

Raspberry Pi Super Cluster

Build your own parallel-computing cluster using
Raspberry Pi in the comfort of your home

Andrew K. Dennis

BIRMINGHAM - MUMBAI

Raspberry Pi Super Cluster

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1131113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-619-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Andrew K. Dennis

Reviewers
Prasanna Gautam

Sungjin Han

Claes Jakobsson

Acquisition Editors
Anthony Albuquerque

Edward Gordon

Commissioning Editor
Amit Ghodake

Technical Editors
Faisal Siddiqui

Sonali S. Vernekar

Project Coordinator
Aboli Ambardekar

Proofreader
Stephen Copestake

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Andrew K. Dennis is the Manager of Application Development at Prometheus
Research. Prometheus Research is a leading provider of integrated data management
for research and the home of HTSQL, an open source navigational query language
for RDMS.

Andrew has a Diploma in Computing and a BS in Software Engineering; he is
currently studying a second BS in Creative Computing in his spare time.

He has over 10 years of experience working in the software industry in the UK,
Canada, and USA. This experience includes e-Learning, CMS and LMS
development, SCORM consultancy, web development in a variety of languages,
open source application development, and running a blog dedicated to maker
culture and home automation.

His interests include web development, e-Learning, 3D printing, Linux, the
Raspberry Pi and Arduino, open source projects, parallel computing, home
automation, amateur electronics, home networking, and software engineering.

Many of these topics were covered in his previous book from Packt Publishing,
Raspberry Pi Home Automation with Arduino.

I would like to thank my wife Megen for supporting me throughout
this project, my parents for their support with my interest in
technology whilst growing up, and the team at Prometheus Research
for making this a great and interesting place to work and helping to
change the face of data management.

I would also like to thank Aboli Ambardekar, Amit Ghodake,
and Edward Gordon at Packt Publishing for their guidance
throughout this process, and the technical reviewers for their
thoughtful comments.

About the Reviewers

Prasanna Gautam is an engineer who wears many different hats depending on
the occasion. He graduated from Trinity College in 2011 with honors in Computer
Science and Mathematics. At Trinity, he worked on building robots that extinguished
fires in firefighting contests, implemented the JAUS communication protocol in
LabView, and worked on architecting robots to work in realtime. He's worked on the
Linux Network stack on phones, writing task distribution algorithms to be used on
the Open Science Grid, and building Beowulf clusters ranging from 8 to 80 nodes.

Currently, he works as a Software Engineer at ESPN where he still gets to wear his
hats. He and Andrew met at NewHaven.io and found they had the same idea with
regard to teaching people about Parallel computing by getting them to set up their
own clusters on Raspberry Pis. Fortunately, Andrew was already writing the book. In
his free time, Prasanna attempts to play the guitar and make sense of music theory.

Sungjin Han loves to play games and tinker with Linux and Ruby. In this sense,
the Raspberry Pi was an interesting toy and a powerful tool for him.

Thanks to all the people who make the world more convenient and
happier, especially the ones on many open source projects.

Claes Jakobsson started his career in the mid-90s and quickly became involved in
the open source community—hacking code and organizing stuff in his hometown of
Stockholm. Although Perl is the primary focus, he forays into PostgreSQL, cURL, and
other projects. His daytime occupation has been mostly with financial systems, but at
night embedded systems, microcontrollers, virtual machines, and compilers keep his
mind sharp. He is a technologist at heart with a sharing mind and is always eager to
see what happens next.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Clusters, Parallel Computing, and
Raspberry Pi – A Brief Background 7

A very short history of parallel computing 8
Supercomputers 8
Multi-core and multiprocessor machines 9
Commodity hardware clusters 10
Cloud computing 11
Big data 11

Raspberry Pi and parallel computing 12
Programming languages and frameworks 13

Summary 14
Chapter 2: Setting Up your Raspberry Pi Software and
Hardware for Parallel Computing 15

Setting up our work environment 15
HDMI-capable monitor or VGA/DVI monitor and adapter 16
USB keyboard and mouse 16
Two micro-USB power units 16
A desk-mounted power strip with both USB and mains outlets (optional) 17
Three Ethernet/RJ45 network cables 17
A small network switch 18
An existing Internet connection 18
Two SD cards that are compatible with the Raspberry Pi 18
Housing units for the Raspberry Pi boards and Lego (optional) 19
USB hard drives (optional) 19

Future expansion and a scalable setup 19
Completing the initial setup 20
Using an SD card as our Raspberry Pi's storage device 21

Table of Contents

[ii]

SD card setup 21
Formatting our card 22

Mac OS X SD card formatting instructions 22
Windows 8 SD card formatting instructions 23
Linux instructions for SD card formatting 24

BerryBoot version 2 25
Downloading the BerryBoot version 2 ZIP file 26

Mac OS X 26
Windows 8 26
Linux 26

Starting up the Raspberry Pi 27
The installation process 28
Installation complete 31
Testing SSH and setting up keys 31
Connecting via SSH 32

Mac OS X and Linux users 32
Windows 8 users with PuTTY 33

Setting up your SSH RSA keys 34
The ssh-agent and ssh-add tools 36
SSH setup complete 36

Wrapping up 36
Editing text files on Raspbian 37
Installing Fortran 37
Terminal multiplexing with Screen 38

Summary 40
Chapter 3: Parallel Computing – MPI on the Raspberry Pi 41

MPI – Message Passing Interface 41
MPI implementations – MPICH and OpenMPI 42
Creating an environment and downloading MPICH 43

Building and installing MPICH 44
Configuring your Raspberry Pi to run
with MPICH 45
Testing our MPICH installation 46
Building our second Raspberry Pi 46

Windows 8 47
Mac OS X 48
Linux 49

Powering up the second Raspberry Pi 51
RSA key setup for SSH 51

Writing an MPI-based application 53
MPI – point-to-point communication 55

Summary 59

Table of Contents

[iii]

Chapter 4: Hadoop – Distributed Applications on the Raspberry Pi 61
A brief introduction to Apache Hadoop 61
Installing Java 62
Installing Apache Hadoop 63

Hadoop configuration 64
Testing our Hadoop server 68
Setting up our second Raspberry Pi 69

Summary 73
Chapter 5: MapReduce Applications with Hadoop and Java 75

MapReduce 75
MapReduce in Hadoop 77

HDFS – The Hadoop distributed file system 78
The WordCount MapReduce program 79
Testing our application 82
Summary 84

Chapter 6: Calculate Pi with Hadoop and MPI 85
Monte Carlo simulators 85
A Hadoop application to calculate Pi 86
Pi with C language and MPI 88
Summary 91

Chapter 7: Going Further 93
Booting from an external USB HDD 93
Building a Lego enclosure 95
Experimenting with MPI and Fortran 97
Power for multiple devices 98

USB wall plates 98
Battery power 99
Using a PC power supply 99
Power over Ethernet 100

Summary 100
Appendix 101

Fortran and C/C++ 101
MPI, Hadoop, and parallel computing 102
Raspberry Pi cases and clusters 102

Index 105

Preface
Have you ever read about parallel computing clusters and supercomputing, and
wondered how to do it at home?

Do you have a number of Raspberry Pis and don't know what to do with them?

Then this is the book for you!

The field of parallel computing is certainly an exciting one. With the introduction of the
Raspberry Pi, building a cluster at home is even easier. Hobbyists can now construct a
small parallel computing cluster at low cost and using minimal physical space.

This book will walk you through building a parallel computing cluster using two
Raspberry Pis and commodity off-the-shelf hardware.

Having set up your cluster, you will explore parallel computing paradigms such as
MPI and MapReduce through exciting software projects.

Using MPICH and the C programming language, step-by-step guides will walk
you through writing your own MPI-based applications. You will then test these in
parallel on your two Raspberry Pis.

Following this, MapReduce will be examined through Apache Hadoop, which
you will install and set up. You will then learn to interact with Hadoop by writing
programs in Java.

Finally Raspberry Pi Super Cluster provides you with some fun jump-off points
where you can explore the topics discussed in the book in further detail.

Having completed the various chapters' projects, you will have gained a basic
knowledge of parallel computing and how it can be implemented on Raspberry Pi.

Preface

[2]

What this book covers
Chapter 1, Clusters, Parallel Computing, and Raspberry Pi – A Brief Background, provides
an introduction to the topic of parallel computing and its history. You will also
learn a little about the Raspberry Pi and why it is a good fit for experimenting with
parallel computing.

Chapter 2, Setting Up your Raspberry Pi Software and Hardware for Parallel Computing,
builds upon the first chapter by providing a guide to setting up a two node
Raspberry Pi cluster and its associated hardware.

Chapter 3, Parallel Computing – MPI on the Raspberry Pi, introduces the topics of MPI
(Message Passing Interface), and MPICH. These are explored through examples in
the C programming language.

Chapter 4, Hadoop – Distributed Applications on the Raspberry Pi, explores Apache
Hadoop and Java through practical examples. From installing Java through to
Hadoop configuration, you will get a taste of the two technologies.

Chapter 5, MapReduce Applications with Hadoop and Java, explores the paradigm of
MapReduce: the core technology at the heart of Hadoop.

Chapter 6, Calculate Pi with Hadoop and MPI, expands upon previous chapters with
experiments on calculating Pi using Hadoop and MPICH. Here you will work with a
Java example and write another C application implementing MPI.

Chapter 7, Going Further, finishes off the book with some projects ranging from
building a Lego Raspberry Pi case to writing a Fortran application. You will also
learn about some alternative approaches to powering your Raspberry Pi.

Appendix, provides you with a list of resources for further reading and exploration.
Links to topics covered in this book are provided for the reader to follow up.

What you need for this book
The following list includes the recommended and optional hardware to complete the
projects in this book:

• Two Raspberry Pi Model B's
• An HDMI monitor and cable
• USB keyboard
• USB mouse
• Two Micro-USB power units compatible with the Raspberry Pi

Preface

[3]

• Three network cables
• A small network switch
• Two Raspberry Pi compatible SD cards
• Internet connection
• A desk mounted power strip with both USB and mains outlet (optional)
• Raspberry Pi cases/project enclosures (optional)
• USB hard drive (optional for a project in Chapter 7, Going Further)
• Lego (optional)

Who this book is for
Have you ever wanted to build your own super computer? Wonder what parallel
computing is all about and want to experiment with it? Have a bunch of Raspberry
Pis and not sure what to do with them? Then this book is for you.

Aimed at the super computing novice and Raspberry Pi enthusiast alike, this is the
perfect introductory text for those wishing to get their hands dirty building their
own system.

While some programming experience is required, no prior knowledge of the
technologies associated with parallel computing is assumed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Navigate into mpich3 and create the
following two directories."

A block of code is set as follows:

/*
Hello RPI implemented using MPI
*/

#include <stdio.h>
#include <mpi.h>

Preface

[4]

Any command-line input or output is written as follows:

ssh pi@192.168.1.85 'sudo echo "raspberrypi2" | sudo tee /etc/hostname;
sudo shutdown -r now'

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select your
SD card drive from the Device dropdown on the right-hand side".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Clusters, Parallel Computing,
and Raspberry Pi – A Brief

Background
The domain of parallel computing is an interesting one, but building a cluster for
fun has often required the use of expensive or bulky off-the-shelf hardware, such as
desktop PC's or implementing complex virtual machine setups.

So what is a cluster? This term will come up often in the following chapters and
essentially means, in the context of this book, a group of separate devices networked
together. Each device on this network is often referred to as a node.

Thanks to the Raspberry Pi's low cost and small physical footprint, building a cluster
to explore parallel computing has become far cheaper and easier for users at home
to implement. Not only does it allow you to explore the software side, but also the
hardware as well.

While Raspberry Pis wouldn't be suitable for a fully-fledged production system, they
provide a great tool for learning the technologies that professional clusters are built
upon. For example, they allow you to work with industry standards, such as MPI
and cutting edge open source projects such as Hadoop.

This chapter will provide you with a basic background to parallel computing and the
technologies associated with it. It will also provide you with an introduction to using
the Raspberry Pi.

Clusters, Parallel Computing, and Raspberry Pi – A Brief Background

[8]

A very short history of parallel computing
The basic assumption behind parallel computing is that a larger problem can be
divided into smaller chunks, which can then be operated on separately at the
same time.

Related to parallelism is the concept of concurrency, but the two terms should not
be confused.

Parallelism can be thought of as simultaneous execution and concurrency as the
composition of independent processes. You will encounter both of these approaches
in this book.

You can find out more about the differences between the two at the following site:

http://blog.golang.org/concurrency-is-not-parallelism

Parallel computing and related concepts have been in use by capital-intensive
industries, such as Aircraft design and Defense, since the late 1950's and early 1960's.
With the cost of hardware having dropped rapidly over the past five decades and the
birth of open source operating systems and applications; home enthusiasts, students,
and small companies now have the ability to leverage these technologies for their
own uses.

Traditionally parallel computing was found within High Performance Computing
(HPC) architectures, those being systems categorized by high speed and density of
calculations. The term you will probably be most familiar with in this context is, of
course, supercomputers, which we shall look at next.

Supercomputers
The genesis of supercomputing can be found in the 1960's with a company called
Control Data Corporation (CDC). Seymour Cray was an electrical engineer working
for CDC who became known as the father of supercomputing due to his work on the
CDC 6600, generally considered to be the first supercomputer. The CDC 6600 was
the fastest computer in operation between 1964 and 1969.

In 1972 Cray left CDC and formed his own company, Cray Research. In 1975 Cray
Research announced the Cray-1 supercomputer. The Cray-1 would go on to be one
of the most successful supercomputers in history and was still in use among some
institutions until the late 1980's.

The 1980's also saw a number of other players enter the market including Intel via
the Caltech Concurrent Computation project, which contained 64 Intel 8086/8087
CPU's and Thinking Machines Corporation's CM-1 Connection Machine.

Chapter 1

[9]

This preceded an explosion in the 1990's with regards to the number of processors
being included in supercomputing machines. It was in this decade, thanks to
brute-force computing power that IBM infamously beat world chess master Garry
Kasparov with the Deep Blue supercomputer.

The Deep Blue machine contained some 30 nodes each including IBM RS6000/SP
parallel processors and numerous "chess chips".

By the 2000's the number of processors had blossomed to tens of thousands working
in parallel. As of June 2013 the fastest supercomputer title was held by the Tianhe-2,
which contains 3,120,000 cores and is capable of running at 33.86 petaflops per second.

Parallel computing is not just limited to the realm of supercomputing. Today we see
these concepts present in multi-core and multiprocessor desktop machines. As well
as single devices we also have clusters of independent devices, often containing a
single core, that can be connected up to work together over a network.

Since multi-core machines can be found in consumer electronic shops all across the
world we will look at these next.

Multi-core and multiprocessor machines
Machines packing multiple cores and processors are no longer just the domain of
supercomputing. There is a good chance that your laptop or mobile phone contains
more than one processing core, so how did we reach this point?

The mainstream adoption of parallel computing can be seen as a result of the cost
of components dropping due to Moore's law. The essence of Moore's law is that the
number of transistors in integrated circuits doubles roughly every 18 to 24 months.

This in turn has consistently pushed down the cost of hardware such as CPU's. As a
result, manufacturers such as Dell and Apple have produced even faster machines
for the home market that easily outperform the supercomputers of old that once took
a room to house.

Computers such as the 2013 Mac Pro can contain up to twelve cores, that is a CPU
that duplicates some of its key computational components twelve times. These cost a
fraction of the price that the Cray-1 did at its launch.

Devices that contain multiple cores allow us to explore parallel-based programming
on a single machine. One method that allows us to leverage multiple cores is threads.

Clusters, Parallel Computing, and Raspberry Pi – A Brief Background

[10]

Threads can be thought of as a sequence of instructions usually contained within
a single lightweight process that the operating system can then schedule to run.
From a programming perspective this could be a separate function that runs
independently from the main core of the program.

Thanks to the ability to use threads in application development, by the 1990's a set of
standards had come to dominate the area of shared memory multiprocessor devices,
these were POSIX Threads (Pthreads) and OpenMP.

POSIX threads is a standardized C language interface specified in the IEEE
POSIX 1003.1c standard for programming threads, that can be used to
implement parallelism.

The other standard specified is OpenMP. To quote the OpenMP website, it can be
described as:

OpenMP is a specification for a set of compiler directives, library routines, and
environment variables that can be used to specify shared memory parallelism in
Fortran and C/C++ programs.

http://openmp.org/

What this means in practice is that OpenMP is a standard that provides an API
that helps to deal with problems, such as multi-threading and memory sharing.
By including OpenMP in your project, you can write multithreaded applications
without having to take care of many of the low-level implementation details as with
writing an application purely using Pthreads.

Commodity hardware clusters
As with single devices with many CPU's, we also have groups of commodity off
the shelf (COTS) computers, which can be networked together into a Local Area
Network (LAN). These used to be commonly referred to as Beowulf clusters.

In the late 1990's, thanks to the drop in the cost of computer hardware, the
implementation of Beowulf clusters became a popular topic, with Wired magazine
publishing a how-to guide in 2000:

http://www.wired.com/wired/archive/8.12/beowulf.html

The Beowulf cluster has its origin in NASA in the early 1990's, with Beowulf being
the name given to the concept of a Network Of Workstations (NOW) for scientific
computing devised by Donald J. Becker and Thomas Sterling.

The implementation of commodity hardware clusters running technologies such as
MPI lies behind the Raspberry Pi-based projects we will be building in this book.

Chapter 1

[11]

Cloud computing
The next topic we will look at is cloud computing. You have probably heard the term
before, as it is something of a buzzword at the moment.

At the core of the term is a set of technologies that are distributed, scalable, metered
(as with utilities), can be run in parallel, and often contain virtual hardware. Virtual
hardware is software that mimics the role of a real hardware device and can be
programmed as if it were in fact a physical machine.

Examples of virtual machine software include VirtualBox, Red Hat Enterprise
Virtualization, and parallel virtual machine (PVM). You can learn more about
PVM here:

http://www.csm.ornl.gov/pvm/

Over the past decade, many large Internet-based companies have invested in cloud
technologies, the most famous perhaps being Amazon. Having realized they were
under utilizing a large proportion of their data centers, Amazon implemented a
cloud computing-based architecture which eventually resulted in a platform open to
the public known as Amazon Web Services (AWS).

Products such as Amazon's AWS Elastic Compute Cloud (EC2) have opened up
cloud computing to small businesses and home consumers by allowing them to rent
virtual computers to run their own applications and services. This is especially useful
for those interested in building their own virtual computing clusters.

