Ultimate Guide to

Raspberry Pi

5 Fi
Al EXP,
’ . ‘BuildANDED '

=
@)
=,
Q
-
~

» Create your own games and projects
» Learn programming from scratch
» Perfect for every age, from 8 to 88!

Ultimate Guide to Raspberry Pi

Welcomel!

I’m a child of the first home-computing revolution. Back in the 1980s, I learned
to program on a ZX Spectrum plugged into a portable colour TV, using a
cassette deck for saving and loading games. Since the mid-1990s, much of my
living has been earned by using the skills I began learning on that primitive,
rubber-keyed chunk of plastic.

The Raspberry Pi brings the same opportunities to today’s would-be
programmers. A fully working computer the size of a credit card that you can buy
for less than /30, the Piis the ideal platform for learning about programming
everything from games to robots.

Raspberry Pi for Beginners aims to help you get started as a coder by encouraging
you to create your own programs. (Don’t worry if you don’t have a Raspberry Pi
yet; our advice applies to Windows users too.) We cover just the theory you must
know and then put those concepts to work in building two games — one simple
and one more complex.

Why games? Because they’re a great way to learn programming: they’re
fun, you get to play them, and they include all the ingredients common to most
coding projects, from software utilities to robotic control. They can also lead to a
great career as a games programmer.

But the real power of the Raspberty Pi is in its ability to connect with the
real world — and this, along with its compact size, low cost and modest power
requirements, makes it ideal for both mobile and remote purposes.

So in this book we also show you how to create an independent weather
station that can be sited anywhere that has power and Wi-Fi. It’s a great thing to
do, and could open your mind to all sorts of possibilities. How about sending
the Pi into space; using it as a CCTV controller; configuring it as the brains of a
robot; or even using it to control home appliances?

So let’s get started. Fasten your seat belt and welcome to the world of coders,
tinkerers, makers and rocket scientists.

Kevin Partner

Ultimate Guide to Raspberry Pi

Contents

Chapter 1: The Raspberry Pi story

There isn’t 2 handy manual that’s
6 supplied with the Raspberry Pi,

so here we cover the basics. We
explain what the Raspberry Pi consists of
and how to set it up — from downloading
the operating system to hooking it up in
your front room. We’ll also reveal how
to set up and install all the software you’ll
need to help you work through the rest of
this guide.

Chapter 2: What is programming?

This chapter demystifies the
world of programming. We’ll
explain the basic concepts and

show you what a keen beginner can achieve
with the investment of time. We’ll also
provide a tour of the tools that will soon
become your natural home. Here, we’ll

also get you typing in your first few lines of
code. Don’t panic! It isn’t nearly as scary as
it might sound.

Chapter 3: Programming in Python

Python is a brilliant first
programming language to
learn: similar to English,

it’s very easy to understand, yet packs

in a surprising amount of power. Many
professional programmers use Python
every day. Here, we introduce the language
by explaining the thinking behind it — and
object-oriented programming — and how it

works in practice.

|

])
‘.“lll‘..

1))

Ultimate Guide to Raspberry Pi

Chapter 4: Designing a game

Now you know the fundamentals,
it’s time to get creative: we take
you, step by step, through the

creation of a real game. By the end of this

chapter, you’ll have written an addictive little
shooting game that lets you and your friends
blast fruit out of existence.

Chapter 5: Creating a polished game

Now you’ve mastered the
basics, it’s time to stretch
your skills. In this chapter,

we add our own fruity spin to a match-three-

style game. What’s more, we’ll give it the
professional polish and graphical features that
paying customers demand.

Chapter 6: Pi in the sky

We set up our very own
weather station, complete
| with a built-in computer!

In this very real-world project, we explain
everything you need — including a bird nesting
box — and reveal how you can hook up to a

third-party online service such as Dropbox.

Chapter 7: Build a robot

In this new chapter,
we stretch your skills
further and show you

how you can use the Raspberry Pi to put
together a robot inspired by the Mars

Curiosity Rover.

Chapter One

The Raspberry Pi story

Photography, Danny Bird; repro, Jan Cihak

In the year 20006, the Computer Laboratory at the University of Cambridge
had a problem. Fewer and fewer students were applying to study computer
science at the establishment, and the skill levels of those who did apply
were declining year on Whereas, in the past, undergraduates had
typically arrived at the university with some coding experience, by the mid-
noughties most knew much more about PowerPoint than they did about
programming.

This was partly due to a switch in emphasis at school towards teaching
office applications and web design rather than how to program, but it was
also because the earlier generation of home computers had been replaced by
games consoles. Why did that matter? Because a ZX Spectrum, BBC Model B
or Commodore 64 could be used both to play games and create software. The

PlayStation and Xbox, for all their technological superiority, are sealed uni

with no way for the average user to create their own games.

Perhaps the biggest problem, however, is caused by the way in which the

Ultimate Guide to Raspberry Pi

internet has become part of everyday life. The average household now has

at least one computer, usually a laptop, which they use for everything from
banking through online shopping to social networking and playing games. The
idea of handing over this now critical piece of kit to an inexperienced student
of programming fills the rest of the family with fear — what if their experiments
led to a problem with their internet banking or, worse, Facebook? What if their
prospective programmer wanted to use it for hours at a time? What would they
use for their Ocado shop?

There’s another problem with modern laptops — they’re simply over-the-top
for learning to program on. Over-powered, distracting and complicated, today’s
operating systems are a million miles away from the blinking cursor of the classic
home computer.

So, led by then-director of studies Eben Upton, the group that would one
day become the Raspberry Pi Foundation set itself the target of encouraging
1,000 new computer science students across the UK. Since they couldn’t directly
re-write the syllabus taught in schools, they decided to focus on what they could
do — so they began work on a new type of computer that would be easy to
program and, critically, cheap to buy.

Fast-forward to February 2012 and, after a six-year journey, component
suppliers Farnell and RS Electronics opened their websites for pre-orders
of the Raspberry Pi. Although the project had been started with the aim of
producing 1,000 units per year, initial interest was such that 10,000 were planned
for production in 2012. Within minutes of going live with their Raspberry Pi
order pages, both websites had collapsed under the sheer weight of traffic
and the initial allocation had disappeared in a wisp of smoke. A few days later,
100,000 pre-orders had been taken, with more than two million units sold by the
end of 2013.

The foundation has also launched an even cheaper version, called the Model
A, which has the advantage of requiring less power. However, this guide focuses
mainly on the more general-purpose Model B.

The perfect platform for learning programming

The Raspberry Pi has been designed from the ground up to provide the ideal
environment in which to learn programming — whether that’s simply for the fun
of it or as the start of a career in coding. It’s cheap, compact and rugged, and it
also comes with most of the tools you need to create your own programs built
into its default software.

It may not be as fast as the family laptop, but think about this: the computer
controlling the Mars Curiosity rover currently trundling across the surface of the
red planet is less powerful than a £30 Raspberry Pi. If NASA’s chip can power a
space probe, just imagine what you can do with your Pi.

Ultimate Guide to Raspberry Pi

What is the Raspberry Pi?

The first thing you’ll notice when you clap eyes on a Raspberry Pi is that it’s
tiny — the size of a credit card. Then you’ll notice that it has no case — it’s
simply a printed circuit board. Despite its diminutive size and Heath Robinson
appearance, however, the Pi is a completely functional computer. And it costs
around /£30. Let’s take a look at what makes it tick.

5. RCA video

8. GPIO pins
4. S
. St
R9BPRUBHARER

Oﬁuau

DEIE

[2.5Dcard gy -
o
&= 00 -am
power connector

nin

CPU & GPU

B8 8
1|
| S

S

]
|

Brains
A single chip (1) contains memory, the central processing unit and graphics chip.

CPU (Central Processing Unit or Processor)

The Raspberry Pi uses a mobile phone chip designed by ARM — the company
that designs the processors used in the majority of smartphones and tablets,
including those sold by Apple. The version used in the Pi is slower than you’ll
find in an iPad, for example, but it’s fast enough to do the job it’s intended for.

GPU (Graphics Processing Unit)

Unlike the relatively pedestrian CPU, the Graphics Processing Unit on the Pi is
equivalent to a top-of-the-line mobile device. It can run 3D games and play high-
definition video (indeed, one of the most common uses for the Pi is as a very
cheap media centre). With the right software, a TV and a broadband link you
have iPlayer, YouTube and other internet video services at your fingertips.

Ultimate Guide to Raspberry Pi

Memory

The Pi comes with 512MB of Random Access Memory (RAM) — plenty for the
uses we’re going to put it to. It also comes with an SD card slot (2) — exactly the
same as that used by many digital cameras — which takes the place of the hard
disk found in most laptops. Programs are stored on the SD card and, once the Pi
is powered on, these are copied into the much faster RAM until the computer is
turned off, when the RAM is cleared. One great convenience of the Pi is that you
can turn it from a media player to a desktop computer simply by swapping out
the SD card — much easier than removing a laptop’s hard disk!

Sound and vision
One of the design requirements for the Raspberry Pi was that it should be easy to
hook up to existing equipment, so it includes an HDMI port (3) for connecting
to a TV or computer monitor. HDMI catries both picture and sound, so if you
use a monitor, you may need to plug a set of speakers into the stereo audio jack
(4). If your monitor doesn’t have an HDMI socket, you can buy a cheap adaptor
to convert it to DVI — just bear in mind that you won’t be able to use a monitor
that has only a VGA connector.

If you’re really stuck, you can use the RCA video jack (5) to connect to
the composite video input on an old-fashioned CRT TV. However, this was
added mainly to allow the Pi to be used in the Third World where TVs are more
common than monitors — the picture quality is poor.

Connections
The Raspberry Pi comes with two USB ports (6) that you can use to connect a
keyboard, mouse, Wi-Fi dongle or any compatible peripheral. You’ll probably
want to buy a USB hub to allow you to plug in multiple devices at once — just
make sure it has a separate power adaptor; the Pi’s ports supply only a low voltage.
You can connect the Raspberry Pi directly to your router or a wired network
via the standard Ethernet port (7) — this gives the fastest and most reliable
connection to the internet.

Pi Pins
So far, everything we’ve described (apart from the SD card) is pretty standard
to all computers. However, the Pi has some extra capabilities not found on your
common or garden laptop. The most important of these are the General Purpose
Input Output (GPIO) pins (8), which offer various ways to control devices and
receive input from sensors and such like. However, misusing these pins can
bake your Pi so it’s best to use one of the many add-on boards that allow you to
experiment safely. We cover some of the options later.

The Pi also includes a connector for a camera module and a DSI connector
for connecting the Pi to certain specialist displays such as mobile phone screens.

Ultimate Guide to Raspberry Pi

with no moving parts and the
ability to connect with the outside
world. Put another way, imagine
having the power of a laptop
without its bulk or its fragility.
With a Raspberry Pi you can take
computing almost anywhere —
think about the possibilities. Take pictures of Earth from near
e Hook it up to a webcam, attach space using a Raspberry Pi
it to a weather balloon and take
pictures from near space. See http://www. raspberrypi.org/
archives/1620 — the Raspberry Pi survived falling 40km through the
atmosphere when the balloon burst
e Attach temperature, humidity and air-pressure sensors to create an
intelligent weather station
e Create a media centre for the car or home
e Build it into a bird box, along with infrared trip sensors and a webcam,
to record the nesting season. See http://www.youtube.com/
watch?v=_-JpbFBCndo
e Put together a very cheap internet radio
e Use it as the brains of a robot...as well as a general-purpose (if a little
slow) computer. For less than £30!
And that’s just the beginning.

Where can | get one? = [_
JLrs raspoerry Pi =

The Raspberry Pi Foundation selected | Raspberry pi . $
Premier Farnell (http://cpc.farnell. - :
com) and RS Electronics (http://
uk.rs-online.com/web/
generalDisplay.html?id=raspberry
pi) to be its official suppliers, so we

recommend buying direct from them. RS Electronics is one of the two authorised suppliers of
Raspberry Pi units in the UK

Whilst units are also available on eBay,
Amazon and through some retailers,
you’re likely to get the lowest price and the latest models by going direct.
As an example, in September 2012, when the foundation launched a slightly

10

Ultimate Guide to Raspberry Pi

revised version of the Pi that included double the memory of the original model,
customers of Farnell and RS Electronics automatically received the new version.

If you don’t have an SD catd already then you may want to add one to your
order when you buy your Pi — that way you’ll know it’s compatible (although the
vast majority of bog-standard cards work fine). Either way, a 4GB-8GB card is
about the right size.

We don’t recommend that you buy one with the operating system (OS)
already installed. This is because the Raspberry Pi is designed to be a “hands on”
computer and you’ll learn a lot more about how things work by installing the
OS yourself. Sooner rather than later you’ll want to upgrade the OS, so it makes
sense to familiarise yourself with the process right at the outset. It isn’t difficult
and you’ll also save yourself a few pounds.

Setting up your Raspberry Pi

Once the jiffy bag containing your tiny new computer lands on the mat, you
have a little work to do before you can connect it to a display and boot it up. The
Raspberry Pi uses a standard SD card instead of the hard disk you’ll find in most
laptops, and your first job is to install the software needed to run the computer
onto the SD card. It’s not difficult, just follow the steps.

“o= Raspbian o e ose | There wouldn’t be much point in a £30
computer if you were then required
TN
INnlmoral S Roowllaey. : —— to install an expensive OS on it (such

as Windows or Apple’s OS X) to get
e ey it to work. This, and the fact that no

Big News! Official Raspbian Imsge Relsased version of Windows or OS X will work
o [v AR on the ARM chip of the Pi, means that
- . ' ' - the various OSes created for it are all
based on the free and open-source Linux.

The foundation recommends Raspbian, a version of Debian that’s a
popular distribution of Linux. If this sounds like gobbledygook, don’t worry
— if you’ve used Windows, you’ll find Raspbian pretty familiar.

You can even install Linux versions of many of the programs you’re
familiar with including LibreOffice for Microsoft-compatible word
processing and spreadsheet work, and even the Chrome browser — we’ll
cover how to do this shortly. You’d be hard-pressed to find any computing
activity for which mature, competent software doesn’t exist for Raspbian.

11

Ultimate Guide to Raspberry Pi

Step 1: Prepare your SD card

1. You’'ll need a Windows-based computer for this. If your computer has an SD
card slot, then go right ahead and insert your 4GB+ card. If not, you’ll need
to use an adaptor.

Red Alert: If you use an external hard drive, then disconnect it now
so there’s no risk of accidentally picking the wrong drive letter when you
reformat the SD card.

2. To format the SD catd, go to https://www.sdcard.org/downloads/
formatter_4/eula_windows/, accept the licence agreement and download
the SD Formatter to your computer. Go to your Downloads folder, right-
click the ZIP file you downloaded and extract it. Now double-click SETUP.EXE
and follow the steps to install SD Formatter..

3. Start SD Formatter and use it to format your SD card.

4. Now head to http://www.raspberrypi.org/downloads and right-
click the link next to “image” under “offline and network install”.
Select “save link as” and save the NOOBS image to your computer’s
Downloads folder. Right-click the ZIP file and extract it, then double-click
the NOOBS folder you’ve just created and copy the files that are inside it
to your SD card.

5. Place the SD card in the Raspberry Pi as shown in the diagram below.

Mobile phone
% charger (or similar)

USB - Keyboard USB - Mouse

= b
HDMI - TV/Monitor Ethernet — Router

12

Ultimate Guide to Raspberry Pi

Stage 2: Hook up your Raspberry Pi

1.

2 g User Pn!n! m 5 l E Em!t user (p1
3 Enable Boot to Desktop/Scratch Choose -hothcr to boet into a desktop en
4 Internationalisation Options Set up language and regional settings to
5 Enable Camera Enable this P1 to work with the Raspberr
6 Add to Rastrack Add this Pi to the online Raspberry Pi M
7 Overclock Configure overclocking for your Pi

B Advanced Options Configure advanced settings

9 About raspi-config Information about this cenfuurﬂuﬂ too

<Select> <Finish>

Connect the HDMI lead to your television or monitor (hint: if your
monitor doesn’t have HDMI but does have DVI, you can buy a cheap
adaptor). Now, connect the keyboard and mouse to the USB ports and
the Ethernet port to your internet router or network. If you don’t plan to

use the Raspberry Pi near your router, you can use a compatible Wi-Fi dongle
(a good example being the Edimax EW-7811UN).

Raspian should be your operating system of choice. Once it has installed, the Raspberry Pi will reboot to
present the screen you see above. Although this configuration screen may look dauntingly technical, the
options we require are actually quite simple to set

2.

Connect the power, and after a few moments, the NOOBS environment
starts up and presents you with a menu of all the different operating
systems you can install on your Raspberry Pi. In most cases you should
use Raspian, so select it and click Install. This will begin a process that will
install Raspian on your SD card — it will take around 30 minutes. Once

it’s complete, click OK and the Pi will reboot, ultimately presenting a
configuration menu.

Choose option 3 to select “Enable Boot to Desktop/Scratch” and then
choose the second option “Desktop Log in”, which will make the Raspberry
Pi boot into the desktop view automatically. Select option 7 “overclock” and
set the value to “modest”, since this will speed up the Raspberry Pi a little
without drawing any extra power. Select option 8 to go to the Advanced
Settings and use option 4 to enable SSH — this will make it possible to
connect to your Pi over a network from your main computer. Now select
<Finish> and reboot the Pi.

13

Ultimate Guide to Raspberry Pi

=

»ip

16

The Pi desktop is easy to get started with, especially if you're familiar with Windows

3. All being well, your Raspberry Pi will reboot into a desktop view that, on the
surface at least, is pretty familiar. At the bottom-left you’ll see the equivalent
of Windows 7’s Start button, for accessing the software that’s pre-installed
on the Raspberry Pi. Next to the Start button is an icon that launches the File
Manager, which works in a similar way to the Windows File Explorer.

4. You’ll also notice an icon labelled “LXTerminal”, which, when double-
clicked, launches a window containing the text pi@raspberrypi in green at
the top left. We'll use this window to type various commands — don’t worty,
you’ll only ever need to learn a few.

