number and added to the current year.
Once the cutoff year is calculated, any dates entered
with a year value less than or equal to it are consid-
ered to be in the current century, while those greater
than it are deemed to be in the previous century. The
default is “+10”.

String,
number

initStatus The text to display in the status bar when the Datepicker
is first opened. The default is “Select a date”.

String

showStatus true if a status bar should be shown within the
Datepicker indicating what each control does. false if
no status bar is required. The default is false.

Boolean

492

Appendix O: Datepicker

Option Description Type

statusForDate The function to call to determine the status text for a
date within the Datepicker. The default function uses
the dateStatus value and substitutes in information
from the current date. The default is this.dateStatus.

Function

appendText The text to display after each date field, for example, to
show the required format. The default is “”.

String

duration Controls the speed at which the Datepicker appears. It
may be a time in milliseconds (ms), a string represent-
ing one of the three pre-defined speeds (“slow”,
“normal”, “fast”), or ‘’ for immediately. The default
is “normal”.

String,
number

showOn Has the Datepicker appear automatically when the
field receives focus, ‘focus’; appear only when a but-
ton is clicked, ‘button’; or appear when either event
takes place, ‘both’. The default is “focus”.

focus,
button, or
both

showAnim Sets the name of the animation used to show/hide the
Datepicker. Uses ‘show’ (the default), ‘slideDown’,
‘fadeIn’, or any of the show/hide jQuery UI effects.
The default is “show”.

String

showOptions If using one of the jQuery UI effects for showAnim, you
can provide additional settings for that animation via
this option. The default is {}.

Options

buttonText The text to display on the trigger button. Use in con-
junction with showOn equal to ‘button’ or ‘both’. The
default is “…”.

String

buttonImage The URL for the pop-up button image. If set, button
text becomes the alt value and is not directly dis-
played. The default is “”.

String

buttonImageOnly Set to true to place an image after the field to use as
the trigger without it appearing on a button. The
default is false.

Boolean

beforeShow Can be a function that takes an input field and cur-
rent Datepicker instance and returns a settings
(anonymous) object to update the Datepicker with. It
is called just before the Datepicker is displayed. The
default is null.

Function

493

Appendix O: Datepicker

Option Description Type

beforeShowDay The function takes a date as a parameter and must
return an array, with [0] equal to true/false indicat-
ing whether or not this date is selectable, [1] equal to
a CSS class name(s), or ‘’ for the default presentation.
It is called for each day in the Datepicker before it is
displayed. The default is null.

Function

altField The jQuery selector for another field that is to be
updated with the selected date from the Datepicker.
Use the altFormat setting below to change the format
of the date within this field. Leave as blank for no
alternate field. The default is “”.

String

altFormat The dateFormat to be used for the altField above.
This allows one date format to be shown to the user
for selection purposes, while a different format is actu-
ally sent behind the scenes. The default is “”.

String

onSelect Allows you to define your own event when the
Datepicker is selected. The function receives the
selected date(s) as text and the Datepicker instance as
parameters. this refers to the associated input field.
The default is null.

Function

onChangeMonthYear Allows you to define your own event when the
Datepicker moves to a new month and/or year. The
function receives the date of the first day of the first
displayed month and the Datepicker instance as
parameters. this refers to the associated input field.
The default is null.

Function

onClose Allows you to define your own event when the
Datepicker is closed, whether or not a date is selected.
The function receives the selected date(s) as a date or
array of dates and the Datepicker instance as param-
eters. this refers to the associated input field. The
default is null.

Function

isRTL true if the current language is drawn from right to
left. The default is false.

Boolean

constrainInput true if the input field is constrained to the current
date format. The default is true.

Boolean

494

Appendix O: Datepicker

Datepicker Utilities

Method Description Return Value

$.datepicker
.setDefaults(options)

Changes the default settings for all datepickers. For
the options argument, see “Datepicker Options.”

Datepicker

$.datepicker
.formatDate(format,
date, options)

Formats a date into a string value with a specified
format. For the format argument, see “Format
Options.” The optional options argument can be
provided an object literal of settings that include the
dayNamesShort, dayNames, monthNamesShort, or
monthNames options.

String

$.datepicker
.iso8601Week(date)

Determines the week of the year for a given date:
1 to 53.

Number

$.datepicker
.parseDate(format,
value, options)

Extracts a date from a string value with a specified
format. For the format option, see “Format Options.”
The optional options argument can be provided an
object literal that includes the shortYearCutoff,
dayNamesShort, dayNames, monthNamesShort, or
monthNames options.

Date

$datePicker.formatDate() Format Options

Option Description

d Day of the month with no leading zero

dd Day of the month with leading zero

D Day name short

DD Day name long

m Month of the year with no leading zero

mm Month of the year with leading zero

M Month name short

MM Month name long

y Two-digit year

yy Four-digit year

@ UNIX timestamp (seconds elapsed since 01/01/1970)

… Literal text

‘’ Single quote

495

Appendix O: Datepicker

Option Description

Anything else. Literal text

ATOM yy-mm-dd (same as RFC 3339 / ISO 8601)

COOKIE D, dd M yy

ISO_8601 yy-mm-dd

RFC_822 D, d M y

RFC_850 DD, dd-M-y

RFC_1036 D, d M y

RFC_1123 D, d M yy

RFC_2822 D, d M yy

RSS D, d M y

TIMESTAMP UNIX timestamp (seconds elapsed since 01/01/1970)

W3C yy-mm-dd (same as ISO 8601)

Datepicker Styling

ID Description

ui-datepicker-div The container that wraps around the entire Datepicker.
This element is shared by all pop-up datepickers. Inline
datepickers have their own instances with IDs in the
format ui-datepicker-div-nn, where nn is the ID of the
associated input field or division.

Class Description

ui-datepicker-multi Indicates that the Datepicker shows multiple months.

ui-datepicker-rtl Indicates that the Datepicker uses a right-to-left rendered
language.

ui-datepicker-inline Container for the Datepicker if it is displayed inline

ui-datepicker-prompt The row for a prompt when displayed in a dialog

ui-datepicker-control The row containing the Clear and Close links

ui-datepicker-clear The division containing the Clear link

ui-datepicker-close The division containing the Close link

ui-datepicker-links The row containing the Prev, Next, and Current links

496

Appendix O: Datepicker

ui-datepicker-prev The division containing the Prev link

ui-datepicker-current The division containing the Current link

ui-datepicker-next The division containing the Next link

ui-datepicker-one-month The container for a single month

ui-datepicker-new-row The start of a new row of months

ui-datepicker-header The row containing the month and year

ui-datepicker-new-month Dropdown menu for selecting months

ui-datepicker-new-year Dropdown menu for selecting years

ui-datepicker The table for a single month

ui-datepicker-title-row The header row of the table containing day names

ui-datepicker-days-row A row of day numbers on the calendar

ui-datepicker-week-over Highlight for the hovered row of day numbers on the
calendar

ui-datepicker-week-col The week of the year column

ui-datepicker-days-cell A standard day number

ui-datepicker-days-cell-over Mouseover state for a selectable day

ui-datepicker-current-day Highlights the currently selected date.

ui-datepicker-today Highlights today’s date.

ui-datepicker-week-end-cell Contains a weekend date.

ui-datepicker-other-month Dates before and after the days in the current month

ui-datepicker-unselectable Days that are deactivated for users to select

ui-datepicker-status The status bar for the Datepicker

ui-datepicker-cover IFRAME that only displays in Internet Explorer 6 or below

Class Description

P
Dialog

Method Description Return Value

Dialog Methods

dialog(options) Makes the selected elements into dialog boxes. jQuery

dialog(“open”) Opens the specified dialog box(es). jQuery

dialog(“IsOpen”) Determines if the dialog is open. Boolean

dialog(“moveToTop”) Moves the specified dialog on top of the dialogs stack. jQuery

dialog(“close”) Closes the specified dialog box(es). jQuery

dialog(“destroy”) Completely removes the dialog. jQuery

Dialog Options

Option Description Type

autoOpen When set to true, the dialog will open automatically
when dialog is called. If set to false, it will stay hidden
until dialog(“open”) is called on it. The default is true.