Due to the elasticity of cloud computing services such as EC2, it is easy to spool up
many server instances and link these together to experiment with technologies such
as Hadoop.

One area where cloud computing has become of particular use, especially when
implementing Hadoop, is in the processing of big data.

Big data
The term big data has come to refer to data sets spanning terabytes or more. Often
found in fields ranging from genomics to astrophysics, big data sets are difficult to
work with and require huge amount of memory and computational power to query.

These data sets obviously need to be mined for information. Using parallel
technologies such as MapReduce, as realized in Apache Hadoop, have provided a
tool for dividing a large task such as this amongst multiple machines. Once divided,
tasks are run to locate and compile the needed data.

Clusters, Parallel Computing, and Raspberry Pi – A Brief Background

[12]

Another Apache application is Hive, a data warehouse system for Hadoop that
allows the use of a SQL-like language called HiveQL to query the stored data.

As more data is produced year-on-year by more computational devices ranging from
sensors to cameras, the ability to handle large datasets and process them in parallel
to speed up queries for data will become ever more important.

These big data problems have in-turn helped push the boundaries of parallel
computing further as many companies have come into being with the purpose of
helping to extract information from the sea of data that now exists.

Raspberry Pi and parallel computing
Having reviewed some of the key terms of High Performance Computing, it is
now time to turn our attention to the Raspberry Pi and how and why we intend to
implement many of the ideas explained so far.

This book assumes that you are familiar with the basics of the Raspberry Pi and how
it works, and have a basic understanding of programming. Throughout this book
when using the term Raspberry Pi, it will be in reference to the Model B version.

For those of you new to the device, we recommend reading a little more about it at
the official Raspberry Pi home page:

http://www.raspberrypi.org/

Other topics covered in this book, such as Apache Hadoop, will also be accompanied
with links to information that provides a more in-depth guide to the topic at hand.

Due to the Raspberry Pi's small size and low cost, it makes a good alternative
to building a cluster in the cloud on Amazon, or similar providers which can be
expensive or using desktop PC's.

The Raspberry Pi comes with a built-in Ethernet port, which allows you to connect
it to a switch, router, or similar device. Multiple Raspberry Pi devices connected
to a switch can then be formed into a cluster; this model will form the basis of our
hardware configuration in the book.

Unlike your laptop or PC, which may contain more than one CPU, the Raspberry Pi
contains just a single ARM processor; however, multiple Raspberry Pi's combined
give us more CPU's to work with.

Chapter 1

[13]

One benefit of the Raspberry Pi is that it also uses SD cards as secondary storage,
which can easily be copied, allowing you to create an image of the Raspberry Pi's
operating system and then clone it for re-use on multiple machines. When starting
out with the Raspberry Pi this is a useful feature and something that will be covered
in Chapter 2, Setting Up your Raspberry Pi Software and Hardware for Parallel Computing.

The Model B contains two USB ports allowing us to expand the device's storage
capacity (and the speed of accessing the data) by using a USB hard drive instead
of the SD card.

From the perspective of writing software, the Raspberry Pi can run various versions
of the Linux operating system as well as other operating systems, such as FreeBSD
and the software and tools associated with development on it. This allows us to
implement the types of technology found in Beowulf clusters and other parallel
systems. We shall provide an overview of these development tools next.

Programming languages and frameworks
A number of programming languages including Fortran, C/C++, and Java are
available on the Raspberry Pi, including via the standard repositories. These can be
used for writing parallel applications using implementations of MPI, Hadoop, and
the other frameworks we discussed earlier in this chapter.

Fortran, C, and C++ have a long history with parallel computing and will all be
examined to varying degrees throughout the book. We will also be installing Java in
order to write Hadoop-based MapReduce applications.

Fortran, due to its early implementation on supercomputing projects is still
popular today for parallel computing application development, as a large body
of code that performs specific scientific calculations exists. In Chapter 2, Setting Up
your Raspberry Pi Software and Hardware for Parallel Computing, we will provide brief
instructions on installing it onto your Raspberry Pi and provide a further project in
Chapter 7, Going Further.

In Chapter 3, Parallel Computing - MPI on the Raspberry Pi, we will install MPICH and
run an example C application that comes bundled with the library, which will give
you the opportunity of using the Message Passing Interface (MPI).

MPI is a language-independent message-passing communication method developed
in the early 1990's to aid parallel computing application development. The topic of
MPI will be covered in greater depth in Chapter 3, Parallel Computing - MPI on the
Raspberry Pi, where we will test an application that calculates π using two Raspberry
Pi devices.

Clusters, Parallel Computing, and Raspberry Pi – A Brief Background

[14]

In Chapter 4, Hadoop – Distributed Applications on the Raspberry Pi, we examine the Java
programming language and Apache Hadoop in further detail. These form the final
two important technologies we will cover in this book.

Apache Hadoop is an open source Java-based MapReduce framework designed for
distributed parallel application development.

A MapReduce framework allows an application to take, for example, a number of
data sets, divide them up, and mine each data set independently. This can take place
on separate devices and then the results are combined into a single data set from
which we finally extract a meaningful value.

In Chapter 5, MapReduce Applications with Hadoop and Java, we explain MapReduce
in detail. The MapReduce model lends itself to being deployed on COTS clusters
and cloud services such as EC2. In this book we will demonstrate how to set up
Hadoop on two Raspberry Pis in order to mine for data and calculate π using a
Monte Carlo Simulator.

Finally the Appendix of this book contains a number of links and resources that the
reader may find of interest for Fortran, Java, C, and C++.

Summary
This concludes our short introduction to parallel computing and the tools we will be
using on Raspberry Pi.

You should now have a basic idea of some of the terms related to parallel computing
and why using the Raspberry Pi is a fun and cheap way to build your own
computing cluster.

Our next task will be to set up our first Raspberry Pi, including installing its
operating system. Once set up is complete, we can then clone its SD card and re-use
it for future machines.

So grab your hardware as the next chapter will guide you through this process.

Setting Up your Raspberry Pi
Software and Hardware for

Parallel Computing
Now we are familiar with the concept of parallel computing and we need to set up
our Raspberry Pi's hardware and software in order to work with MPI and Hadoop.

In this chapter we will start by discussing our work environment and hardware
configuration. Following this we will install the necessary software onto the SD card
and complete the basic configuration required.

Setting up our work environment
In order for our devices to communicate with one another, we need to set up the
networking hardware and cable connections. We will also need to connect the
necessary peripherals in order to interact with the Raspberry Pi's boot
loading software.

Provided is a list of recommended and optional items you will need and following
this we will discuss each of them in detail:

• Two Raspberry Pi Model B's, preferred with 512 MB RAM
• HDMI-capable or VGA/DVI monitor with appropriate adapter or

adapter cable
• USB keyboard
• USB mouse
• Two 1A at 5 V Micro-USB power units

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[16]

• A desk-mounted power strip with both USB and mains outlets (optional)
• Three Ethernet/RJ45 network cables
• A small network switch
• An existing Internet connection
• Two SD cards that are compatible with the Raspberry Pi
• Housing units for the Raspberry Pi boards (optional)
• USB hard drives (optional)
• Lego (optional)

HDMI-capable monitor or VGA/DVI monitor
and adapter
The Raspberry Pi provides two easy options for connecting visual display units.
This is via the RCA jack, which allows you to attach the Raspberry Pi to a TV and an
HDMI port for connecting HD TV's and HD monitors to the Raspberry Pi.

When following this book we recommend using an HDMI or VGA/DVI monitor
with appropriate cabling and adapters for simple ease of use. Being able to easily
switch the plug on your monitor between your Raspberry Pi nodes will make
debugging issues and setting up software easier.

USB keyboard and mouse
Most standard USB keyboards and mice should work with the Raspberry Pi. The
eLinux website provides a list of peripherals that have been verified to work with
your device. You can find this list at the following URL:

http://elinux.org/RPi_VerifiedPeripherals

Two micro-USB power units
When it comes to powering the Raspberry Pis, you will need two 1A at 5 V power
units with micro-USB connectors or a USB hub and two micro USB cables. If you
plan on extending your setup beyond three Raspberry Pi's you should consider a
USB hub with multiple ports.

There have been a number of problems with power units not working with the
Raspberry Pi. You should be aware that USB 2.0 specifies up to 500 mA per port,
which is below what the Raspberry Pi can draw at peak (700 mA). This can result in
problems especially with cheaper USB hubs.

Chapter 2

[17]

Before purchasing any power units it is recommended that you review the details on
the eLinux Wiki detailing power usage notes:

http://elinux.org/RPi_VerifiedPeripherals#Power_Usage_Notes

A desk-mounted power strip with both USB
and mains outlets (optional)
Based upon the power usage notes on eLinux, you may wish to find hardware that
mimics the following setup. If you are working on a desk having a power strip that
contains at least two mains outlets and two USB ports should be easier to access. It
will allow you to place your Pi's and monitor close to the power source and thus cut
down on trailing wires and having to clamber around below a desk plugging in and
unplugging cables.

A device similar to the one shown in the following image should be sufficient:

Three Ethernet/RJ45 network cables
In order to set up your parallel system, you will need three network cables. If you
plan on adding more Raspberry Pi units to your setup in the future, you will need
one additional cable per Pi.

One network cable will be connecting your switch to your modem and the other two
cables will connect your Raspberry Pis to the switch.

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[18]

A small network switch
For completing the projects in this book it is recommended you purchase a small
network switch. A switch is a device that links multiple machines together on a
network. For example, when using a switch, if it is connected to a router/modem,
devices connected to the switch can share the Internet connection. When working
with the Raspberry Pi you will only need a 10/100 desktop switch and although
having a gigabit switch is nice, it is not necessary.

Many wireless routers provided by cable companies come equipped with several
network ports allowing you to connect multiple Ethernet devices to them. While this
is convenient, you may find it easier to isolate your Raspberry Pi so it is connected
to a switch and then attach the switch to the router. This will likely give you more
Ethernet ports, thus allowing you to expand your parallel computing setup. Also if
your router is not located near your work area, cut down on the number of cables
you will need to run and the length of cable you need to purchase.

An existing Internet connection
In order to download the operating system, Hadoop, and other software used in this
book you will need an Internet connection.

Two SD cards that are compatible with the
Raspberry Pi
The Raspberry Pi device uses a Secure Digital (SD) card in order to boot. The
tutorials in this book will also be using the SD card as the Raspberry Pi's hard drive,
although in the Appendix we do discuss incorporating a USB hard drive if you wish.

Therefore, you will need two Raspberry Pi-compatible SD cards in order to complete
the examples in each chapter and an additional SD card for each further Raspberry Pi
device you wish to add in the future.

A list of compatible SD card brands can be found at:

http://elinux.org/RPi_SD_cards

This subject is also covered later in this chapter.

Chapter 2

[19]

Housing units for the Raspberry Pi boards
and Lego (optional)
The Raspberry Pi usually comes shipped as just the board with the case being optional.

If you plan on using just two Raspberry Pis, a number of individual cases are
available for purchase. If you intend on expanding the number of devices in your
system, you may wish to consider a housing unit that allows for easy expansion.

The Appendix of this book provides a list of suppliers and housing units in either the
singular form or designed for expansion for multiple devices. You will also find a
brief guide to using Lego for building an expandable housing rack and a guide on
the types of blocks you need.

While a housing unit is not required, providing one for your Raspberry Pis helps to
cut down on the risk of them getting damaged.

USB hard drives (optional)
Once you have completed the examples in the book you may explore using USB hard
drives in order to store your applications. If you do decide to use a USB hard drive
you will need to have a powered USB hub in order to ensure it runs reliably.

SD cards have a limited (although large) number of write operations before the
device starts to degrade. A USB hard drive is a more robust device, usually much
faster than SD and will hold up better to many read/write cycles. The Appendix of
this book discusses this subject in further detail.

Should you wish to try this out please refer to the eLinux verified peripherals
list first:

http://elinux.org/RPi_VerifiedPeripherals

Future expansion and a scalable setup
The examples in this book are designed to be scalable. That is if you wish to add
more Raspberry Pi's to your network, this should be very easy.

If you plan on running more than two devices you should therefore consider
hardware that scales well. Switches for example come with as many as 48 ports.

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[20]

One area you may find problematic is in providing power to multiple Raspberry Pi
computers. Having a huge number of power units of USB hubs can be extremely
cluttered. In Chapter 7, Going Further, we suggest several methods for providing
power to multiple units.

With the preceding thoughts in mind, let's now complete the initial set up of
our hardware.

Completing the initial setup
Each chapter in this book will guide you through when you need to connect each
hardware device and install software as necessary.

There is however some setup you will need to perform initially:

• Start by connecting your switch to your router using a network cable and
then connect the power unit to the switch to power it up.

• Using a PC or similar device with an Ethernet connection, plug it into the
switch and test that you can access the network and Internet.

• Next select a single Raspberry Pi. This will be your Master unit.
• Connect the mouse, keyboard, and the monitor to the Raspberry Pi.
• Test that the Raspberry Pi is in easy reach of the switch by connecting

them together via an Ethernet cable. Once you have confirmed this you can
disconnect the Ethernet cable.

• If you are using an USB hub or two separate USB power units, plug these
into your mains power and position them so they are within easy reach of the
Raspberry Pi.

• Next check that the USB cables can easily plug into the Raspberry Pi's micro-
USB port. Once you have tested this make sure to unplug the cable from the
Raspberry Pi.

You may also wish to try the same with your second Raspberry Pi to confirm that
there is enough room and cable slack for both devices to be set up side by side.

Once you are happy that everything is ready to go, we can move on to setting up our
SD card.

Chapter 2

[21]

Using an SD card as our Raspberry Pi's
storage device
The Raspberry Pi comes equipped with a Secure Digital (SD) card port and to begin
with we will run the operating system from an SD card. It is possible to use an USB
hard drive as we discussed earlier, which are generally faster and in Chapter 7, Going
Further we will discuss this in more detail. For the earlier chapters, however, the SD
card is convenient as it is easy to quickly clone for multiple devices, takes up no extra
desk space, and leaves the USB ports free for connecting a mouse and keyboard for
debugging issue, if for example, you cannot login to the device via the network.

There is a range of SD cards available in the market in a variety of sizes. You will
need to use an SD card of at least 2 GB.

You can find a guide to supported SD card brands and models at eLinux's Raspberry
Pi Wiki:

http://elinux.org/RPi_SD_cards

It is also possible to purchase an SD card with a pre-installed operating system;
however we recommend following the steps in this book. In the past there have been
problems resulting from changed hardware on the Raspberry Pi that required new
firmware images. This resulted in some pre-installed SD cards not booting. Also,
following the steps yourself will help to familiarize you with the options available.

SD card setup
Before we can install an operating system, it is recommended that you format your
SD card, especially if you are re-using one that has been used on another device.

You may have purchased two or more Raspberry Pis and SD cards in order to
complete the projects in this book. To start with we recommend you format all cards
that you plan on using even though you will be cloning one card to use on the others.

The SD card will need to be formatted for FAT (File Allocation Table), which is the
format on Windows devices.

Once the formatting process is complete, you can then install a boot selection screen
application. We will be using BerryBoot version 2.0 in this chapter. Also available for
the Raspberry Pi is a popular boot loader called NOOBS. You can read more about it
on the official Raspberry Pi website:

http://www.raspberrypi.org/downloads

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[22]

If you wish you can download NOOBS instead and switch out the BerryBoot specific
steps for those located in the NOOBS readme:

https://github.com/raspberrypi/noobs/blob/master/README.md

So let's start by walking through the SD card formatting process.

Formatting our card
In the following section we will guide you through SD formatting on Mac OS X,
Windows 8, and Linux.

Many SD cards come pre-formatted in FAT. Due to the robustness
of FAT it is used by a variety of devices including digital cameras.
However, we still recommend re-formatting the card to head off any
potential installation problems. Also remember not to choose the
Quick format option if it is presented.

If you find that your menu configuration is slightly different from those listed in the
following sections, you can find many guides to card formatting on Google.

Mac OS X SD card formatting instructions
The following steps will guide you through the Mac OS X SD card formatting
process. Start by placing the card into the SD card port on your Mac:

1. In Finder or from the task bar open your Applications folder.
2. Next select the Utilities folder icon.
3. From Utilities select Disk Utility.
4. When the Disk Utility window opens, on the left-hand side you will see a

list containing Disks, Volumes, and Disk Images.
5. From this list located on the left-hand side select your SD card. If it is new it

will likely have a label of NO NAME or similar.
6. The right-hand side panel will now update with the details about your card.
7. From the menu located at the top of the panel select the Erase tab.
8. You will now be presented with a set of instructions for formatting your SD

card.
9. Locate the Format dropdown and select the MS-DOS (FAT) option.
10. Change the Name of your SD card to RPIMASTER.

Chapter 2

[23]

11. Double check to ensure you have selected the correct options.
12. You can now select the Erase button which will format the card.

Remember, when you format the card any data on it
will be lost.

The formatting process is now complete and you can move onto the next step of
installing BerryBoot Version 2 or NOOBS.

Windows 8 SD card formatting instructions
The following instructions will walk you through formatting your SD card under
Windows 8.

Start by placing your SD card into the card port on your Windows machine:

1. Select the icon to take you to the Windows 8 desktop.
2. From here open Explorer from the task bar located at the bottom of the

screen.
3. When Explorer loads, locate your SD card from the list of devices in the left-

hand side Explorer panel.
4. Now right-click on your SD card.
5. From the pop-up menu left-click on the Format… option.
6. You will now be presented with the Format Removable Disk menu.
7. From the File system dropdown option select FAT32 (Default) if it is not

already selected by default.
8. The other options should be left at their default.
9. Enter into the Volume label text entry field the new name for your SD card:

RPIMASTER.
10. Select the Quick Format checkbox.
11. Click on the Start button.
12. You will now be presented with a warning that all the data on the disk will

be erased.
13. Click on the OK option.

Windows 8 will format your SD card using the settings from the preceding steps and
will erase any previous data on the card.

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[24]

Once the process is complete and the card is successfully formatted Windows will
display a popup with the text Format Complete.

Select OK to close the pop-up window. You can now move onto installing BerryBoot
version 2 or NOOBS onto your SD card.

Linux instructions for SD card formatting
There are a number of tools available for partitioning and formatting disk and SD
cards in Linux. We are going to use the mkdosfs application via the terminal window.

The mkdosfs program allows us to format the SD card to FAT, which BerryBoot
version 2 requires.