Stage 3: Find and install software

The Raspberry Pi comes with a basic
range of software, but one of the benefits
of a Linux-based system is a huge library
of additional free programs.

Finding and installing software for
the Raspberry Pi is very different to its
Windows equivalent, however. Rather
than running a setup program, with Linux
you use a “package manager” and in many
cases this is done by typing in commands.

Don’t panic, it’s easy! We’ll show you how
via the terminal first because most online

Installing software via the terminal isn't
examples use this approach. at all difficult once you know how

14

Ultimate Guide to Raspberry Pi

As a general rule, Linux distributions have poorer support for wireless
networking than Windows PCs or Macs, since not all manufacturers write
Linux drivers for their products. This also applies to wireless keyboards
and mice, so you must make sure that a device is compatible with your
Raspberry Pi before purchasing. You can find a list of supported devices
at http://elinux.org/RPi_verifiedpPeripherals. The Edimax
EW-7811UN Wi-Fi dongle is a good choice for most situations because,
as well as being compatible, it performs well despite its diminutive size.
To install, plug it into the Raspberry Pi before

File Network Help
Agaptern
Natworlg

Curre

switching on the PC. Once booted up, double-click
o, T] the "Wi-Fi Config" icon on the desktop and choose the
Manage Networks tab. Now click

55D

the Add button and you should see
= | ssio |frequency | signal Iﬂag

staf [Yrgnmediad,, | 74:44:00106:... 2412

NlightN

Lasy |Connect 4

Aut |BTWIFath-F. 12

BTWiA

TFC
ass BTFON

P a

62
Encl |BTOperzoneH 02:25:44:1e., 2442
ssi |BTHUbIMICN 00fefd:50a , 2462

Zizasm o | a list of nearby wireless networks.
Select yours by double-clicking it
and then complete the Network
Properties dialog box — remembering
to enter your wireless password into
| +| | the PSKfield. Now click Add and you

. 2427
2442

1S%a
02:fe:f4:59a

02:26:44:1a... 2442

Scan ciose | should find you’re connected.

Each distribution of Linux comes with a library of optional software, called
Package Repositories. You can think of the initial setup as a starting point, to
which you can then add software from the repositories to suit your purpose.

For a general-purpose computer, you’d probably want to install an office
suite such as LibreOffice (a version of OpenOffice), and the Chromium browser
(the open-source version of Google Chrome). In this case, we’re going to install
Chromium and then focus mainly on installing a programming editor. At various
points throughout the book, we’ll add extra packages.

1. Let’s begin by installing Chromium. Double-click LXTerminal and type:
sudo apt-get update
...followed by the Enter key. This probably looks incomprehensible, so let’s
take it step by step. The first command, sudo, tells Linux that you want

to run the rest of the commands as a “super-user”. This is similar to the
Administrator user in Windows — it gives permission to change the system.

15

Ultimate Guide to Raspberry Pi

16

This can be dangerous if not used propetly, so, we have to explicitly type
sudo to confirm we want to do so. apt is short for “Advanced Packaging
Tool” and this is the program that installs our software. get is the utility
within apt that does this — it gets packages.

Finally “update” tells apt-get to download the latest list of packages: you
should always update apt-get before trying to install software.

Now, to actually install Chromium we can type:
sudo apt-get install chromium

...and Enter. This time we tell apt-get to “install” a named package. Your
terminal window will now fill up with lines of text explaining what it’s doing
as the software automatically installs. When it’s done, Chromium will be
available from the Internet submenu of the Start button. To place an icon on
the desktop, right-click the icon in the submenu and select “Add to desktop”.

This is all very well, but how do you know what to install and what the
package name is? One way is to Google “office software for Raspberry Pi”,
but another is to install a graphical package manager. Type:

sudo apt-get install synaptic

This will download and install the Synaptic Package Manager. Once this is
done, you will find it by clicking the Start button and choosing the Other
submenu. Click Synaptic and you’ll be asked to type your password (which,
unless you’ve changed it, will be “raspberty”). You’ll now see a window
containing all the packages available to the Raspberty Pi, organised by type.

We’re going to use Synaptic to install a code editor called Geany. On the left
side of the Synaptic window, scroll down to the Development category. Now
scroll through the right-hand window until you find Geany. In fact, you need
to click the package geany-common first, then select Mark for Installation,
before doing the same with the geany package. Once you’ve done this, click
the Apply button to install it. This is straightforward, but remember the
equivalent command in the terminal would be:

sudo apt-get install geany
...which is clearly much quicker. So, if you know the package name, you

should use the command line approach; if you want to browse, choose
Synaptic. Why not give it a go and install LibreOffice?

Ultimate Guide to Raspberry Pi

Ble Ede Package Settings Help

Commurication (nan free)

O (& o e | Search
Peload Mark Al Upgrades Apply 5 Preperbes
Al maaled Version Latest Version Deacription o
Amitew Rado O eden 4838 © compier (language versi
Base System Al
Commuricaton £ gunpcommen . 1224dhgd fant and lghtesight I0E - ¢
Commarscation lcomtnb] O geenyplagn-addons 0.21.1.dfsg-4 rmiscelanous phiging for Ge

TRA- fast and lightweight IDE
Cross-platiorm (contrb) . :
- Giet Seresnshet Get Changsiog
Sechors Geary vt 3 1mal 3nd g twag mtegrated develcoment srarorment
B wat developed o provide o wnsl and fast 106, which has only o
Staevs Fow depandencs from other packages. It is using only the GTEZ toalkn
Cegn s therabore you need only the GTIZ ruatime hiranes 13 run Geany:
Custom Fiters
The basat features of Gaany sre
Sparch ety

tymtan hughlght ng
Archasctune T =
122% packages Inted. 1015 mitaled. 0 breken. 2 1o mazalifupgrede. 0 10 remove; 8842 k8 wil be used

You can install whatever software takes your fancy — and it’s all free!

The flip side

You now have a fully working Pi, ready and raring to go. But while you think
about all the possibilities opening up before you, bear in mind the following.

The Pi is slow. If you’re used to the snappiness of a modern computer,
using heavyweight software such as LibreOffice will feel like wading through
treacle. You’ll notice a delay of a couple of seconds after you double-click an
icon before anything seems to happen, for example. This is partly because an SD
card isn’t as fast as a modern hard disk when it comes to reading files, as well as
reflecting the speed of the processor. Once your word processor has fully loaded,
you’ll probably find the performance perfectly acceptable. Some games will work
well on the Pi too — 3D shoot-em-up Quake was famously ported across very
early on. However, the Pi is not designed for playing high-end games, so don’t
imagine it will replace an Xbox for that purpose.

Linux is not Windows/OS X. Although the Raspbetry Pi desktop
looks superficially similar to Windows, underneath the surface there are
many differences. You can achieve in Raspbian just about anything you could
accomplish in Windows or OS X — but allow yourself extra time for research.

Not all hardware will work. Partly because the Pi runs a vatiety of Linux
and partly because it uses an ARM chip, some keyboards, mice, printers, Wi-Fi
dongles and other peripherals won’t work. You should always check the list of
approved hardware or, if buying online, check the reviews to see if others state
the product works with the Raspberry Pi.

Having said all that, most people will consider these limitations a small price
to pay for a tiny, portable, durable computer costing around /30 that can open
up a huge range of creative possibilities.

17

“:'-'—-h:.__

JAIT]

-

1)

L

FY

)
ddgu

Chapter Two

What is programming'?

Mention the word “programming” to most people and one of two images will
pop into their minds — the T-shirted hacker wreaking havoc with sensitive
government servers, or lines of incomprehensible code streaming down a screen.
Not surprisingly, real programming is nothing like either.

Wikipedia defines programming as “the process of designing, writing, testing,
debugging, and maintaining the source code of computer programs”, which
is a bit like saying that running is something you do when you run. Of course,
programming means to write code — but what does that code do? What is the
point of creating it?

The fact is that every single electronic device you might come across in your
daily life is controlled by code that was written by a programmer. It’s barely an

aggeration to say that programming is what makes the modern world go round.

By learning how to code, then, you are equipping yourself with the knowledge
and skills you need to take an active part in shaping the environment you and

others live in.

Photography, Danny Bird; repro, Jan Cihak

Ultimate Guide to Raspberry Pi

Whilst that might sound a little grand or abstract, just remember that a
person, or a team of people, created the code that runs the microwave you use to
make cheesy beans for supper, the fuel injection system that gets you from A to
B, and the set-top box you use to watch your time-shifted TV programmes — as
well as the more obvious code you encounter on your computer, games console
or smartphone.

Someone must write the instructions that make these devices carry out their
useful functions and, despite what you might imagine, you don’t need to be a
genius to code. Above all else, programming involves two main skills: creative
imagination and the ability to think in a logical, structured way. It certainly
doesn’t involve remembering every obscure command of every coding language
(that’s Google’s job). Programming is a process in the same sense as planning a
presentation, cooking a complex meal or coming up with next season’s Fantasy
Football strategy. It’s like solving a puzzle and it’s one of the most enjoyable and
creative things you’ll ever do.

Don’t believe me? Just have a little patience and you’ll soon discover the
thrill of taking control of your computer rather than feeling a slave to it. This is
at the heart of programming: having an impact in the real world whether that’s
on a PC screen, smartphone or a hacked-together robot trundling after the dog.
This impact can be profound and, when the penny drops, you'll realise that
programming frees you from being a passenger in this technological world and
provides the toolkit to take hold of the wheel for yourself.

Setting your sights

With such a wealth of possibilities it’s important to think about what yox want
to achieve with your programming skills. Having a practical goal in mind will
help make sense of what you’re learning, as well as providing an opportunity to
practise and get a sense of real achievement. The best advice is to follow your
interests and choose a project you’ll
enjoy. Whether or not you want to
become a professional programmer,
by focusing on something that you’ll
enjoy for its own sake, you’ll become
better quicker. The people at the top
of the industry, earning the significant
pay cheques by creating the software

The Lost City is a premium game for
smartphones and tablets created by indie
programmer Joe Kauffman. It has been
installed around 500,000 times on Android
devices alone

19

Ultimate Guide to Raspberry Pi

that runs the banks and major businesses, for example, almost always began this
way — and many continue to code for fun in their spare time.

So what is achievable for a keen beginner willing to invest some time, effort
and brainpower to learn programming skills?

Making games

Most coders begin by creating games because most like playing games. Whether
you realise it or not, when you play a game you’re gaining an understanding of
how games work. Crucially, this means you know what you’re aiming for when
developing your own game.

The games category covers everything from basic word-guessing puzzles
through 2D platform adventures to immersive first-person extravaganzas such
as the Call of Duty series. As a new programmer, you’ll begin at the simple end
before settling on your favourite form; many people choose arcade puzzlers or
point-and-click adventures, for example, because these can be created in small
teams or even by coders working alone. Whatever your ultimate ambition, games

are a great way to learn programming.

Mobile apps
The market for smartphone and tablet apps has become hugely popular in the
past few years, especially amongst “indie” developers (that’s you). One reason for
this is that mobile devices represent the fastest growing category of internet-
connected hardware. Even more importantly, each main platform (iOS, Android,
BlackBerry and Windows) is served by marketplaces that make it easy for
individual developers to publish their work. You don’t need to sign a deal with
a major distributor such as EA Games to get your masterpiece into the hands of
your audience: you can create it and publish it direct, at minimal cost.

That’s not to say it’s all plain-sailing. Despite what you might hear, mobile
app development is no gravy train. But it is the leading modern platform and
a good sector to learn in if you’re looking for a career in programming.

Web development

By creating applications that run on a web setrver, you potentially gain all the
benefits of developing apps for mobile devices as well as having your software
available to the billions of users of standard PCs. Whilst there are many situations
where a native app is a better choice (games being one), it’s often most effective
to put the code on the web and have people access it via a browser.

Much of this programming goes unnoticed, but it’s there lurking in the
background every time you order something from Amazon or post a status
update on Facebook. Anything that happens on the web beyond serving up static
web pages is programming. To see an example of just how stunning this can be,
take a look at http://www.movikantirevo.com.

20

Ultimate Guide to Raspberry Pi

r " ..
(J) Core Temp 0.99.7 E@m PCap Ph(_:atlm_ls
_ - _ There’s still a big market for
File Options Tools Help software that users download
Select CPU: |Processor #0 2 Core(s) |4 Thread(s) and run on their computers.
R e, This can inclufie utilities,
Model: ga;nes, equcatlonal softwa;e
and creative programs such as
Platform: |LGA 1155 (Socket H2) . . prog -
music editors and art packages.
Frequenc.y: it b In practice, this usually means
o e > that you spot a problem that
Lithography: | 32nm

| needs solving and, if you
CPUID: |0x206A7 can’t find a good pre-existing

solution to it, you write your

Processor #0: Temperature Readings
Ti. Max:

own program. You’d be amazed
Low

56°C
5

100°C
Core #0: |60°C
Core #1: |63°C

at the tiny niches some of this
software serves — there are, for
example, several “explosion

generator” applications that

satisfy the need for arcade game
Core Temp is a utility program that lives up to its name: it monitors ¥ &

the internal temperature of a PC’s components developers to blow up enemy

spaceships in spectacular style.

Typically, the coder hacks together a solution to their own problem and
then, if they think there would be an audience for it, spends time adding an
effective user interface (windows, dialogue boxes and buttons) before releasing
it for general use. It’s also common to contribute the code to the open-source
community, which means that anyone can amend and update it. Done in an
organised way, this can result in a much better, more widely used program — for
which you receive the main credit. Very good for your CV!

Controlling your home
With the Raspberry Pi and related technologies such as the Arduino (www.
arduino.cc), it’s become much simpler to program real-world objects as well
as traditional computers. There’s nothing quite as cool as connecting with your
environment, whether that’s keeping tabs on your energy bills, watching a robot
you’ve made from an old remote control toy make its way around the living
room floor, or taking pictures from a weather balloon. The range of possibilities
is infinite and it’s in this area that the Raspberry Pi has a big advantage over a
laptop, say — its diminutive size, modest power requirements, robustness and,
above all, low cost make it ideal for real-world projects.

And that’s only the beginning. As you develop your programming skills,
you’ll notice more opportunities to put them to work. So, enough explanation:
now it’s time to tool up and get cracking.

21

Ultimate Guide to Raspberry Pi

What do you need?

If you want to be a coder, you’ll need both hardware and software to get started.
The good news is that the hardware is cheap — and the software is free. By using
a version of Linux as the operating system, you can learn to code on a low-cost
computer such as the Raspberry Pi or a repurposed laptop or desktop that’s now
too slow to run Windows. Popular Linux variants such as Raspbian, Debian and
Ubuntu are free, as is most of the software you can run on them — including
many of the most popular programming languages.

Parlez-vous Python?
The first decision you need to make is which programming language to

learn. There are hundreds to choose from, but a good choice would be one
that’s widely used, easy to learn, applicable to lots of programming tasks,
and similar enough to other languages to make it easy to spread your wings
later. It should also be free to download and use. At bit.ly/
tiobe_index you'll find a table of languages in order

of their popularity, in terms of jobs and online
resources. The only candidate that meets all our
criteria is Python. Here’s why:

* It’s widely used. Python appears in the
top ten of the TIOBE index (at the time
of writing), which means that many skilled
engineers use it and there are many jobs for
Python programmers. Plus, there are plenty of
resources to help learn it, including this book.

* It’s easy to learn. The Raspberry Pi Foundation chose Python as
its recommended programming language for this reason. One way to
describe a language is to say how “high level” it is: broadly speaking,
the more English-like it looks, the more high level it’s considered. Take
a look at the following code. It shows how to simply make the words
“Hello World!” appear on-screen, and it’s written in C, a very widely used
but low-level language:

#include <stdio.h>
int main(int argc, char *argv[])
{
printf("Hello world!\n");
return 0;

22

J.,

Ultimate Guide to Raspberry Pi

Don’t worty if you didn’t follow that — it’s clear that there’s a considerable
learning curve involved in understanding C, let alone creating it for yourself.
Now, for comparison, let’s look at another section of code that does exactly
the same thing, only this time written in Python:

print ("Hello world!")

Not only is this Python example much closer to English, and therefore easier
to understand, it’s also much shorter — in this case reducing six lines of low-
level C into a single concise instruction. This is another characteristic feature
of high-level languages.

* It’s flexible. You’ve probably heard of BASIC, which is another well-known
and easy-to-learn language. However, these days BASIC isn’t as popular as it
used to be. Visual Basic is the only dialect that appears in the top ten and it’s
restricted to Windows computers; the commercial version is also relatively
expensive. Python, on the other hand, can be used on Windows, Mac and
Linux computers, as well as on many other platforms. It’s also able to access
libraries of code created in C and C++.

* It’s a good first language. The concepts that underpin Python are similar
to those found in other popular languages. So once you’ve learned to code
in Python, you’ll find it much easier to get to grips with almost any other
mainstream language.

And if you need any other reason... it’s named after Monty Python!

} TN o1 Python squared

There are two families of Python in common use: 2.x and 3.x. This
probably seems odd, as it’s usually the case that when a new version of
any software is released (Python 3 was released in 2008) users tend to
upgrade. However, one of Python’s great strengths is the huge library of
add-ons created by the Python community and some of these are written
in version 2, making them incompatible with the latest version.

The differences between versions 2 and 3 aren't huge so, in this
book, we’re focusing on Python 2.7 — the version that comes installed by
default in Raspbian at the time of writing this book. This means we can
use just about every available Python library but still move interchangeably
between it and version 3 when the time comes.

23

Ultimate Guide to Raspberry Pi

Tools of the trade

Even though you already own a Raspberry

Pj, it’s often more convenient to develop Download the Windows installer
for Ubuntu Desktop

on another, more powerful computer

and then move the code across to the Pi.

Even if you’ve set up the Pi in your living

room, hidden it in a shed or built it into a

toy robot, this can be a convenient way to

work, since it’s very easy to connect to the

Pi across a network.

The good news is that an old laptop —
or a modern PC or Mac — will do fine for ~ dedicated computer
Pi development. However, whilst Python
is available for all the main operating systems, its natural home is Linux. If you’re
using Windows or OS X, it’s a good idea to install a Linux distribution alongside
your existing operating system — of, even better, set up a dedicated computer.