Boolean

bgiframe When true, the bgiframe plugin will be used, to fix the
issue in IE6 where select boxes show on top of other ele-
ments, regardless of zIndex. Requires including the
bgiframe plugin. Future versions may not require a
separate plugin. The default is false.

Boolean

buttons Specifies which buttons should be displayed on the dia-
log. The property key is the text of the button. The value
is the callback function for when the button is clicked.
The context of the callback is the dialog element; if you
need access to the button, it is available as the target of
the event object.

Object

dialogClass The specified class name(s) will be added to the dialog,
for additional styling.

String

498

Appendix P: Dialog

Option Description Type

draggable When set to true, the resulting dialog will be
draggable. If false, the dialog will not be draggable.
The default is true.

Boolean

height The height of the dialog, in pixels. The default is 200. Number

hide The effect to be used when the dialog is closed String

maxHeight The maximum height to which the dialog can be re-
sized, in pixels

Number

maxWidth The maximum width to which the dialog can be re-
sized, in pixels

Number

minHeight The minimum height to which the dialog can be re-
sized, in pixels. The default is 100.

Number

minWidth The minimum width to which the dialog can be re-
sized, in pixels. The default is 150.

Number

modal When modal is set to true, the dialog will have modal
behavior; other items on the page will be disabled (i.e.,
cannot be interacted with). Modal dialogs create an over-
lay below the dialog but above other page elements.
Custom style values for the overlay (e.g., changing its
color or opacity) can be provided with the overlay
option. The default is false.

Boolean

overlay Key/value object of style properties for the overlay to
display behind the dialog (but above other page
elements)

Options

position Specifies where the dialog should be displayed. Possible
values: ‘center’, ‘left’, ‘right’, ‘top’, ‘bottom’, or
an array containing a coordinate pair (in pixel offset from
top-left of viewport) or the possible string values (e.g.,
[‘right’,’top’] for top-right corner). The default is
“center”.

“center”, “left”,
“right”, “top”,
“bottom”, Array

resizable Specifies whether the dialog will be re-sizable. The
default is true.

Boolean

show The effect to be used when the dialog is opened (see
“Effects” in Appendix M)

String

stack Specifies whether the dialog will stack on top of other
dialogs. This will cause the dialog to move to the front
of other dialogs when it gains focus. The default is true.

Boolean

title Specifies the title of the dialog. The title can also be spec-
ified by the title attribute on the dialog source element.

String

499

Appendix P: Dialog

Option Description Type

width The width of the dialog, in pixels. The default is 300. Number

open Function that’s executed at the dialog open event. The
function gets passed two arguments in accordance with
the triggerHandler interface. The data passed is the
opened dialog options object.

function(event, ui)

focus Function that’s executed at the dialog focus event. The
function gets passed two arguments in accordance with
the triggerHandler interface. The data passed is the
focused dialog options object.

function(event, ui)

dragStart Function that’s executed when a dialog is at the begin-
ning of a dialog drag

function(event, ui)

drag Function that’s executed while a dialog is being dragged function(event, ui)

dragStop Function that’s executed when a dialog drag ends function(event, ui)

resizeStart Function that’s executed when a dialog re-size is begun function(event, ui)

resize Function that’s executed during a dialog re-size function(event, ui)

resizeStop Function that’s executed when a dialog re-size ends function(event, ui)

close Function that’s executed when a dialog is closed function(event, ui)

Dialog Styling

Class Description

ui-dialog-container The whole dialog window

ui-dialog-titlebar The titlebar

ui-dialog-titlebar-close The close button (the top-right “X”)

ui-dialog-titlebar-hover The Close button’s hover style

ui-dialog-content Additional style for dialog contents

ui-dialog-buttonpane The container for the dialog buttons (like “Yes,” “No,” “Cancel”)

Class Names Inherited from ui.resizable

ui.resizable, ui-resizable-handle, ui-resizable-disabled, ui-resizable-autohide,
ui-resizable-n, ui-resizable-s, ui-resizable-e, ui-resizable-w, ui-resizable-se,
ui-resizable-sw, ui-resizable-nw, ui-resizable-ne

Q
Tabs

Method Description Return Value

Tab Methods

tabs(options) Makes the selected elements into tabs (see “Tab
Options”).

jQuery

tabs(“add”, url,
label, index)

Adds a new tab. jQuery

tabs(“remove”, index) Removes a tab. jQuery

tabs(“enable”, index) Enables a previously disabled tab. jQuery

tabs(“disable”, index) Disables a tab. jQuery

tabs(“select”, index) Selects a tab (simulates a click
programmatically).

jQuery

tabs(“load”, index) Reloads the content of an AJAX tab
programmatically.

jQuery

tabs(“url”, index,
url)

Changes the URL from which an AJAX (remote)
tab will be loaded.

jQuery

tabs(“destroy”) Destroys Tabs interface and reverts HTML to the
state before creating tabs.

jQuery

tabs(“length”) Retrieves the number of tabs of the first matched
Tab pane.

Number

tabs(“rotate”, ms,
continuing)

Sets up an automatic rotation through tabs of a
Tab pane.

jQuery

502

Appendix Q: Tabs

Tab Options

Option Description Type

selected Zero-based index of the tab to be selected upon
initialization. To set all tabs to unselected, set this
option to null. The default is 0.

Number

unselect Allows a currently selected tab to become unse-
lected upon clicking. The default is false.

Boolean

event The type of event to be used for selecting a tab. The
default is “click”.

String

disabled An array containing the position of the tabs (zero-
based) that should be disabled upon initialization.
The default is [].

Array

cookie Stores the latest active (clicked) tab in a cookie.
The cookie is used to determine the active tab on
the next page load. Requires Cookie plugin. The
object needs to have key/value pairs of the form the
Cookie plugin expects as options.

Available options are {expires: 7, path: ‘/’,
domain: ‘jquery.com’, secure: true}.

Object

spinner The HTML content of this string is shown in a tab
title while remote content is loading. Pass in empty
string to deactivate that behavior. The default is
Loading….

String

cache Whether or not to cache remote tabs content;
for example, load only once or with every click.
Cached content is being lazyloaded; for example,
once and only once for the first click. Note that
to prevent the actual AJAX requests from being
cached by the browser, you need to provide an
extra cache: false flag to ajaxOptions. The
default is false.

Boolean

ajaxOptions Additional AJAX options to consider when loading
tab content (see “Options” in Appendix G).

Object

idPrefix If the remote tab (i.e., its anchor element) has no
title attribute to generate an ID from, an ID/
fragment identifier is created from this prefix, and
a unique ID is returned by $.data(element); for
example, “ui-tabs-54”. The default is ui-tabs-.

String

503

Appendix Q: Tabs

Option Description Type

fx Enables animations for hiding and showing Tab
panels. The duration option can be a string repre-
senting one of the three pre-defined speeds (“slow”,
“normal”, “fast”) or the duration in milliseconds
(ms) to run an animation. The default is “normal”.

Object

tabTemplate HTML template from which a new tab is created
and added. The placeholders #{href} and #{label}
are replaced with the URL and tab label that are
passed as arguments to the add method. The
default is:

 #{label}

String

panelTemplate HTML template from which a new Tab panel is cre-
ated in case of adding a tab with the add method
or when creating a panel for a remote tab on the fly.
The default is <div></div>.