Follow the steps below to format your card:

1. Load the Terminal if you are not already in a shell.
2. From the prompt run the command: df –h.
3. Depending on your Linux version you will see a list similar to the following:

Filesystem Size Used Avail Use% Mounted on

/dev/sda2 110G 49G 62G 45% /host

/dev/mmcblk0p1 7.3G 671M 6.3G 10% /mnt

4. Start by making a note of the Filesystem name of your SD card and the
Mounted on directory.

5. If you are not running as root, switch user to root: su root.
6. Next unmount the SD card in order to format it, for example:

umount /dev/mmcblk0p1

7. Once unmounted we can use mkdosfs to format the card.
8. From the prompt run the following command:

mkdosfs /dev/mmcblk0p1 –F32

9. This will format your SD card to FAT(32).
10. Once complete re-mount the SD card using the Filesystem name and

Mounted on location you noted down, for example:

mount /dev/mmcblk0p1 /mnt

Chapter 2

[25]

If you wish to re-label the SD card you can use an application such as mlabel located
in the mtools package, the following steps illustrate how to do this:

1. The man page for mlabel can be found at:
http://linux.die.net/man/1/mlabel.

2. Using your Linux version's package handler, install mlabel. For example, on
Debian GNU/Linux distributions you can run:
apt-get install mtools

3. Once again unmount the disk, for example:
umount /dev/mmcblk0p1

4. Next check the current label on the SD card:
mlabel -i /dev/mmcblk0p1 -s ::

5. For a new SD card you will probably see Volume has no label.
6. Now rename the label using the following command:

mlabel -i /dev/mmcblk0p1 -s ::RPIMASTER

7. You should see the message again that was displayed when you checked the
current label of the SD card.

8. Finally we can verify that our change took place. Re-mount the SD card and
then run:
sudo blkid

9. You should now see an output similar to the following:

/dev/mmcblk0p1: SEC_TYPE="msdos" LABEL="RPIMASTER" UUID="0F68-
87C5" TYPE="vfat"

The SD card is now formatted for FAT and ready to install BerryBoot version 2
or NOOBS.

BerryBoot version 2
Next we are going to download and install BerryBoot version 2 onto the formatted
SD card. For those of you who chose to download NOOBS from the Raspberry Pi
site, you can ignore this step and should follow the readme guide.

BerryBoot is a Mac, Windows, and Linux compatible universal operating system
installer, also known as a boot loader. BerryBoot is packaged as a ZIP file, which
when unzipped onto your formatted SD card will launch once the SD card is
connected to the Raspberry Pi.

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[26]

Once BerryBoot launches, it gives you the option of installing one or more Raspberry
Pi-compatible operating systems onto the SD card.

Downloading the BerryBoot version 2 ZIP file
In order to install BerryBoot, you will need to download the latest version of the ZIP
file from the BerryBoot website. This can be found at:

http://www.berryterminal.com/doku.php/berryboot

Locate the download hyperlink; this will probably have a date stamp on it. As of
May 28, 2013 the file is approximately 30 MB.

Using an application that allows you to decompress ZIP files, unzip the contents
and copy them to the SD card. If your machine does not already have an unzip
application you can use one of the following.

Mac OS X
Mac OS X usually comes with an archiving/un-archiving tool built in. However,
there are other applications you can choose from that can also be used, these include:

• Archiver: http://archiverapp.com/
• WinZip for Mac: http://www.winzip.com/mac/

Windows 8
Windows 8 offers the ability to ZIP files using the built in utility available under
the Share menu in Explorer where you will find a ZIP icon. If you would prefer
to try another utility (or are using an older version of Windows) the following are
Windows graphical user interface based applications:

• WinZip: http://www.winzip.com/
• 7-zip: http://www.7-zip.org/

Linux
For Linux we recommend installing unzip.

• For Debian GNU/Linux versions:
apt-get install unzip

• For Red Hat Linux, Fedora, and RPM compatible versions of Linux:

yum install unzip

Chapter 2

[27]

Remember to make sure the files located in the ZIP file are in the root
of the SD card and not within a folder with the ZIP file's name.

After writing the BerryBoot version 2 files to the SD card we can then connect one of
our Raspberry Pi in order to complete the next steps.

Starting up the Raspberry Pi
You are now ready to start up the Raspberry Pi and start using BerryBoot version 2.

The following steps will guide you through powering up your Raspberry Pi safely:

1. Start by ejecting your SD card from your computer and place it into the SD
card port of the Raspberry Pi you prepared for use earlier in this chapter.

2. Plug in the mouse and keyboard to the USB ports. You will need these in
order to complete the operating installation process.

3. Hook up the monitor to the HDMI port.
4. Connect the Raspberry Pi to the switch you set up earlier in this chapter.
5. Now power up your Raspberry Pi by connecting the micro-USB power unit

to it.

If you are using BerryBoot, displayed on your monitor will be the Welcome screen.
This is the first step in setting up our operating system and is also a confirmation that
we copied the boot loader onto the SD card successfully.

BerryBoot version 2 and NOOBS provide us with a number of Linux versions to
choose from. For setting up our parallel-based computing system we will be using
Raspbian. Users already familiar with Raspbian may skip this section.

Raspbian is a flavor of the Linux operating system based upon Debian Wheezy and
is specially optimized and compiled for the Raspberry Pi.

You can read more about it at:

http://www.raspbian.org/

The Linux.org website also provides some useful tutorials if you come across topics
you are unfamiliar with:

http://www.linux.org/

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[28]

Once you are comfortable with the contents of this book, you may be interested in
installing another variety of operating system (OS) to try with your Raspberry Pi.
One of the benefits of having used a boot loader is that you can easily choose another
OS without having to re-format your SD card and start from scratch.

The following steps will now guide you through installing Raspbian via Berryboot.
Once again you can refer to the NOOBS readme if you have decided to install
this instead:

https://github.com/raspberrypi/noobs/blob/master/README.md

The installation process
The installation process is as given.

1. From the Welcome pop-up screen select the following options:
1. If you see thin green borders at the top and bottom of your monitor

select the radio button titled Yes (disable overscan).
2. Since your Raspberry Pi is connected to your switch, from the

Network connection option select the Wired radio button.
3. From the Locale settings choose your Timezone and Keyboard

layout. You can also test whether your keyboard works by typing
into the Type here to test keyboard field.

4. Finally select the OK button to move onto the next screen.

2. Next you will be taken to the Disk selection pop-up screen. Here you will
choose the storage device you want to install Raspbian on.

3. Select your SD card and then from the File system list choose the option
ext 4 (no trim/no discard). This file system is geared towards Linux-based
operating system.

4. Next select the Format button located at the bottom of the pop-up screen.
5. The formatting process may take a minute and once completed will present

you with the Add OS screen from which Raspbian can be selected.
6. Select the Debian Wheezy Raspbian option, you will notice that it contains a

version number, file size, and a message indicating it is the official Raspbian
version.

7. Next select the OK button.
8. This will kick off the download, which is approximately 500 MB and based

upon the speed of your Internet connection may take a few minutes. You
should now see the pop-up screen indicating that Raspbian is downloading.

Chapter 2

[29]

9. Once the download has completed the BerryBoot menu editor will
be displayed.

10. You will now see your Raspbian download followed by the version number.
11. Located at the top of the BerryBoot menu editor screen is a menu providing a

number of configuration options. These are:
 ° Add OS
 ° Edit
 ° Recover
 ° Backup
 ° Delete
 ° Set default
 ° Exit
 ° And a >> icon which will load the advanced settings menu.

12. Select your Raspbian installation and click on the Set default option. This
will now result in your downloaded operating system loading by default
when the Raspberry Pi is powered up.

13. Next select the Exit option.

After seeing a back splash, the BerryBoot version 2 boot menu will display and after
10 seconds will load the Raspberry Pi Software Configuration Tool (raspi-config).

The raspi-config screen is a menu that contains setup options for your Raspberry Pi.
You can navigate the screen using your keyboard arrow keys and use the Enter key
to select an option.

The setup options menu contains the following:

• Expand Filesystem: Ensure that all of the SD card storage is available to
the OS

• Change User Password: Change password for the default user (pi)
• Enable Boot to Desktop: Choose whether to boot into a desktop

environment or the command line
• Internationalisation Options: Set up language and regional settings to match

your location
• Enable Camera: Enable this Pi to work with the Raspberry Pi camera
• Add to Rastrack: Add this Pi to the online Raspberry Pi Map (Rastrack)
• Overclock: Configure overclocking for your Pi

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[30]

• Advanced Options: Configure advanced settings
• About raspi-config: Information about this configuration tool
• <Select>
• <Finish>

From the preceding menu we are going to change the password, select the Advanced
Options, and disable the desktop environment on loading.

Our first task is to change the default password on the Raspberry Pi to something
more secure. Select the Change User Password option and follow the steps to enter
and re-enter your new password.

By default the password for the Raspberry Pi is set to raspberry.

Next we need to modify the boot settings so we boot into the Raspbian command
line rather than the desktop environment:

1. From the menu select the Enable Boot to Desktop option.
2. You will now see a message: Should we boot straight to desktop?
3. From the two options presented select No.
4. You will then be returned to the main menu.
5. Finally we need to configure the RPi to allow external connection to it via

SSH. You can read more about SSH at Linux.org:
http://www.linux.org/threads/openssh.4162/#post-10380

6. From the menu select Advanced Options. The advanced menu screen will
now be loaded containing the following options:

 ° A1 Overscan: You may need to configure overscan if black bars are
present on display

 ° A2 Hostname: Set the visible name for this Pi on a network
 ° A3 Memory Split: Change the amount of memory made available to

the GPU
 ° A4 SSH: Enable/disable remote command-line access to your Pi

using SSH
 ° A5 Update: Update this tool to the latest version

7. From the presented menu select the SSH option.

Chapter 2

[31]

8. The following message will be displayed: Would you like the SSH server
enabled or disabled?.

9. This should be enabled by default. If not from the two options available on
the screen select Enable.

When your Raspberry Pi starts up in future, SSH will now be enabled allowing you
to connect to the command line via an external device, for example, the Mac OS X
terminal.

You may have noticed in the preceding menu the option to change the hostname
of your device. We are interested in updating this; however in Chapter 3, Parallel
Computing - MPI on the Raspberry Pi, we will explore a technique for updating the
hostname remotely. If you wish to change it now, though, select this option and
complete the steps presented. Leaving the hostname as is will label your Raspberry
Pi: raspberrypi.

Our configuration is now complete; navigate to the Finish option and press the Enter
key to continue. You will now be presented with a message asking if you wish to
reboot the Raspberry Pi. From the options presented select Yes.

Installation complete
Your Raspberry Pi will reboot itself and the login prompt will appear. For your
username use pi and try entering the new password you set in the Raspberry Pi
Software Configuration Tool (raspi-config) menu.

Once you have successfully logged in you should see the command prompt allowing
you to run other Linux commands.

In order to ensure that your Raspberry Pi has access to all of the latest packages, you
can now run:

sudo apt-get update

This will update the packages list in Raspbian.

Testing SSH and setting up keys
Now that Raspbian is installed and we can login successfully, we next need to test
that SSH is running correctly on the machine and following this generate some keys
for allowing devices to securely connect to the Raspberry Pi without needing
a password.

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[32]

Connecting via SSH
In order to connect to your Raspberry Pi remotely, you will need a second machine
running a command-line utility and the IP address of your freshly set up
Raspberry Pi.

We will start by obtaining the IP address.

From the command line on your Raspberry Pi type the following:

ip addr show eth0

You can now find your IP address after the word inet. For example:

Inet 192.168.1.84/24 brd 192.168.1.255 scope global eth0

You will need the number before the / that reads 192.168.1.84 in our
preceding example.

Once you have the IP address you can try connecting to it from your other machine.

Mac OS X and Linux users can use the command-line utility that comes shipped
with their operating system (for Mac users this in Terminal). Windows users
can download an application called PuTTY that will allow them to SSH into
another machine.

The PuTTY executable file can be obtained from the following site:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Once downloaded follow the steps under Windows 8 users with PuTTY.

Mac OS X and Linux users
Start by loading your Terminal/command-line application. Next run the
following command:

ssh pi@192.168.1.84

Replace the IP address in the preceding line with the IP address you obtained from
your Raspberry Pi.

You will be asked to enter the password you set earlier and may see a message in
your Terminal suggesting that the authenticity of the host can't be established,
for example:

The authenticity of host '192.168.1.84 (192.168.1.84)' can't be
established.

Chapter 2

[33]

RSA key fingerprint is f6:4a:38:4a:8b:c6:04:a9:bc:51:c3:af:fe:cb:78:e6.

Are you sure you want to continue connecting (yes/no)?

You can type yes and press the Enter key.

Next you will see:

Warning: Permanently added '192.168.1.84' (RSA) to the list of
known hosts.

And will now see the command line for your Raspberry Pi. This indicates that, when
the Raspberry Pi rebooted, SSH started up and allowed you to connect to the device.

Windows 8 users with PuTTY
Windows users should use the following steps to run PuTTY and connect to their
Raspberry Pi remotely.

1. Make sure you have copied PuTTY to a place where it is easy to access in
future.

2. Next double-click on the putty.exe file to open the PuTTY configuration
screen.

3. In the Host Name (or IP address) field add the IP address of the Raspberry
Pi.

4. In the Port field enter 22; this is the port SSH runs on, and under Connection
type select SSH.

5. Finally you can click on Open.
6. You may see a pop-up box with the title PuTTY Security Alert and a note

explaining that the server's host key is not cached in the registry.
7. If this appears then select the Yes button.
8. In the terminal window you will now see the message:

Login as:

9. Enter pi, which is your Raspberry Pi username.
10. In PuTTY you will see a prompt asking for the password, for example:

pi@192.168.1.84's password:

11. Enter the password you set earlier and press the Enter key.
12. You will now be logged into the Raspberry Pi, indicating that the SSH server

is up and running successfully and accepting outside connections.

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[34]

SSH running successfully
You can now access your Raspberry Pi from your home network without having
to be physically wired up to the device. This will allow you in future to administer
Raspbian from the second machine, for example, or allow other automated processes
running on different machines to access your Raspberry Pi.

You may have noticed on your home router that the device now
appears as raspberrypi, if you did not update the hostname via
BerryBoot. If you wish to change the name of the device now, you
can update the /etc/hosts and /etc/hostname files.

Now that we can connect to the Raspberry Pi via SSH using a username and
password, we will explore setting up RSA keys for SSH; these allow devices to
connect to one another without a password. This feature will be important in later
chapters when our Raspberry Pi's wish to communicate with each other without
human input in order to send data.

Setting up your SSH RSA keys
RSA (Rivest, Shamir, and Adleman) is a public-key cryptographic algorithm. It
works by generating two keys - a public key and a private key-through a number of
operations involving prime numbers.

The public key can be shared with anyone and is placed onto a machine that a
user wishes to connect to in the authorized_keys file, allowing password-free
connections.

The second key, the private key, is kept secure by the user usually on their local
machine in the .ssh directory.

When a user wishes to connect to the server, the private key generates a signature
that can only be authenticated by the server if their public key is present. Thus the
login to a machine can be restricted only to that user whose public key is in the
authorized_keys list, and whose machine contains their private key.

For more information on the RSA algorithm the original white paper can be found on
the MIT website:

http://people.csail.mit.edu/rivest/Rsapaper.pdf

Chapter 2

[35]

Now that we have explored a little of the background of RSA keys, let's start by
setting them up via the command line:

1. You can either connect to your Raspberry Pi remotely via SSH or access the
Raspberry Pi's command line directly via the keyboard.

2. Once logged in you should be located in the home directory of your user pi.

You can navigate to the home directory at any
time by typing cd ~

3. From inside this directory type the following command:
ssh-keygen -t rsa -C "pi@raspberrypi"

4. You will then be prompted for the file to store your SSH key in:
Generating public/private rsa key pair.

Enter file in which to save the key (/home/pi/.ssh/id_rsa):

5. You do not need to type anything in here and can press the Enter key.
6. You will then be prompted for a pass phrase for the key:

Created directory '/home/pi/.ssh'.

Enter passphrase (empty for no passphrase):

7. You have the option here of leaving passphrase blank. This is a less secure
option, but will also mean that if you reboot your Raspberry Pi or close your
shell you will not need to re-enter the passphrase and use the ssh-agent and
ssh-add tools.

8. If you choose to enter a non-blank passphrase you will also need to to follow
the steps in the section, The ssh-agent and ssh-add tools.

9. So enter a new passphrase; or leave it blank and press the Enter key.
10. Following this you will be asked to re-type the phrase:

Enter same passphrase again:

11. Once this has been completed you will see a confirmation message and a
unique ASCII art image that has been generated.

12. Next we need to add our public key to the authorized key list on our
Raspberry Pi. This will allow access to localhost by applications such as
Hadoop running on your Master Pi.

13. You can do this by typing the following command:

cat /home/pi/.ssh/id_rsa.pub >> /home/pi/.ssh/authorized_keys

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[36]

The ssh-agent and ssh-add tools
If you decide to add a passphrase to your key, you will need to complete the
following steps:

1. From the command line type:
ssh-agent bash

ssh-add

2. You will be prompted to enter your passphrase. Your bash shell will now be
able to access the key without the passphrase prompt appearing. However,
if you reboot your Raspberry Pi or close the bash shell, then you will have to
repeat the preceding step.

In order to limit the issue of entering the passphrase to only needing to enter it when
you reboot the Raspberry Pi, which should hopefully be infrequent, you should
consider using the screen application available in Linux.

Screen is a terminal multiplexer and you can read more about it at:

http://linux.die.net/man/1/screen

Later in this chapter we will cover how to install and configure screen if you wish to
use it.

SSH setup complete
The SSH key for your Raspberry Pi is set up. Going forward in this book this
Raspberry Pi will act as your Master device.

In Chapter 3, Parallel Computing - MPI on the Raspberry Pi, you will learn how to take
the public key you generated and copy it to the other Raspberry Pi. This will then
allow your Master device to access the other device without you being prompted for
a password.

Wrapping up
We now have our operating system installed and our RSA key set up. The following
guides provide some optional tools and compilers you can now install onto
Raspbian, including a guide to install Fortran.

Chapter 2

[37]

Editing text files on Raspbian
While editing and running code on your Raspberry Pi, having a good code and text-
editing tool is very useful. By default the Raspberry Pi comes installed with a text-
editor called nano. You can read more about nano at:

http://www.nano-editor.org/

Vim is also a text editing tool—especially good for programming—with a wide
variety of functions and features, including the ability to run shell commands while
you are editing a file.

For those interested in checking out Vim, you can read more at:

http://www.vim.org/about.php

To install Vim from the terminal line run the following command:

sudo apt-get install vim

Throughout this book we will be using Vim to edit files; however, feel free to use
nano or whichever tool you are most comfortable with.