Ubuntu

If you’re using a Raspberry Pi, you should already be set up with Raspbian. What
if you want to stick with your existing PC? You can install Python for Windows,
but we recommend using Linux as the basis of your programming environment.
Why? Well, it’s Python’s natural environment and if you intend to do any serious
coding you’ll almost certainly encounter Linux at some point, especially if you
develop for the internet.

On top of this, Linux is made for tinkering; it’s a much more open OS than
cither Windows or OS X, and has an active community providing all the bits and
pieces you need to create great programs. You can also find plenty of generous
and enthusiastic advice.

For most people, Ubuntu is the best Linux distribution to choose. It’s based
on Debian (like Raspbian) but is more user friendly. It’s the most widely used and
most actively developed version of Linux. You can also install it in several ways,
depending on your situation.

1. Wipeout. If you want to repurpose an old laptop then your best bet is
probably to wipe whatever version of Windows is already on it and replace
it with Ubuntu (having backed up any documents you want to keep). To do
this, go to www.ubuntu.com/downTload/desktop and download the newest
32-bit version. The download is in the form of an ISO file, which you can
cither burn to DVD (double-click it and follow the prompts) or transfer to a
USB flash drive. When you’re ready to install it on the target computer, insert
the DVD or flash drive and follow the prompts. Full instructions are on the
Ubuntu downloads page.

24

Waubi allows you to install the Ubuntu flavour of Linux
alongside Windows, but we recommend installing it on a

Ultimate Guide to Raspberry Pi

2. Sibling rivalry. Another option is to install Ubuntu alongside Windows
so you can use both. To do this, download the WUBI Windows installer
from www. ubuntu.com/downTload/desktop/windows-installer. This is a
standard Windows program that downloads and runs the Ubuntu setup. As
part of the process, your hard disk is divided up into sections so that Ubuntu
and Windows can co-exist; make sure you have backed up your PC before
starting. Once Ubuntu is successfully installed, you’ll choose which OS to
use when you boot up your computer. It’s also easy to uninstall Ubuntu from
within Windows.

3. Virtually Ubuntu. Perhaps the most flexible option is to set up Ubuntu as

a “virtual machine” (VM) running in Windows. A VM is a software program
that pretends it’s a hardware computer running your chosen operating system
(in this case, Ubuntu). The great benefit of this approach is that if something
wete to go wrong, you could very quickly wipe it and start again. To create a
VM, you need software such as Oracle’s VirtualBox (www.virtualbox.org/
wiki/pDownloads). Once your virtualisation software is installed, you can set
up a VM and then load the Ubuntu ISO file into it. In fact, you can create as
many VMs for which you have space, allowing you to try out any number of
different versions of Linux.

Of the three approaches, using WUBI to install alongside Windows is the
simplest, whereas the VM option is the most flexible but requires more
technical confidence.

} Focus On 2% {e]aWeTo R f13le [)VE

Windows is the only major operating system that doesn’t come with
Python built in. If, for whatever reason, you’re forced to work in Windows,
you should download the Windows installer at waww. python.org/getit.
Choose the latest version of Python 2.7. Don’t choose a 64-bit version
(you’ll see the number “64” in the description) since this would make it
incompatible with many important libraries.

» Python 2 7.3 Windows Installer (Windows binary -- does not include source)

N Wir Ber 1] -~ does not mchude source)

To set up Python on Windows, choose the latest installer (2.7.3 at the time of writing).
Don’t choose the 64-bit version, shown on the second line

25

Ultimate Guide to Raspberry Pi

The programmer’s toolkit

There are three things you'll need for most coding tasks: a programming
language, an editor, and — if your project is going to make use of graphics and
sound — a set of software tools for creating and editing these resources.

Programming language

The Raspberry Pi comes with Python 2.7 built in. This is the final version of the
Python 2 family and the code examples in this book are aimed at version 2.7.
When the educational version of the Raspberry Pi is released, it’s possible that it
will default to Python 3, but it will almost certainly also include version 2.7 — and
this is the one we recommend you use. We'll cover how to make sure you’re
targeting the right version below.

Editor
Computer programs are usually text files, which means you can edit them
using any word processor or text editor. However, by using an IDE (Integrated
Development Environment) rather than, for example, Leafpad (the Raspberry
Pi’s equivalent of Windows Notepad), you get access to all sorts of tools that
help with your programming.

Raspbian includes two versions of an editor called IDLE — one for Python
2.7 and one for Python 3 — but it’s rather too basic for convenient programming.
For that reason, we’ve created the examples in this book using a more advanced
editor called Geany. If you followed the walkthrough in part 1 to set up your
Raspberry Pi, then you’ve probably already installed Geany. If not, simply open
up LXTerminal and type:

sudo apt-get update
sudo apt-get install geany

...and press Enter. The first line ensures the list of packages on your Raspberry Pi
is up to date, the second line performs the actual install. If you’re using Windows,
go to www.geany.org/Download/Releases and select the latest version of the
Full Installer.

Media

Many projects require custom graphics, and for games you’ll probably need

to create or edit your own sound effects. As with text editors, there are many
choices available to Linux users but the gloriously named “GNU Image
Manipulation Program”, or GIMP to its adherents, is the most fully featured and
best supported. For sound editing, the best choice is Audacity. Over the page,
we’ll describe how to find and install them both.

26

Ultimate Guide to Raspberry Pi

¥EETE

EEEEENNEEEE RN NS

1. Toolbar

The Geany toolbar contains shortcuts for moving quickly through your
code, picking and inserting colours and letting you test-run your program
with a single click.

2. Code Explorer
The left-hand pane displays information about the program you’re
currently working on, including easy access to its main parts.

3. Coding Window

This is where you’ll be spending most of your time. Geany includes:

e Code suggestion — the editor guesses what you’re typing and offers to
finish for you;

e In-built reference — when you type the name of a Python statement, it
shows what that function expects to follow it and how it works;

e Syntax colouring — "syntax" refers to the words and numbers that
make up your code, and by automatically applying different colours to
different types of syntax, Geany makes code easy to read and debug.

4. Message Window

Geany displays messages and status reports in this window. You can also
select the Terminal tab to get quick access to the LXTerminal.

27

Ultimate Guide to Raspberry Pi

GIMP
To install GIMP on your Raspberry Pi,
start up Synaptic Package Manager and

find gimp in the Graphics category. Select
this and also gimp-data then click Apply.
Alternatively, from LXTerminal, enter the
following line:

sudo apt-get update
sudo apt-get install gimp

Once installed, you’ll find an icon to run
GIMP in the Graphics folder of your Start fl
menu. Since GIMP is a processor-intensive | ey~ Foe

application, it will run fairly slowly on your . . - .
GIMP contains all the image editing and creation tools you’re

Raspberry Pi, but it’s petfectly usable. To jiq)y 1o need

get the best performance, shut down any

other applications before running it. Windows users can download the installer
from http://gimp-win.sourceforge.net/stable.html.

Whichever OS you’re using, you’ll find GIMP reasonably familiar if you’ve used
any other photo-editing package, whether that’s Windows Paint or Photoshop.
You can find out more about GIMP at www.gimp.org.

Audacity

Most games include sound effects and, even if you use pre-existing resources, the
chances are you'll need to edit them to fit your project sooner or later. Audacity
is a basic sound-editing package that includes all the features most people require
— for free. In Synaptic, you’ll find Audacity in the Multimedia category; again, you
need to make sure that both audacity and audacity-data are selected before
you click Apply. To install via LXTerminal:

sudo apt-get update

Ble L yww Nemperd Packs Gerwwate (fey Amelyre ik

sudo apt-get install audacity T
"l TR ®) ' = o i
P) o . M . ﬁ. * N

. . . #: bhr e L e e & ppRL
Bear in mind that if you’ve only just : : 3 : .
installed GIMP, you don’t need to run the
update command again.

Once installed, you’ll find Audacity in
the Sound & Video section of your Start
menu. You can find more information and |« = sen siksessies sinsimssis sonsemane
download links for Windows and Mac at
http://audacity.sourceforge.net. Audacity is an easy-to-use but capable sound editor

o

Froeer Mate 1 St f1a B) Length e Poaten

..... | Rate: 44100

28

Ultimate Guide to Raspberry Pi

Let’s get crackin

clock.py - fhome/pi/Desktop/python - Geany -

Fle Edt Search \iew Documant Project Build Tools Help

e” d ~ - %“9-0 5 & Y
Symbols Documents| clock.py raspbermypy L
v @ Vanables 1 import time,pygame
) | 2 yygame.imt
@ screen [5] 4 cloch ck t
5 [a
@ theFont |3] &
@ theTh 10) 7
@ timeTest [11) g s
= [) imports 10 t Pl Time
'1 pygame (1] A ol) .
¢y time 11) 13 pygame . display.update
14
-~ 15:30:26: File /home/pi/Desktop/pythoniindepth_ Python/code/l1fraspberrypy op 1 5 33'53
- -
line: 7 /14 col: 0 sel: 0 NS TAB mode: Unx (LF) encoding: UTF-8 ik

If everything is going to plan, our test program
should display a working clock on the screen

The final step before we get into coding is to check that your Python
environment is working as expected. Rather than bashing out the bog-standard
“hello world” program, we’re going to create a real-time clock for your desktop.
This is not only more interesting and useful, it will also test whether you have
two of the most important Python libraries installed and working, as well as
Python itself.

1. Connect your Pi and load up the desktop. Open Geany by going to the
Programming folder of the Start menu.

e 2. Click File, New and then immediately

General Festures indentation Complations Dviplay

inteface Display save it as “clock.py”. The “py”

*:: e TR S extension tells Geany you’re creating
Tools) a Python file and switches on its built-
m:‘ oasadbobeconiokl “ in help and syntax colouring. Now,
Priting | * S10p scrofing at last kne go to the Edit menu in Geany and
e Lonig e o click Preferences. Pick the Editor tab
—— .‘,.,: alE Line O Background on the left followed by the Display
E":”" . z tab along the top, then click next
olour

to “Show white space” to fill in the
Virtual spaces .
Drsabled checkbox. This means that all spaces
= Only for rectangular selections . .
Aweays and tabs are marked in the editor
window, which is helpful when typing

7 Help O spply) Cancel N 0 ox o
and editing Python code.

29

Ultimate Guide to Raspberry Pi

3. Type the code from the listing below into Geany:

import time,pygame

pygame.init()

theFont=pygame.font.Font(None,72)

clock = pygame.time.Clock()

screen = pygame.display.set_mode([320, 200])

pygame.display.set_caption('Pi Time')

while True:
clock.tick(l)
theTime=time.strftime("%H:%M:%S" ,time.localtime())
timeText=theFont.render(str(theTime), True, (255,255,255),(0,0,0))
screen.blit(timeText, (80,60))
pygame.display.update()

Be very careful to copy the code exactly, including every punctuation
mark, and make sure you put line breaks in the correct places. Be particularly
careful to use the tab key at the start of lines where needed, to indent your
code exactly as it’s shown in the listing. If you prefer, you can download the
file from www. rpilab.net/code.

Although what you’ve just typed in probably looks like gobbledygook
at the moment, you can see immediately how little code is needed to create
a real, working application. For now, we’re just testing that your setup is
working so, once you've typed everything in and checked it for errors,
click the Cog icon on the Geany toolbar to run the app. All being well,
after a short pause, your clock will pop up and start ticking away. If so,
congratulations: you’ve demonstrated that Geany, Python and the Pygame
module are working together.

If the clock doesn’t appear, don’t despair — it’s common for programs
not to work first time. Take a look at the LXTerminal window, because it will
contain a message that can help you diagnose the problem. More often than
not, the cause will be a mistake you’ve made in typing the code, but another
possible problem could be Python complaining that it’s missing the Pygame
module. If it is, and you’re using a Raspberry Pi, the chances are that your
machine has been set to run Python 3 by default. This is an easy problem
to fix: go to the Build menu in Geany and select “Set Build Commands”. In
the field next to “Execute”, remove the number 3 to set it to run the older
version of Python.

4. Once the clock is working, you know Python is correctly installed and

working on your Raspberry Pi. Congratulations: you now have everything
you need to begin your career as a programmer. Let’s go.

30

Ultimate Guide to Raspberry Pi

Programming - from the inside out

Computers, microcontrollers and other electronic devices are used for such a
wide range of tasks that you might imagine they share very little in common.
However, whether they’re running on an Xbox, inside the dashboatd of a car or
controlling the Curiosity Mars Rover on the surface of the planet, most programs
work in a fundamentally similar way: they take input, apply some sort of logic to
it and then output the results.

Some very simple programs do this once each time they’re run — for
example, a calculator — but most applications go through this loop many times
per second. As a programmer, then, almost every process you’ll ever have to
work with will fall into one of these three categories — and knowing how they
work makes understanding how code is put together much simpler. Let’s look

at a few examples to see how this works
in practice.

INPUT A VAT calculator (yawn!)
Yes, it’s boring but somebody has to write
\ programs to carry out useful, mundane
tasks such as this. A VAT calculator
would ask the user to type in an amount;
it would then work out the VAT on that
amount and add that to the original value

OUTPUT

to arrive at a total. Finally, the program

would display the result on-screen.
L In this case, then, the amount
Any program can be broken down into its key elements — . .
and doing so makes things much easier to understand entered by the user is the input, the VAT

calculation is the logic, and displaying the
result on-screen is the output. Bear in mind that the output could just as easily be
to a printer or even a speech synthesiser; however, if that was the case, neither of
the first two parts would be affected. Whilst this might make little difference on a
tiny app such as this, but on large corporate systems splitting the code into these
three purposes makes it possible for different programmers to work on each and
for the application to be easily ported from desktop to web to mobile.

Forza Motorsport for Xbox

This is more like it! In a driving game, the player uses a controller or steering
wheel as input and the console then translates the directional changes and applies
them to its calculations of the car’s position using its logic code. Once it has done
this, it generates and displays the output in the form of graphics on the screen.
Given the frame rate of a modern console game, this is happening many times
per second — not just for the visuals, but for the sound effects too. In that case,

31

Ultimate Guide to Raspberry Pi

the input might be the controller buttons assigned to acceleration and braking,
the logic involves applying the correct physics to the Xbox’s model of the game
world, and the output — along with the visual elements — includes the sound of a
thrashed engine or screaming brakes.

Mars Rover

Right now, around 225 million miles away, a robot
the size of a Ford Fiesta is wending its way across the
surface of Mars. Controlling the Curiosity Mars Rover
is a computer less powerful than a Raspberry Pi.

This computer, the RAD750, created by a subsidiary
of British company BAE Systems, contains over

2 million lines of code written in C (although Python
was used to create testing scripts).

This code controls everything from sensing the
environment to navigating the Rover through the
Martian landscape. Since radio waves take more
than 12 minutes to travel between Mission Control
and Mars, the Rover can’t be driven like a remote-
control car. So it includes software that uses its
cameras (input) to determine where rocks and other
obstructions are, calculates a safe path (logic) and
turns the wheels (output). Bear in mind that human
beings wrote the code, and they started programming

173
=
[}

2
1
>

n
13
o
=

2
[5)

(%3]
3
o
<
%

n

=

K]

=

<
<
[}
[}
=
o

i

|

o

3

%))

<

=z
I
o)
©

E

with as little knowledge as you may have right now.

Clock

Finally, remember the tiny clock app we created in the last section? It took
the current system clock time as input, converted it to a human-readable form
(logic) and displayed it on-screen (output).

Under the microscope

So most programs take input, process that information using logic and then
output it in some form; we can use this information when we design and write
our applications. For example, let’s say you’ve decided to create an old-school
arcade game. In your mind’s eye you see different fruit falling from the top of
the screen, some of them raspberries. The player uses a laser-gun that moves
across the bottom of the screen attempting to shoot the raspberries but miss all
the other fruit. Without some sort of model in mind, you’d struggle to work out
where to begin and how to organise your thoughts. The ILO model gives you a
template to help get started.

32

Ultimate Guide to Raspberry Pi

Input

Let’s begin by thinking about what inputs the game will take from the user.
During the game, the player needs a way of controlling the laser gun, so we need
to decide if that’s going to be achieved via keyboard, mouse or touch. The choice
depends largely on the platform we’re aiming at. In the case of the Raspberry Pi,
keyboard is best, so we’re going to track the left and right arrow keys, along with
the spacebar for firing laser bolts. Why space? Because it’s the convention. How
do you know? By playing games. If you ever needed an excuse for trying out as
many games as possible you can now do it in the name of research! Other inputs
will include buttons for starting, choosing levels, exiting and help.

Output

Think about how the user will experience the game. First they’ll see the fruit,

laser and bullets appear on-screen and then move. So we’ll need to write code for

displaying these graphical elements and animating them. The player also needs

to see a score and any other status information — perhaps a time limit and basic

instructions — so we’ll need a way to display information in text format. And then

we’ll need to write code to play the obligatory bleeps of the classic arcade game.
But output isn’t just what the player sees or hears. If we want to store the

players’ high scores, we need to save the data somewhere. This is output even

though it isn’t visible to the user.

Logic

Whilst the player might notice the quality of graphics and animations, or how
well the laser gun responds to their keyboard presses, far more effort will go into
the behind-the-scenes tasks our program must carry out to make sure the game
works as intended. Logic is the glue that links input to output: without it you
might have falling fruit and rising bullets but no way of connecting the two.

In most cases, you'll find yourself spending the majority of your time
writing logic code. For example, we must constantly send new co-ordinates for
all the objects on the screen to the output code so it can accurately reflect their
positions. We must check for collisions, and when one is detected we must react
accordingly by updating the output and scores — as well as checking whether the
game has finished. By breaking all these jobs down into smaller and smaller steps,
you eventually end up at the level of the single programming task.

Mirror mitror

Most programs interact with a user in some way. In a game, it’s the user that’s
providing the input in the first place. In fact, the player and the program become
part of a cycle: the user sees the fruit descending (input), decides where to move
the laser gun (logic), and presses the keys accordingly (output). Put another way,
the output of your computer program becomes the player’s input, and vice versa.