String

select Function that’s executed upon clicking on a tab function(event, ui)

load Function that’s executed after content for a remote
tab has been loaded

function(event, ui)

show Function that’s executed when a tab is shown function(event, ui)

add Function that’s executed when a tab was added function(event, ui)

remove Function that’s executed when a tab was enabled function(event, ui)

enable Function that’s executed when a tab is enabled function(event, ui)

disable Function that’s executed when a tab is disabled function(event, ui)

Tab Styling

Class Description

ui-tabs-nav This is the whole menu. Use this as a base class.

ui-tabs-selected This is the current tab. It’s very important to create a strong visual
indication which tab is the current one.

ui-tabs-unselect This is the class for all the tabs that are not selected but selectable.

504

Appendix Q: Tabs

Class Description

ui-tabs- deselectable This is the class for all tabs that can be de-selected.

ui-tabs-disabled For when a tab is disabled. Highly recommended to appear some-
what transparent or disabled. This is often done by graying the color.

ui-tabs-panel These are the boxes that will have their visibility toggled.

ui-tabs-hide This class hides the boxes (perhaps the most important class).

Element Description

 elements are there to facilitate tricks like rounded corners
and re-sizable backgrounds.

R
Re-Sizables

Method Description Return Value

Dialog Methods

resizable(options) Makes the selected elements into re-sizable ele-
ments (see “Re-Sizable Options”).

jQuery

resizable(‘disable’) Temporarily disables re-sizable functionality. jQuery

resizable(‘enable’) Enables re-sizable functionality. jQuery

resizable(‘destroy’) Completely removes re-sizable functionality. jQuery

Re-Sizable Options

Option Description Type

animate Animates to the final size after re-sizing. The
default is false.

Boolean

animateDuration Duration time for animating. Accepts the time in
milliseconds (ms), or one of “slow”, “normal”, or
“fast”. The default is “slow”.

slow, normal,
fast, or Integer

animateEasing Easing effect for animation. The default is “swing”. String

alsoResize Re-sizes these elements synchronously when re-
sizing. The default is false.

Selector,
Boolean

aspectRatio When set to true, re-sizing is constrained by the
original aspect ratio. If an alternate ratio is
desired, you can submit a number and then the
aspect ratio will be constrained by height\width.
The default is false.

Boolean,
number

autoHide When set to true, automatically hides the handles
except when the mouse hovers over the element.
The default is false.

Boolean

506

Appendix R: Re-Sizables

Option Description Type

cancel Prevents re-sizing if you start on elements match-
ing the selector. The default is “:input”.

Selector

containment Constrains re-sizing to within the bounds of the
specified element. This can be a DOM element,
‘parent’, ‘document’, or a selector. The default
is false.

Element,
selector,
Boolean

delay Time in milliseconds (ms) to define when drag-
ging should start. It helps prevent unwanted drags
when clicking on an element. The default is 0.

Integer

disableSelection When set to true, stops users from selecting han-
dles and helpers. Default is true

Boolean

distance Tolerance in pixels, for when re-sizing should
start. If specified, re-sizing will not start until
after the mouse is moved beyond the specified
distance. The default is 1.

Integer

ghost When set to true, a substitute element is dis-
played while re-sizing. The default is false.

Boolean

grid Snaps the re-sizing element to a grid size, every x
and y pixel. The default is false.

Array[x, y]

handles Each handle string (if specified) should be a
jQuery selector matching the child element of the
re-sizable to use as the handle. If the handle is not
a child of the re-sizable, you can pass in the DOM
node or a valid jQuery object directly. Options are
{n, e, s, w, ne, se, sw, nw, all}.

Object

helper This is the CSS class that will be added to a proxy
element to outline the re-size during the drag of
the re-size handle. Once the re-size is complete,
the original element is sized. The default is null.

String

knobHandles Uses square handlebars as re-size handles, rather
than the default border. The default is false.

Boolean

maxHeight This is the maximum height the re-sizable should
be allowed to re-size to. The default is null.

Integer

maxWidth This is the maximum width the re-sizable should
be allowed to re-size to. The default is null.

Integer

minHeight This is the minimum height the re-sizable should
be allowed to re-size to. The default is 10.

Integer

507

Appendix R: Re-Sizables

Option Description Type

minWidth This is the minimum width the re-sizable should
be allowed to re-size to. The default is 10.

Integer

preserveCursor Sets whether the direction cursors are used when
re-sizing an element. The default is true.

Boolean

preventDefault Whether or not to prevent Safari’s default re-siz-
ing on <textarea> elements. The default is true.

Boolean

proportionallyResize Advanced option that allows other elements to get
proportionally re-sized together with the original
one. Just specify jQuery string in this array or
directly insert DOM nodes. The default is false.

Array, Boolean

transparent Whether the element is transparent when re-siz-
ing. The default is false.

Boolean

start This function is called at the start of a re-size
operation.

function(event,
ui)

resize This function is called during the re-size, on the
drag of the re-size handler.

function(event,
ui)

stop This function is called at the end of a re-size
operation.

function(event,
ui)

Resizable Class Names

ui.resizable, ui-resizable-handle, ui-resizable-disabled, ui-resizable-autohide,
ui-resizable-n, ui-resizable-s, ui-resizable-e, ui-resizable-w, ui-resizable-se,
ui-resizable-sw, ui-resizable-nw, ui-resizable-ne

S
Sliders

Method Description Return Value

Dialog Methods

slider(options) Make the selected elements into slider elements (see
“Slider Options”).

jQuery

slider(“moveTo”,
value, index)

Moves a slider’s handle to the given position. jQuery

slider(“value”,
index)

Retrieves a handle’s value. jQuery

slider(“disable”) Temporarily disables the slider. jQuery

slider(“enable”) Enables the slider. jQuery

slider(“destroy”) Completely removes the sliding functionality. jQuery

Slider Options

Option Description Type

animate Whether slide handles smoothly when the user clicks
outside the handle on the bar. The default is false.

Boolean

axis Normally you don’t need to set this option because the
plugin detects the slider orientation automatically. If the
orientation is not correctly detected, you can set this
option to ‘horizontal’ or ‘vertical’.

horizontal or
vertical

handle The jQuery selector to use for the handle(s) of the slider.
The default is “.ui-slider-handle”.

Selector

510

Appendix S: Sliders

Option Description Type

handles Specifies boundaries for one or more handles. Format:
[{start:Integer, min:Integer, max:Integer,
id:String} [, ..]]. Only start is required. If the
slider doesn’t have handles already, they are automati-
cally created.

Object

max The maximum value of the slider. Useful for tracking
values via callback, and to set steps. The default is 100.

Integer

min The minimum value of the slider. Useful for tracking
values via callback, and to set steps. The default is 0.

Integer

range If set to true, the slider will detect if you have two
handles and create a stylable range element between
these two. You now also have access to ui.range in
your callbacks to get the amount of the range. The
default is false.

Boolean

startValue The value that the handle will have first. Integer

stepping If defined, the new value has to be dividable through
this number, so the slider jumps from step to step.

Integer

steps Alternative to stepping, this defines how many steps a
slider will have, instead of how many values to jump, as
in stepping. The default is 0.