Installing Fortran
In Chapter 1, Clusters, Parallel Computing, and Raspberry Pi – A Brief Background, we
introduced you to Fortran. At this point we recommend installing Fortran, from the
command line run the following:

sudo apt-get install gfortran

This will install the GCC Fortran compiler. The compiler supports Fortran 95, 2003,
and 2008. You can read more about it at the GNU Fortran compiler site:

http://gcc.gnu.org/wiki/GFortran

Installing Fortran will make the installation of MPICH in the next chapter slightly
easier. This is the application you will also be using for compiling your applications
if you wish to try the project in Chapter 7, Going Further.

You may also at this point want to create a separate directory on your Raspberry
Pi for storing Fortran applications. Using the mkdir command create the following
folder in your home directory:

mkdir /home/pi/fortran

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[38]

Terminal multiplexing with Screen
A Terminal multiplexer is an application we can install onto Linux that allows us
to create several virtual terminal windows under a single shell. For the projects
in this book we recommend using Screen. Screen is a GNU terminal multiplexing
application that can be used to create terminal sessions that will stay active even after
we log out of our Raspberry Pi.

This is useful, for example, when we use commands such as ssh-agent and ssh-add
which will be touched upon in the following section.

Screen can be installed via apt-get; from the command line run the following:

sudo apt-get install screen

After installing Screen, we now need to create a configuration file that will style how
Screen looks when we launch it:

Start by navigating to the root of your home directory:

cd /home/pi

Next we need to create the configuration file called .screenrc:

touch .screenrc

The touch command can be used to create an empty file without opening it directly
into your text editor of choice. You will find this command useful in future if you
wish to create some placeholder files, but are not ready to edit them yet.

Now using your text editor open up the .screenrc file and add the
following configuration:

vbell off

vbell_msg ""

hardstatus on

hardstatus alwayslastline

#Use: info screen "String Escapes" to style your screen

hardstatus string "%{B}%-Lw%{r}%50>%n%f*%t%{-}%+Lw%<"

def monitor on

term screen-256color

shelltitle Window

screen bash

Now save the file and exit.

Chapter 2

[39]

The set of commands you added to the file will provide you with a starting point for
customizing your screen's look and feel.

You can read more on how to configure screen by running the
following command:

man screen

We can now test this screen configuration by launching the application. From the
command line type:

screen

You will now see the Screen welcome message as shown in the following screenshot,
you can press Enter to exit this:

You will also see that the Screen's title is bash, we are going to rename this. Use the
following key combination to bring up the rename text field: Ctrl A + Shift A.

Name this window My first screen and press the Enter key.

You will see the name has now been changed.

Next we will create a second window. From the command line type the following
key combination:

ctrl a + c

Setting up your Raspberry Pi Software and Hardware for Parallel Computing

[40]

This will create a second window, with the title 1$*Window. Once again we are
going to change the screen's name. Using the preceding command, rename the
window: My second screen.

We now have two windows. To navigate between them use: Ctrl A + <num>

You should replace <num> in the command with the screen number, for example 0
or 1.

Now we can switch between the screens. Sometimes we want to exit the Screen
application, but leave it running in the background. This can be achieved by using
the detach command. The detach command is:
ctrl a + d

You will now see that you have dropped back into the original shell that you
launched Screen from.

To reconnect to an existing Screen session, you can type:
screen –r

Here we have covered the basics of Screen. You will find this tool invaluable when
running multiple applications in Linux and wish to log in and out of the machine
without the various processes you are running being terminated.

If you decided to add a passphrase to your RSA key, you may at this point want to
run the ssh-agent and ssh-add commands:
ssh-agent bash

ssh-add

This will start the authentication agent in the Screen's shell session and add the RSA
identity to it.

Now we have completed setting up the software on our operating system; let's
review what we have accomplished in this chapter.

Summary
In this chapter we set up our work area and hardware for building our parallel
computing system using Raspberry Pi. We then formatted our SD card and installed
BerryBoot version 2 or NOOBS. This subsequently allowed us to set up our Master
Raspberry Pi device. Finally we tested our SSH service running on the Raspberry Pi
and created an SSH public and private key pair.

Next we will install MPICH, set up our second Raspberry Pi, test our SSH keys, and
try out a parallel application that runs on both of our Raspberry Pi's.

Parallel Computing – MPI on
the Raspberry Pi

In this chapter we will be investigating the technology known as MPICH. MPICH
is an implementation of the Message Passing Interface standard which we briefly
touched upon in Chapter 1, Clusters, Parallel Computing, and Raspberry Pi – A Brief
Background.

So what subject area do we cover in relation to this technology?

First we will compare MPICH to an alternative implementation of MPI called
OpenMPI. Following this we will install and then set up MPICH on our Raspberry
Pi (RPi) and run a test application to check if it is working. After this we will clone
our SD card and set up our second Raspberry Pi. This gives us the opportunity to
execute a test application on two Raspberry Pis and see a calculation of Π being run
in parallel.

Finally we will write some simple applications to demonstrate how MPI works.

MPI – Message Passing Interface
As we explained in Chapter 1, Clusters, Parallel Computing, and Raspberry Pi – A Brief
Background, the Message Passing Interface is a language-independent message-
passing communication protocol designed for parallel computing applications.

The standard's beginning can be found in the early 1990's when a number of
academics and figures from industry combined their efforts to design a message
passing system that would aid parallel computing application development.

Parallel Computing – MPI on the Raspberry Pi

[42]

The MPI standard defines a core set of routines that can be used by a programmer
in order to distribute their application and handle passing back the results of the
executed code seamlessly. In MPI's early days, C and Fortran were the languages
most closely associated with it; however, Java and Python among others have
also gone on to offer support. We will now touch upon two of the C and
Fortran implementations.

MPI implementations – MPICH and
OpenMPI
There are two prominent implementations of MPI that can be used on the Raspberry
Pi. These are: OpenMPI and MPICH.

OpenMPI is an open source implementation of MPI maintained by a collection of
industry and academic partners. It has been implemented on a number of the world's
top 500 supercomputers including the Japanese K computer.

OpenMPI's origins can be found in several other projects including the University of
Tennessee's FT-MPI project, Indiana University's LAM/MPI, University of Stuttgart's
PCX-MPI, and LA-MPI from Los Alamos National Laboratory in the USA.

You can find out more about the technology at the official website:

http://www.open-mpi.org/

MPICH, originally standing for Message Passing Interface CHameleon, is an
implementation of the MPI standard that supports C, C++, and Fortran applications.
It was initially developed in the early 90's to provide feedback on implementation
issues to the MPI forum.

The MPICH Wiki providing more background on the technology can be found at:

http://wiki.mpich.org/mpich/index.php/Frequently_Asked_
Questions#General_Information

So which should you choose?

When it comes to application speed between the two libraries there is some debate.
Ultimately though, how you optimize your program and the hardware it runs on
will make a big difference.

Unlike the newer OpenMPI, MPICH has been around longer and is extremely
portable between systems. There are also extensive documentation and support
options available online.

Chapter 3

[43]

Due to its long-term use you will also find more binary applications that work with
MPICH (if the source code is not made available) and should not run into as many
compatibility issues. If you do decide to use OpenMPI the applications written in this
book can be re-compiled using OpenMPI and still work.

For the projects in this chapter and others we will choose MPICH and walk you
through the installation process.

Creating an environment and
downloading MPICH
Before we install any software, we are going to create a number of directories under
our account. These will be used for installing MPICH:

If you are not connected to your Master Raspberry Pi, log back in.

From inside your home directory you can then create the following folder:

mkdir mpich3

Navigate into mpich3 and create the following two directories:

mkdir build install

The mpich3 is the directory where we will be installing the MPICH software as
well. Feel free to change the numeric value in the directory name to match the major
version number of the MPICH software you are downloading.

Our next task is to grab the latest package from the MPICH downloads link:
http://www.mpich.org/downloads/

You can use wget to perform this task, make sure the version number is the latest:

wget http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4.tar.gz

Once the tar.gz file has been downloaded we can unzip it into the mpich3 directory:

tar xvfz mpich-3.0.4.tar.gz

You now have all the files you need to build MPICH, so finally navigate into the
build directory you created. This folder should be under the directory you are
currently in. For example:

cd build

Parallel Computing – MPI on the Raspberry Pi

[44]

Building and installing MPICH
With the MPICH code unzipped we can start the build and install process:

First we are going to set a configuration parameter so that MPICH installs into the
install directory we created earlier.

Run the following command; mpich-3.0.4 will be the name of the directory created
when you unzipped the file earlier:

/home/pi/mpich3/mpich-3.0.4/configure -prefix=/home/pi/mpich3/install

If you chose not to install Fortran, you will need to ensure
that you disable the Fortran option when installing MPICH.
You can use the configure application located in your mpich
installation directory to find out more:

/configure --help | more

You will now see a message saying something similar to:

Configuring MPICH version 3.0.4 with '-prefix=/home/pi/mpich3/install'

Next let's run the Makefile, to do this type the following command:

make

This process can take a while so you may want to take a break and read the
MPICH installation documents to provide you with more background on the
process and configuration options. These can be found at the MPICH website in
PDF format: http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4-
installguide.pdf

Once make has completed, you will then need to run the following install command:

make install

The installation process can take some time to complete. While you wait for it, you
may be interested in checking out the MPICH users guide, also in PDF format:
http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4-userguide.pdf

After the installation has completed we need to make the bin directory available
for your profile by including it in the PATH variable. You can run the following
command to add it to PATH:

export PATH=$PATH:/home/pi/mpich3/install/bin

Chapter 3

[45]

In order for this to persist between sessions when you log into and out of your RPi,
you will need to add PATH to your profile. The Linux .profile file is located in the
root of your home directory, for example:

/home/pi/.profile

Using your text editor open the file:

vim /home/pi/.profile

Now add the following code to the bottom of your .profile file:

MPI

export PATH="$PATH:/home/pi/mpich3/install/bin"

When you log into Raspberry Pi you will be able to run MPICH from the command
line without having to type the full path to the executable.

Configuring your Raspberry Pi to run
with MPICH
We are now almost complete with our setup process. Raspbian now needs to be
configured to work with MPICH:

Start by locating the IP address of the Raspberry Pi, if necessary use:

ip addr show eth0

Make a note of the IP address. You will need to add this to pifile.

The pifile is a list of each Raspberry Pi device on the network that you want to run
MPI-based applications on. As you add more devices to your cluster you can update
pifile with their IP address.

You can name pifile anything you like, in some online examples you may see it
named hostfile, or in the MPICH documentation as machinefile. Since we will be
updating the Linux hosts file of Raspbian, to change the name of the Raspberry Pi we
have used the name pifile to avoid confusion.

Using your text editor create pifile in your user accounts directory:

vim /home/pi/pifile

Into this file add the IP address you noted earlier.

We can now run mpiexec and test that it works. Type in the following command:

mpiexec -f pifile hostname

Parallel Computing – MPI on the Raspberry Pi

[46]

If everything has been set up successfully you should now see

Output is:

raspberrypi

With the setup complete, let's look at testing our installation.

Testing our MPICH installation
We can now check whether MPI is working on our single Raspberry Pi by running
the example program: Cpi that comes bundled with the MPICH install.

This application will calculate the value of Pi (П). In Chapter 6, Calculating Pi with
Hadoop and Java, we will show you how to write your own Java application that
performs the same task using Hadoop.

From the command line run:

mpiexec -f pifile -n 2 ~/mpich3/build/examples/cpi

You should now see the following:

Process 0 of 2 is on raspberrypi

Process 1 of 2 is on raspberrypi

pi is approximately 3.1415926544231318, Error is 0.0000000008333387

wall clock time = 0.018371

This confirms that MPICH is working as expected; great work, let's build our
second RPi.

Building our second Raspberry Pi
With the first Raspberry Pi up and running, demonstrating MPI and we need to set
up our second machine. Rather than running through the BerryBoot installation
process we discussed in Chapter 2, Setting Up your Raspberry Pi Software and Hardware
for Parallel Computing, we can clone our Master machine's SD card and install the
image on a second empty SD card.

1. Start by powering down your Raspberry Pi.
2. Next eject the SD card. At this point it is recommended you label it with a

marker pen, this will help to cut down any confusion should the SD cards get
mixed up.

Chapter 3

[47]

3. Grab your second SD card and label this as well. Once you have completed
that it is time to clone the Master SD card.

4. Place the SD card into the machine you will be using to clone it.

The following instructions are provided for Windows 8, Linux, and Mac OS X
machines.

Windows 8
For cloning an SD card in Windows we recommend using a third-party tool called
Win32 Disk Imager.

Start by downloading the ZIP file from the following location:

http://sourceforge.net/projects/win32diskimager/files/latest/download

Once the file has downloaded follow these steps:

1. Extract the ZIP to a location on your hard drive.
2. Launch the unzipped Win32DiskImager.exe.
3. Select your SD card drive from the Device dropdown on the right-hand side.
4. Click on the folder icon and choose a location and name for the .img file.
5. Click on the Save button to close the popup.
6. Click on Read, this will start the process of backing up the SD card.
7. Once complete, close the application and eject the SD card.
8. Insert your blank SD card for the Slave machine into the SD card drive.
9. Re-launch Win32DiskImager.exe.
10. Select the drive with your empty SD card located in it from the Device

dropdown.
11. Click on the folder icon and locate the backup you created previously.
12. From the main screen now select Write, to kick off the write process.
13. Once complete close Win32DiskImager.exe and safely eject the SD card.

You can now insert the SD card into your second Raspberry Pi and follow the
steps for powering up your second Raspberry Pi.

Parallel Computing – MPI on the Raspberry Pi

[48]

Mac OS X
The instructions for building a second RaspBerry Pi on Mac OS X are as follows:

Start by loading the terminal window on your Mac.

You may remember you can type the following command to see the
file system:

df –h

This will show you a list of the mounted partitions.

We are interested in the name of the whole SD disk rather than the partition we
created for Linux.

On Mac OS X there is an easy way to grab a device's, disk name. Follow the given
steps to find the name of your disk:

1. Select the Apple menu from the top-left of the screen.
2. Next select About This Mac from the dropdown.
3. From the popup click the More info… button.
4. Another pop-up window will display.
5. From this window select the System report… option.
6. Click on USB or Card Reader depending on whether you connect your SD

card via an external or built-in device.
7. Find your SD card in the upper-right panel of the window.
8. Once you have found it, click on it and then search for BSD name in the

lower-right panel. The disk name will be in the following format: diskn, the
n will be the disk number itself for example, disk3.

9. Make a note of this number, as you will need it for cloning.

We can now back up a copy of the disk to the OS and re-use as needed.

Start by unmounting the whole disk:

diskutil unmountDisk /dev/disk3

This will unmount all the volumes on your SD card.

Next run the following command. Here disk3 should be the name you noted
down earlier:

dd if=/dev/disk3 of=/Users/andrew/raspberrypi.img bs=1m

Chapter 3

[49]

A copy of the disk will now be created. Once the command has finished running
successfully, you will see a message similar to the following in the terminal window:

129024+0 records in

129024+0 records out

66060288 bytes transferred in 9.034737 secs (7311811 bytes/sec)

With a backup of the SD made, you can eject the disk safely from your Mac. We are
now going to take our second SD card, and using the backup we just made, copy this
image onto this disk.

Insert the second SD card it into your Mac. Follow the preceding steps to find the
disk name. Once you have this, you are ready to copy the image over. The following
command is essentially the reverse of what you performed earlier:

dd bs=1m if=/Users/andrew/raspberrypi.img of=/dev/rdisk3

When the process has finished copying the file over from your hard drive to the SD
card you will see:

7580+0 records in

7580+0 records out

7948206080 bytes transferred in 3945.963361 secs (2014263 bytes/sec)

Eject the card from your Mac and place it into your second Raspberry Pi, this is the
machine you designated as the Slave.

Linux
The process for cloning an SD card on Linux is fairly straightforward.

1. From the command line use the fdisk utility to grab a list of disks currently
mounted to the OS:
sudo fdisk –l

You will now see an output similar to the following:

Disk /dev/mmcblk0: 7948 MB, 7948206080 bytes

4 heads, 16 sectors/track, 242560 cylinders, total 15523840
sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Parallel Computing – MPI on the Raspberry Pi

[50]

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System

/dev/mmcblk0p1 2048 131071 64512 eW95 FAT16 (LBA)

/dev/mmcblk0p2 131072 15523839 7696384 83 Linux

2. From the output presented, locate your disk and note the disk name.
3. You can unmount all of the partitions on this disk by using the wildcard (*)

after the disk name, for example:
umount /dev/mmcblk0*

4. Once you have completed this step we can the use dd to copy the SD card to
the hard drive of our Linux machine. The following example illustrates this
process:
dd if=/dev/mmcblk0 of=/home/andrew/raspberrypi.img bs=1M

5. Once this is complete we have an image of the SD card we can re-use
whenever needed.

6. Eject the SD card you have just copied from your machine and locate the
second (Slave) SD card.

7. Insert this into the Linux machine and follow the preceding steps to locate
the disk name and to also make sure all the partitions are unmounted.

8. Once you have completed this, you can copy the backup you made of the
Master SD card onto the Slave one.

9. Run the following command to use dd again, this time to copy the
image over:
dd bs=1M if=/home/andrew/raspberrypi.img of=/dev/mmcblk0

10. The process of copying over the image of the Slave SD card can take a
few minutes.

11. Once complete you will see a message similar to:

7580+0 records in

7580+0 records out

7948206080 bytes transferred in 3945.963361 secs (2014263 bytes/
sec)

This indicates that the content has been copied over successfully. You can now eject
the SD card and insert it into your second (Slave) Raspberry Pi.

Chapter 3

[51]

Powering up the second Raspberry Pi
Once you have inserted the SD card, attach the monitor, keyboard, and mouse and
then power up the device using the micro-USB cable.

When it has loaded, you should see the BerryBoot boot screen with the operating
system you installed in Chapter 2, Setting Up your Raspberry Pi Software and Hardware
forParallel Computing, presented.

Select this option and click on OK. Following this the command-line prompt will be
displayed asking you to log into Raspbian. Using the username and password you
created for the first Raspberry Pi you can login.

If you are now presented with the shell prompt for your Raspberry Pi, you have
successfully cloned the SD card and can move onto setting up the SSH key.

RSA key setup for SSH
We now need to set up SSH on our Slave Raspberry Pi so that we can log into it from
the Master Raspberry Pi. In order to do this our RSA key needs to be added to the
Slave Raspberry Pi's authorized_keys list. However, first we should clean up the
Slave Raspberry Pi and remove the copy of the Master Pi's RSA keys.