33

Ultimate Guide to Raspberry Pi

If you’re designing a program that interacts with a user in this way, you must
take account of the whole system. It’s not enough to think about the best way for
the code to accept input; you must also consider how the player can best provide
it. For example, when choosing the best keys for moving the gun left and right, it
may be more convenient from a programming point of view to choose A and B
— but it makes much more sense for the user to use the left and right arrow keys.
We’ve all used apps that have clearly been designed for the convenience of the
programmer — remember that frustration when you come to create your own.

Modularise

So you’ve split the tasks your program needs to perform into input, logic and
output: how does this translate into the real world of creating your game? It does
this by helping you to work out how to organise your code. Imagine slicing a pie
into equal parts. You could begin by cutting it into thirds, and then continuing to
halve until you reach the optimum size. Input, logic and output are these thirds,
which you then divide up into smaller units of programming. In Python these
units are called Modules, Functions and Objects.

Modules

To create a Python program, you type code into an editor and save it. The saved
file is a module so, in a way, every Python program could be called a module,
even our tiny clock. However, typing all your code into a single file is rarely a
good idea unless the app is very simple. More typically, you create a main script
file, then split the rest of the code into separate files, each of which is a module.

OUTPUT Z—_—> INPUT
‘ﬂ (fingers) (reads

LOGIC
(computes
changes)
i INPUT
(eyes/
ears)

It’s important to think in terms of how your code serves the user’s needs and desires

34

Ultimate Guide to Raspberry Pi

For example, you might create a module for handling the display, one for saving
the score and reading it back, and another to listen for the user’s key presses.
You would then make the code in those modules available to the main script by
“importing” them. Take a look again at the first line of the clock code:

import time,pygame

As you’ve probably guessed, time and pygame are modules. time is built into
all Python installations and is, in effect, part of the standard language, whereas
pygame is a specialised module that helps in the development of games.
Importing your own modules is done in exactly the same way.

Functions

Modules divide into functions: blocks of code that perform a specific task and
have their own unique name. For example, in the “display”” module for our game,
we might have a function for drawing a bullet, another for painting the animated
background, and a third for exploding the fruit. Within these functions you’ll find
our actual lines of code — so functions are the smallest subdivision.

Objects

Python is an object-oriented programming (OOP) language. This means the code
that controls how parts of a program works is contained within those parts — as
opposed to the procedural approach used by languages such as BASIC, which
keep everything in a big central file. OOP makes it easier to build and maintain
code, and it means we can effortlessly create multiple copies of objects.

For example, think about a game of Space Invaders. The invaders themselves
are identical to each other and move left, right and down the screen. The
procedural approach would be to draw each invader separately, one at a time, and
keep track in memory of which one is where, whether it’s been destroyed or has
reached the bottom of the screen.

The object-oriented approach is to write code for one invader (this is called
a Class) so that it keeps track of its own position and status, and then to create
as many copies (called Instances) of that class as necessary. Once they’re up and
running, they each run independently.

As a rule, OOP means less code overall; programming that is much easier
to understand (as you know that any code within the Invader class relates to the
aliens); and, because of this simplicity, fewer bugs and better performance.

So, a Python program is usually made up of modules containing
functions and classes (which also contain functions). Despite their somewhat
intimidating names, modules, functions and classes are simply ways of organising
code, and they’re there to make life easier. With that behind us, it’s time to dive
into Python.

35

Chapter Three

Programming in Python

So, you've set up the Raspberry Pi and you’ve got a basic grasp of the principles
of programming under your belt. It’s time to start learning the practical skills
needed to create Python programmes.

In this section of the book you’ll find many code samples. These are all
short and I strongly recommend you type them in: doing so will help you gain
familiarity with the structure of a Python program, and give you practice in using
an editor and running programs. You can also download the full code from the
book’s companion website: www. rpilab.net.

Don’t worry if you struggle with some of the concepts introduced in this
section; we’re going to cover a lot of ground quickly so we can move onto
programming larger, more rewarding projects as quickly as possible. Whether
you’re aware of it or not, if you follow the examples, most of what you need
to know will sink in and you’ll then have plenty of opportunity to see how the
fundamentals of Python work in action as we build the code for our projects in
the following sections of the book.

36

X~
©
=
(6]
=
<
&
[}
2
a
[
ol
g
=
>
c
c
<
[a]
=
=
[}
©
[
=)
o
&
s}
<
o

Ultimate Guide to Raspberry Pi

Introducing Python

All programming languages have the same broad purpose: to provide a way for

humans to control devices powered by a microprocessor. With most languages,

code made up of letters, numbers and symbols is typed into an editor line by line

before being run by the computer.

Python is a high-level language because the code itself is relatively English-

like. Indeed, any competent programmer looking at a well-designed Python

application should be able to work out what it is trying to achieve, whether or

not they have ever learned the language itself. This makes Python a good first

language and an excellent choice for a wide range of purposes. But how does it

compare with English, for example?

Engish ___|Python | |

Books

Chapters

Pages

Paragraphs

Lines

Words,
numbers and
punctuation
etc

Programs

Modules

Functions

Blocks

Lines

Statements,
commands,
operators and
separators etc

Books and programs tend to be about
one thing — whether that’s a story or a
game.

Books are split into chapters and
programs into modules - the difference
is that chapters are designed to be read
in order whereas modules can be used
multiple times.

Chapters are subdivided into pages

but, again, they are presented in a linear
order. Modules are made up of functions,
each responsible for a specific task.

Usually blocks of code, within functions,
are processed in the order they appear,
just like paragraphs on a page.

Each line of a book contains one thought
or idea — each line of a program contains
one complete action.

The nuts and bolts of both human and
computer languages. To become a
French speaker, you must learn French
words, and how they are put together
using grammar. To write Python code,
you learn the various statements that
have meaning in the language, and how
they are put together in meaningful ways.

37

Ultimate Guide to Raspberry Pi

1 pygame, random

So, both human and machine . -init ()
languages have much in common. Perhaps . %
the biggest difference is that while you § soreen. il (BLAcK)
don’t have to speak perfect German to Biindar o
make yourself understood to a native, 10
computers are entirely unforgiving: 12
if you don’t get your language 100% 14 Gaar
correct, they won’t understand what you -
mean. This is because, at their digital i;
hearts, computers understand only two ;3
conditions — 1 and 0, right and wrong Y
— so thete can be none of the ambiguity = g e :
or guesswork of human communication. = et L

27 raw_inpuc()

Fortunately, Python is much easier to
learn than French, for example; when you python indentation makes it easy to
get it wrong, only you and your Raspberry — see which code is part of which block
Pi will know. And the Pi won’t tell.

The basics

Python is what’s known as an znferprefed language. This means that when you
want to run a program you’ve written, it must be saved as a text file and passed
to another program called the Python Interpreter, which reads in your code

and converts it, on a line-by-line basis, into low-level code that the computer
understands. You can contrast this with C, which is a compiled language: with C,
before your code can be run, it’s entirely converted into a machine-readable form
that doesn’t need an interpreter.

All things being equal, compiled code runs more quickly than its interpreted
equivalent, because it’s ready to go when it’s loaded; Python needs to first load
its runtime engine — that is, the software the PC needs to run to convert the
language from high level to low level — and then read in the text files and then,
finally, run the program.

You might wonder why, in that case, we have interpreted languages. First,
because the difference in speed is, for most real-world purposes, undetectable
on modern hardware (even the Raspberry Pi). Sure, if you wanted to create a 3D
engine for a first-person video game, you’d write it in C (or C++) rather than
Python to get the best possible performance, but most games — and most other
programs — run perfectly through a runtime engine.

Another important benefit of an interpreted language is that it eliminates
a step from the development process. With Python you can write code, save it
and immediately run it to see whether it works. With C, you must write, save and
compile before you get results. The more code you write, the longer this process
takes and the more time you save with Python.

38

Ultimate Guide to Raspberry Pi

We’ve described in the last chapter how the work a computer program does

can be divided into input, logic and output processes. In practice, this means

that Python programs tend to be made up of several text files that are usually

saved with a .py extension. In most cases there is a central file, normally called

main.py, which is the starting point: this is the text file that the interpreter is

instructed to run.

The other files are linked to main.py using the import statement and, if you

could slow down the interpreter to human reading speed, you’d be able to watch

as it jumps in and out of those other files in response to your commands, but

always returning back to main.py. Geany makes all this simple because it has a

button on the toolbar for running the project — just make sure you have main.py

in the edit window when you click!

The Python philosophy

Very few programmers stick to a single language, and as you gain experience of

programming, you’ll notice that different languages seem to have “personalities”

of their own. Quite often, you’ll find you come to prefer one language over

another because its personality appeals to you — so it’s good news that Python

is easy to like.

As you’d expect from a language that takes its name from a TV comedy

series, Python doesn’t take itself too seriously. Some languages seem to hoard

their secrets and so attract fans who take great pride in overcoming their

limitations: the harder it is to get something done, the more they seem to like it.

Python takes the opposite approach and this has helped to build a community

of fans eager to help others get into the language.

The Zen of Python

1.

There is one right way to do it. Some languages encourage you to find
your own way of achieving something, providing many different methods.
Whilst Python has plenty of flexibility when it comes to organising your code
(which is your business), when it comes to writing individual lines of code to
carry out a task there’s usually a single best way to go about it. If it feels as
though you’re going around the houses to get something done, there’s almost
certainly a better way.

Always choose simple over complex and complex over complicated.
Python is built to make it easy for you to write simple code. This is good
because it reduces bugs and makes it simpler to maintain your program —
whether you’re doing it or someone else. If you can’t make it simple then
make it complex, but keep it clear rather than complicated.

Ultimate Guide to Raspberry Pi

3. Get it done. Python is an incredibly productive language. It takes a
remarkably small amount of code to achieve useful results. Whereas
programmers using other languages boast about how many lines of code
their application contains, Python programmers brag about how few lines
it took.

4. Organise for readability. As we’ll see, Python includes many ways of
putting code into blocks to get things done. You can also put blocks within
blocks (within blocks) but this leads to code that’s difficult to understand.
If this happens when writing Python code, think about how you can put the
sub-blocks elsewhere (into modules, functions or objects for example) so
that the main code remains simple to read.

5. Have fun. Whereas coding in some languages can feel as though you’re
wading through treacle to do the simplest things — Objective-C and Java,
I'm looking at you — using Python is a joy. If you don’t have fun writing
programs using Python then you might want to reconsider taking up
programming. As with any new skill learning to program is a challenge,
but Python makes it as simple as possible whilst doing its best to demand
little and deliver plenty.

} Focus On J\[eXell[5\AsTE-Te-X]

If you’ve seen programming code at any point, you’ve probably seen curly
braces used to divide code into blocks. When the interpreter reaches an
opening curly brace - “{“ — it knows that everything that follows belongs
together, until it gets to a closing brace. The problem with this approach is
that you end up with a lot of curly braces!

Traditionally, programmers have used tab indenting to make a visual
link: in other words, all the code that’s indented by one tab stop belongs
together. However, most languages use the braces to group code, so
using tab stops is purely optional and anything that’s optional tends to get
forgotten by busy programmers. The end result is a mess of braces that
can be very difficult to understand.

Python solves this problem by not using curly braces at all, but relying
entirely on indentation. In other words, if you don’t organise your code to
be easy to read, it won’t work; but code that does work, by definition, is
readable. Remember, then, to take care with indenting. It becomes natural
very quickly but it’s also the biggest single source of errors by new coders,
especially those transferring across from another language.

40

Ultimate Guide to Raspberry Pi

Python basics: statements and expressions

We’ve looked at how programs are split, like a book, into smaller and smaller
subdivisions. When you’re planning a novel, you need to think about the overall
plot, character and setting — but actually writing the book is done one word at a
time, building up sentences, paragraphs, pages and chapters. Planning a program
involves thinking about what you want to achieve through input-logic-output and
how that’s reflected in its modules, objects and functions, but it boils down to
typing code letter by letter into an editor.

The programming equivalent of the sentence is a statement — the smallest
chunk of code that makes sense on its own. Statements are usually made up of
several expressions, which are similar to verbs in that they get things done. They
achieve this by creating and using objects, whether these are built into Python or
created separately (perhaps by you).

One of the main advantages of Python over lower-level languages is the
range of pre-existing objects you can draw upon. If you were a C programmer
you’d spend much of your time manually setting up objects; using Python allows
you to bypass much of this and get on with making something useful quickly.

Start up Geany

We’re going to look at some simple code, and the best possible way for you to
learn is to follow along. To do this, start up Geany and click the Terminal tab in
the Message window at the bottom. If you don’t see the Message window, click
the View menu, and select “Show Message Window” option. If Terminal is not
amongst the tabs and you’re using Linux, then open up a terminal window and
type the following line to install it.

sudo apt-get install libvte9

Now, restart Geany and the tab should appear. If it doesn’t then use
LXTerminal (on the Raspberry Pi) or the Terminal app in other forms of Linux.
If you’re using Windows, you’ll need to run the command prompt.

In all cases, now type “python” into the Terminal tab (or window) to start
the Python interpreter. You should get a message reporting which version of
Python is running, followed by the prompt >>>, which indicates that it’s waiting
for input. What’s happening here is that you are talking directly to the interpreter
rather than loading a text file into it. This means you can try things out instantly,
which is what we’re going to do now.

Note: in the code snippets that follow, if we want you to type code into the
interpreter via the terminal/command prompt, we’ll start the line with >>>. Lines
that don’t begin with the chevrons represent text the interpreter is “printing” out
and should not be typed.

4

Ultimate Guide to Raspberry Pi

untitled - Geany -0%
Edt Search \iew Document Project Build Tools Help
- . B " ; o
"l 0 \
Symbols Documents untitled
No tags found 1

Status
Compiler
Messages

Scribble

Terminal §

ne: 1/1 col:0 sel: 0 INS TAB mode: Unix (LF) wn_uﬂ"_’! UTF-8 higlype: None scope

It's easy to explore how variables work in Python using Geany’s Terminal tab

Variables
In basic algebra, you swap numbers for letters to help solve problems. For

example:
ax3=0

In this case, is equal to 2. Variables work in a similar way — they act as
containers for values. These values can be numbers, letters or even objects — the
variable works as a convenient way of working on a value and passing it from
place to place.

Let’s look at this by re-writing the above code as it might appear in a real
program. Go to the Terminal tab in Geany (or a running terminal or command
prompt) and type the following lines, pressing Enter after each (don’t type
the chevronsl):

>>> a=2
>>> print(a * 3)
6

The first line creates a variable called a and gives it a value of 2. The second

line is a statement that contains an object (print) and an expression (a * 3).
What makes the last part an expression is that it returns a value that it

42

Ultimate Guide to Raspberry Pi

has calculated. In this case, Python multiplies the variable a (which contains
a value of 2 as set in the previous line) by 3 giving a result of 6. Note that in
programming, we use the asterisk to indicate multiplication.

The result is sent to the print object which, as youll have guessed already,
simply writes the value to the message window. You should see the number
appear on the next line.

Here’s a variation:

>>> a = 2

>>> b =3

>>> print(a * b)
6

You'll see the number 6 appear again, just as before. This time two variables
were multiplied together.
Let’s try a simple VAT calculator. Type the following and press Enter:

>>>beforevAT=raw_input("Add VAT to this: ")

raw_input is a Python function that asks the user to type something in. In
this case, we add a message asking them to tell us what figure they want us to add
VAT to. This figure is then assigned to the variable beforevAT.

When you see the prompt, type a number (for example, 100) and press Enter.
Then type the following, pressing Enter after each line:

>>>afterVAT=float (beforevAT)*1.2
>>>print(aftervAaT)

The second line creates a new variable, afterVvAT, which is the result of
beforevAT (the number you typed in) multiplied by 1.2 (which has the effect of
adding 20%) and, finally, we print this new value out on the next line.

information.

It’s possible to carry out some quite sophisticated calculations in Terminal view, so you can
try out different mathematical operations

43

Ultimate Guide to Raspberry Pi

Now, that’s all very well but what if we wanted to use this program again?
Commands typed into the interpreter will be erased from memory when you
shut down your computer or Geany; we’re going to start creating files for our
programs so we can keep and reuse them.

In Geany, select File | New (don’t select a template) and type the following
line (including the # symbol)

#my first program

Now save the file to a location of your choice, making sure you add the
extension .py to the end of the file name. You should notice that your single line
has turned red. This is because any line that begins with the # symbol is ignored
by Python — it’s used to make comments in your code so that when you come
back to it you can understand what you were doing. Geany knows you’re writing
Python code because you added .py to the file name, so it’s turned the line red to
indicate a comment.

Retype all the lines of the VAT calculator into Geany. Notice that, as you
type the first few characters of raw_input, Geany offers an autocomplete — press
Enter to accept. It also shows you what information raw_input expects you to
type in — this can be useful to help you learn the specific commands and also
reduces bugs.

Once you’ve typed each line, save the file and then click the Execute button
on the Geany toolbar (the cogs). After a short delay, LXTerminal will pop up and
your prompt will appear. Type a number and Python will tell you what the total
including VAT would be.

Now that the program has been saved, you can run it as many times as you
like by loading it into Geany and clicking Execute.

Fle Edit Search \iew Build Tools Help
W
4 o L ’. ‘ v 9 - -

Symbols Documents| myfirstprog.py
+ @ Variables 1 #

L oo o 2 b

WO 3 aftervaT=float (beforevar)»

© beforeVaT (2 4 print{aftervar)

5

LXTerminal

Ultimate Guide to Raspberry Pi

You have plenty of flexibility about what you call your variables. You can
use any letter and number (although the first character of a variable can’t
be a number - “1ucy” is invalid, for example) and also the underscore
character. There are a few words that Python uses itself, such as “else”,
which you can’t use. Don’t worry too much, though, it will soon tell you!

The Python community uses some conventions which, in the main,
we’ll follow in this book. In the end, however, whatever system you use
needs to make sense to you. You can’t use spaces in variable names as
they must all be one word.

One way to get around this is to use the underscore character;
another is to capitalise the first letter of words after the first - this is called
camelCase. It’s up to you whether you believe that my_variable is a better
name than myvariable; Python doesn’t mind — both are more readable
than myvariable though. For now, just try to be consistent.