Integer

start Function that gets called when the user starts sliding function(event, ui)

slide Function that gets called on every mouse move during
the slide. Takes arguments e and ui, for event and user
interface, respectively. Use ui.value (single-handled
sliders) to obtain the value of the current handle,
$(..).slider(‘value’, index) to get another
handle’s value.

function(event, ui)

change Function that gets called on slide stop, but only if the
slider position has changed. Takes arguments e and ui,
for event and user interface, respectively. Use ui.value
(single-handled sliders) to obtain the value of the cur-
rent handle, $(..).slider(‘value’, index) to get
another handle’s value.

function(event, ui)

stop Function that gets called when the user stops sliding function(event, ui)

Index

A
accessibility conventions, 13–14
Accordion UI plugin

building, 373–375
changing default pane, 377–379
changing events, 380
defined, 373
filling height of parent element, 381
options, 485–486
overview of, 373
review exercises Q & A, 391, 444–445
selecting content pane by location,

387–390
setting autoHeight option, 376
setting header elements, 381–384
showing and hiding methods, 485
styling selected panes, 384–386
summary, 390–391
toggling alwaysOpen option, 380

active option, Accordion plugin,
378–379

add() method
adding more elements, 53–55
defined, 452
selecting snippet of results, 65–66

addClass()method
adding more elements, 53, 55
arrays and iteration, 188, 192–194
binding events, 80–83
cloning content, 155

defined, 37, 162
filtering selections, 60–66, 175, 177
finding element’s siblings with
siblings(), 40–41

iterating selections, 173
manipulating class names, 105–109
replacing content, example, 159
searching ancestors, 47–48
selecting children elements, 49
selecting specific sibling, 43–46
triggering events, 84–87
writing custom plugins, 288

addEvent() method, 79
addEventListener() method

assigning events with W3C model,
72–73

bind() method vs., 80
creating universal event API, 78–79
event object and, 76
this object and, 73–75

after() method
defined, 110
manipulating content, 123–125, 136,

139, 143
AJAX (Asynchronous JavaScript and XML)

loading HTML snippets asynchronously,
example, 247–265

loading HTML snippets from server,
240–246

loading JavaScript dynamically,
265–267

27794bindex.indd 511 3/16/09 11:16:22 AM

512

AJAX (Asynchronous JavaScript and XML) (continued)

AJAX (Asynchronous JavaScript
and XML) (continued)

loading remote content via, 432–435
making file upload, 272–275
options, 462–464
overview of, 219–220
review exercises Q & A, 276, 442
summary, 275–276
types, 464

AJAX (Asynchronous JavaScript and
XML), server requests

formats for transporting data, 221–222
GET vs. POST methods, 220–221
making GET request with jQuery,

222–231
making POST request, 232–234
methods, 461–462
working with, example, 234–240

$.ajax() method, 267, 271–272
AJAX Events, 267–272

attaching via $.ajax(), 271–272
defining globally, 268–270
defining using individual methods,

270–271
methods, 462
overview of, 267

ajaxOptions option, 435
ajaxSend() method, 271
ajaxSetup() method, 268–270
Allman Style, 21–22
alwaysOpen option, Accordion, 380
ancestor elements, searching, 46–48
animate() method, 266, 281–283
animation. See also effects

custom, 281–283
of dialogs, 421–422
methods, 482–483

options, 483
of tab transitions, 436–437

append() method
defined, 110
fixing Firefox innerHTML bugs,

118–122
fixing IE innerHTML bugs, 117–118
manipulating content, 136, 138, 142

appendTo() method, 155
arguments

addEventListener() method, 73
Microsoft JScript event model, 78

arrays
filtering, 173–179
mapping, 180–185
methods, 467–468
review exercises Q & A, 205
summary, 204–205

arrays, utility methods, 196–204
$.merge() method, 198–199
$.unique() method, 199–204
inArray() method, 197–198
makearray() method, 197

arrays and iteration
calling each() directly, 167–168
emulating break and continue,

170–171
example review of, 185–196
iteration of selection, 172–173
overview of, 165–167
review exercises Q & A, 205, 441
variable scope, 168–170

Asynchronous JavaScript and XML.
See AJAX (Asynchronous JavaScript
and XML)

attachEvent() method, 77–79
attr() method

27794bindex.indd 512 3/16/09 11:16:22 AM

513

children() method

example, 99–105
making GET request for XML data,

227–228
manipulating attributes, 457
setting attributes, 97–99

attribute option, 351–353
attributes, manipulating

class names, 105–109
example of, 99–105
methods and properties, 457–458
review exercises Q & A, 163, 440
selector syntax for filters, 449
setting and accessing, 93–98

autoHeight option, Accordion, 376, 390
autoOpen option, dialogs, 419–420

B
background positioning, and browsers,

260–261
before() method

defined, 110
manipulating content, 123–125, 136,

139, 143
beforeSend property, AJAX Events,

270–272
Beginning CSS: Cascading Style Sheets

for Web Design, 2nd Ed (Wiley,
2007), 27, 106, 432

bind() method
attaching events with, 80–82
creating JQuery Event API, 91–92
creating universal event API, 79
customizing context menu, 214

binding events, with event methods, 82–83

<body> element, drag-and-drop folders,
305, 307

break keyword, each() method,
170–171

browsers
avoiding detection, 25
background positioning inconsistencies,

260–261
developing web-based documents for, 8
folder layout limitations, 303–304
handling HTML errors, 10
methods for detecting, 467

C
calendar, Datepicker. See Datepicker plugin
callback function

effects, 481–484
example using, 100, 104
filtering selections, 175–177
loading HTML snippets from servers, 246
mapping arrays, 184
mapping selection, 182
setting attributes, 98–99

Cascading Style Sheets. See CSS
(Cascading Style Sheets)

case sensitivity, GET requests for
XML data, 227

chaining, 110, 452
child filters, selector syntax, 449
children() method

defined, 452
loading HTML snippets from server, 243
selecting children, 48–50
selecting snippet of results, 65
setting AJAX Events, 269–271

27794bindex.indd 513 3/16/09 11:16:22 AM

514

class names

class names
adding with addclass(), 41
conventions, 12–13
customizing sortables, 340
drawing selection box, 363
implementing re-sizables, 506
implementing sortable lists, 333–334
manipulating, 105–109, 457–458
styling Datepicker, 402
writing custom plugins, 288

clearStyle option, Accordion, 390
click() method, Selectors API, 31
click event

filtering selection, 63
loading HTML snippets from server,

243
clone() method, 154–157, 161–162
cloning content

exercise in, 156–162
overview of, 154–156

close event, dialogs, 422–423
concat() method, 196, 203
connectWith option, 346–347
content, manipulating

cloning, 154–156
example of replacing, removing and

cloning, 156–162
methods for, 459–460
removing, 150–153
replacing, 146–150
review exercises Q & A, 163, 440
summary, 162–163

content, manipulating HTML and text,
109–145

appending, 115–118
example of, 135–145

fixing Firefox’s INNERHTML form bugs,
118–122

getting, setting and removing, 110–111
inserting beside content, 123–125
inserting beside content via selection,

125–129
overview of, 109–110
prepending, 122–123
removing, 115
setting, 112–113
setting for multiple items, 113–115
wrapping, 129–135

content filters, selector syntax for,
448–449

content panes, working with. See
Accordion UI plugin

context menu, customizing, 211–216
ContextMenu() method, 290–294
continue keyword, 170–171
control structures, 20–22
copying content, 460
CSS (Cascading Style Sheets)

conventions. See jQuery, XHTML and
CSS conventions

css() method, 207–208
detecting markup errors, 11–12
discontinued in IE8, 335
example, making custom context menu,

211–216
expressions, 307
filtering selections. See selections,

filtering
folder layout properties, 303–304
implementing efficiency, 14–15
methods, 465–466
nonintrusive JavaScript and, 8
overview of, 207

27794bindex.indd 514 3/16/09 11:16:22 AM

515

dollar sign ($)

review exercises Q & A, 216, 441
sprites, 257–260, 262–264
summary, 216
using outerWidth and outerHeight(
), 208–211

css() method
customizing context menu, 215
drawing selection box, 370
overview of, 207–208

cssQuery, 28
curly braces

JavaScript formatting, 22–24
setting attributes, 97

cursor option, sortables, 344, 346
custom animation, 281–283

D
$.data() method, 293–294
data argument, 85
data caching, methods and properties, 458
Date() object, Datepicker, 403–404
dateFormat option, Datepicker,