Start off by making sure you are logged into the Master Raspberry Pi and then secure
shelled into the Slave from it. For example:

ssh –A pi@192.168.1.85

We now need to remove the public and private key located on the Slave machine.
These are the keys from the Master Raspberry Pi and were copied over when you
cloned its SD card. Going forward you may wish to use the steps given earlier in
this chapter to also clone your Slave SD card once you have removed the public and
private key. You can then re-use this image without having to repeat the following
tasks each time you add a new machine to the cluster.

The id_rsa and id_rsa.pub keys are also located in the .ssh folder of your user. It
is this directory we will therefore need to remove them from.

Navigate to the .ssh folder for your user on the Slave machine, for example:

cd /home/pi/.ssh

Whenever you create RSA keys they should be stored here. Note that it is possible to
have more than one public and private key if desired.

Parallel Computing – MPI on the Raspberry Pi

[52]

Listing the files in the directory should show the two keys from the
Master RPi:

ls -al

We can now remove the two keys using the following command:

rm id_rsa id_rsa.pub

If you have been experimenting with SSH outside the
steps presented in this book and created other key pairs,
make sure you delete the correct ones!

Now we have removed the keys, let's exit this machine. Remember you can use the
exit command to do this::

exit

For the Master RPi to be able to log into the Slave we need to add the public key to
the authorized_keys file we mentioned previously.

When running remote commands you do not need to always directly SSH into the
target machine. You can run commands in the following format that will login,
execute the command you wish to run, and then return the prompt to you on the
machine you are currently logged into.

This is demonstrated in the following command for copying over our public key:

cat ~/.ssh/id_rsa.pub | ssh pi@192.168.1.85 "cat >> .ssh/authorized_keys"

When you run this command you will be prompted with the authenticity of host
message you should now be familiar with. Accept this.

Next will be the password prompt; enter the same password as Master Raspberry Pi.

Finally you will be prompted to enter the passphrase. Enter this and the command
will copy the file into the authorized_keys file and finish executing.

As you may have noticed you did not have to login, type the command, and then
type exit to log back out of the target computer. This is a useful method for running
remote commands that can help to save time.

Using the same method, we can now update the hostname of the second Raspberry
Pi and restart the machine.

Chapter 3

[53]

From the command line execute the following. If you wish to name your Slave
Raspberry Pi something other than raspberrypi2, you can change the value in the
command:

ssh pi@192.168.1.85 'sudo echo "raspberrypi2" | sudo tee /etc/hostname;
sudo shutdown -r now'

Each time you add a new Raspberry Pi to your cluster you can use the preceding
method to change the hostname rather than edit it via raspi-config.

We can now update the pifile file we created earlier and add the IP address of the
Slave Raspberry Pi to it. On the Master machine, open the file and add the Slave IP
address, for example:

192.168.1.85

Our final task is to test our two Raspberry Pis using the example application from
earlier. Once again run this from the command line:

mpiexec -f pifile -n 2 ~/mpich3/build/examples/cpi

If everything worked successfully you should see:

Process 0 of 2 is on raspberrypi

Process 1 of 2 is on raspberrypi2

pi is approximately 3.1415926544231318, Error is 0.0000000008333387

wall clock time = 0.018672

With the setup complete we can now write our own application.

Writing an MPI-based application
The following application is a simple Hello World style program that will
demonstrate some of the features of MPI.

A list of supported MPI-based functions and datatypes can be reviewed at:

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

You will need to log into the Master Raspberry Pi to start with.

On this machine create a new file in the code directory under mpich3 called hello_
rpi.c. For example:

vim /home/pi/mpich3/code/hello_rpi.c

Parallel Computing – MPI on the Raspberry Pi

[54]

To this file we are now going to add the following code:

/*
Hello RPI implemented using MPI
*/

#include <stdio.h>
#include <mpi.h>

Here we include the MPI-specific header directive: mpi.h, which will give us access
to the MPI library.

Following this we can add the main function to the code. Copy and paste the
following under the header directives:

int main(int argc, char *argv[])
{
 int rpi; // The raspberry pi node
 int totalrpi; // The total number of rpi's

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rpi);
 MPI_Comm_size(MPI_COMM_WORLD, &totalrpi);

 printf("This is Raspberry Pi %d of %d\n", (rpi+1),
 totalrpi);

 MPI_Finalize();
 return 0;
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Inside the function we simply include a number of MPI-specific function calls. The
call to MPI_Init function initializes the MPI environment.

Following this we include the MPI_Comm_rank and MPI_Comm_size function calls.
The first call determines the rank of the calling process and the second function
determines the size of the group associated with the communicator, in our case the
number of Raspberry Pis. The values from these two functions are stored in the rpi
and totalrpi integer variables.

Chapter 3

[55]

Following these function calls we print out the Raspberry Pi currently executing the
application followed by the total number of Raspberry Pis.

The application then calls MPI_Finalize to terminate the MPI environment
and exits.

And that's it, a fairly simple program implementing MPI; a comprehensive API
guide lists the available functions:

http://www.mcs.anl.gov/research/projects/mpi/www/www3/

Save your code and exit the file. We can now compile our program using mpicc from
the command line:

mpicc -g -o hello_rpi hello_rpi.c

In order to use the application on both Raspberry Pis, you will need to copy the
hello_rpi file you generated over to the Slave Raspberry Pi. You can do this using
scp as illustrated:

scp hello_rpi pi@192.168.1.85:/home/pi/mpich3/code

Now that we have the compiled code on both machines, we can try executing our
application. As in the previous example, we will use mpiexec. From inside the root
of your user run the following command:

mpiexec -f pifile -n 2 ./mpich3/code/hello_rpi

You will now see:

This is Raspberry Pi 1 of 2

This is Raspberry Pi 2 of 2

Congratulations, you have written your first MPI-based application. Let's now look
at the communication aspect of MPI in more detail.

MPI – point-to-point communication
Point-to-point communication is an import pattern of MPI as it governs all the
methods that transmit a message between two separate MPI processes.

In this approach, one process or task acts as the sender and the other as the receiver.
At the heart of this are several types of send and receive routines. Each routine is
subtly different and can have an impact on the performance of your program.

First we will look at non-blocking and blocking routines before writing an
application that implements the blocking method later in this chapter.

Parallel Computing – MPI on the Raspberry Pi

[56]

Non-blocking methods work by starting an operation and then continuing with
their execution. This type of method does not wait for the communication across
the network between the two processes to complete. As a result of this it can be
used for a number of performance gains. Examples of this include overlapping
communication and the computation and the execution of a mathematical operation.

On the other hand, blocking routines request that the MPI library start the
operation when free. Thus the process has to wait to ensure that the message data
has reached a certain state before it can continue to execute. This type of method is
often considered safer.

"Safer" in this context is used to mean that:

• The data intended for the sender can be modified
• The data intended for the receiver can be read.

Next we will look at the synchronous send. Synchronous is used to imply one action
after another. The synchronous send is a blocking method that communicates with
the second process and then blocks until the application buffer sending the task is
free. It also continues to block until the second process has started to receive the data
sent to it.

Closely related to this is a buffered send. The buffer is essentially a region of memory
used to temporarily store data while it is being moved from one area to another by
a process.

The buffered send is similar to the synchronous send; however, it permits the
programmer to assign buffer space for data storage until it is delivered to the
second process. Its application can help to mitigate problems associated with
buffer space allocation.

Finally worth mentioning is the combined send/receive. This approach works by
sending a message and returning a "receive" acknowledgement before implementing
a block. The blocking continues until the process buffer is free and until the target
process buffer contains the received data envelope.

These terms should provide you with a little more understanding of how programs
on the Raspberry Pis communicate with one another across the network.

You can read more about these methods at the following two sites:

https://computing.llnl.gov/tutorials/mpi/

http://mpitutorial.com/

Chapter 3

[57]

Let's now move onto an example program that illustrates some of the preceding
concepts using a blocking send.

Using your text editor create a file called blocking_send.c in the same directory as
your hello_rpi.c file.

To this add the following code:

#include <stdio.h>
#include <mpi.h>

int main(int argc,char *argv[])
{
 int rpi;
 int totalrpi;
 int targetrpi;
 int sourcerpi;
 int count;
 int tag=1;
 char inchar;
 char outchar='r';

In the preceding code we have defined our main function and declared a number of
variables to store our results. Included in this is a variable of char type that is used to
store the data to be sent between our two processes.

Now add the next block of code:

 MPI_Status Stat;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rpi);
 MPI_Comm_size(MPI_COMM_WORLD, &totalrpi);

You should be familiar with MPI calls. Three of them were used in the hello_rpi
application. Here we have also included MPI_Status, which is used to return data
about a message by the receiving method.

After this add the following two if statements.

 if (rpi == 0) {
 targetrpi = 1;
 sourcerpi = 1;
 MPI_Send(&outchar, 1, MPI_CHAR, targetrpi, tag,
 MPI_COMM_WORLD);
 MPI_Recv(&inchar, 1, MPI_CHAR, sourcerpi, tag,
 MPI_COMM_WORLD, &Stat);
 }

Parallel Computing – MPI on the Raspberry Pi

[58]

 if (rpi == 1) {
 targetrpi = 0;
 sourcerpi = 0;
 MPI_Recv(&inchar, 1, MPI_CHAR, sourcerpi, tag,
 MPI_COMM_WORLD, &Stat);
 MPI_Send(&outchar, 1, MPI_CHAR, targetrpi, tag,
 MPI_COMM_WORLD);
 }

The if statements are responsible for executing the MPI calls that initiate
communication between the two Raspberry Pis. This example would not be scalable
for a large cluster, but serves the purpose of illustrating how the MPI_Rec and MPI_
Send functions work with two devices.

In these MPI statements we are also telling the Master machine to send a character to
the Slave and, once it receives it, to send it back.

We can complete this program with the following code:

 MPI_Get_count(&Stat, MPI_CHAR, &count);
 printf("Raspberry Pi %d: Received %d char(s) from Raspberry Pi
 %d with tag %d \n",
 rpi, count, Stat.MPI_SOURCE, Stat.MPI_TAG);
 MPI_Finalize();
 return 0;
}

Here MPI_Get_count returns the number of entries received. Following this we print
out a statement to the screen indicating the Raspberry Pi node, the number of chars
it received, the source node, and the tag. Finally we indicate that our program is
finished.

Save the code you have added to your file and exit your text editor.

The next task is to compile the code using the steps from the hello_rpi.c
application, calling this program blocking_message.

Once compiled copy it over to the Slave Raspberry Pi and run your application:

mpiexec -f pifile -n 2 ./mpich3/code/blocking_message

If successful you should now see:

Raspberry Pi 0: Received 1 char(s) from Raspberry Pi 1 with tag 1

Raspberry Pi 1: Received 1 char(s) from Raspberry Pi 0 with tag 1

You have now written and run an application that explores the point-to-point
communication features of MPI and some of the technical terms associated with it.

Chapter 3

[59]

If you are interested in pursuing MPI-based applications further, in Chapter 7, Going
Further, we provide another example application and in the Appendix provide further
links to MPI-based sites.

Summary
In this chapter, we explored the subject of MPI using the C programming language
to give us a taste of parallel computing. We also wrote our first two parallel
applications and set up a second Raspberry Pi node by cloning the Master Raspberry
Pi's SD card.

In comparison to MPI we can look at a Java-based technology called Hadoop. In the
next chapter we shall start this task.

Hadoop – Distributed
Applications on the

Raspberry Pi
In Chapter 1, Clusters, Parallel Computing, and Raspberry Pi, we touched upon the
technology known as Apache Hadoop.

In this chapter, we will explore the subject in more detail. This will include setting up
Hadoop in order to be able to write distributed applications on the Raspberry Pi in
Java via the paradigm of MapReduce.

We will start with a brief introduction to Hadoop and then walk you through the
installation and the configuration process for a test cluster.

A brief introduction to Apache Hadoop
The technology known as Apache Hadoop is an open-source framework for
developing distributed applications hosted by the Apache Software Foundation.
The framework contains a number of subprojects. The one we are interested in is the
Hadoop Core, also known as Hadoop Common.

The Hadoop Common project is located within the overall Hadoop framework. It
allows the development of cloud computing environments via off-the-shelf hardware
such as the Raspberry Pi. The developer interacts with it by using its Java based API.

Hadoop – Distributed Applications on the Raspberry Pi

[62]

Within Hadoop Common there are several significant areas that help us achieve our
goal of developing parallel computing applications. Two of the most important areas
are as follows:

• Hadoop MapReduce environment
• Hadoop Distributed File System (HDFS)

In this chapter both subjects will be touched upon during the installation and setup
process and Chapter 5, MapReduce Applications with Hadoop and Java, provides an
in-depth look at the HDFS and MapReduce.

One of the perquisites for installing and using Hadoop is Java, so we will now install
this programming language onto Raspbian.

Installing Java
Java, as you may know, is an OOP language that has its syntactical roots in the C and
C++ programming languages. It is also the language we will be using to interact with
the Hadoop framework.

We will start by installing Java onto our Master Raspberry Pi. Make sure you have
logged into this machine.

The latest version of the Java Development Kit (JDK) can be found on the Oracle
website at the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

You should note that some versions of Java (including hard-float versus soft-float)
might not be compatible with your Raspberry Pi.

You can always refer to the eLinux.org RPi Java JDK installation guide for updates
available at the following link:

http://elinux.org/RPi_Java_JDK_Installation

Remember you can update your Raspberry Pi's package list by
running apt-get update.

To start the Java installation, run the following command:

sudo apt-get install openjdk-7-jdk

You will now see the process running in your terminal window.

Chapter 4

[63]

Once it is completed you will have the JDK ready to go for Java development. The
JDK includes important tools such as the JRE (Java Run-time Environment) and the
Java compiler.

To test your installation, run the following command in the terminal to view Java's
help content:

java -h

You can run the preceding command at any time in order to find out more
information on the Java software suite.

With Java installed we can move on to setting up Apache Hadoop.

Installing Apache Hadoop
In order to install Hadoop, we will need to locate the tar.gz file that contains the
most recent stable release from the Apache website.

Before downloading this file you should create a directory on your Raspberry Pi to
place the file in and to store your Hadoop projects.

Under your /home/pi directory, create the hadoop folder using the following
command:

mkdir hadoop

Next navigate into this directory using the cd command:

cd hadoop

Now that we have a place to store our code, we can grab the latest version of Hadoop
at the following link:

http://www.apache.org/dyn/closer.cgi/hadoop/common

We will download the tar.gz file you selected from the download website using
wget. The following command illustrates this process:

wget http://apache.osuosl.org/hadoop/common/hadoop-1.2.1/
 hadoop-1.2.1.tar.gz

Remember to replace the URL with the mirror you selected from the download page
and the version number (in our example 1.2.1) with the one you have chosen.

Hadoop – Distributed Applications on the Raspberry Pi

[64]

Once the file has finished downloading you can extract its contents. From the
command line type:

tar xvfz hadoop-1.2.1.tar.gz

You should now see a directory with Hadoop located in it, for example
hadoop-1.2.1.

These very simple steps have downloaded and extracted a copy of Hadoop Common
onto our Raspberry Pi's file system. However, before we can start using it we need to
amend some of the configuration files that govern how it will work.

Hadoop configuration
The configuration settings for Hadoop are stored in two types of XML documents:
read-only default configurations and site-specific configurations. You will learn more
about both of these types of files over the next two chapters.

If you are interested, you can also read more on the Apache website at the
following URL:

http://hadoop.apache.org/docs/stable/cluster_setup.html#Configuration

In addition to the Hadoop XML documents, you will also be editing a shell script.
The shell scripts referenced in this book are generally used for tasks such as starting
and stopping servers.

Before we can amend our configuration files, you will need to locate the open JDK
directory where Java is installed on your Raspberry Pi. This path is required in order
to update the user profile.

To do this, navigate to the following jvm (Java Virtual Machine) directory:

cd /usr/lib/jvm

As the Raspberry Pi uses an ARM processor, we will need the ARM-specific version
of Java. When you list the contents of the directory, you should expect to see:

java-7-openjdk-armhf

Make a note of this directory as you will need to edit your .profile file and include
this information.

Navigate to your home directory and open the .profile file in your text editor of
choice for example:

vim ~/.profile

Chapter 4

[65]

At the bottom of the file we need to add some export statements and update our
PATH variable. Paste the following statements at the end of the file:

 export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-armhf
 export HADOOP_INSTALL=/home/pi/hadoop/hadoop-1.2.1
 export PATH=$PATH:$HADOOP_INSTALL/bin

These export commands update our environment to include the bin directory of the
version of Hadoop we installed in the PATH variable.

Save the file and exit. We can now reload our profile so that Raspbian picks up our
changes using the source command as follows:

source .profile

To check if our profile successfully reloaded you can try the hadoop version
command, for example:

hadoop version

The output in the terminal should be information on the Hadoop version
you installed.

As you can see Hadoop is successfully extracted and accessible; therefore our next
task is to create the directories that it uses for storing data. Start by navigating to the
hadoop directory.

Hadoop needs to have a directory where is can write intermediate output from
MapReduce tasks and temporary data for the HDFS (Hadoop Distributed File
System) client. The root directory where this data is stored is named tmp.

Create a folder with the name tmp inside the hadoop directory and then navigate
into it:

mkdir tmp

cd tmp

Within this directory you can create subdirectories; for example, for specific data
types.

The next directory created will be the hdfs directory. Once it has been created, you
should navigate to this:

mkdir hdfs

cd hdfs

Hadoop – Distributed Applications on the Raspberry Pi

[66]

Inside this directory we will need to create two more sub-directories, data and name.
Use the following command to create both at once:

mkdir data name

The name directory will be used for storing the file system image (fsimage),
something you will learn more about later in this book.

The data directory is used for HDFS block storage. HDFS is also covered in more
detail in Chapter 5, MapReduce Applications with Hadoop and Java.

With these in place, there are several XML configuration files that have to be edited
to include settings for our environment.

The files are stored in the conf directory under the version number of Hadoop you
installed. In the following example you should change hadoop-1.2.1 to the version
on your machine:

cd ~/hadoop/hadoop-1.2.1/conf

This directory contains site-specific configuration files, such as mapred-site.xml,
that we will shortly be editing.

Located in the conf directory you will also find a file named core-site.xml that we
will be editing next. This file contains information to override the default settings for
core Hadoop properties and is used to set specific information such as the location of
the temporary directory used by the HDFS.

vim core-site.xml

We will now add the following XML configuration (in the core-site.xml file)
between the <configuration> tags:

<property>
 <name>hadoop.tmp.dir</name>
 <value>/home/pi/hadoop/tmp</value>
 <description>Temporary directories root.</description>
</property>

The property tag contains the path to the tmp directory we created on our file
system. Make sure you update the contents of the <value> tag to reflect your path
structure if it is different from the example.