Data

We’ve seen that we can use variables as containers and then do things with them.
We’ve used numbers in the example so far, but Python provides several types
that you’ll be using a lot. Here are the most important:

Numbers
Which of the following are numbers?

3290, 3290.123, 3290e3, “3290”

We can find out by making use of the fact that Python is a szrongly typed
language. This means that if you try to multiply two vatiables that aren’t both
numbers, for example, it will report an error. PHP, which is another popular
programming language, would do its best to work out what you meant — but this
can often result in bugs. Go back to the Geany Terminal tab and type:

>>> a=3290; print(a*5)
16450

Python prints the answer we’d expect. Notice that semi-colon? It’s there to
allow us to put two statements on one line. Other languages use the semi-colon
at the end of every line. In Python, we use it only when we want to use multiple
statements on a single line.

45

Ultimate Guide to Raspberry Pi

Now let’s try the next one:

>>> a=3290.123; print(a*5)
16450.615

This time, the number has a decimal point — in Python, numbers formatted
in this way are called floats, because they have a floating decimal point. Numbers
without points are called znzegers. Floats take up a little more memory than
integers, so use them only if you need the extra precision. Note that when two
number types are multiplied (the floating point 3290.123 and the integer 5),
Python shows the answer in the most precise form — in this case, as a float.

Back to the terminal:

>>>a=3290e3; print(a*5)
16450000.0

This is another type of floating point number, except that this time we used
e3 at the end: this is a convenient way of signifying 3,290 x 10° ot, to put it
another way, 3,290,000.

Now try:

>>>a="3290"; print(a*5)
32903290329032903290

That was unexpected! But completely logical — to Python. By putting quotes
around the number, you told Python that the characters 3290 were intended
to be treated as a s#77ng rather than a number. A string is a sequence of letters,
numbers and symbols intended to be treated as text. When you multiply a string,
as we did here, Python thinks you want multiple copies so it just repeats them.
To see Python throw a real wobbler, try this slightly different version (with a
plus rather than a multiplication symbol):

>>>a="3290"; print(a+5)

What happens? Python shows an error message. This is because the + symbol
is interpreted in different ways depending on whether it’s dealing with numbers
— where it means to add the numbers together arithmetically — or strings, where
it means glue the second onto the end of the first. So, "raspberry” + "pi"
becomes "raspberry pi"; but faced with the expression "raspberry" +
3.141592 (the number pi), Python is unable to perform the operation and will
simply return an error.

46

Ultimate Guide to Raspberry Pi

Although Python has several other number types, most of the time you’ll
stick to integers and floats. As you’ve seen, to perform arithmetic on numbers,
and + to indicate addition. We
can also process numbers in different ways using built-in functions and modules

i}

we use the * gperator to represent “multiplied by

— the most useful being the math module.
We'll come across all of these later but, as a taster, here’s a list of the main
operators and functions you’ll come across:

Operator/function | What it does m

+ Numerical addition >>> a=9; b=a+5; print b
14
- Numerical >>> a=9; b=a-5; print b
subtraction 4
* Multiply by >>> a=9; b=a*5; print b
45
/ Divided by >>> a=9.0; b=a/5; print b
1.8
% Modulus (the >>> a=9; b=a%5; print b
remainder of 4
a division)
int Convert to an >>>a=9.0; b=a/5; print
integer int(b)
1
round Round to the >>>a=9.0; b=a/5; print
nearest float round(b)
2.0
float Convert to a float >>>a=9; b=float(a)/5; print b
1.8

Of these, modulus is probably the only one that’s not immediately obvious.
That’s partly because the percentage sign is commonly used to mean something
quite different. The term may also be unfamiliar: it simply means the remainder
that’s left after performing a division. So, 11%?2 gives a result of 1, because 2 goes
into 11 five times with 1 left over.

You’d be surprised at how often this is used in programming: it’s excellent
for finding out if a number is odd or even, because any even number divided by 2
will have a modulus of 0, whereas any odd number divided by 2 always results in
a modulus of 1. You might use this when shading the rows of a table alternately,
for example.

The math module includes some additional useful and interesting functions,
too. Python has two types of built-in function: those such as round that can be
used as if they were patt of the language; and those such as math. floor that can

47

Ultimate Guide to Raspberry Pi

only be used if the appropriate module is imported first. Don’t worry, it’s very
simple — take a look at these. Remember, they’re still all one line:

math.floor Always rounds down to >>>import math; a=9.0; b=a/5;
the nearest integer gr:)nt math. floor (b)

math.ceil Always rounds up to >>>import math; a=9.0; b=a/5;
the nearest integer grant math. ceil(b)

math.pi Stores the value of pi >>>import math; print math.pi

3.14159265359

Strings

String variables are used to store things such as usernames, text we’re going to
display on-screen (for example, the prompt we used earlier with raw_input),
and other elements we might want to work with, such as database entries. To
tell Python you want a variable to be a string, you can enclose the text in either
double or single quotes — it makes no difference from the interpreter’s point of
view. These are equally valid:

>>>myName="Terry"
>>>myName="Terry"'

The only thing you need to look out for is to use the same marks at the start
and end of the string. If you try to use double quotes at the start and single at
the end, Python will return an error. If the phrase itself includes speech marks or
apostrophes, simply use the other punctuation mark to enclose it:

>>>myName="Terry's Terrifics"
>>>myName="'Terry "Terrific" Travis"

} [ZJICNe 1B It’s maths — but don’t panic!!

If the idea of having to deal with maths brings you out in a cold sweat,
there’s good news. Far from being the difficult-to-grasp subject you
might have found it at school, maths is at the heart of all computer
programming, so you’ll get to see its practical use. Plus, the vast majority
of the maths-related programming you’ll ever have to do is based on
simple arithmetic.

48

Ultimate Guide to Raspberry Pi

In other words, if the string contains apostrophes, you simply need to
surround it with double quotes, and vice versa. Given that apostrophes and
single quotes turn up in text more often than speech marks, it makes sense to
use double quotes by default.

Hold on — what if a piece of text contains both? In this case, simply
add a backslash in front of the character you’ve used to enclose the string
where it appears within the text. This tells Python that the character is to be
taken literally. For example, here’s how we might signal to Python that the
internal apostrophe in a phrase is to be treated as part of our string, and not as an
end-marker:

>>>myName="Terry\'s the "Terrific" Travis'

Things to do with strings

Once you’ve loaded some text into your variable to create a string, Python allows
you to process it in all sorts of weird and wonderful ways. Python thinks of
strings as being similar to Scrabble tiles — each character on its own tile — which
makes it really easy to get at any letter or number, as well as dead simple to split
the string into bits. There are dozens of functions designed to handle strings, but
the selection below will give you an idea of how such functions work and how
they might be used:

len

String[position]

String[p1:p2]

replace(old,new)

split

Tells us how long a
string is (including
spaces)

Add (concatenate)
two strings together

Return the character
at that position in
the string (the first
position is zero)

Return all the
characters between
two positions
Replaces an existing
set of characters with
another

Splits a string into
parts

>>>print len("Terry Travis")
12

>>>print "Terry " + "Travis"

Terry Travis

>>>a="Terry Travis"; print
a[o0]
T

>>>a="Terry Travis"; print
a[5:12]
Travis

>>>a="Terry Travis"; print
a.replace("rav","ard™)
Terry Tardis

>>>a="Terry Travis"; print
a.splitQ

['Terry', 'Travis']

49

Ultimate Guide to Raspberry Pi

Lists

Strings and numbers contain single values: Python’s 1ist object lets you store

multiple values in one variable. Imagine, for example, you had a database of

names such as “Terry Travis” and you wanted to write to everyone using their

first name only. The names could be stored in a list object, then pulled out one at

a time so that the split() function could be used to fetch the first name from each.
Here’s how we might define that list of names. Note that because the line

is longer than our margins can accommodate, we’ve used the symbol “»” to

indicate that the code spills over to the next line. Don’t press Return when you

see this symbol, but keep typing to the end of the next line.

>>>Tist_of_names=['Andrew Ant','cCharlie Childs', 'Martina »
Mongoose', 'Peter Purbrook','Terry Travis', 'Vera Verity']

Once this list is entered, to pull out Terry we could do this:

>>>this_name=1ist_of_names[4]
>>>print "Full name="+this_name
Full name=Terry Travis

To isolate just his first name:

>>>first_name=this_name.split()[0]
>>>print "First name="+first_name
First name=Terry

In Python — and most other computer languages — when you’re selecting
elements from inside a variable, the numbering starts with 0, not 1 as you might
expect. This number is called an zndex and the item it fetches is called an e/ement.

In the case of a string, specifying a single index gives you one character
from the string as its element; with a list, you get the whole element. So, "Terry
Travis"[0] would return “T” (the first character) whereas 1ist_of_names[0]
would give you “Andrew Ant”.

A list can contain a mix of variables, including other lists. For example, for a
calendar divided into the weeks of the year, each week could be a list containing
the dates. This is how that would look for the beginning of 2013:

>>>year_2013=[[31,1,2,3,4,5,6]1,[7,8,9,10,11,12,13], [14,15,16, »
17,18,19,20],[21,22,23,24,25,26,27],[28,29,30,31,1,2,3]]
>>>week=year_2013[1]

>>>print week

[7, 8, 9, 10, 11, 12, 13]

50

Ultimate Guide to Raspberry Pi

Note how each of the nested lists is contained within square brackets. The
second line fetches the dates for the second week in January (remember, list
indexes start with 0); that is, a list within a list. You could extract the date for
Wednesday of that week with week [2].

As you can see, lists allow you to pack a lot of data into a single variable.
Don’t worry if they seem a little complex right now. We’ll be using lists a lot
and you’ll soon get to grips with them.

Dictionaries

You can think of dictionaries as super-lists. Like lists, they’re collections of other
objects; unlike lists, each element is given its own name so you can access the
variable directly. Try this:

>>> family={'father':'Terry', 'mother':'vera', »

'daughter':'Jane', 'son':'Jack'}
>>> print family['father']

Terry

As you can see, each pair is given a name and a value. We can then pull out
any dictionary element by using that name. As you’d expect, this means that each
name must be used only once per dictionary. You’ll also notice that dictionaries
use curly braces to indicate when they start and end, whereas lists use square
brackets — this is how Python knows which of the two you mean to create.

You can change the contents of both lists and dictionaries during a program.
If you typed in the family example above, you could change it like this:

>>>family['son']="Jak’'
>>>print family['son']
Jak

You don’t have to use /ieral values when you cteate a dictionaty or list — you
can use a variable instead.

>>>son="Jake"
>>>family['son']=son
>>>print family['son']
Jake

This time, we created a new variable called son and assigned it a string
value “Jake”. We can then use the variable to feed into the family dictionary.
Not particularly useful as it stands, but imagine if we were reading a database
of families: we’d then be able to change the son variable to the name of each

51

Ultimate Guide to Raspberry Pi

son without having to type them manually. A final useful thing to know is that
you can add a new entry to a dictionary after it’s been created. In this case, let’s

add grandparents:

>>>family['grandad']="Cyril"

>>>family['granny']="Edith'

>>>print family

{'daughter': 'Jane', 'grandad': 'Cyril', 'mother': 'vera', »
'father': 'Terry', '

If you’ve ever used another programming language, you’ll probably have
come across arrays. In that case, you may have already worked out that
lists and dictionaries are the equivalent Python structures. Where you
might have used a standard array sorted by index in PHP, for example,
you use the list in Python. Dictionaries are the equivalent of associative
arrays in other languages. If you’ve never programmed before, just bear
this in mind when you look at the documentation for other languages - this
is one aspect in which Python is quite unusual.

son': 'Jake', 'granny': 'Edith'}

Fortune teller

Remember those little plastic balls that presented a random answer to your
questions when you shook them? Let’s create our own fortune teller in Python
— in just a few lines of code. We’re going to want to run this more than once, so
fire up Geany and type in the listing. Remember that the » on line 2 tells you to
keep typing, rather than pressing Return to start a new line.

import random

fortunes=['yes', 'Probably', 'Certainly', 'outlook promising', »
'Not sure','Ask again', 'Doubtful','No']
how_many_fortunes=len(fortunes)

raw_input('Think of a question, press Enter for the answer')
which_fortune=random. randint(0, how_many_fortunes-1)

print fortunes[which_fortune]

The code begins by importing the random module, which will produce the
random numbers that allow us to pick an unpredictable answer each time the
program is run. On the following line we create a list containing all eight of the
possible answers — feel free to change them as you wish!

52

fortune.py - Sishare\code - Geany

File Edit Search

New Open

Symbols | Documents

@ Vanabl

Ultimate Guide to Raspberry Pi

On the next line we use the Ten function to find out how many answers
there are. This might seem unnecessary because we could simply count them
(how_many_fortunes=8), but by doing it this way we can add and remove
answers at any point without affecting the rest of the code.

The following line uses the raw_input statement to pause the program,
displays the prompt and waits for the user to press the Enter key.

Next, we use the randint function to generate a number. Notice the
brackets after randint? Those are there to pass parameters to randint. Parameters
are the bits of information the function needs to work. In this case, we’re telling
randint to generate a number between 0 and how_many_fortunes-1. Given that
there are eight fortunes in our example, this means randint will give us a number
between zero and seven. We need this because, in case you’ve forgotten, the first
item in a list has an index of 0, not 1 as you might expect. Therefore, the last one
has an index of 7, not 8. Don’t worry if you find this a little frustrating: the zero-
based indexing of lists and other similar objects catches out the most experienced
programmers from time to time.

Finally, on the last line of the program, we print the element from fortunes
that has the index generated by randint.

Run the program a couple of times by clicking the cogs to make sure the
randomness is working; you should receive a different answer pretty much every
time (though it’s to be expected that things will repeat occasionally — that’s the
nature of randomness). Also have a go at changing the text in the answers and
adding or removing some.

Congratulations! You have just written your most advanced computer
program yet — a fortune-telling genie, in only six lines of code!

Yiew [Document Project Buidd Took Help
[(o] 3 L&
15 P = “ o 1 A J (=3 =
Revert Close Back Forward Compie Build Execute Colour Chooser

fortune.py M

1 import

2 v ' v
% 3 (
4
5 -
6 print fortunes|[wh
B C\Windows'system32omd exe = =2

a gquestion. press Enter for the answer

» continue .

53

Ultimate Guide to Raspberry Pi

Making decisions and getting things done

A loom powered by punched cards in modern-day use in India

Over 200 years ago, Joseph Jacquard demonstrated a new mechanical loom with
a unique feature: it used punched cards to control the pattern of the textile. Each
card contained several rows of holes in specific locations. As the card was fed
through, row by row, small rods detected whether there was a hole. If there was,
that particular thread would be used; if not, it wouldn’t.

Since each row in Jacquard’s system offered 25-30 positions for holes, very
complex patterns could be created with minimal human involvement. Loading up
another set of cards yielded a completely different pattern.

This invention (building on eatlier work by others) was such an efficient way
to create textiles that it’s still in wide use today. It also gave rise to two important
concepts that formed the foundation of computing: the idea that you can
program a series of operations in advance and, secondly, that a machine can be
given more than one purpose by simply changing its “softwate” (or “paperware”
in this case).

Another similarity between Jacquard’s system and modern computing
becomes apparent if you take one row from a set of Jacquard cards, and
represent a hole with a 1 and the absence of a hole with 0. You might get
a sequence like this: 1111100110000011001110011111111. In other words,
Jacquard used a 19th-century implementation of binary notation — the “language”

54

Image: Steve Kimberley (http://en.wikipedia.org/wiki/File:Loom.jpg)

Ultimate Guide to Raspberry Pi

at the heart of all digital computers. The looms used mechanics in place of
programming languages but, essentially, they worked in a similar way. If a 1 was
encountered in any particular position, a certain action was taken; if it wasn’t then
cither a different action was taken or nothing happened.

Jacquard’s system had only one variable type (a binary number), whereas
Python has many (including its equivalent of the binary type, namely the
Boolean). We’ve covered the most important of these — numbers, strings, lists
and dictionaries. Now it’s time to move onto the coding equivalent of the
mechanics that decide what to do with those variables.

If-then-else

The ability to make decisions based on the contents of variables and then take
actions depending on the results is what separates computers from calculators,
and ifthen-else is the most important decision-making structure. In the case of the
Jacquard loom, each position on the card where there might be a hole is a simple
if-statement. In English, this could be written as:

If there's a hole here use blue thread,
otherwise use yellow thread.

In Python, that statement might be represented as:

if hole==1:
thread=blue

else:
thread=yellow

The first thing you’ll notice is how clear this code is — we mentioned in
chapter 2 how easy Python is to understand — and this sort of readability is one
of the main aims of the language. We begin with the if keyword, and we follow
this with the condition that’s being tested.

In this case, if the hole variable (a number) is equal to 1 then the program
moves immediately to the next line. You’ll notice that this line is indented and
Python will now carry out all lines at that indentation (in this case, there is only
one). If the hole variable is 70 1 then the interpreter skips down to the line
containing eTse and executes the code beneath it.

Python uses a colon to indicate the start of a block of code and then
continues until the indentation changes. In practice what this means is that you
add the colon, then hit the Enter key to start a new line. You then hit tab once
(Geany does this automatically after a colon) and type your first line — every other
line that’s also tabbed once will be executed one after another. The interpreter
will stop when it spots a different indentation.

55

Ultimate Guide to Raspberry Pi

This is really important — Python is the only mainstream language that relies
entirely on indentation to mark blocks of code. The benefit of this is that your
code is much clearer, as we explained earlier, but it takes a little getting used to.
Let’s look at a slightly more involved chunk of code to help you understand.
Don’t type in the line numbers — these are just for our reference. We've also left
some blank lines and colour-coded the different sections of this program, to help
you follow the structure.