405–406
Datepicker plugin, 393–408

allowing date range to be selected,
404–405

format options, 494–495
ID and class styling, 495–496
implementing, 393–394
localizing, 404–408
methods, 487
options, 488–493
review exercises Q & A, 408, 445
setting range of allowed dates, 403–404
styling, 395–399

styling, example, 399–403
summary, 408
utilities, 494

de facto standards, 8
design, accessibility conventions, 13–14
dialog() method

animating dialogs, 421
auto-opening dialogs, 419–420
controlling dynamic interaction, 420
dialog events, 422
implementing dialogs, 410
making modal dialogs, 418
styling dialogs, example, 416

Dialog plugin. See dialogs
dialogs, 409–424

animating, 421–422
auto-opening, 419–420
controlling dynamic interaction, 420–421
events, 422–423
examining markup, 411–412
implementing, 409–411
methods, 497
modal, 417–418
options, 497–499
review exercises Q & A, 424, 445
styling, 499
styling, example, 412–417
summary, 423

Document Object Model. See DOM
(Document Object Model)

document.querySelector() method,
Selectors API, 28

document.querySelectorAll()
method, Selectors API, 28

dollar sign ($)
jQuery, 7
naming local variables, 24

27794bindex.indd 515 3/16/09 11:16:22 AM

516

dollar sign ($) (continued)

dollar sign ($) (continued)
use of in this book, 29
using Selectors API, 29

dollar sign, double ($$), plugin methods,
295

DOM (Document Object Model)
jQuery advantages, 4
jQuery’s chainable programming model

for, 110
using Selectors API, 31
using selectors with, 27–28

drag-and-drop
delegating drop zones for dragged

elements, 314–325
example of, 309–311
making elements draggable, 300–308
making elements draggable with

ghosting, 308–309
overview of, 299
review exercises Q & A, 326, 443
in Safari, 311–314
summary, 326

drag-and-drop, sorting, 327–354
customizing sortables, 338–347
implementing sortable list, 327–329
implementing sortable list, exercise,

329–357
review exercises Q & A, 354, 444
saving state of sorted lists, 347–353
summary, 353

Drag-and-Drop API, Safari, 311–314,
323–325

dragenter event, 324
draggable() method

customizing item being dragged, 338
drag-and-drop folders, 300–308

Safari’s Drag-and-Drop API, 311–314
using ghosting with, 308–311

Draggable library, 299
draggable option, dialogs, 420
Draggables plugin.

See also drag-and-drop
defined, 300
methods, 469
options, 470–471
reference for, 325
UI object options, 472

dragleave event, 322, 324–325
dragover event, 320–325
dragstart event, 323
drop event, 322–323, 325
drop zones

adding, 315–325
delegating for dragged elements,

314–315
droppable() method, drop zones,

314–325
Droppables plugin

adding drop zones, 315–325
comprehensive reference for, 325
delegating drop zones for dragged

elements, 314–315
methods, 469
options, 472–473
UI object options, 473

dynamic interaction, dialogs, 420–421
dynamically loading JavaScript, 265–267

E
$e (event object), Selectors API, 32

27794bindex.indd 516 3/16/09 11:16:22 AM

517

extend() method

each() method
array iteration, 166–167
arrays and iteration, 186, 191–192
calling directly, 167–168
emulating break and continue,

170–171
filtering arrays, 179
iterating selections, 172–173
mapping arrays, 185
mapping selection, 182
variable scope and, 168–170

Edwards, Dean, 15, 28
effects

callback function, 481–484
custom animation, 281–283
fading elements, 280–281
overview of, 277
review exercises Q & A, 284, 442
showing and hiding elements, 277–279
sliding elements, 279–280
speed, 481
summary, 283–284

elements
adding more, 53–55
draggable, 300–308
filtering selections, example, 57–66
selecting ancestors, 46–48
selecting children, 48–50
selecting one from result set, 55–57
selecting siblings of, 39–42
selecting snippet of results, 51–53
selecting specific sibling, 42–46
selecting what you don’t want, 50–51

empty() method
making GET request for XML data,

227–228

removing content, 150–153, 157
replacing content, 160–161

encoding, and GET vs. POST methods,
221

$e.preventDefault() function, 32
eq() method, 55–57
errors, XHTML/HTML markup, 10–11
eval() method, JSON, 221–222
event argument, JScript event model, 78
event object

universal event API, 79
W3C event model, 75–77

event option, Accordion events, 380,
390

events
Dialog plugin supporting, 422–423
helpers, 454
JScript event model, 77–78
methods, 453–455
object normalization methods, 455
overview of, 69
review exercises Q & A, 93, 439–440
summary, 93
traditional event model, 69–71
W3C event model, 72–77

Events, AJAX, 267–272
events, jQuery Event API, 78–87

binding with bind(), 80–82
binding with event methods, 82–83
example of, 87–93
overview of, 78–79
triggering events, 83–87

exercises. See review exercises, Q & A
expression option, state of sorted lists,

348–349, 351–353
expressions, CSS, 307
extend() method, 364

27794bindex.indd 517 3/16/09 11:16:22 AM

518

fadeIn() method

F
fadeIn() method, elements, 280–281
fadeOut() method, elements, 280–281
fading, 280–281, 482
files

storing and organizing, 13
uploading AJAX, 272–275

fillSpace option, Accordion, 381
filter() method

arrays and iteration, 186–187, 192–193
defined, 173
filtering selection with, 174–175
filtering selection with callback function,

175–177
filters

array, 177–179
filter property, 363
methods for, 451–452
for selections. See selections, filtering
selector syntax for, 448–450

find() method
loading HTML snippets asynchronously,

264
making GET request for XML data,

227–228
searching within selections, 38–39, 63
siblings()method vs., 41

findElements() method, 63
Finder() method, 367–368
finding methods, for selecting, 452
Firefox

catching errors in CSS using, 11
fixing INNERHTML form bugs,

118–122
firstDay option, Datepicker, 407–408
$.fn.Application.Ready() method, 288
$.fn.extend() method, 285–288, 290

focus() method, 85, 93
folders, drag-and-drop, 300–308
fonts, drag-and-drop folders, 305
for loop, and array iteration, 165–166
formats

Datepicker, 405–406
Datepicker plugin, 494–495
transporting data in AJAX, 221–222

forms, selector syntax, 450
frames, accessibility conventions, 13
function argument, 73, 78
functions, naming conventions, 24

G
get() method, 196, 201–203
generic type selectors, 13
$.get() method

AJAX requests, 234, 236, 238
initiating GET request from server, 222
sending data with request in AJAX, 229

GET method
POST method vs., 220–221
working with AJAX requests, 238

GET request with AJAX using jQuery,
222–231

for data formatted in XML, 222–228
for JSON formatted data, 229–231
overview of, 222
sending data along with, 229

getData() method, 325
$.getJSON() method, 229–231, 236,

239
$.getScript() method, 265–267
ghosting, 308–311
gigrep() method

arrays and iteration, 193

27794bindex.indd 518 3/16/09 11:16:22 AM

519

IDs

example using, 187
filtering arrays, 177–179
iterating selections, 173

$.grep() method, 366–367

H
handling events, methods for, 453–454
hasClass()method

arrays and iteration, 176, 189, 193
bind() method, 80
binding events with event methods,

82–83
defined, 162, 457
dynamically loading JavaScript, 265–266
filtering selections, 176
JQuery Event API, 89–90, 92
loading HTML snippets asynchronously,