Chapter 4

[67]

Below the temp directory property, paste the following XML. Here we set the IP
address and the port of our Master Raspberry Pi in the <value> tags.

<property>
 <name>fs.default.name</name>
 <value>hdfs://192.168.1.84:54310</value>
 <description>The default file systems name.
 Contains the Master Raspberry Pi's IP and the port number.
 </description>
</property>

That completes the edits to the core-site.xml file; save your changes and exit. With
this step complete we can modify the mapred-site.xml file.

The mapred-site.xml file is responsible for overriding the default values for
MapReduce, for example allowing us to set the IP address that the MapReduce job
tracker runs on.

vim mapred-site.xml

To the <configuration> tag we can now add the paths to the data and name
properties as follows:

<property>
 <name>mapred.job.tracker</name>
 <value>192.168.1.84:54311</value>
 <description>The Master Raspberry Pi's IP and port that the
 MapReduce job tracker runs on.</description>
</property>

The preceding code sets the Map Reduce Job Tracker (responsible for farming out
MapReduce jobs) to run on port 54311 of our Raspberry Pi's IP address. Save this
and exit.

Finally with your text editor open the hdfs-site.xml file. This file contains
important information such as the paths to the name and data directories we
created previously.

vim hdfs-site.xml

To the <configuration> tag we can now add the paths to the data and name
properties as follows:

<property>
 <name>dfs.data.dir</name>
 <value>/home/pi/hadoop/hdfs/data/</value>
</property>

Hadoop – Distributed Applications on the Raspberry Pi

[68]

<property>
 <name>dfs.name.dir</name>
 <value>/home/pi/hadoop/hdfs/name/</value>
</property>

Save these changes and exit your text editor.

With our configuration edits complete, we can go on to modify the hadoop-env.sh
shell script in our text editor, for example:

vim hadoop-env.sh

Once open, edit the following export command to the open JDK directory you
noted earlier:

The java implementation to use. Required.
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-armhf/

Next you can format the file system. This process prepares the target directory to be
used by Hadoop to store data produced by the MapReduce jobs you will be writing
later in this book.

Make sure your user (pi) owns the directory sudo chown
pi:pi -R hadoop.

The command to begin the formatting process is as follows:

./home/pi/hadoop/hadoop-1.2.1/bin/hadoop namenode –format

Accept any prompts you get when re-formatting. Once this process has finished
running we can test the Hadoop server.

Testing our Hadoop server
Congratulations! You have installed Hadoop and configured it to run on your
Raspberry Pi. It is now time to test the various Hadoop services.

Next you can execute the start-all shell script:

/home/pi/hadoop/hadoop-1.2.1/bin/start-all.sh

Chapter 4

[69]

This will start up a number of processes on your Raspberry Pi related to Hadoop. In
your terminal you will see output similar to the following:

starting namenode, logging to /home/pi/hadoop/
 hadoop-1.2.1/libexec/../logs/hadoop-pi-namenode-raspberrypi.out

localhost: starting datanode, logging to /home/pi/hadoop/
 hadoop-1.2.1/libexec/../logs/hadoop-pi-datanode-raspberrypi.out

localhost: starting secondarynamenode, logging
 to /home/pi/hadoop/hadoop-1.2.1/libexec/../logs/hadoop-
 pi-secondarynamenode-raspberrypi.out

starting jobtracker, logging to /home/pi/hadoop/hadoop-
 1.2.1/libexec/../logs/hadoop-pi-jobtracker-raspberrypi.out

localhost: starting tasktracker, logging to /home/pi/hadoop/
 hadoop-1.2.1/libexec/../logs/hadoop-pi-tasktracker-raspberrypi.out

This indicates that our setup was successful. To stop the processes, run the
following shell script:

/home/pi/hadoop/hadoop-1.2.1/bin/stop-all.sh

We have one simple configuration task left on our Master Raspberry Pi before we
consider the Slave machine. Update the following masters conf file to indicate this is
the Master machine:

vim /home/pi/hadoop/hadoop-1.2.1/conf/masters

To this file add the IP address of this Raspberry Pi.

Next open the /etc/hosts file in your text editor and append the IP address and the
name of the machine to it, for example:

192.168.1.84 raspberrypi

We are now ready to start work on our second machine. Make sure this is plugged in
and powered up.

Setting up our second Raspberry Pi
The process for setting up our second Raspberry Pi is very similar to the previous
steps we explored, although a lot quicker as we can reuse some of our configuration
files and edit them as needed.

Hadoop – Distributed Applications on the Raspberry Pi

[70]

To start with, we will grab the IP address of our Slave Raspberry Pi. There is a file on
the Master Raspberry Pi we will update that will need to include this.

From within the conf directory on the master machine, open the slaves file in your
text editor:

vim /home/pi/hadoop/hadoop-1.2.1/conf/slaves

To this file add both the Slave and Master machines IP addresses on a new line each
as follows:

192.168.1.84
192.168.1.85

Save the file and exit.

That's the final portion of configuration we needed to update, to support our second
Raspberry Pi on the Master device.

To save some time in the setup process, we can copy our .profile file from the
Master Raspberry Pi to the Slave Raspberry Pi using the following command:

scp ~/.profile pi@192.168.1.85:.profile

We can also create the hadoop directory on the second machine and copy the tar.gz
Hadoop file we downloaded before using the following two commands:

ssh 192.168.1.85 "mkdir hadoop"

scp /home/pi/hadoop/hadoop-1.2.1.tar.gz
 pi@192.168.1.85:/home/pi/hadoop/hadoop-1.2.1.tar.gz

Log directly into the second Raspberry Pi:

ssh pi@192.168.1.85

We now need to add the Master and Slave IP addresses and the device names to
the /etc/hosts file. Open the /etc/hosts file in your text editor and append the
following statements to it:

192.168.1.84 raspberrypi
192.168.1.85 raspberrypi2

Save this file and exit.

As with the Master Raspberry Pi we also need to install Java. As before you can run
apt-get to grab the JDK and install it, using apt-get:

sudo apt-get install openjdk-7-jdk

Chapter 4

[71]

When Java has finished installing we are going to extract the files from the ZIP file
we copied to this machine from the Master Raspberry Pi using the tar command:

tar xvfz hadoop-1.2.1.tar.gz

Once complete, you can run hadoop version again to see if it has installed
successfully.

If everything looks good then recreate the folder structure inside the hadoop
directory as we did on the Master Raspberry Pi. This should consist of the tmp, hdfs,
hdfs/name, and hdfs/data directories.

Rather than copying and pasting the XML into the various configuration files again,
it is easier to copy them from the Master Raspberry Pi and then edit the values.

Navigate to the following conf directory:

cd /home/pi/hadoop/hadoop-1.2.1/conf

Next run the following scp commands:

scp pi@raspberrypi:/home/pi/hadoop/hadoop-1.2.1/conf/*site.xml

scp pi@raspberrypi:/home/pi/hadoop/hadoop-1.2.1/conf/hadoop-env.sh

These two commands will copy the three site files, core-site.xml, mapred-site.
xml, hdfs-site.xml, and also the hadoop-env.sh file we added the JDK path to.

The core-site.xml file contains the IP address of the Master Raspberry Pi. This will
need to be changed to the address of the Slave machine. Open up the core-site.
xml file using the following command:

vim core-site.xml

In the configuration, change the <value> tag associated with the fs.default.name
property to reflect your Slave Raspberry Pi's IP, for example:

<property>
 <name>fs.default.name</name>
 <value>hdfs://192.168.1.85:54310</value>
 <description> The default file systems name.
 Contains the Slave Raspberry Pi's IP and the port
 number.</description>
</property>

Hadoop – Distributed Applications on the Raspberry Pi

[72]

Following this we need to edit the mapred-site.xml file to also include the IP
address of the Slave Raspberry Pi. With your editor, open the file:

vim mapred-site.xml

Next update the <value> tag with the new IP address as shown in the
following XML:

<property>
 <name>mapred.job.tracker</name>
 <value>192.168.1.84:54311</value>
 <description> The Slave Raspberry Pi's IP and port that the
 MapReduce job tracker runs on. </description>
</property>

The other files that were copied do not need to be amended. With the configuration
updated we can now move on to formatting the file system. As with the Master
Raspberry Pi you can run the hadoop command to kick off the process:

/home/pi/hadoop/hadoop-1.2.1/bin/hadoop namenode –format

Once the formatting is completed we can return to the Master Raspberry Pi, using
the exit command, and test whether the machines can work in unison.

exit

From the Master Raspberry Pi's command line, execute the following shell script to
start the distributed file system:

/home/pi/hadoop/hadoop-1.2.1/bin/start-dfs.sh

If everything is configured successfully you will start to see an output similar to the
following in the terminal:

starting namenode, logging to /home/pi/hadoop/hadoop-
 1.2.1/libexec/../logs/hadoop-pi-namenode-raspberrypi.out

192.168.1.85: starting datanode, logging to /home/pi/hadoop/
 hadoop-1.2.1/libexec/../logs/hadoop-pi-datanode-raspberrypi2.out

192.168.1.84: starting datanode, logging to /home/pi/hadoop/
 hadoop-1.2.1/libexec/../logs/hadoop-pi-datanode-raspberrypi.out

192.168.1.84: starting secondarynamenode, logging to
 /home/pi/hadoop/hadoop-1.2.1/libexec/../logs/hadoop-pi-
 secondarynamenode-raspberrypi.out

Chapter 4

[73]

After this we can then run the start-mapred script to start the MapReduce
daemons, jobtracker, and tasktrackers:

/home/pi/hadoop/hadoop-1.2.1/bin/start-mapred.sh

The output displayed on your screen should be like:

192.168.1.85: starting tasktracker, logging to
 /home/pi/hadoop/hadoop-1.2.1/libexec/../logs/hadoop-pi-
 tasktracker-raspberrypi2.out

192.168.1.84: starting tasktracker, logging to
 /home/pi/hadoop/hadoop-1.2.1/libexec/../logs/hadoop-pi-
 tasktracker-raspberrypi.out

If everything ran successfully then congratulations the process is complete!

Now Hadoop has been set up, we can start exploring the technology at its core—the
MapReduce framework.

Summary
In this chapter we introduced you to Apache Hadoop. You then installed Java and
set up your first Raspberry Pi with the Hadoop software. Once this was done, you
completed the setup of your second Raspberry Pi by installing Java and Hadoop.

With our environment ready to go, we can now explore MapReduce Java-based
applications. The coming chapter will introduce you to this very topic and fill in
some more detail on Hadoop Common.

MapReduce Applications with
Hadoop and Java

In the previous chapter we setup Hadoop across two Raspberry Pis. In this chapter
we will delve into MapReduce, the core paradigm of Hadoop and run our first
MapReduce application.

We will also explore some technologies used in setting up a Hadoop, cluster and
cover features such as HDFS in more detail.

MapReduce
MapReduce is a programming approach that allows systems to process large
datasets in parallel.

The key concept is that of using two functions, Map and Reduce, that are combined to
produce a desired result.

Its genesis can be found in functional programming and has been available in
languages such as LISP for several decades. Google has been a driver for bringing
it out of the functional programming paradigm into the OOP (Object Orientated
Programming) world. Its contributions include publishing a seminal paper on the
subject in 2004, and being granted a patent on the technology.

So how does MapReduce work? The Map function takes a data set and then operates
on the data, returning another data set as an output. This output is then fed to the
Reduce function, which subsequently operates on the data set once again and returns
a smaller data set as an output.

MapReduce Applications with Hadoop and Java

[76]

So let's look at an example of how the Map function operates. The pseudo code
function CtoF in the following code takes a list of temperatures in Celsius and then
converts the values into Fahrenheit, giving us another list as an output:

Map CtoF [4, 3, 2, 1] -> [39.2, 37.4, 35.6, 33.8]

Here we can see the values from the initial input have been converted and then a list
with the new values has been returned as an output.

Now we have an output from the Map function we can look at the Reduce function.

The Reduce function takes the output of the preceding Map function and operates on
the data passed to it. For example, let's assume that we now wish to find the highest
temperature (max) in the outputted data set; we could use a function as follows to
achieve this:

Reduce max [39.2, 37.4, 35.6, 33.8] -> [39.2]

So the Reduce function has taken the set of data, output by our Map function, and
returned a single value—the largest is of course 39.2.

Using this model we could take a large dataset, break it into separate chunks, and
pass each of these chunks to a Map function. Finally each output can be fed into the
Reduce function to give us our answer. Let's take a look at how this would work.

In the following scenario we have three datasets, each consisting of the temperature
data in Celsius for a given European city. The Map function will convert the
temperature from Celsius to Fahrenheit and the Reduce function will show us the
highest temperature.

Dataset 1 = [(London, 10), (Madrid, 28), (Helsinki, 5)]
Dataset 2 = [(London, 11), (Madrid, 26), (Helsinki, 3)]
Dataset 3 = [(London, 8), (Madrid, 24), (Helsinki, 1)]

Since we have three datasets, we can pass each dataset to a separate Map function (for
example, each function could be on a separate Raspberry Pi).

Each Map function would then convert the temperatures located on the dataset to
Fahrenheit, giving us the following output:

Output dataset 1 = [(London, 50), (Madrid, 82.4), (Helsinki, 41)]
Output dataset 2 = [(London, 51.8), (Madrid, 78.8), (Helsinki, 37.4)]
Output dataset 3 = [(London, 46.4), (Madrid, 75.2), (Helsinki, 33.8)]

Chapter 5

[77]

These outputs are then fed back to a single Reduce function, which would collect the
data and return the highest temperature for each city.

Based on the preceding data this would be as follows:

Final dataset = [(London, 51.8),(Madrid,82.4),(Helsinki,41)]

The explained MapReduce concept is at the core of how Hadoop operates. Using
Java we can write MapReduce-based programs that will then be passed to the
various Hadoop nodes—in our case Raspberry Pi's.

MapReduce in Hadoop
In order to use Hadoop to run our MapReduce applications, there are key
terminologies used in the technology we should understand.

These are briefly described as follows:

• NameNode: The NameNode is responsible for keeping the directory tree of
all the files stored in the system and tracking where the file data is stored in
the cluster.

• JobTracker: The JobTracker passes out MapReduce tasks to each Raspberry
Pi in our cluster.

• DataNode: The DataNodes in our cluster use the HDFS to store
replicated data.

• TaskTracker: A node in our Raspberry Pi cluster that accepts tasks.
• Default configuration: A default configuration file provides the base that the

website-specific files overwrite/augment. An example is the core-default.xml
file.

• Site-specific configuration: You will be familiar with this from the previous
chapter. This configuration contains specifics about our own development
environment, such as our Raspberry Pi's IP address.

A comprehensive guide to Hadoop's terms and phrases can be found on the Hadoop
Wiki at http://wiki.apache.org/hadoop/.

One area that requires closer examination though is the Hadoop Distributed
File System.

MapReduce Applications with Hadoop and Java

[78]

HDFS – The Hadoop distributed file system
The HDFS (Hadoop Distributed File System) is a scalable and distributed file
system written in the Java programming language. Each node in the cluster, in our
instance a Raspberry Pi, has a NameNode but may not have a DataNode present.

It is the clustering however of DataNodes that forms the distributed file system.
This file system then communicates between nodes over TCP/IP and uses Remote
Procedure Calls (RPC) to execute functions between each Raspberry Pi.

The data that is stored is replicated across nodes and the number of replications
in Hadoop is by default set to three. This value can be changed as extra Raspberry
Pis are added to your cluster by updating the dfs.replication parameter in your
website configuration file. The replicated data is stored in the location you set in the
dfs.data.dir parameter in the previous chapter.

The Hadoop FileSystem shell is the tool we use to interact with HDFS for adding
and removing files and directories we wish to process. We shall be exploring the
shell shortly, as a means to add data to our file system.

First, let's start up our Hadoop-related processes so we can experiment with
the HDFS and prepare some directories for running our upcoming MapReduce
application against.

We can start the HDFS via the start-dfs.sh shell script available at
/home/pi/hadoop/hadoop-1.2.1/bin/start-dfs.sh.

Following this we can then fire off the start-mapred.sh script available at
/home/pi/hadoop/hadoop-1.2.1/bin/start-mapred.sh.

Next, we can use the following jps command to check if all of the services are
running as expected:

jps

You should now see output similar to the following:

12680 Jps

5996 SecondaryNameNode

6206 TaskTracker

6110 JobTracker

5784 NameNode

5888 DataNode

Chapter 5

[79]

With our services running, we can now start creating directories with the FS shell. To
invoke the shell you use the following command, where <arguments> is the specific
shell command you wish to run:

hadoop fs <arguments>

A list of shell command arguments can be found on the Apache Hadoop website:

http://hadoop.apache.org/docs/stable/file_system_shell.html

For the MapReduce application we will be running, we need an input directory to
store files. To create our input directory we use the following command:

hadoop fs -mkdir input

We now need to download text input files from the following BitBucket website:

https://bitbucket.org/IoTAtHome/hadoop-wordcount-files

Add these to the file system using the –put argument as follows:

hadoop fs -put *.txt input

Our files are now in place, ready for processing. Next we shall move on to creating a
WordCount application that can run a MapReduce job on these text files and return a
count of the instances of each word across the files.

The WordCount MapReduce program
The following code is a typical example of a MapReduce program for Hadoop. Its
purpose is to take a number of input files and return a count of each word located
in them.

We will be running this application in order to illustrate how the files we added to
the FS can be processed.

Add the preceding code into a new file called WordCount.java created in
vim /home/pi/hadoop/apps/WordCount.java:

package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

MapReduce Applications with Hadoop and Java

[80]

The preceding code includes the various libraries we will need to use in our
application. After this let's add the WordCount class:

public class WordCount {

 public static class Map extends MapReduceBase implements
 Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output, Reporter
 reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokens = new StringTokenizer(line);
 while (tokens.hasMoreTokens()) {
 word.set(tokens.nextToken());
 output.collect(word, one);
 }
 }
 }

 public static class Reduce extends MapReduceBase implements
 Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output, Reporter
 reporter) throws IOException {
 int total = 0;
 while (values.hasNext()) {
 total += values.next().get();
 }
 output.collect(key, new IntWritable(total));
 }
 }

Inside the WordCount class definition, you will see the code responsible for using
the Hadoop Map and Reduce functionality. This will be used to perform the tasks we
explained earlier when looking at the MapReduce paradigm.