1 input_name=raw_input("what is your name?")
2 name_length=1en(input_name)

3 average_name_length=5

4

5 if name_length>average_name_length:

6 result="Tonger"

7 conjunction="than"

8 elif name_length<average_name_length:

9 result="shorter"

10 conjunction="than"

11 else:

12 result="the same"

13 conjunction="1ength as"

14

15 response=input_name+", your name is "+result+" »

"+conjunction+" "+"average"
16 print response

This program asks the user to type in their name. It then works out how
many characters their name contains. The if block compares this with the
average length of a first name (the average_name_length variable) and puts
together a response depending on the result.

At line 5 — the start of the red section — the length of the user’s name is
compared to the average. If their name length is greater than the average (we use
the mathematical > symbol), then the following code in red is carried out. Once
Python reaches the end of the red text, it jumps out of the if statement and
straight down to line 15.

If their name length is not greater than average, the interpreter skips the red
text and then evaluates line 8. e1if is short for “else if” — in other words, “now
check whether this is true”. Here, we ask if their name length is /ss zhan (<) the
average. If it is, the code in blue is carried out, then Python jumps to line 15.

If the user’s name is neither larger nor smaller than the average, it must be
the same length. So, we use else as a catch-all: it means “if none of the others
is true, then do this”. Note that Python will only arrive at this line if it hasn’t

56

Ultimate Guide to Raspberry Pi

already been diverted by one of the other if statements. This time it will carry
out the instructions in green before jumping to line 15. Give it a try with names
of different lengths to make sure it works.

We’ve now met three different ways to compare two variables: equals (==),
less than (<) and greater than (>). The complete list of commonly used comparison
operators is shown here:

Are the two values the same? if a==b:
< Is the first value less than the second? if a<b:
> Is the first value more than the second? if a>b:
>= Is the first value greater than or equal to the if a>=b:

second?
<= Is the first value less than or equal to the second? if a<=b:
1= Is the first value not equal to the second? if al=b
or
<>

In other words, when used in an 1f statement, if the answer to the question
is_yes then Python executes the code immediately following. If not, it skips to
the next block. Finally, in case you were wondering, we use == rather than = for
“equals” in conditional statements because Python assigns values to variables
using =. Watch out for this — it’ll trip you up sooner or later!

Repeating yourself
Using only if-then-else structures leads to very short programs. Remember our
fortune teller app? Every time you wanted to ask a new question, you were forced
to run the program again. The Jacquard Loom, conversely, kept on going because
the cards were constantly fed into the machine via a loop mechanism; otherwise
it would have only created one line of thread.

Similarly, we can create loops in our programs, to run sections of code
multiple times. Almost every useful Python program will include loops.

For..in
If you want to do something a specific number of times, the for loop is the tool
to pick. Let’s take a look at a very simple for loop in action:

input_name=raw_input("what is your name?")

for c in input_name:
print c

57

Ultimate Guide to Raspberry Pi

Give it a go. Create a Python file in Geany, type in those three lines and run
it. When prompted, enter your name. You’ll find that Python then prints each
character of your name one at a time, each on a separate line.

The structure of a for loop is this:

for [iterator] in [collection]:

Collection means any variable that can be split into parts. Lists and dictionaries
are often used but, in this example, it’s a string. Iferator is just the name we give to
each bit as it’s pulled out. Put into English, our example would be “for each letter
in input_name”, and it means that the next line will be repeated until it gets to
the end of the collection (the name you typed in, in this example).

So, let’s say you typed “Jo Bloggs” at the prompt. Collection is therefore
“Jo Bloggs” and the loop will start. The value of our iterator will be “J” to begin
with and so the print line will output that letter. Python now checks to see if
we’ve reached the end of the collection and, since we haven’t, moves to the next
letter and prints “o”. Bear in mind that if there were several lines after the for
statement, Python would execute them all as part of the loop — until it got to a
line that wasn’t in the same tab position, at which point it would go back to the
for and start again.

What do you think would happen if you were to replace the first line with the
code below? Give it a try.

input_name=("Jo", "Bloggs')

You should find that, this time, Python prints “Jo” on one line and “Bloggs”
on the next, rather than each word on its own line. Why? Because input_name
is now a list, not a string, so the iterator is now each element in the list, not the
individual characters in the string. In fact, it’s much more common to iterate over
a list than a string, largely because lists are so useful.

If you’ve studied any other programming language, you’ve probably come
across a for structure that iterates a fixed number of times. In BASIC this would
be written as for n=1 to 10, which would create a loop that ran ten times.
Whilst this might seem simpler, in practice you nearly always iterate through a
collection, so the Python approach is much more efficient. If you do need to
loop a fixed number of times — for example, if you wanted to create a specific
number of objects — the Python equivalent of that BASIC statement would be:

for n in range(10):
Again, below this statement, simply place the code you want to be run ten

times (in this case), indented by one tab stop.

58

Ultimate Guide to Raspberry Pi

While

Most Python programs, especially games, include the while loop. In English,
this loop means “while a particular condition is satisfied, keep looping”. For
example, in a game you’ll usually have a main loop that keeps repeating until the
Escape key is pressed:

import random

user_roll=raw_input("what number did you rol11?")
my_rol11=0

how_many_ro11s=0

while my_roll != int(user_rol1):
my_roll=random.randint(1,6)
how_many_rol1s+=1
print my_roll

print "it took "+str(how_many_rolls)+" rolls"

This little program asks you to roll a die and input the number. It then works
out how many rolls it took to get the same number (on average it should be
around six). As you can see, we need to begin by importing the random module.
We also create two number variables and set them to zeto.

When Python gets to the while loop, it checks its value for my_ro11
(remember, we set it to zero when we created it) and compares that to the
number you entered. The != comparison means “does not equal” so, if my_ro11
does not equal the uset’s number then Python will move into the block. Since
you will have typed a number from one to six, my_ro11 will not equal user_ro11
the first time, so Python will always run the loop at least once.

We then set my_ro11 to a randomly generated number between one and
six to simulate our die roll. On the next line we increase the how_many_rol11s
variable by one to keep track of the number of rolls it took to get the same
number the user rolled. The += characters are used as a shorthand to increase
(¢ncrement) that value by one.

We then print the randomly generated die roll, and Python jumps back to the
while line. This time my_ro11 will not be zero, it will be 2 number from one to
six. Python checks whether this randomly generated number matches whatever
the user typed in earlier. If it doesn’t, it moves into the loop again. This continues
until they do match, each time generating and printing out a new random
number. When it does match, Python jumps to the final line and prints out the
number of attempts it took.

You’ll notice that the whiTe statement includes the int function. This is
because, when we use raw_input, the uset’s input is treated as a string, even if

59

Ultimate Guide to Raspberry Pi

they’ve typed in numbers. Python can’t compare a number with a string (even if
that string contains only digits), so we use the int function to convert the string
into an integer (a number without a decimal point) that the while statement can
use to compare. Similatly, on the final line, we use the str function to turn the
how_many_ro11s number variable into a string so it can be incorporated into the
print statement.

Decisions, loops, nesting and breaks

Loops and #f-then-else structures are at their most powerful when they work
together. You can also create loops within loops (this is called resting) and ifs
within ifs — and any combination of both. Indeed, a program of any complexity
at all will involve these sorts of combinations and it can be tricky to work out
where you are at any one time.

But this is where Python’s clear structure pays off: you know that all lines at
the same tab stop are at the same level. This is much easier than the approach
other languages use of employing curly braces — in that case, unless you’ve been
hyper-careful making sure your tabs line up, you'll end up counting braces to see
where you are. In Python, if you don’t line up your tabs, the program won’t work
so you’re forced to get it right. This is a good thing!

Occasionally, you will want to break out of a loop before it has completed.
If you’d created a Space Invaders-type game, for example, and were using a
while loop to update the position of the invaders several times a second, you
might want to exit to another part of the program if the user pressed F1 for help.
In that case, you use the break statement; this exits the loop immediately and
proceeds as if it had completed.

The continue statement, on the other hand, skips straight back to the start
of the loop, preventing Python from executing the remaining lines in that cycle.

Organising your code: functions, objects and modules

We’ve covered Python’s most important nuts and bolts — variables, decisions
and loops — enough to create simple programs. However, to create a useful
application, you need a way to organise your code. Otherwise it would end up as
one long, indecipherable block of Python.

Going back to our book analogy, functions are the equivalent of paragraphs:
a chunk of lines with a specific purpose. Functions can exist on their own or
within objects or modules. They’re the smallest unit in the Python universe.

Functions

A function is a block of code with a patticular purpose. By organising your code
this way, it can be used as many times as you like from within your program.
For example, you might have a function that reads the system clock every

60

Ultimate Guide to Raspberry Pi

second to update the elapsed time in a game. Rather than having several lines

of code to do this within the main program, this can be isolated into a function

to be called as often as you like. This has the added benefit of making our main

code much simpler and easier to understand because it isn’t so cluttered. Each

function can be named, which, again, makes the program as a whole much easier

to understand.

Let’s get straight into a practical example. Type the listing below into Geany

and run it.
1 import pygame, random
2 pygame.init(Q)
3 clock = pygame.time.Clock() # Clock to Timit speed
4 WIDTH=600; HEIGHT=600; BLACK=(0,0,0)
5 screen = pygame.display.set_mode([WIDTH, HEIGHT])
6 screen.fi11(BLACK)
7
8 def draw_circle(colour):
9 x=random. randint(1,WIDTH)
10 y=random. randint(1,HEIGHT)
11 size=random.randint(1,5)
12 pygame.draw.circle(screen,colour, (x,y),size)
13
14 def random_colour(minimum, maximum):
15 red=random. randint(minimum,maximum)
16 green=random. randint(minimum,maximum)
17 blue=random. randint(minimum,maximum)
18 colour=[red,green,blue]
19 return colour
20
21 for n in range(100):
22 clock.tick(25)
23 colour=random_colour(100,255)
24 draw_circle(colour)
25 pygame.display.update()
26
27 raw_input("Press a key")

This simple program fills a black window with randomly generated circles.

You’ll remember that when we created if-then-else, while and for..in
blocks, we started the block with a colon and then indented the code that is to be

run. Functions work in exactly the same way.

We use the def keyword to define a function. You can see that, in this code,

61

Ultimate Guide to Raspberry Pi

pygame window

we have two functions, which we’ve called
draw_circle and random_colour — we
can use any name that makes sense to us
and follows the rules for naming variables.
When the program is run, Python
will begin at line 1 and immediately carry
out the instructions through to line 6
(note the two variables WIDTH and HEIGHT
are in capitals — this is the convention
for variables whose values stay the same
throughout. When it gets to line 8, it
comes across the first function: rather
than being immediately run, the code
within the function is loaded into memory
to be used later. The same happens with
the second function (random_color).
The Python interpreter arrives at line

21 and finds a for. .in loop. In this case, i i
Our randomly generated circles are attractive

it’s a loop that will run exactly a hundred 45 o0k at, and were easy to implement

times, since this is how many circles we
want to generate. In other words, Python carries out the code from line 22 to line
25 one hundred times before the loop ends. The interpreter then jumps down to
line 27, which waits for a key to be pressed before ending the program.

To run the code in a function, we call it — you can see the two ways to do
this on lines 23 and 24. The purpose of many functions is to carry out a task and
send back the result. Take a wild guess at what line 23 is doing:

colour=random_colour(100,255)

Yes, we’re creating a variable called colour and assigning it the value sent
back by the function random_colour. Note that every single element in this
statement was named by us, not Python, so we can choose words that make
sense to us so that our code is easy to understand.

But what about the set of brackets at the end? Well, have a look at the
function definition on line 14. Immediately after we name the function, we also
indicate what information the function needs in order to run: in other words,
which parameters must be passed to it. In this case, we need a minimum and
maximum value for the colour (see Focus on: Colour for an explanation of how
colour works in Python).

Since our background window is black, we don’t want colours that are too
dark. Look back at line 23 and you’ll see we’re passing 100 to the function as the
first parameter (minimum) and 255 as the second parameter (maximum).

62

Ultimate Guide to Raspberry Pi

Each of the first three lines of this function (starting at line 14) generates a
random number between minimum and maximum (100 to 255 in this case). The
variable names have been chosen to make clear what they represent. However,
red, green and bTue at this point are just number variables and nothing more;
their names are to help us remember their purpose.

In line 18, we create a new list variable called colour containing each of these
random values. Again, it’s just a list with a convenient name containing three
numbers of between 100 and 255 each. Finally, on line 19, the return command
sends the list back to the line that called it (line 23).

Scope

Hold your horses — why does the variable colour appear twice? Surely that can’t
be right? It is right, because variables, by default, only exist inside the function
that gives birth to them. This is what we call their scgpe. So, the variables within
the random_coTour function (red, green, blue, colour) can be accessed only by
lines of code also inside that function. The colour variable defined at line 23 is
not inside random_coTlour, so this part of the program can’t “see” the one at line
18: this is why we must return it.

Having said that, if a function contains another function, then variables
declared in the parent are accessible in the cbild. This is why screen, which is
declared in the main code, can be used in draw_circle.

On the face of it, you might think it would make more sense to allow every
part of a program to see and use variables from every other part, but there are
two reasons why this isn’t a good idea.

Firstly, each variable takes up memory and, since the variables within a
function are there purely to help the function to perform its task, it would be
wasteful to keep them “alive” once that task is complete. In fact, it might cause a
program to run out of memory entirely.

Secondly, by keeping variables /ocal to their function, we can reuse the
variable name in other functions without causing a naming clash. This isn’t just
a matter of convenience: it also means that we can use reuse functions across
lots of programs (including functions written by other people) without having to
worry about accidentally duplicating variable names.

Occasionally, you do need to have access to a variable throughout the
program. You can achieve this simply by using the global keyword in the line
that originally defines the variable:

global my_var = 999
For the reasons given above you should only use global variables when

absolutely necessary, and this is very rarely. There is usually a better way to do it
that avoids the problems they create.

63

Ultimate Guide to Raspberry Pi

So, back to our program. The random_coTour function generates a list
with red, green and blue colour values and sends this list back to line 23. What
happens next? On line 24, we call our other function draw_circle. This time
the parameter is the colour we just received back from random_colour. On lines
9 and 10 we create random numbers between 1 and the width or height of the
program window.

Most programming languages use a coordinate system, with the point at
the top left-hand corner being 0,0. The x axis is left to right so, on line 9, we
generate a horizontal position for our circle. The y axis is top to bottom, so line
10 generates a vertical coordinate. Line 11 generates a random number between 1
and 5, which will be the radius of the circle, and line 12 uses a function from the
Pygame module to actually draw the circle on the screen.

When the interpreter reaches the end of line 12, it will see that there is
no next line at the same tab level and go back to line 25 — there is no return
statement this time because, well, there’s nothing to return!

To make sure you understand, follow the order of the lines executed by the
interpreter as it goes once through the loop from line 21:

21,22,23,14,15,16,17,18,19,24,8,9,10,11,12,25

Each of these iterations generates and displays one circle. Python repeats this
until 100 have been generated, then drops down to line 27 to finish.

It’s quite possible that, at this moment, your brain is smouldering — but
don’t worry! It all becomes natural very quickly, and this little program contains
most of the key concepts you need to understand to become a coder. From here
on in, it’s a question of broadening your knowledge and applying it to more
sophisticated (and more useful) apps.

Modules

Modules sound intimidating, but they’re simply groups of functions that are
saved in a separate text file and accessed by the interpreter as needed at runtime.
In fact all Python files are modules, and the usual approach is to have one main
module and one or more other modules with specific jobs. So, a word processor
might — in addition to its main module — have modules called print.py, save.py
and spellcheck.py.

Python comes with a range of standard modules — random and math are two
that we’ve used already — and there’s a huge selection of third-party modules,
including pygame.

You might wonder why Python doesn’t simply include all these functions
into the main language, but it’s a matter of efficiency: not all programs need
random or maths functions, so the code is kept as lean as possible by only
including the modules necessary to the particular task.

Python’s built-in modules are available automatically. You simply use the
import statement and they become usable. Third-party modules (including your

64

Ultimate Guide to Raspberry Pi

In Python, colours are made up by mixing red, green and blue, with

each component colour assigned a value representing how strong it is.
The possible values range from 0 to 255; in other words, there are 256
possibilities. This may seem odd — to a human it would make more sense
if the range were set to 0-100, for example — but doing it this way makes
complete sense to a computer.

Remember that, at their heart computers use binary notation. In
binary, 255 is 11111111; or, put another way, 28. In other words, it’s the
largest number that can be written in eight bits or one byte of data. So, 0
represents none of that colour, and 255 represents 100% of it.

For our pygame circle, the mixed colour is written as a list of the
three channels. Pure black would be [0,0,0] - in other words 0% of red,
green and blue — and pure white is [255,255,255], with a mid-grey being
[128,128,128]. Pure red would be [255,0,0], pure green [0,255,0] and a
pure blue would be [0,0,255].

To get other colours, you simply mix the RGB channels. Magenta is
[255,0,255] and yellow [255,255,0], whereas [128,64,0] makes a chocolate
brown. Geany has a colour mixer built in, which you can use to work out
the best values.

own) either have to be specially installed (as with pygame) or saved as .py files
where the interpreter can find them. In practice, this usually means including
them in the same folder as your code. Let’s look at how we might refactor
(improve) our colour circle program using modules. Here’s the main module,
which we’ve called snow. py:

1 import pygame, display

2 pygame.init()

3 clock = pygame.time.Clock() # Clock to limit speed
4 screen=display.setup()

5

6 for n in range(100):

7 clock.tick(45)

8 colour=display.random_colour(100,255)
9 display.draw_circle(colour,screen)

10 pygame.display.update()

11

12 raw_input("Press a key")

65

Ultimate Guide to Raspberry Pi

And here’s a secondary module that we’ve called display.py:

import pygame, random
WIDTH=600; HEIGHT=600

1

2

3

4 def setup():

5 BLACK=(0,0,0)

6 screen = pygame.display.set_mode([WIDTH, HEIGHT])
7 screen. fil1(BLACK)

8 return screen

9

10 def draw_circle(colour, screen):

11 x=random. randint(1l,wWIDTH)

12 y=random. randint(1,HEIGHT)

13 size=random.randint(1,5)

14 pygame.draw.circle(screen,colour, (x,y),size)
15

16 def random_colour(minimum, maximum) :

17 red=random. randint(minimum,maximum)
18 green=random. randint(minimum,maximum)
19 blue=random. randint(minimum,maximum)
20 colour=[red,green,blue]

21 return colour

In a nutshell, we’ve exported all the functions to do with drawing to the
screen to this new module called display.py. Doing this was simply a case of
creating a new Python file in Geany and pasting the two existing functions into
it. We’ve also added import statements for pygame and random to the top of this
module, since they’re needed by these functions, and we’ve moved the WIDTH
and HEIGHT variable assignments to this module, too, since this is where they’re
used. The only major change we made is moving all the screen setup code into a
function called setup.