253, 263
making GET request, 223
manipulating class names, 105
mapping selection, 181
writing custom plugins, 287

header elements, Accordion, 381–384
height, CSS, 465–466
helper option

customizing sortables, 338–341
using ghosting, 308

helpers, event, 454
hide() method

defined, 481
hiding elements, 277–279
mapping selection, 182

hiding elements
effects used with, 483–484
methods for, 481
overview of, 277–279

hierarchy, selector syntax, 447
hover() method, 83
HTML (HyperText Markup Language)

detecting markup errors, 10–11
loading snippets asynchronously,

example, 247–265
loading snippets from server, 240–246
manipulating, methods for, 458
manipulating content, 459
manipulating text content and, 156–162
transporting data with AJAX request, 221

html() method
defined, 110
getting HTML content, 110–111
manipulating content, example, 135,

138, 140–141
removing HTML content, 115
replaceWith() vs., 146
setting HTML content, 112–113
setting HTML content for multiple

items, 113–115
transporting data with AJAX request, 221

HTTP protocol, 220–221
hyperlinks

accessibility conventions, 14
implementing tabs, 428

HyperText Markup Language. See HTML
(HyperText Markup Language)

I
iCal clone, 257
icons

displaying folder, 306–307
sortable list, 333, 335–336

idempotent request, 220
IDs, naming conventions, 12–13

27794bindex.indd 519 3/16/09 11:16:22 AM

520

IE (Internet Explorer)

IE (Internet Explorer)
customizing sortables, 345–346
fixing innerHTML bugs, 115–118
implementing sortable lists, 334–335
implying width or height, 262
nonsupport for W3C event model, 75
styling Datepicker plugin, 402–403
working with Draggable elements, 307
working with Droppable elements,

321–322
<Iframe> element, 273–275
images, accessibility conventions, 13–14
!important, 417
$.inArray() method, 196–198
indentation, 20–22
indexOf() method, 197
innerHTML property

fixing Firefox’s form bugs, 118–122
fixing Read Only limitation of, 117–118
html()and text() methods vs.,

111
jQuery replacing, 110
transporting data with AJAX request, 221

innerText property, 111
insertAfter() method

defined, 110
inserting beside content via selection,

125–129
manipulating content, example, 136,

139, 143–144
insertBefore() method

defined, 110
inserting beside content via selection,

125–129
manipulating content, example, 136,

139, 143–144
inserting content

beside HTML and text, 123–125
beside HTML and text via selection,

125–129
methods for, 459–460

installation, jQuery, 5–8
Internet Explorer. See IE

(Internet Explorer)

J
JavaScript

filtering selections. See selections, filtering
implementing efficiency, 14–15
nonintrusive, 8
object-oriented, 31

JavaScript conventions, 16–25
avoid browser detection, 25
clean, consistent code, 19–24
include all script in external documents,

16–19
namespace JavaScript code, 24–25

JavaScript Object Literals, and JSON, 221
JavaScript Object Notation. See JSON

(JavaScript Object Notation)
jaxsuccess() method, AJAX Events, 271
jQuery

developers of, 5
functionality of, 4
installing, 5–8
JavaScript conventions. See JavaScript

conventions
obtaining, 5
programming conventions, 8–9
using Selectors API in. See Selector API
XHTML and CSS conventions. See

XHTML and CSS conventions

27794bindex.indd 520 3/16/09 11:16:23 AM

521

markup

jQuery UI library
Accordion. See Accordion UI plugin
Datepicker plugin. See Datepicker plugin
Dialog plugin. See dialogs
Draggables plugin, 304–308
Droppables plugin, 314
overview of, 299
plugins in, 285
Resizables plugin, 438
Selectables plugin. See Selectables plugin
Slider plugin, 438
Sortables plugin, 327
Tabs plugin. See Tabs plugin

JScript event model, 76
JSON (JavaScript Object Notation)

requesting data formatted in, 229–231
transporting data with AJAX request

using, 221
working with AJAX requests, example,

235–237, 239

K
K&R Style, 21
key option, sorted lists, 347–349,

351–353

L
<label> element, 228
line length, JavaScript code, 20
links

accessibility conventions, 14
implementing tabs, 428

“A List Apart” article, 257

lists
customizing sortable, 338–347
implementing sortable, 327–329
implementing sortable, example,

329–357
saving state of sorted, 347–349
saving state of sorted, example,

349–353
load() method

inserting HTML snippets from server,
241, 244, 246

loading HTML snippets asynchronously,
247–257

loading
event method for, 453
HTML snippets asynchronously, example,

247–265
HTML snippets from server, 240–246
JavaScript dynamically, 265–267
remote content via AJAX, 432–435

localization options, Datepicker, 405–408
location.href property, 387–390

M
$.makearray() method, 196–197
map() method

arrays and iteration, 187, 194–196
mapping arrays, 183–185
mapping selections, 180–182

mapping
arrays, 183–185, 187, 194–196
defined, 180
selections, 180–182

markup, jQuery conventions
detecting errors in CSS, 11–12

27794bindex.indd 521 3/16/09 11:16:23 AM

522

markup, jQuery conventions (continued)

markup, jQuery conventions (continued)
detecting errors in XHTML and HTML,

10–11
implementing efficiency, 14–15

maxDate option, Datepicker, 404
memory leaks, universal event API, 78–79
$.merge() method, 196, 198–199
methods

Accordion plugin, 485
AJAX, 461–464
AJAX Events, 270
chainable programming model for, 110
CSS, 465–466
customizing, 4
Datepicker plugin, 487
dialogs, 497
draggables and droppables, 469
event, 453–455
Resizables, 504
Selectables, 479
selecting and filtering, 451–452
Slider plugin, 509
Sortables, 475
Tabs, 501

Microsoft JScript event model, 77–78
MIME (Multipurpose Internet Mail

Extensions) types
markup errors in XHTML, 10–11
Safari support for, 323–324

minDate option, Datepicker plugin, 404
minimization, dialogs, 409
modal dialogs, 417–418
modal option, modal dialogs, 418
mousedown event

drawing selection box, 369

implementing drag-and-drop folders,
307–308

implementing sortable lists, 336–337
mouseout event

bind() method, 81
binding events with event methods,

82–83
creating JQuery Event API, 92–93

mouseover event
binding events with jQuery event

methods, 82–83
creating JQuery Event API using, 92–93
jQuery’s bind() method, 81

Mozilla Firefox
catching errors in CSS using, 11
fixing INNERHTML form bugs,

118–122
Multipurpose Internet Mail Extensions

(MIME) types
markup errors in XHTML, 10–11
Safari support for, 323–324

N
namespacing, 12–13, 24–25
naming conventions

jQuery plugins, 295
overview of, 12–13
variables, functions and objects, 24

navigation option, Accordion plugin,
389

navigationFilter option, Accordion
plugin, 389

next() method
filtering selection, 45–46

27794bindex.indd 522 3/16/09 11:16:23 AM

523

PNG transparency

loading HTML snippets asynchronously,
264

loading HTML snippets from server,
243–244

selecting specific siblings, 42–43
nextAll() method

filtering selection, 45–46
selecting specific siblings, 44–45, 65

nonintrusive JavaScript, 8, 16–19

O
object-oriented JavaScript, 31
objects

methods for, 467–468
naming conventions, 24

offsetHeight property. See outerHeight()
method, CSS

offsetWidth property. See outerWidth()
method, CSS

offsetWidth property, 208–211
ondrag event, 80
One True Brace convention, 22
online resources

CSS sprites, 257
full source code examples in this book,

246
jQuery contributors/downloading, 5
jQuery origins, 25
jQuery plugins, 295
jQuery UI library component downloads,