Following this we can add our main function as follows:

 public static void main(String[] args) throws Exception {

 String input = args[0];
 String output = args[1];
 String startupmsg = String.format("Word Count job started

Chapter 5

[81]

 getting files from %s outputting to %s ", input, output);

 System.out.println(startupmsg);

 JobConf configuration = new JobConf(WordCount.class);
 configuration.setJobName("wordcount");

 configuration.setOutputKeyClass(Text.class);
 configuration.setOutputValueClass(IntWritable.class);

 configuration.setMapperClass(Map.class);
 configuration.setCombinerClass(Reduce.class);
 configuration.setReducerClass(Reduce.class);

 configuration.setInputFormat(TextInputFormat.class);
 configuration.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(configuration,
 new Path(input));
 FileOutputFormat.setOutputPath(configuration,
 new Path(output));

 JobClient.runJob(configuration);
 }
}

Our main() function here is the entry point of the program. This function uses a
number of libraries from Hadoop in order to process the text files we downloaded
from the Web. We pass in the input directory as a command-line argument, which
the application will read from. The second command-line argument we pass is the
output directory. Our application will create this for us.

When the application launches it will indicate the input and output directories in
the terminal.

With the code added, we can save and exit the file, ready to try compiling and
running the program.

MapReduce Applications with Hadoop and Java

[82]

Testing our application
Testing our application is a relatively simple task.

Let's start with compiling the code. All the following commands should be run from
inside the following directory:

/home/pi/hadoop/apps

Inside of this apps folder create a new directory called wordcount_classes; this
will be where we store our outputted JAR file. You can use the following mkdir
command:

mkdir wordcount_classes

The tool we use for compiling Java code is javac. This handy command-line utility
will take a number of inputs and compile our Java code, outputting an application
we can run.

The javac command takes several flags and parameters. The first flag is –classpath.
This flag points to the Hadoop core JAR file. This is required at the compilation time
in order to generate our application. Following this we include the –d flag. The –d
flag sets the destination directory for our class file.

Finally we reference the Java file we wish to compile, in this case WordCount.java,
as follows:

javac -classpath /home/pi/hadoop/hadoop-1.2.1/hadoop-core-1.2.1.jar
 -d wordcount_classes WordCount.java

Next we run the following command to produce a JAR file. A JAR file is used to
combine several Java class files into a single ZIP style file, in our case the output from
the previous command.

jar -cvf /home/pi/hadoop/apps/wordcount.jar -C wordcount_classes/

The c flag in the previous command indicates that we wish to create a file. The f flag
indicates that we want to write the data to the file rather than the terminal window.
The v flag tells the JAR application to display verbose output.

Following these three flags we add the path and the name of the JAR file we want
to create. Finally we include the –C flag. This changes the directory into wordcount_
classes and the period (.) tells the command to grab everything in it.

After running the command you will see the output wordcount.jar file.

Chapter 5

[83]

Using this we can execute our application as follows:

hadoop jar wordcount.jar org.myorg.WordCount input output

The application will now start and generate a number of output files including the
word count.

These processed files can be found in the output directory using the FS shell
as follows:

hadoop fs -ls output

We can copy the processed files back to Raspbian's file system using the
get command.

First create a directory under apps to store the output using the mkdir command:

mkdir /home/pi/hadoop/apps/output

Then run the following hadoop command:

hadoop fs -get /user/pi/output/* /home/pi/hadoop/apps/output

The files have now been copied to the app directory. You can open one of the output
files, for example vim /home/pi/hadoop/apps/output/part-00000.

Inside this file you will see a count of the instances of each word; the extract of the
following output demonstrates this:

Goodbye 2

Hello 3

Hi 3

If you want to run the application again, delete the output folder using the
-rmr command:

hadoop fs -rmr output

We have now demonstrated how we can use MapReduce for taking files and
processing them via a Java application on multiple devices. As with MPI, this
provides us with another tool for parallel computing tasks.

MapReduce Applications with Hadoop and Java

[84]

Summary
In this chapter we learned about the MapReduce paradigm. We also explored the
Hadoop file system and tried out an application that processed a number of text
documents to return a word count.

We shall now move on to writing our own MapReduce application for calculating π
using a process known as a Monte Carlo simulator.

Calculate Pi with Hadoop
and MPI

Now since we have set up Hadoop, written, and run our first application in it, we
can look at the concept of Monte Carlo simulators and how we can calculate Pi (П)
using Hadoop and MPI. This brings together and compares the two technologies we
have explored in Chapters 2 through 6.

Monte Carlo simulators
A Monte Carlo simulator, also known as Monte Carlo methods, is a type of
computational method found in a variety of fields ranging from physics to finance.

Monte Carlo simulators use randomized sampling repeatedly in order to obtain a
result for a particular mathematical question.

The name is derived from the city of Monte Carlo in Monaco. The origin of the name
comes from Manhattan project participants Stanislaw Ulam and John Von Neumann in
reference to a relative of Ulam who had a taste for gambling.

Calculating П is an example of a problem especially suited to this type of algorithm
and an early example of this is Buffon's needle. You can read more about the history
of this experiment at Wolfram MathWorld:

http://mathworld.wolfram.com/BuffonsNeedleProblem.html

In order to calculate П we can also use another method that involves a diagram
displaying a circle located in a square divided into four quarters.

Calculate Pi with Hadoop and MPI

[86]

In this diagram we are interested in the top-right quarter of the circle. A simulator
can generate numbers that corresponds to co-ordinates in this top-right portion
bounded by the box. A number that falls inside the circle is recorded as H: a hit.
Values that fall outside of the quarter circle are discarded. Finally we take the
total number of co-ordinates generated and record it as T: the total. The diagram
explaining this is as follows:

This method, akin to throwing darts, can be used to give us an estimate of П.
The more "throws" we have the closer we will come to calculating an accurate
representation of the number.

Therefore the equation for calculating Pi this way can be summarized as:

Pi = 4*H/T

As you may have guessed this type of calculation is a prime candidate for parallel
computing as it can be divided up between multiple cores and nodes and executed
multiple times on each machine.

With this in mind we will now take a look at calculating П with MapReduce by
examining the example that comes bundled with Hadoop.

A Hadoop application to calculate Pi
Hadoop comes packaged with a number of example applications. We are of course
interested in calculating П program in particular.

The source code for this application can be downloaded from Apache's website at the
following URL:

https://svn.apache.org/repos/asf/hadoop/common/trunk/hadoop-
mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/
hadoop/examples/QuasiMonteCarlo.java

Chapter 6

[87]

The JAR file containing the compiled class can be found on your machine at:

/home/pi/hadoop/hadoop-1.2.1/hadoop-examples-1.2.1.jar

Let's navigate to this directory:

cd ~/hadoop/hadoop-1.2.1

We are now going to run the example. The program takes two inputs: the number of
maps and the number of samples. Try running the following demonstration:

hadoop jar hadoop-examples-1.2.1.jar pi 2 4

You should now see something similar to:

Number of Maps = 2

Samples per Map = 4

Wrote input for Map #0

Wrote input for Map #1

Starting Job

…

Job Finished in 273.167 seconds

Estimated value of Pi is 3.50000000000000000000

Here we can see that the value is fairly inaccurate compared to the first two decimal
digits of П, that is, 3.14. This is because we only had a small sample size and two
map tasks.

By altering the number of maps and samples we can get a more accurate number.
You can try experimenting with these values by changing the command line inputs.

For example, changing the values to 2 and 50 gives us an estimate of 3.2, which is as
we can see getting closer to a more accurate estimate.

This application is using the MapReduce framework to distribute the calculation of
Pi before reducing the multiple results to a single estimate.

Now you have tried calculating П via Hadoop; let's return to MPI, as you may
remember we ran a similar exercise in Chapter 3, Parallel Computing – MPI on the
Raspberry Pi.

Calculate Pi with Hadoop and MPI

[88]

Pi with C language and MPI
We have seen that we can calculate П with Hadoop. We can now try a similar
application in C. The program we will now write will generate results similar to
what we saw with the example program included with MPICH and will also use a
MapReduce-style approach.

Create a new file at the following location to store your code in:

~/mpich3/code/monte_carlo_pi.c

Open this file and add the following code:

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

double insidecircle(int throws);

#define GAMES 20
#define THROWS 100

The previous block of code includes the necessary header files and defines a
function and two constants. The function insidercircle() will be responsible
for calculating П.

The first constant is the number of GAMES, that is, attempts at calculating П. The
second defines the number of THROWS in each game. Now add the following code to
the end of the file:

int main (int argc, char *argv[]) {

double jobaverage, calcpi, totalpi;
int rpi, totalrpi, i;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rpi);
MPI_Comm_size(MPI_COMM_WORLD,&totalrpi);
srand((int)time(NULL));
jobaverage = 0;

 for (i = 0; i < GAMES; i++) {

 calcpi = insidecircle(THROWS);
 MPI_Reduce(&calcpi, &totalpi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);

Chapter 6

[89]

 if (rpi == 0) {
 jobaverage = ((jobaverage * i) +
 (totalpi/totalrpi))/(i + 1);
 printf("Game: %d calculated the value of pi as: %10.8f\n",
 i,jobaverage);
 }
 }

 if (rpi == 0) {
 printf ("\nJob complete \n");
 }

 MPI_Finalize();
 return 0;
}

The main() function in our code is used for making MPI calls, seeding the random
number generator, and then kicking off the process of generating П. We introduce
here the MPI_Reduce function as well, which you can read more about at the
mpitutorial site:

http://mpitutorial.com/mpi-reduce-and-allreduce/

Our function uses a for loop, based upon the number of games defined in the
GAMES constant to call the insidecircle() function, which is tasked with the actual
calculation of П. Once complete it outputs the estimate of П for that game.

Let's now add the insidercircle() function, which computes an estimate of П,
based upon the equation we examined earlier in this chapter:

double insidecircle(int throws)
{
 double xposcoord, yposcoord, pi, rnum;
 int hits, i;
 hits = 0;

 for (i = 1; i <= throws; i++) {

 rnum = (double) rand()/((double) RAND_MAX);
 xposcoord = (rnum * 2.0) - 1.0;
 rnum = (double) rand()/((double) RAND_MAX);
 yposcoord = (rnum * 2.0) - 1.0;

 if ((xposcoord*xposcoord)+(yposcoord*yposcoord) <= 1.0){
 hits++;
 }

Calculate Pi with Hadoop and MPI

[90]

 }
 pi = 4.0 * (double)hits/(double)throws;
 return(pi);
}

In the preceding code we can see we pass in the number of throws to the function.
This will determine how many darts we throw at the circle.

Following this we then calculate whether the dart landed inside the section of the
circle or outside it. For every dart that lands inside the circle we increment the hits
variable by one.

Once we have exhausted the number of throws, we calculate П using our previous
equation and return this value to the main() function. When the main() function has
completed all the games it exits.

Save the file you have added the code to and then exit. We are now going to test our
application.

Using the mpicc compiler run the following command:

mpicc -lm –g –o monte_carlo_pi monte_carlo_pi.c

We now need to copy the compiled file to our second Raspberry Pi:

scp monte_carlo_pi pi@raspberrypi2:/home/pi/mpich3/code

Navigate back to the root of your user account and run mpiexec, passing in your
monte_carlo_pi application as a parameter:

mpiexec -f pifile -n 2 ./mpich3/code/monte_carlo_pi

You should now see an output similar to the following:

Game: 0 calculated the value of pi as: 2.88000000

…

Game: 19 calculated the value of pi as: 3.10400000

Congratulations, your MPI-based application is now calculating П. You can try
amending the values stored in GAMES and THROWS, in order to garner a more
precise estimate.

Chapter 6

[91]

Summary
In this chapter, we brought together the technologies we have studied so far and
compared them by looking at how they both solve the problem through
parallel computing.

This problem was calculating П using a Monte Carlo style simulator.

In case of the MPI, we wrote a small application in C, which gave us some more
exposure to programming parallel applications.

Now that you have a taste for how these two technologies can be used, you have
the context to explore both Hadoop and MPI in more detail including editing the C
program and writing your own Java application.

In the next chapter, we shall be looking at further tasks which we can perform with
our Raspberry Pi cluster.

Going Further
In this chapter, we will bring together what we have learned throughout this book
and look at some next-step projects that build upon the work from the previous
chapters. The projects located here include booting up your Raspberry Pi to use a
USB HDD, creating a Lego enclosure, and writing an MPI-based application
using Fortran.

Let's start by looking at the USB HDD project.

Booting from an external USB HDD
Booting the Raspberry Pi up to use a USB HDD will give you extra storage capacity
and also provide you with a device that is faster and more robust when it comes to
accessing data repeatedly. This is especially useful when running large MapReduce
applications with Hadoop. The USB HDD should contain external power, if possible,
as the max recommended current on the USB ports is 100 mA.

Follow the listed steps to set up your USB HDD and configure your SD card:

1. Plug in the USB device to one of your Raspberry Pi's USB port's; remember to
leave the keyboard attached.

2. Using the Linux instructions from Chapter 2, Setting Up your Raspberry
Pi Software and Hardware for Parallel Computing, grab the disk name and
unmount the USB device. You can use the instruction at the following eLinux
page to format your USB drive:
http://elinux.org/RPi_Easy_SD_Card_Setup

Going Further

[94]

You can use ls /dev/ | grep "sd" to list connected
devices and then to mount the device use sudo mount /
dev/sda1 ~/usb, where sda1 is your USB device. This
will confirm the USB device is working.

3. After formatting the USB device mount it to a directory locally, for example:
sudo mount /dev/sda1 ~/usb

4. Copy the image of your SD card root file system to the USB drive using the
dd command, for example:
sudo dd bs=1M if=/dev/mmcblk0p1 of=/dev/sda1

5. We can now edit/create the current SD card's cmdline.txt file as follows:
vim /boot/cmdline.txt

6. If you created a new file, change the file to the following line:
dwc_otg.lpm_enable=0 console=ttyAMA0,115200
 kgdboc=ttyAMA0,115200 console=tty1 root=/dev/sda1
 rootfstype=ext4 elevator=deadline rootwait

7. Run the partition resize tool using the following command:
sudo resize2fs /dev/sda1

8. Once it ends, edit the fstab file to include the following code:
vim usb/etc/fstab

proc /proc proc defaults 0 0
/dev/mmcblk0p1 /boot vfat defaults 0 2
/dev/sda1 /ext4 defaults,noatime 0 1

9. Save the changes and reboot your Raspberry Pi.

Your Raspberry Pi is now set up to run from the extra USB device. The boot loader
will stay on the SD card; however your data is now stored on the HDD.

You should find a number of performance gains using this method, and the HDD
has a longer life than the SD card. For example, you can now remove the root file
system from the SD card and just use the USB device for storing items such as
your HDFS.

Let's now take a look at building a case for our Raspberry Pi.

Chapter 7

[95]

Building a Lego enclosure
Building a case for your device helps to protect it from getting damaged. One fun,
popular, and cheap method of doing this is to use Lego bricks.

For those of you who don't have them, these can be purchased from most toy stores,
Amazon, or can be ordered directly from the following Lego website:

http://shop.lego.com/en-US/#shopxlink

Lego also allows custom brick ordering; for example, you can order all red, green, or
white bricks for your case at the following link:

http://shop.lego.com/en-US/Customized-Items-ByCategory

For each Raspberry Pi case you will need the following:

• Flat Lego panels to make a 13 x 9 stud rectangle.
• Bricks to go around the edges of this rectangle. These should be two-studs

wide.
• Four flat tiles. These have no studs on top and cover an area of 1 x 2 studs

when connected.
• Pieces to make a wall, three bricks high and one stud wide, to ring the 13 x 9

dimensions.

So let's get started with building our Lego enclosure. The steps for this are as follows:

1. Make a single layer base from the flat Lego piece 13 x 9 studs.
2. Following this, add a second layer around the edge with the two-stud

wide blocks.

Going Further

[96]

3. Add the flat tiles to prevent the bottom of the RPi catching on the studs.
4. Build up the walls leaving gaps for the RCA, HDMI, and Ethernet ports.
5. Once complete, the finished case should look like the following figure:

The top of the case does not contain a lid. This is optional and will help to prevent
anything from falling onto your Raspberry Pi. However, by not including a lid you
can stack cases upon each other, with the base of the top case acting as the lid of
the bottom.

If you wish to make a lid, you can use the specs for the base of the Raspberry Pi case
and attach this to the top of your Lego case walls.

This fairly simple design is of course very easy to modify and build upon. Please
refer to the Appendix for further links and ideas.

If reading about Fortran earlier in the book intrigued you, then you may be
interested in trying out the MPI Fortran application in the following section.

Chapter 7

[97]

Experimenting with MPI and Fortran
The following Fortran program is an adaptation of the hello_rpi.c application
from Chapter 3, Parallel Computing – MPI on the Raspberry Pi.

Create a new file called hello_rpi.f in the Fortran directory that you created earlier
as follows:

vim /home/pi/Fortran/hello_rpi.f

Next add the following code to the file:

 program hellorpi
 include 'mpif.h'

 integer rpi, totalrpi, ierr

 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rpi, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, totalrpi, ierr)

 print *, 'This is Raspberry Pi ',(rpi+1),' of ',totalrpi

 call MPI_FINALIZE(ierr)
 end

You can see this program is very similar to the C one.

To start with, we include the mpif.h header. Following this we declare a number of
integer variables to store the current Raspberry Pi executing the program, the total
number of RPi's in the cluster, and an additional variable for an error code.

After this are the three MPI calls we made in the hello_rpi.c application.

A difference between the C and Fortran program is that we also include an extra
parameter for our MPI calls—ierr. If you wish to expand the preceding application
you can check the value of ierr and then halt the application or alert the user if there
is a problem.

Finally, we print the Raspberry Pi ID to the screen.

Save the file and exit. We are now going to compile the code with the Fortran 77
compiler. To do this, run the following command:

mpif77 -o hello_pi hello_pi.f

Going Further

[98]

Once the file has been compiled we need to copy it to the other Raspberry Pi using
the following command:

scp hello_pi pi@raspberrypi2:/home/pi/Fortran

Now that the file is on both machines we can navigate back to our home directory
and run the application using mpiexec as follows:

mpiexec -f pifile -n 2 ./Fortran/hello_pi

You should now see the following output:

This is Raspberry Pi 1 of 2

This is Raspberry Pi 2 of 2

Congratulations, you have now written another MPI-based program, this time
in Fortran.