Back in our original Python file (our main module), having moved the code
across to display.py, we need to make a few other changes. Firstly, we need
to import our new module on line 1 (note, we’ve removed the random import
because it isn’t needed for the code in this module). Secondly, we need to call the
setup function in display.

There are a few things to notice here. Firstly, if we want to call a function in
another module, we add the name of the module to the beginning so that Python
knows where to find it. Secondly, if a function has no parameters, as here, we add
empty brackets. Finally, note that the setup function returns a screen variable:
this is because this variable is needed by the draw_circle. When we created our

66

Ultimate Guide to Raspberry Pi

setup function, we put screen inside it. This means it’s no longer accessible by
draw_circle, so we must return it from setup to the main program; then, in line
9, we add it as a new parameter to our draw_circle code.

Whilst this might seem a bit of a palaver for very little gain, just take a look
at snow.py in its new form. Remember, this is the main program. By removing
much of the display code to another module, it’s now much shorter and very
clear. After all, we can understand what draw_circle and random_colour do
from their names, so we don’t need to see the code (unless there’s a bug, in
which case we know where to lookl).

The more sophisticated your program, the more benefit you stand to gain
from organising your code into modules. It’s a good habit to get into thinking in
modules right from the start.

A quick class in object-oriented programming

Many introductory books avoid explaining object-oriented development
because it’s seen as an advanced topic. But it’s an essential part of modern-day
programming, and something you’ll need to understand if you’re to do serious
coding, let alone have a career in programming,.

Fortunately, it’s a pretty simple concept to get your head around — and it’s
very useful, especially for creating games, so we’re going to tackle it head on.
We'll leave some of the nitty-gritty to later chapters: for now the point is to
understand what we’re doing when we use object-oriented programming (OOP)
techniques and why.

The basics

We introduced objects on page 35. Procedural programming is like writing code
to directly control a puppet. Object-oriented programming is more like placing
the code inside the puppet itself, so you can simply tell it what to do and it will go
off and do it independently.

The code for an object is contained in a ¢/ass. You can think of this as a
blueprint. Each time a new object (sometimes called an zustance) is needed, Python
uses the class as its model for that object. In other words, if you needed lots of
on-screen puppets, you could write just one class, then create a for..in loop to
create hundreds at once.

One of the main benefits of OOP is encapsulation. This means that everything
an object needs to know is contained within its own code. You could, in theory,
take an object and use it in another program without having to change it at all.

In this way, objects are similar to modules, and they’re made up of functions
just as modules are (functions are often called methods when they’re inside classes).
Objects can sit within the main code, within modules, or in a file of their own.
The more reusable they are, the more likely you’ll want to store them separately.

67

Ultimate Guide to Raspberry Pi

Perhaps the most powerful feature of OOP is znberitance. Writing a single class
for puppets is all very well, but marionettes come in many forms and the code
for creating a Pinocchio would be different to that used for creating Mr Punch.
Inheritance lets you define a generic class containing the code that applies to all
puppets, and supplement it with child classes to define more specific cases.

So, let’s say the generic class includes code for drawing a head, arms and legs.
When we come to create the Pinocchio child class, we can simply write new code
to add support for his extending nose. Mr Punch doesn’t have standard puppet
legs, so his child class might override the draw_legs function of the generic class
with his own draw_legs function, whilst keeping all the rest of the code intact.

This approach means you, as a coder, only have to write the minimum code.
It also becomes very easy to create new child classes, since most of the work
is already done. And each change you make to the generic class is immediately
inherited by all child classes, making bug fixing much simpler.

A simple class

Let’s have a look at how we can revise our circle drawing program to use object-
oriented principles. First we’ll write the main module, below; then we’ll add a
module containing a class called circle, listed opposite:

1 import pygame, circle

2 pygame.init()

3 clock = pygame.time.Clock() # Clock to Timit speed
4 WIDTH=600; HEIGHT=600

5 screen = pygame.display.set_mode([WIDTH, HEIGHT])
6 BLACK=(0,0,0)

7 screen.fi11(BLACK)

8 circles=[]

9

10 for n in range(100):

11 clock.tick(45)

12 circles.append(circle.Circle(screen,WIDTH,HEIGHT))
13 pygame.display.update()

14

15 clock.tick(1)

16

17 for c in circles:

18 clock.tick(45)

19 c.clear_circle(screen)

20 pygame.display.update()

21

22 raw_input("Press a key")

68

Ultimate Guide to Raspberry Pi

1 import pygame, random

2

3 class Circle:

4 _minimum=100; _maximum=255

5 _colour=None

6 _properties=[]

7

8 def __init__(self,screen,width,height):

9 self.random_colour()

10 self.draw_circle(screen,width,height)

11

12 def draw_circle(self, screen, width, height):

13 x=random.randint(1,width)

14 y=random. randint(1,height)

15 size=random.randint(1,5)

16 self._properties=[x,y,size]

17 pygame.draw.circle(screen,self._colour, (x,y),size)
18

19 def random_colour(self):

20 red=random.randint(self._minimum,self._maximum)
21 green=random.randint(self._minimum,self._maximum)
22 blue=random.randint(self._minimum,self._maximum)
23 self._colour=[red,green,blue]

24

25 def clear_circle(self,screen):

26 pygame.draw.circle(screen, (0,0,0), »

(self._properties[0], »
self._properties[1]),self._properties[2])

The circle class completely replaces our display module. This in itself
demonstrates object-oriented thinking: rather than creating a module that draws
circles over the screen, we instruct each circle to draw itself. That’s why we name
the class this way.

You’ll see immediately that two of the functions of the display module are
present, largely unchanged, in our circle class. We begin with the keyword
class, which is used to define the block containing all the code relating to that
class. You can see that every line within the block is indented; again, this is how
Python knows it belongs to the block.

Creating a class makes a special type of function available, which is always
called __init__ (with two underscores cither side of the name). This is short for
“Initialise” and, as you might imagine, is run when the object is first zustantiated
(created). In this case, the __init__ function automatically runs the two

69

Ultimate Guide to Raspberry Pi

functions we created for the display module, so as soon as it’s created our circle
is drawn. This isn’t always the case: the __init__ function is often used to set up
the object for later use.

You may have spotted that the main difference in the code is the addition of
the se1f keyword. This is critical to understanding how objects work. As you’d
expect, self refers to the specific circle object being created at that moment.
Remember the loop that runs 100 times in our main module? Each time it runs,
it will create a new object, each of which has its own self. It’s just as if you met
100 children: you might struggle to tell them apart, but each would themselves
know who they were. So, each function has a se1f parameter that’s used to refer
to itself.

Finally, the other main change is that a new function called clear_circle
has been created. Guess what this does? We’ve added a new variable to the object
called _properties (note: it’s a convention to use the underscore before the
names of class variables, but it isn’t compulsory) into which we save the x and y
coordinates of this particular circle, along with its size.

Now go back to our main module. First, we replace display in the import
statement with circle. You'll see that we’ve moved the initial setup code back

} Focus On NI [N & AT (o1

As a programmer, one of the most important attitudes to develop is a
distaste for writing the same code twice. Whenever you find yourself
repeating chunks of code, it should send a shiver down your spine: this

is your warning that you should be finding a better way of doing it. For
example, could you spin the code out into a function? This is marginally
more hassle the first time you do it, but it pays dividends once you’re able
to use that function the second, third and fourth time.

In fact, most programming takes this organic form. You spot an
inefficiency in your code and tidy it up by creating a function. Let’s say, for
example, that you find yourself asking the system to provide the current
time repeatedly. This takes several lines of code because you want it
returned in a specific way. You decide this would be better in a function so
you create one.

Later, you find yourself doing a similar thing for the date or, perhaps,
implementing a countdown timer. You create functions for each and then
realise they could be organised together into a separate module called
time_11ib. This is great, but then you realise that you need to have multiple
countdowns running at once - so you finally decide to take that particular
function and turn it into a class.

70

Ultimate Guide to Raspberry Pi

here, because it doesn’t make sense for it to be within the Circle object. We also
create an empty list called circles. Our main loop has become even simpler, and
line 12 is the critical one. Just as with the dispTlay module, if we want to refer to
a function within an imported class we must start with the name of the import —
circle — followed by a full-stop and then by the name of the function.

In this case, because we’re creating a new object, we simply refer to it. By
convention, class names start with a capital letter, and our class name is Circle
so that gets us to circle.Circle. This will run our __init__ function, requiring
three parameters of screen, WIDTH and HEIGHT. So now we have circle.
circle(screen,WIDTH,HEIGHT). Finally, so that we can use our objects later, we
load them into a list using the append method; this simply adds one to the end.
We'll end up with a list that’s 100 objects long.

So the effect of line 12 is to create a new object based on the Circle class
(which results in a circle being drawn on the screen), and to add that object to a
list. If we were just showing the circles, then the list wouldn’t be needed but, as
you can see in the second for. .in loop, we also want to erase them.

Line 17, then, says “for every circle in the list”; line 18 sets the speed and
then line 19 calls the clear_circle function in the class. So, it’ll pull out each
circle object, beginning with the first and, because each circle knows where it was
painted on the screen and how big it was, we can use this self-awareness to paint
a black circle on top, effectively erasing it.

The old-school way of doing this would have been to keep track of all of
this within the main program. That’s not as neat for a simple program such as
this, and the more sophisticated a class is, the more useful it is to have objects
look after themselves. It also makes it possible to reuse your code and objects
elsewhere since they’re fully self-contained.

Run the program (always run the main module, not the class) and you should
see the random field of circles appear, pause for a moment, and then just as
sedately disappear in reverse order.

This program has been an exercise rather than a functional application. For
example, there’s no user input at all. However, by adding input it could be turned
into something more useful. Imagine if you painted circles across the whole
screen and then paused the program. If you noted the position of the mouse
pointer, you would be able to tell when it moved and respond by removing the
circles using the code from line 17. What would you have? A simple screensaver
—in fewer than 50 lines.

Again, don’t worry if not all the principles of object-oriented programming
have fully sunk in. The aim of this introduction is simply to start you thinking
in an object-oriented way. You’re now equipped with all the main concepts you
need to build a career, or simply personal expertise, in programming. The rest of
this book will help firm up what you’ve learned and show you how it works in

practice as we create a working game.

7

Ultimate Guide to Raspberry Pi

Extending Python

We’ve already seen that Python has a number of built-in functions — for example,
those that handle strings, lists and dictionaries — as well as a range of modules
that are supplied with the language but must be izported before being used, such
as those containing operations for random numbers and time. However, part of
Python’s great versatility comes from the huge library of free third-party modules
out there. These range from very popular mainstream libraries, such as Pygame,
to those aimed at niche uses, such as connecting a Raspberry Pi to a robot.

Let’s take a quick look at some of the most important modules — especially
those we’re going to use in our game and project.

Pygame

Don’t be fooled by the name: Pygame
helps you develop games, but it can also
do much more than that. Remember our

clock widget, the first thing we coded

Eandne
to test our setup was working? We used e st
Pygame to display the window and render it

the text in a nice form. Most of our s
examples so far have used Pygame, even Tatoriaks
though we haven’t yet started coding a [w—
game. Pygame functions include: ottt SEPRE o
Wﬁ‘”
. A b vl St i st vaits e frn
* Display Create windows, or allow by

games and projects to run full-screen;

Pygame isn’t just for creating games -
 Gownload t fiommiavgareord
e Draw Draw a whole range of primitive

shapes such as rectangles, polygons,
lines, ellipses, circles and arcs (and optionally fill them with colour);

* Surface Draw objects in memory, then paint them to the display in one go —
essential for games with lots of graphics;

* Font Embed fonts into your project, so you can display them without relying
on the end user having the same font installed on their system;

* Image, Transform A wide range of image manipulation functions that
might be used to create specialised picture-processing applications;

* Sprite Create self-aware sprites with built-in collision detection, making
complex games much simpler to create;

72

http://www.pygame.org

Ultimate Guide to Raspberry Pi

* Mixer, Music, Movie Add sounds and

videos to your projects;

* Event “Listen” for player action such as
key presses or mouse movements.

Pygame is written mainly in C, so it gives
good performance in games (remember
that one of Python’s strengths is its ability
to use propetly prepared C libraries).

It’s also available for a wide range of
platforms: you can create games and apps

for every mainstream desktop platform,

With the aid of Pygame it’s possible to
write professional-quality games in Python

and a few not-so-common ones!

Saving data

It’s important to be able to save data between sessions, and load it back in as
required — whether you want to allow users to save their position within a game,
store records to a database or exchange information with a web server. Python
offers a whole range of methods for achieving this, but the main ones — in order
of increasing complexity — are: the File object, pickle and sqlite3.

File

The File object lets you create, save to, read from and delete text files. Anything
you save is converted to text so, essentially, you’re reading and writing strings.
That doesn’t mean you can’t use File to handle sophisticated data, though. Let’s
take a very simple example. Type this listing into Geany and save it as filel.py:

1 first_name=raw_input('Type your first name...')
2 second_name=raw_input('Type your surname..."')
3 savefile=open('data.dat', 'w')

4 savefile.write(first_name+'\n')

5 savefile.write(second_name+'\n')

6 savefile.close()

7 print('saved')

8 first_name=None

9 second_name=None

10 openfile=open('data.dat','r")

11 name=openfile.read() .splitQ)

12 first_name=name[0]

13 second_name=name[1]

14 print first_name+" "+second_name

73

Ultimate Guide to Raspberry Pi

w = I x f’. ‘ v 0 q v

symbols b | F

esave.py X

first name=raw_input()

second name=raw_input()

savefile=open|(’)

savefile.write(first name)

savefile.write(second name+)

savefile.close()

print()

first name=None

second name=None

el2l 18 openfile=open|(y)

ame (9] 11 name=openfile.read().split() Type your first name...Kev

me (17 A8 first name=name[6] Type your surname...Smith
13 second name=name[1] ;

U-N- - R

5 Terminal

14 print first name+" “+second name
15
16
A
20:05:26° File home/kevpartner top/Dropbox/Swap/inventw

gram exited with code: @)
return to continue

1 file saved

A simple exercise using the file object - this time running on an
Ubuntu virtual machine

Cleatly, the first two lines ask the user to type in their first and second names.
The interesting stuff begins on line 3, where we create a new variable using the
file object’s open method (remember, “functions” are called “methods” when
inside objects). We pass in the name of the text file: this can be any name we
choose as long as it’s valid for our operating system (if the file doesn’t exist, it
will be created by Python at this point). The 'w' parameter means that we want
to write to the file; in other words, we want to save some data.

In line 4 we write the first name. By appending '\n' we add a new line. This
is the file equivalent of pressing the Enter key — essentially we’re using file
to organise text by line, so by inserting a \n at this point the surname will appear
separately a line below. You could also simply add a delimiter to each saved record

»

— the pipe symbol “|”, for example — but you must choose a character that you
would never use within a record.

Having written the second name to the file, we then close it. This tells the
operating system to save the file with its new contents.

We’re now going to open it up again and read the contents back in. Lines
9 and 10 clear the name variables, so we can be sure we’ve read in the file and
not simply kept what the user typed. On line 10 we create a new file object,
using the same name, but this time with the parameter 'r', which reads in the
contents of a file but leaves it unchanged. Since files only contain text, openfile
is a string at the moment: this means we can use the sp1it() function to take
this text and create from it a list with each of the lines as a separate element.

74

Ultimate Guide to Raspberry Pi

For example, if the user’s name was Jo Bloggs, printing name would result in:
['J0','Bloggs']

To retrieve the first name we use name[0]; for the surname we use name[1].
Run the program and you’ll see your name reappear in the terminal. There’s an
even better test, however: find the file data.dat (if you’ve used the same name)
and open it in a text editor. You should see the names one per line. The file
object is the workhorse of Python file input/output; it’s pretty simple to use.

Pickle

The great benefit of pickle is that, unlike file, it can take any data form and
save it to a file. It can also “unpickle” the data back to exactly its original form. In
fact, pickle is specifically built to augment the built-in file object and make it
more useful. Again, this is best understood through a short example, which we’ll
call pickleExample.py:

import pickle
save_data={'username':"'Joe Bloggs', »
2 'score':9234, 'max_level':5}
save_file=open("savedata.dat",'wb')
pickle.dump(save_data,save_file)
save_file.close()
#zero variables, read file back in
progress_file=open("savedata.dat",'rb")
progress_data=pickle.load(progress_file)

print "Dear

'+progress_datal['username']+ »

O 0 N O U1 AW

, your data \n"+str(progress_data)

Note that we must begin with an import statement — pickle is part of the
standard Python install but, because it isn’t quite as basic an object as file, it
must be explicitly added to the code. You don’t have to install it, however, if
you’re using Windows, Mac or Linux (including Raspbian).

On line 2 we create a dictionary containing basic data, including the user’s
name, their cutrent score and the furthest they’ve reached in our imaginary game.
Next, we create a file object with the parameter 'wb', which stands for “write
bytes”. pickle uses its own storage format, so we need to specify that it’s writing
bytes of data, not text. This means the file it creates will look like gobbledygook
if you open it in a text editor.

Line 4 uses the pickle.dump method to save the data — passing it the data
itself (it could be any variable type, we’re using a dictionary) and the file object.
We then close the file.