299
performance, 221
programming indentation styles, 22

onload event, JavaScript, 8, 70–71
onselectstart event, 80

opacity option
customizing sortables, 346
making elements draggable with

ghosting, 308
opacity property, drawing selection box,

360, 362–364, 370
outerHeight()method, CSS, 208–211,

215–216
outerWidth() method, CSS, 208–211,

216
overlay option, modal dialogs, 418

P
parent() method, 46–48, 65
parent element, Accordion plugin, 381
parents() method, 46–48
PEAR repository, PHP, 22
performance

CSS expressions and, 307
GET vs. POST methods, 220–221

placeholder option, customizing
sortables, 338–341, 343–344, 346

Plugin API. See plugins
plugins

good practices, 295
overview of, 285
review exercises Q & A, 296, 443
summary, 296
writing, example of, 289–295
writing custom, 285–288

PNG transparency, in IE
fixing for sortable lists, 336
implementing Draggable elements, 307
implementing Droppable elements,

321–322

27794bindex.indd 523 3/16/09 11:16:23 AM

524

pop() method

pop() method, 245
pop-up windows, dialogs vs., 409
positioning CSS, method for, 465
$.post() method, 232–234, 240
POST request, AJAX, 232–234
prepend() method

defined, 110, 123
manipulating content, example, 136,

139, 142–143
prepending

defined, 122–123
HTML and text content, 122–123

prev() method
filtering selection, 45–46
loading HTML snippets asynchronously,

264
loading HTML snippets from server, 244
selecting specific siblings with, 43–44,

64
prevAll() method

filtering selection, 45–46
selecting specific siblings, 45, 65

preventDefault() method, event
object, 76

Professional AJAX (Wiley, 2007), 222, 438
Professional JavaScript for Web Developers

(Wiley, 2005), 31, 73, 80, 438
properties

chainable programming model for, 110
using css() method, 207–208

R
RAM (Random Access Memory), 78–79

rangeSelect option, Datepicker,
404–405

ready event, jQuery
calling plugin methods directly, 288, 293
installing and testing jQuery, 8
overview of, 36

ready() method, 288, 369
remote content, loading via AJAX,

432–435
remove() method, 150–153, 160–161
removeAttr() method, 97–98,

100–102, 104
removeClass()method

adding ghosting, 310
binding events, 82–83
calling within event handling functions,

81–83
customizing sortables, 344
defined, 162, 458
implementing drag-and-drop, 312, 318,

325
implementing sortable list, 332, 337
making elements draggable, 303, 308
manipulating class names, 105–109
saving state of sorted lists, 351
Selectables plugin, 356, 360, 367
simulating event in jQuery, 85
trigger() method, 84
writing custom plugins, 287

removing attributes. See removeAttr()
method

removing content
exercise in, 156–162
HTML and text, 115
methods for, 460
overview of, 150–153

27794bindex.indd 524 3/16/09 11:16:23 AM

525

selections

replaceAll() method
replacing content, 148–150
replacing content, example, 156, 158,

160–161
replaceWith() method, 146–148,

158–161
replacing content

example of, 156–162
methods for, 460
overview of, 146–150

Resig, John, 5
Resizables plugin, 438, 504–506
resizeable option, dialogs, 420–421
re-submission protection, 220
review exercises, Q & A

Accordion plugin, 391, 444–445
AJAX, 276, 442
arrays and iteration, 205, 441
CSS, 216, 441
Datepicker plugin, 408, 445
dialogs, 424, 445
drag-and-drop, 326, 443
drag-and-drop sorting, 354, 444
effects, 284, 442
events, 93, 439–440
filtering selections, 66–67, 439
manipulating content and attributes,

163, 440
plugins, 296, 443
selection box, drawing, 372, 444
Tabs plugin, 437, 445

S
Safari

Droppable elements, 323–325

native Drag-and-Drop API, 311–314
setting autoHeight for Accordion, 376

saveUpdate function, sorted lists,
351–353

scope, variable, 168–170
search engine optimization (SEO), ID and

class naming for, 13
security issues, JSON format, 221–222
selectable() method, 355–357, 370
Selectables plugin

example of, 357–371
notes about, 480
options, 479
overview of, 355–357
sortable methods, 479
summary, 372

selectedClass option, Accordion plugin,
384–386

SelectElement() method, Selectables
plugin, 362, 364–365, 369, 371

selecting option, Selectables plugin,
357, 371

selection box, drawing, 355–372
adding selectability to Finder clone,

357–371
review exercises Q & A, 372, 444
Selectables plugin, 355–357
summary, 372

selections
inserting beside HTML and text content

via, 125–129
iterating with each(), 172–173
mapping, 180–182
setting and accessing attributes on,

93–98
selections, filtering, 37–66

adding more elements, 53–55

27794bindex.indd 525 3/16/09 11:16:23 AM

526

selections (continued)

selections, filtering (continued)
with callback function, 175–177
example of, 57–66
finding element’s siblings with
siblings(), 39–42

methods for, 451–452
overview of, 37–38, 174–175
review exercises Q & A, 66–67, 439
searching ancestors using parent()

and parents(), 46–48
searching using find(), 38–39
selecting children elements, 48–50
selecting elements via what you don’t

want, 50–51
selecting one element from result set,

55–57
selecting snippet of results, 51–53
selecting specific siblings, 42–46
selector syntax for, 448–450

Selector API
example of, 32–37
origins of, 28
overview of, 27–28
selector syntax for, 447–450
using, 29–32

selectors. See also Selector API
defined, 27
syntax for, 447–450

semantically written XHTML, defined, 8
semicolons, JavaScript code, 22–24
SEO (search engine optimization), ID and

class naming for, 13
serialize() method

AJAX requests, 235, 239
making POST request, 232
saving state of sorted list, 347–349,

351–353

serialize options, 478
server requests. See AJAX (Asynchronous

JavaScript and XML), server requests
setData() method, Safari, 323–324
show() method

AJAX Events, 270
customizing context menu, 214
showing elements, 277–279

show option, dialogs, 421–422
showing elements

effects used with, 483–484
methods for, 481
overview of, 277–279

siblings
finding for element using siblings(),

39–42, 64
selecting specific, 42–46

siblings()method, 39–42, 64
simple selectors, syntax for, 447
slice() method

eq() method vs., 57
selecting snippet of results, 51–53, 65

slideDown() method, 280
Slider plugin, 438, 509–510
slideToggle() method, 280
slideUp() method, 280
sliding

elements, 279–280
methods for, 482

snippets, HTML, 240–246, 247–265
sortable() method

customizing sortables, 338–339,
344–346

implementing sortable lists, 327–329,
332, 337–338

saving state of sorted lists, 347–349,
351–353

27794bindex.indd 526 3/16/09 11:16:23 AM

527

text() method

Sortables plugin. See also
drag-and-drop, sorting

defined, 327
methods, 475
options, 476–478
selectable methods, 479
serialize options, 478

sorting. See drag-and-drop, sorting
 element, 304–305
specificity, CSS, 432
speed

effects and, 481
fading elements, 281
showing and hiding elements, 279
sliding elements, 280

spinner option, 435
sprites, CSS, 257–260, 262–264
standards, de facto vs. official, 8
starting weekday, Datepicker plugin,

407–408
state, saving sorted list, 347–353
string operations, methods, 468
structure, 411–412
style property. See css() method
styling

Datepicker plugin, example, 399–403
Datepicker plugin, methods for,

495–496
Datepicker plugin, overview of,

395–399
dialogs, 412–417, 499
selected folders, 306–307
selected panes, 384–386
tabs, 429–432

success property, AJAX Events, 270–272
switch statement, 22–24

T
<table> elements

IE’s Read Only limitation of, 115
implying width or height, 262

tabs() method
animating transitions, 436
implementing tabs, 427, 429
loading remote content via AJAX, 435
styling tabs, 431