For more Fortran based MPI programs check out the following link:

http://people.sc.fsu.edu/~jburkardt/f_src/mpi/mpi.html

Power for multiple devices
In this section we take a brief look at some alternatives to using standard
micro-USB phone-style chargers or desktop-mounted USB ports for powering
your Raspberry Pi.

Each of the following suggestions should provide you with some ideas for future
projects and provide some links to further reading. Remember, when working with
mains electricity, to always make sure you take the necessary safety precautions and
refer to a licensed professional.

USB wall plates
One alternative to the standard USB hubs is to install a wall mounted USB plate.

For running a small number of Raspberry Pis you can eliminate the need to use a
USB hub or to use a desk-mounted multi adapter with USB ports.

Wall plates are directly wired into your mains electric as with a standard
electricity socket.

Chapter 7

[99]

These can be found at most home DIY stores. It is recommended that you have them
installed by a certified electrician due to the risk of electric shock posed by working
with mains electricity. Some plugs offer up to 4 USB ports so they are good for
smaller projects.

Battery power
There are a number of projects dedicated to powering the Raspberry Pi via batteries.
Batteries can be very useful if you wish to display your project at another location
for a short amount of time. They also have the benefit of allowing you to move your
project to another country that uses a different mains electricity system without
needing to purchase a new set of wall warts. This of course is especially useful if, as
we suggested previously, you wish to display the cluster.

The downside to battery power is that it only last a few hours and you will need
some experience soldering and modifying electronics to get the most out of a battery-
powered system. When modifying electronics such as the Raspberry Pi, there is a
risk of damaging the board. You should therefore only attempt these projects if you
are comfortable with the level of technical experience required.

The following URL provides a guide to powering your Raspberry Pi via battery,
modifying your Raspberry Pi, and how to set it up:

http://www.daveakerman.com/?page_id=1294

Using a PC power supply
For electronically-minded people, it is possible to build your own USB-based hub
that relies on a PC power supply. Once again, safety precautions should be taken
when attempting projects such as this to avert the risk of an electric shock.

The Technology Toolshed site provides a comprehensive guide to building out a
scalable USB-based power unit that can be expanded over time as you add more
nodes to your cluster.

The guide can be found at the following URL:

http://techtoolshed.blogspot.com/2013/01/power-requirements-of-
raspberry-pi.html

Going Further

[100]

Power over Ethernet
Another option is to power your Raspberry Pi's over an Ethernet connection. You
may be familiar with VoIP (Voice over IP) phones, which draw their power directly
from the Ethernet cables plugged into them. Since your Raspberry Pi is already
running Ethernet cables into a networking switch, you can optionally also power
them this way, thus eliminating the need for a separate power unit.

The following website provides you with a guide to the hardware you can use to
PoE-enable your Raspberry Pi. Please note that when attempting projects such as this
you should take the utmost precautions to ensure that any devices you construct are
safe, including adding fuses to protect your Raspberry Pis.

http://www.xtronix.co.uk/raspberry-pi-poe.htm

When using USB or power over Ethernet, patch panels can also be a useful addition
to your setup. Once you start to increase the number of Raspberry Pis in your cluster,
a patch panel can help to keep wires tidy and allows you to chain Ethernet/USB
cables together.

You can find a wide variety of patch panels with numerous ports on the following
Amazon website:

http://www.amazon.com/

Summary
This chapter concludes the projects presented in this book. Here we learned how to
use the Raspberry Pi with a USB HDD. We also explored building a case using Lego.
As a follow up to this, the Appendix provides you with a number of resources for
purchasing Raspberry Pi cases or 3D-printing custom cases.

Following building a case, we explored writing another MPI-based application, this
time using the Fortran programming language.

Finally we provided some ideas for alternative power sources for your Raspberry Pi
cluster and some links to resources that discuss those.

The projects from this chapter, combined with those from across the rest of this
book, have provided you with the basic tools needed to explore the topic of Parallel
Computing further. You should now be familiar with MPI and Hadoop. You have
also gained a solid understanding of how to build a new node and how to add it to
your cluster.

We now leave it to you, the reader, to take the next steps in this exciting area of
computing. For further links and project ideas please check out the Appendix.

Appendix
In this Appendix, we provide links to further resources referenced during this book
and and websites covering the topics presented throughout the chapters in a more
in-depth manner.

Fortran and C/C++
The following links provide further information on Fortran and C programming
languages:

• The Chartered Institute for IT—Fortran Specialist Group
http://www.fortran.bcs.org/resources.php

• The Fortran Company
http://www.fortran.com/the-fortran-company-homepage/fortran-
tools-libraries-and-application-software/

• Fortran and MPI—University of Kansas
http://condor.cc.ku.edu/~grobe/docs/intro-MPI.shtml

• Fortran 77 programming guide—University of Leicester
http://www.star.le.ac.uk/~cgp/prof77.html

• C programming resources
http://www.cprogramming.com/

http://en.wikibooks.org/wiki/C_Programming

http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

Appendix

[102]

MPI, Hadoop, and parallel computing
Further resources on MPI are as follows:

• Java examples—Cardiff University
http://users.cs.cf.ac.uk/David.W.Walker/CM0323/code.html

• MPI tutorials—Lawrence Livermore National Laboratory
https://computing.llnl.gov/tutorials/mpi/

• Hadoop MapReduce tutorial—Apache Foundation
http://hadoop.apache.org/docs/stable/mapred_tutorial.html

• Raspberry Pi Cloud blog
http://raspberrypicloud.wordpress.com/2013/04/25/getting-
hadoop-to-run-on-the-raspberry-pi/

• Beowulf clusters—Duke University
http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/
ICPP95/icpp95.html

• Parallel Computing—Intel
http://www.intel.com/pressroom/kits/upcrc/ParallelComputing_
backgrounder.pdf

• Parallel Programming—Gribble Lab
http://gribblelab.org/CBootcamp/A2_Parallel_Programming_in_C.
html

• Virtualization—Red Hat
http://www.redhat.com/products/cloud-computing/virtualization/

• Virtual Machines—Virtual Box

https://www.virtualbox.org/

Raspberry Pi cases and clusters
• Raspberry Pi cases—Thingiverse

http://www.thingiverse.com/thing:30563

Appendix

[103]

• Raspberry Pi case design—Raspberry Pi official website
http://www.raspberrypi.org/archives/1354

• Raspberry Pi cases—Adafruit
http://www.adafruit.com/

• Raspberry Pi super computer—Southampton University

http://www.southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_
southampton.htm

Index
A
A1 Overscan 30
A2 Hostname 30
A3 Memory Split 30
A4 SSH 30
A5 Update 30
Adafruit

URL 103
Amazon Web Services. See AWS
Amazon website

URL 100
Apache Foundation

URL 102
Apache Hadoop. See also Hadoop
Apache Hadoop

about 61
configuration settings 64-68
installing 63
second Raspberry Pi, setting up 69-73
server, testing 68, 69
tar.gz file, downloading 63

Apache Hadoop (High-availability distrib-
uted object-orientated platform) 14

Apache website
URL 64

application
testing 82, 83

Archiver
URL 26

AWS 11
AWS Elastic Compute Cloud (EC2) 11

B
batteries 99
BerryBoot version 2

about 25
ZIP file, downloading 26

BerryBoot version 2 ZIP file
Linux 26
Mac OS X 26
Windows 8 26

big data 11
BitBucket website

URL 79
blocking_send.c file 57
booting

from external USB HDD 93, 94

C
C

used, for calculating Pi 88-90
Cardiff University

URL 102
CDC 6600 8
CHameleon 42
cloud computing 11
cluster 7
Commodity hardware clusters. See COTS
concurrency 8
conf directory 66
Control Data Corporation (CDC) 8
core-site.xml file 67, 71
COTS 10
Cray-1 8

[106]

D
DataNodes 77
dfs.replication parameter 78
Duke University

URL 102

E
eLinux.org

URL 62
eLinux page

USB drive formatting, URL 93
eLinux verified peripherals

URL 19
eLinux website

URL 16
eLinux Wiki

URL 17
Expand Filesystem 29

F
FAT (File Allocation Table) 21
file system image (fsimage) 66
Fortran

about 13, 97
based MPI programs, URL 98
installing 37

Fortran 77 programming guide
URL 101

Fortran and MPI
URL 101

Fortran Company
URL 101

Fortran Specialist Group
URL 101

fstab file 94

G
Gribble Lab

URL 102

H
Hadoop

application, used for calculating Pi 86, 87

website, URL 79
Hadoop distributed file system. See Hadoop
Hadoop Distributed File System (HDFS)

62, 78
Hadoop FileSystem shell 78
hadoop version command 65
Hadoop Wiki

URL 77
hdfs-site.xml file 67
hello_rpi.c file 57
H (hit) 86
High Performance Computing (HPC) 8
Hive 12
HiveQL 12
hostfile 45

I
initial setup 20
insidecircle() function 88, 89
installation

MPICH, testing 46
Intel

URL 102
Internationalisation Options 29

J
Java

installing 62
Java Development Kit (JDK) 62
JobTracker 77
JRE (Java Run-time Environment) 63

L
Lego

about 95
custom brick ordering, URL 95
enclosure, building 95, 96
website, URL 95

Linux
Raspberry Pi (second), building 49, 50
SD card formatting, instructions 24, 25

Linux.org website
URL 27

Local Area Network (LAN) 10

[107]

M
machines

multi core 9
multiprocessor 9

Mac OS X
Raspberry Pi (second), building 48, 49
SD card formatting, instructions 22, 23

main() function 89, 90
Map function 76
mapred-site.xml file 67
MapReduce

about 75, 76
DataNodes 77
default configuration file 77
in Hadoop 77
JobTracker 77
NameNode 77
site-specific configuration 77
TaskTracker 77
working 75

MapReduce program
WordCount example 79-81

Message Passing Interface. See MPI
Monte Carlo methods. See Monte Carlo

simulators
Monte Carlo simulators 85
MPI

about 13, 41
implementations 42
MPICH 42
OpenMPI 42
resources, URL 102
tutorials, URL 102
used, for calculating Pi 88-90

MPI-based application
creating, Fortran used 97
writing 53-55

MPICH
about 41, 43
building 44
downloading 43
installation, testing 46
installing 44, 45
Makefile, running 44
URL 42

N
NameNode 77
nano

URL 37
Network Of Workstations (NOW) 10
NOOBS 21, 22

O
OOP (Object Orientated Programming) 75
OpenMP 10
OpenMPI

about 41, 42
URL 42

Overclock 29

P
parallel computing

about 7, 8
and Raspberry Pi 12

parallelism 8
parallel virtual machine (PVM)

URL 11
PATH variable 65
Pi

calculating 85, 86
calculating, C used 88-90
calculating, Hadoop application used 86, 87
calculating, MPI used 88-90

pifile 45
point-to-point communication 55
POSIX Threads (Pthreads) 10
power, for multiple devices

about 98
battery power 99
Ethernet connection 100
PC power supply, using 99
USB wall plate 98

prerequisites, Raspberry Pi
desk mounted power strip 17
Ethernet/RJ45 network cables 17
HDMI capable monitor 16
housing units, for boards 19
housing units, for lego 19
Internet connection 18

[108]

network switch 18
SD cards, Raspberry Pi compatible 18
setting up 15, 16
two micro-USB power units 16
USB hard drives (optional) 19
USB keyboard and mouse 16
VGA/DVI monitor and adapter 16

programming languages
about 13

property tag 66
PuTTY

Windows 8 users 33
PuTTY executable file

URL 32

Q
Quick format option 22

R
Raspberry Pi

about 7, 27, 28
and parallel computing 12, 13
batteries 99
booting, from USB HDD 93, 94
configuring, to run with MPICH 45, 46
Ethernet connection 100
initial setup 20
installation 28-31
keys, setting up 31
Lego enclosure 95, 96
Mac OS X and Linux users 32
MPI 41
PC power supply, using 99
power, for multiple devices 98
powering via battery, URL 99
prerequisites 15
SSH, connecting via 32
SSH, running 34
SSH, testing 31
storage device, SD card using as 21
URL 12
USB wall plate, installing 98
Windows 8 users, with PuTTY 33
work environment 15

Raspberry Pi case design
Adafruit, URL 103
Raspberry Pi official website, URL 103
Southampton University, URL 103

Raspberry Pi cases
Thingiverse, URL 102

Raspberry Pi Cloud blog
URL 102

Raspberry Pi official website
URL 103

Raspberry Pi (second)
building 46
building, on Mac OS X 48, 49
powering up 51
RSA key, setting up for SSH 51-53
SD card, cloning in Windows 47
SD card, cloning on Linux 49, 50

Raspberry Pi Software Configuration Tool
(raspi-config) 29

Raspbian
text files, editing on 37
URL 27

raspi-config screen 29
Red Hat

URL 102
Reduce function 76
Remote Procedure Calls (RPC) 78
RPi. See Raspberry Pi
RSA (Rivest, Shamir, and Adleman)

about 34
URL 34

S
safer 56
screen

terminal multiplexer with 38-40
URL 36

SD card
brands, URL 21
formatting 22
Linux instructions, for formatting 24, 25
Mac OS X SD card formatting, instructions

22
set up 21
URL 18

[109]

using, as Raspberry Pi storage device 21
Windows 8 SD card formatting, instructions

23
Secure Digital. See SD card
source command 65
Southampton University

URL 103
SSH

RSA key, setting up 51, 53
running 34

ssh-add tools 36
ssh-agent 36
SSH RSA keys

about 34, 35
ssh-add tools 36
ssh-agent 36
SSH, setup 36

start-dfs.sh shell script 78
start-mapred.sh script 78
synchronous

about 56

T
TaskTracker 77
terminal multiplexer

about 38-40

Thingiverse
URL 102

T (total) 86

U
USB HDD

booting from 93
setting up 93, 94

USB wall plate 98

V
Vim

URL 37
Virtual Box

URL 102
VoIP (Voice over IP) phone 100

W
Win32 Disk Imager 47
Windows 8

Raspberry Pi (second), building 47
SD card formatting, instructions 23, 24

WinZip
for Mac, URL 26
URL 26

Thank you for buying
Raspberry Pi Super Cluster

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Raspberry Pi Gaming
ISBN: 978-1-78328-323-1 Paperback: 60 pages

Your guide to gaming on the Raspberry Pi, from
classic arcade games to modern 3D adventures

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Play classic and modern video games on your
new Raspberry Pi computer

3. Learn how to use the Raspberry Pi app store

4. Written in an easy-to-follow, step-by-step
manner that will have you gaming in no time

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1. Learn how to dynamically adjust your living
environment with detailed step-by-step
examples

2. Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects

3. Revolutionize the way you interact with your
home on a daily basis

Please check www.PacktPub.com for information on our titles

Raspberry Pi Networking
Cookbook
ISBN: 978-1-84969-460-5 Paperback: 204 pages

An epic collection of practical and engaging recipes
for the Raspberry Pi!

1. Learn how to install, administer, and maintain
your Raspberry Pi

2. Create a network fileserver for sharing
documents, music, and videos

3. Host a web portal, collaboration wiki, or even
your own wireless access point

4. Connect to your desktop remotely, with
minimum hassle

Raspberry Pi for Secret Agents
ISBN: 978-1-84969-578-7 Paperback: 152 pages

Turn your Raspberry Pi into your very own secret
agent toolbox with this set of exciting projects!

1. Detect an intruder on camera and set off
an alarm

2. Listen in or record conversations from
a distance

3. Find out what the other computers on your
network are up to

4. Unleash your Raspberry Pi on the world

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Clusters, Parallel Computing, and Raspberry Pi – A Brief Background
	A very short history of parallel computing
	Supercomputers
	Multi-core and multiprocessor machines
	Commodity hardware clusters
	Cloud computing
	Big data

	Raspberry Pi and parallel computing
	Programming languages and frameworks

	Summary

	Chapter 2: Setting up your Raspberry Pi Software and Hardware for Parallel Computing
	Setting up our work environment
	HDMI-capable monitor or VGA/DVI monitor and adapter
	USB keyboard and mouse
	Two micro-USB power units
	A desk-mounted power strip with both USB and mains outlets (optional)
	Three Ethernet/RJ45 network cables
	A small network switch
	An existing Internet connection
	Two SD cards that are compatible with the Raspberry Pi
	Housing units for the Raspberry Pi boards and Lego (optional)
	USB hard drives (optional)

	Future expansion and a scalable setup
	Completing the initial setup
	Using an SD card as our Raspberry Pi's storage device
	SD card setup
	Formatting our card
	Mac OS X SD card formatting instructions
	Windows 8 SD card formatting instructions
	Linux instructions for SD card formatting

	BerryBoot version 2
	Downloading the BerryBoot version 2 ZIP file
	Mac OS X
	Windows 8
	Linux

	Starting up the Raspberry Pi
	The installation process
	Installation complete
	Testing SSH and setting up keys
	Connecting via SSH
	Mac OS X and Linux users
	Windows 8 users with PuTTY

	Setting up your SSH RSA keys
	The ssh-agent and ssh-add tools
	SSH setup complete

	Wrapping up
	Editing text files on Raspbian
	Installing Fortran
	Terminal multiplexing with Screen

	Summary

	Chapter 3: Parallel Computing – MPI on the Raspberry Pi
	MPI – Message Passing Interface
	MPI implementations – MPICH and OpenMPI
	Creating an environment and downloading MPICH
	Building and installing MPICH
	Configuring your Raspberry Pi to run
with MPICH
	Testing our MPICH installation
	Building our second Raspberry Pi
	Windows 8
	Mac OS X
	Linux

	Powering up the second Raspberry Pi
	RSA key setup for SSH

	Writing an MPI-based application
	MPI – point-to-point communication

	Summary

	Chapter 4: Hadoop – Distributed Applications on the Raspberry Pi
	A brief introduction to Apache Hadoop
	Installing Java
	Installing Apache Hadoop
	Hadoop configuration
	Testing our Hadoop server
	Setting up our second Raspberry Pi

	Summary

	Chapter 5: MapReduce Applications with Hadoop and Java
	MapReduce
	MapReduce in Hadoop
	HDFS – The Hadoop distributed file system

	The WordCount MapReduce program
	Testing our application
	Summary

	Chapter 6: Calculate Pi with Hadoop
and MPI
	Monte Carlo simulators
	A Hadoop application to calculate Pi
	Pi with C and MPI
	Summary

	Chapter 7: Going Further
	Booting from an external USB HDD
	Building a Lego enclosure
	Experimenting with MPI and Fortran
	Power for multiple devices
	USB wall plates
	Battery power
	Using a PC power supply
	Power over Ethernet

	Summary

	Appendix
	Fortran and C/C++
	MPI, Hadoop, and parallel computing
	Raspberry Pi cases and clusters

	Index