Tabs plugin, 425–438
animating transitions, 436–437
implementing, 425–429
loading remote content via AJAX,

432–435
methods, 501
options, 502–503
review exercises Q & A, 437, 445
styling, 429–432, 503–504
summary, 436–437

testing
jQuery, 5–8
methods for, 468

text
implementing sortable lists, 333–334
localization options, Datepicker plugin,

406–407
manipulating content. See content,

manipulating HTML and text
methods for manipulating, 458, 459

text() method
defined, 110
getting text content, 110–111
making GET request for XML data,

227–228
manipulating content, example, 135,

138, 141

27794bindex.indd 527 3/16/09 11:16:23 AM

528

text () method (continued)

text() method (continued)
removing text content, 115
setting text content, 112–113
setting text content for multiple items,

113–115
textContent property, 111
third-party products, jQuery plugins, 285,

295
this keyword, iterating selections, 173
this object

accessing jQuery methods, 80
creating universal event API, 79
W3C event model, 73–75

title attribute, dialogs, 410
toggle

effects used with, 483–484
toggle() method, 83, 90, 93, 246

toggleClass() method, 106–109,
162, 458

traditional event model, 69–71, 72
transitions, tab, 436–437
trigger()method, 83–87
triggering events, 83–87
type selectors, 12–13

U
$.unique() method, 196, 199–204
UnselectElement() method,

Selectables plugin, 361, 363–364,
366, 368, 371

unselecting option, Selectables plugin,
357, 371

update option, saving state of sorted
list, 348–349, 353

uploading AJAX files, 272–275
URI lengths, GET vs. POST methods, 221
URLs, ID/class names and, 12–13
useCapture argument,

addEventListener(), 73, 80
user-interface, accessibility conventions,

14
utility methods

Datepicker plugin, 494
overview of, 467–468

V
values, manipulating, 458
variable scope, 168–170
variables, naming conventions, 24
visibility filters, selector syntax, 449

W
W3C event model

bind() method vs., 79–80
event object, 75–77
overview of, 72–73
this object, 73–75

web-based application development. See
AJAX (Asynchronous JavaScript and
XML)

weekday, Datepicker plugin, 407–408
white space, 15
width, CSS, 465–466

27794bindex.indd 528 3/16/09 11:16:23 AM

529

YSOD (yellow screen of death)

window.onload() function, 70–71
window.open() method, Selectors API,

32
wrap() method

defined, 110
manipulating content, example, 136,

139, 144–145
wrapping elements using object

reference, 133–134
wrapping selection of elements

individually, 129–130
wrapAll() method

defined, 110
manipulating content, example, 136,

139, 145
wrapping collection of elements, 130–132
wrapping elements using object

reference, 133–134
wrapInner() method

defined, 110
manipulating content, example, 136,

139, 145
wrapping element’s contents, 132–133
wrapping elements using object

reference, 133–134
wrapping content

HTML and text, 129–135
methods for, 460

X
XHTML

conventions. See jQuery, XHTML and
CSS conventions

detecting markup errors in, 10–11
nonintrusive JavaScript and, 8
semantically written, 8

XHTML and CSS conventions
avoid inaccessible documents, 13–14
detecting errors in XHTML and HTML,

10–11
detecting markup errors in CSS, 11–12
efficiency in markup and CSS, 14–15
generic type selectors, 13
ID and class naming, 12–13
storing and organizing files, 13

XML, GET requests, 222–228
XMLHttpRequest API, AJAX, 273–275
XSS (Cross-Site Scripting) vulnerability,

JSON, 222

Y
yearRange option, Datepicker, 404
YSOD (yellow screen of death), XHTML,

10–11

27794bindex.indd 529 3/16/09 11:16:23 AM

	Beginning JavaScript and CSS Development with jQuery
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: jQuery API
	Chapter 1: Introduction to jQuery
	What Does jQuery Do for Me?
	Who Develops jQuery?
	Obtaining jQuery
	Installing jQuery
	Programming Conventions
	Summary

	Chapter 2: Selecting and Filtering
	The Origin of the Selectors API
	Using the Selectors API
	Filtering a Selection
	Summary
	Exercises

	Chapter 3: Events
	Assigning an Event with the Traditional Event Model
	Assigning Events with the W3C Event Model
	The Microsoft JScript Event Model
	Creating a Universal Event API
	Summary
	Exercises

	Chapter 4: Manipulating Content and Attributes
	Setting and Accessing Attributes
	Manipulating Class Names
	Manipulating HTML and Text Content
	Replacing Elements
	Removing Content
	Cloning Content
	Summary
	Exercises

	Chapter 5: Arrays and Iteration
	Basic Iteration
	Filtering Selections and Arrays
	Mapping a Selection or an Array
	Array Utility Methods
	Summary
	Exercises

	Chapter 6: CSS
	The css() Method
	The outerWidth() and outerHeight() Methods
	Summary
	Exercises

	Chapter 7: AJAX
	Making a Server Request
	Loading HTML Snippets from the Server
	Dynamically Loading JavaScript
	AJAX Events
	Making an AJAX-Style File Upload
	Summary
	Exercises

	Chapter 8: Effects
	Showing and Hiding Elements
	Sliding Elements
	Fading Elements
	Custom Animation
	Summary
	Exercises

	Chapter 9: Plugins
	Writing a Plugin
	Good Practice for jQuery Plugin Development
	Summary
	Exercises

	Part II: jQuery UI
	Chapter 10: Implementing Drag-and-Drop
	Making Elements Draggable
	Making Elements Draggable with Ghosting
	Dragging between Windows in Safari
	Delegating Drop Zones for Dragged Elements
	Summary
	Exercises

	Chapter 11: Drag-and-Drop Sorting
	Making a List Sortable
	Customizing Sortables
	Saving the State of Sorted Lists
	Summary
	Exercises

	Chapter 12: Selection by Drawing a Box
	Introducing the Selectables Plugin
	Summary
	Exercises

	Chapter 13: Accordion UI
	Building an Accordion UI
	Setting Auto-Height
	Changing the Default Pane
	Toggling the alwaysOpen Option
	Changing the Accordion Event
	Filling the Height of the Parent Element
	Setting the Header Elements
	Styling Selected Panes
	Selecting a Content Pane by Location
	Summary
	Exercises

	Chapter 14: Datepicker
	Implementing a Datepicker
	Localizing the Datepicker
	Summary
	Exercises

	Chapter 15: Dialogs
	Implementing a Dialog
	Examining a Dialog’s Markup
	Making a Modal Dialog
	Auto-Opening the Dialog
	Controlling Dynamic Interaction
	Animating the Dialog
	Working with Dialog Events
	Summary
	Exercises

	Chapter 16: Tabs
	Implementing Tabs
	Loading Remote Content via AJAX
	Animating Tab Transitions
	Summary
	What Next?
	Exercises

	Appendix A: Answers to Exercises
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

	Appendix B: Selectors Supported by jQuery
	Appendix C: Selecting and Filtering
	Appendix D: Events
	Event Object Normalization

	Appendix E: Manipulating Attributes and Data Caching
	Appendix F: Manipulating Content
	Appendix G: AJAX Methods
	Appendix H: CSS
	Appendix I: Utilities
	Appendix J: Draggables and Droppables
	Appendix K: Sortables
	Appendix L: Selectables
	Notes

	Appendix M: Effects
	Speed
	Callback Function

	Appendix N: Accordion
	Appendix O: Datepicker
	Appendix P: Dialog
	Appendix Q: Tabs
	Appendix R: Re-Sizables
	Appendix S: Sliders
	Index