75

Ultimate Guide to Raspberry Pi

o - i - x %“® -0 M " Q
y B pickleExample.py X
v 1 import pickle
I 2 save_data={ ’ 19234, :5)
: 3 save file=open(t)
4 pickle.dump(save data,save file)
5 save_file.closel)
6 #zero variables, read file back i
vi : progress file=open(A]
B progress data=pickle.load({progress file)
9 print sprogress data| 1+ sstriprogress data)
18
u ® Terminal

Pickle allows us to store data to a file
exactly as it is, then read it back later

In a real game, you’d probably want to read this data back in later or, indeed,
in a later game session. The code from line 7 achieves this. We create a new file
object, this time with the 'rb"' parameter because we’re reading bytes back in. On
line 8, we create a new variable and use it to receive the data from pickle using
the Toad method. Line 9 prints it out.

pickle is a very powerful and widely used module. Its main advantage over
the simpler file object is that you don’t need to wtite code to parse (read and
convert) the saved data when you want to retrieve it: pickle simply gives it back
to you in the same format you used to save it. If you think about the amount
of information you’re likely to want to save in your game (a leaderboard, for
example), you can appreciate how much simpler pickle makes this — not only
saving time, but reducing the chances of bugs creeping in.

SQLite3

If you get into commercial programming then you’ll encounter SQL (Structured
Query Language — and no, it is 7o pronounced “Sequel”) pretty quickly. This is a
database system that’s ideal for starting large amounts of structured data — such
as for a customer database, or a football league manager game.

The main advantage of relational databases (the sort of databases SQL is most
often used with) is that they make the retrieving of data lightning-quick. After all,
if you have a large database of Conference League footballers and you want to
list all players for sale, this needs to happen in the blink of an eye to avoid your
game appearing slow.

SQLite is a halfway house between the ease of use and versatility of pickle
and the full-fat power and complexity of, for example, MySQL (the database
format used by a large percentage of websites). It’s a cross-platform standard,

76

Ultimate Guide to Raspberry Pi

represents data in a flat form similar in concept to card indexes. It isn’t good
at cross-indexing data but it’s very good at simple retrieval — for example, it
would make mincemeat of our “players for sale” query.

Python’s SQLite3 module allows you to create, edit, read and write SQLite
files and, if you intend to find work as a programmer, it’s a good place to start
learning about SQL whilst also being very useful. SQL itself is standard across its
many forms so your experience of SQLite3 with Python would give you a head
start when faced with learning any other mainstream database.

To do things with SQL databases, you write gueries and then execute those
queries using your chosen SQL engine. So, our Conference League player search
might look something like this:

SELECT * FROM players WHERE league = 'conf' »
AND status = 'for sale'

It really is that straightforward — but since this isn’t a book about SQL,
we’ll move along. The key point to bear in mind is that it’s nothing to be
frightened of. You can carry out most database functions with a small range of
commonly used techniques.

Congratulations

So far in this book you’ve seen how to set up your Raspberry Pi and your
coding environment. You’ve learnt how to think like a programmer. And
you’ve had a whistle-stop tour of the basics of Python and object-oriented
programming, so you now know the most useful variable types; how to create
and use functions, modules and objects; and how to structure your code
using decisions and loops. You’ve also learnt about the extra functionality
Pygame adds, and explored the various ways to store and retrieve data using
Python modules.

The best way to reinforce this knowledge and make sure it sticks is to put
it into practice; so in the coming chapters we’re going to cover, in great detail,
the development of three very different projects. You've learned a lot so far, but
don’t worry if you don’t remember everything we’ve covered — even the most
experienced programmer considers Google to be their best friend. Programming
is much more about technique and knowing which tool to use in a given situation
than about remembering the specifics of how Python, or any other language,
implements that tool.

Once you’ve completed the projects, you should have a very good idea of
which situations call for a loop, which require a decision, and when it’s best to
spin out your functions into separate objects. This only comes through practise,
so once again it’s time to roll up your sleeves and get stuck in.

77

N WY el Y N D .. RO
e A RRRIS .||..|| 'I' Hoen
[|

L lisSlawie m[r|| MAVE.
i II.'!.

ot e |) FUE .|,|.|
Surface . ||I|h.lr'=-vel Tet (50,3001
LMHWMPdeJm¢H.y¢MNMHW% ;

Py .,| e b nr"r"| é.W -.e:a_i'i:q B0)

[UP VARIA '%l ESFOR LEVEL
ClEArTIE ai‘ll'r' '|| i '““ J.th |I|@F”"1”*r"' L:* / ©.0al |eVey
live_frt ||| sprites=pygame;sprite, roupy
B i wMermwm mwwﬁﬁrm
CJarme o | Fj)ff“ S i@ Gnot)
li“z ["I.j N

pullet, Sl s
y . (& swt ~uv|F3' sEOWHEIBHT)
eyt e :;JM#WJ" LL"mefwf?Piﬁmrnmﬂmmn 1UWFHEJ|T?4 WIND GWH

;tr{ﬁgﬁmrrmﬂ! e Level: 'm

b]y
\

M)

l l..
i

Chapter Four

Designing a game

In this section we’re going to build on what we’ve learnt to design and create a
simple game. By doing this, not only will we create an end product that will be
fun to play, but we’ll also explore many of the general programming skills you’ll
be able to transfer to future projects.

To get the most from this section, we strongly recommend that you type in
the exercises as we go through. This way, you’ll better understand what each line
and statement does within the game. However, if you need to save time or check

your work, the resources can also be downloaded from www. rpilab.net/code.

Fools rush in
However simple the game, you shouldn’t just sit down at your computer and

start coding right away — such an approach will result in nothing but chaos and

frustration. You need to begin by thinking carefully about exactly how your game
is going to work and, from that, generate a list of the tasks both you and your

code will need to complete.

http://www.rpilab.net/code

Ultimate Guide to Raspberry Pi

’ [JJJIEN o1 I Specifications

If you follow a career in programming, you’ll quickly come across the
concept of the “specification”. This is a document that is created before
programming starts and fully details what the application does, how it
works and what it looks like. Different programming teams use different
specifications and many now adopt a more rapid development approach
called “agile”, which minimises the up-front work and focuses more on
smaller work units that evolve as the project progresses. For a simple
game, our specification will be brief.

Genres of games

According to Wikipedia, there are 13 major genres of game, including action,

role-playing, strategy, sports and puzzle. One way to come up with game ideas is

to look through the genres and think about examples from each. Another option

is to play plenty of games — on a phone, console or computer — and think about

what you enjoy most. Don’t bite off more than you can chew, though. A Space

Invaders clone is certainly achievable by a new programmer, whereas a first

person shooter inspired by Call of Duty probably isn’t a realistic ambition — not as

a first project, at least!

Pi Splat is a simple, fruit-based shoot-‘em-up game

— =
" PriSplat

LEVEL: |

The concept

In this case, we’re going to choose a
simple shoot-‘em-up called Pi Splat. We’re
using the Raspberry Pi as out inspiration
so, naturally, our targets are going to be
fruit. The concept can be summarised as:

We're being invaded! Several types of fruit
fall from the top of the screen — but beware,
most are poisonons. Use a mobile gun platform
to destroy poisonous frut, but allow raspberries
through to reach the ground. When enough
raspberries have landed, the planetary defences will
be activated and the population will be saved.

Okay, it isn’t exactly the most original
concept but it’s simple and fun — two
excellent traits for our first game. Our
next job is to decide on the rules for our
game, and the victory conditions.

79

Ultimate Guide to Raspberry Pi

Rules

In real life there’s nothing to stop you creating your own card game and making
up the rules as you go along. However, the computer needs to know what to do
in every conceivable situation. In this case, the game rules are simple.

1. Fruit appears randomly and drops vertically down the screen, disappearing if
it reaches the bottom.

2. The gun turret can be moved left and right along the bottom of the screen.
Pressing the Fire button launches a bullet up the screen.

3. If abullet collides with a fruit, the fruit is destroyed.

4. If the destroyed fruit is not a raspberry, the player receives points.

5. If the destroyed fruit is a raspberry, the player loses points.

6. If a raspberry reaches the bottom of the screen, the player receives points.
7. If any other fruit reaches the bottom of the screen, the player loses points.
8. Once a set number of raspberries have reached the bottom, the level ends.
9. Aslevels pass, the speed of the falling fruit increases.

Victory condition

A game needs to have an aim. In games that have multiple levels, there is often
one victory condition for the levels and a different, overall, aim for the game as a
whole. For our game, the aim of each level is to collect the prescribed number of
raspberries. The aim of the game as a whole is to clear 5 levels.

Now we have our rules and our victory condition, it’s time to design the game,
according to the principles of input, logic and output:

Input

The user needs to control the gun. This means we’ll have to set up a way for the

player to move it left and right, as well as firing. Keyboard control works best for

a game of this sort, so we need to write code to specify which keys the player can

use to control their gun tutret and more code to “listen” for those key presses.
We'll also want the user to be able to save their progress so they can exit

the game and resume later. So, when the game loads, it needs to check whether

there’s any progress data and, if so, read it as an input.

80

Ultimate Guide to Raspberry Pi

® images
Devices mHome K& Desktop Pi_Splat images
VBOXA.. &
Bookmarks
i Ubuntu One i
Computer banana.png blueberry.png bullet.png
i Home
K Desktop ;
i Documents
i3 Downloads gameBoard.png pear.png raspberry.png
@ Music
s Pictures
@Videos A
strawberry.png turret.png
—_ File System

. Rubbish Bin
Network

ksl Browse Net...

Q, search

cherry.png

splash.png

By looking at the game’s output, we can generate a list of the graphics needed

Output

We'll need to create (or find) graphical images for each of the fruits that’s going

to appear in our game, and we’ll need to write code to move them down the

screen. To add a bit of visual interest, we’ll also want to create an explosion effect

for when the fruits are hit.

In addition, we’ll need a turret graphic and bullets for the player — and this is

also the right time to consider screen decorations for the background, over which

we might display text for game instructions, score reports and so forth. In all

we’ll need the following graphics:

* Fruit (raspberry, cherry, strawberry, pear and banana)
* Player graphics (turret and bullets)

* Background graphic

* Splash screen

Sound is also a form of output, so we should also at this point consider whether

we might want to include some in-game music and sound effects. Lastly, as

mentioned opposite, we will also be saving the player’s progress data to the hard

disk — another form of output.

81

Ultimate Guide to Raspberry Pi

Logic

Lastly, our logic code will check whether bullets have collided with fruits, and
update the score accordingly. It will also keep track of which level is being played,
and when the game is over.

} I IEN0 1 B Where to find graphics and sounds

You can download a huge quantity of graphical and audio resources from
online libraries — but check the terms of use, especially if you intend to

edit them. You can find free graphics at the Open Clip Art Library [http: //
mwhich you can normally edit and use as you wish.
Fotolia|(http://en.fotolia.cdm) provides top-quality graphics and

photos for a small cost: for the best results, download the vector format of
the image and edit it in a suitable program.

A good source of free sounds is|http://freesound.org) You'll find
everything here from music loops to special effects.

Creating the basic game

Now we’ve done our large-scale planning, you can finally open up your editor
and start typing. We haven’t yet worked out the fine details of how we’re going
to implement everything, but that’s all right. Creating a game is a completely
different process to building a real-world object such as a house. In that case
you need a detailed blueprint before you dig the first hole. Programming is more
like building a house out of Lego: you select from a toolset of pre-created blocks
and build one part at a time, experimenting and amending along the way. It’s

an dterative and organic process, in which you focus on the building blocks of the
program — writing, testing and editing code to create each function, module and
class — before bringing them together to make the final product.

Getting started
We'll begin by creating a simple template for our game, then fill in the code to get
the game working. To create the template, we need to think about how our code
will be organised in terms of graphics, sounds and Python files — and we do this
using the familiar structure of input, logic and output from the previous chapter.
Broadly speaking, you should expect to create a class for each of the game’s
visible objects. You could add the code for each of these classes in the main
Python file, but it makes more sense to have each in its own file: this is clearer
and easier to understand, and removes clutter from the main program code.

82

http://openclipart.org
http://openclipart.org
http://en.fotolia.com
http://freesound.org

Ultimate Guide to Raspberry Pi

> Focus On QSN (E G EINER {1

You can find the code, images and other resources for this game &f www .
rpilab.net/code. You'll find specific information about Pygame functions
at www. pygame . org/docsland documentation for Python 2.7 is at[AitEp: /7]
docs.python.org/2/index.html.

Important: we’re not going to go into detail about every single
command used in this code. You’ve met much of it earlier in this book, and
where a command or function is new we'll explain what it does; but we
expect you to use the documentation for Python and Pygame to learn the
detail. Not only does this help us make progress, it encourages a key skill
every modern day programmer needs: the ability to use documentation.

You’ll also notice our code doesn’t include many programming
comments (explanatory text following the # symbol). This is to keep our
listings clean and short. The downloadable code (which you should look
through after completing the chapter) is heavily documented.

1. Main.py
Create a folder to contain your Python game. Now, in Geany, create and save a
file called main.py. Type in the code in listing 1 (overleaf) and save it.

2. Classes
Create Python files named bullet.py, fruit.py, turret.py and game.py. The
first three are straight out of our design document and represent visible objects.
The game class is there to hold information about the game as a whole. For
example, it can keep track of the player’s score and level number, and can be
conveniently reused across multiple projects

Add the following text to the top of each of the class files:

class Bullet(Q):
def __init__(self):
pass

...replacing Bullet with the name of each class. The pass command is
simply a placeholder — it doesn’t do anything, but if we didn’t provide it Python
would report an error since it isn’t valid to define a completely empty function.

3. Images

Finally, in your project folder, create a subfolder called “images” and copy all the
game’s graphic files into it, so they’re in a convenient place for us to access later.

83

http://www.rpilab.net/code
http://www.pygame.org/docs
http://docs.python.org/2/index.html
http://docs.python.org/2/index.html

Ultimate Guide to Raspberry Pi

} LI 11 I Picture and sound formats

The images used in this game are saved in PNG (Portable Network
Graphics) format. This is because PNGs can have transparent
backgrounds; if you used the popular JPEG format, for example, you'd
see a white edge around each of the fruits. When developing games for
the Raspberry Pi, you need to choose the most efficient format for each
graphic, and for those with transparent backgrounds the 8-bit PNG format
with alpha transparency works well.

As you’ll remember, an 8-bit image can include only a maximum of
256 colours (a 32-bit PNG can contain millions of colours), so this also
gives the Pi less work to do when it’s painting each screen. For most
purposes, this is the format to use.

When it comes to sound, WAV is a good format for short noises.
Although the file size is larger than MP3, files in this format aren't
compressed, so your computer doesn’t have to do any unnecessary work
to play them. For longer sounds that are loaded once at the start of the
game - background music, for example — MP3 is a better choice so as not
to waste valuable disk space and memory.

Main.py - the "boilerplate" of our program

1 import math,random,pygame,sys

s

2 from fruit import *; from game import *; »

from turret import *; from bullet import *

3
4 ##TOP LEVEL CONSTANTS

5 FPS = 30

6 WINDOWWIDTH=480; WINDOWHEIGHT=640

7 GAMETITLE="Pi Splat"

8 WHITE=[255,255,255]; RED=[255,0,0]; GREEN=[0,255,0];
9 BLUE=[0,0,255]; BLACK=[0,0,0]

10

11 def main(Q):

12 #set up initial display

13 pygame.init(Q)

14 clock=pygame.time.Clock()

15 surface=pygame.display.set_mode »
([WINDOWWIDTH,WINDOWHEIGHT])

16 pygame.display.set_caption(GAMETITLE)

17

84

Ultimate Guide to Raspberry Pi

18 #MAIN GAME LOOP

19 game_over=False

20

21 while game_over==False:

22 for event in pygame.event.get():
23 if event.type==pygame.KEYDOWN :
24 if event.key==pygame.K_ESCAPE:
25 game_over=True

26 print pygame.time.get_ticks(Q)

27 pygame.display.update()

28 clock. tick(FPS)

29

30 if _name__ == '_main__":

31 main()

The initial 31 lines of our program comprise the “boilerplate”, or standard
structure, which hardly varies from game to game. Line 2 imports our classes.
We then set a series of constants: variables whose values will not change during
the game. Unlike many other languages, Python doesn’t have a separate type for
constants, so we name them using capital letters so we can identify them later.

On line 11 we set up a function called main, which is where our program will
begin. Lines 13-16 use pygame functions to draw the initial window for the game.
Lines 21 to 28 constitute the ain loop: this is the code used to draw the screen
many times per second as the game is being played.

We set up a variable called game_over in line 19 and give it the value False.
We then start a while loop that will keep repeating until game_over becomes
True. The for loop at line 22 asks Pygame if any events have taken place. In this
case, we're interested in keyboard events so, in line 23, we cycle through all the
events in the queue and, if a key has been pressed, we then ask if that key was
“Esc”. If it was, we set game_over to True, causing the game to exit.

Line 27 updates the display (we haven’t yet added anything visual, but will do
soon) and line 28 tells Pygame to make sure the loop doesn’t cycle more quickly
than 30 times per second. Finally, lines 30 and 31 are used to make sure that the
main function will be accessed only if this was the file open in Geany when we
clicked the cog button. In other words, if we accidentally imported this module
into another, zain would not be called.

Once you’ve entered and checked all this code, click the cog icon (or press
F5). You should see a series of numbers running down the terminal window:
these are generated by line 25 and are simply the number of milliseconds since
the program started, proving that you’ve typed everything correctly and are ready
to move on. If you see any error messages in the terminal window, you need to
cotrect them before continuing.

85

Ultimate Guide to Raspberry Pi

Let there be fruit

Now it’s time to make the fruit appear and drop down the screen. We’ll start by
setting up the fruit object. Open up fruit.py in Geany and type in this code:

1 import pygame, random

2 class Fruit(pygame.sprite.Sprite):

3

4 def __init__(self,WINDOWWIDTH) :

5 pygame.sprite.Sprite.__init__(self)

6 self._species=random.choice(["raspberry", »
"strawberry", "cherry","pear","banana"])

7 self.image=pygame.image.load("images/"+ »
self._species+".png")

8 self.rect=self.image.get_rect()

9 self.rect.y=0-self.rect.height

10 self.rect.x=(random.randint(self.rect. »
width/2, (WINDOWWIDTH-self.rect.width)))

11

12 def update_position(self,speed,WINDOWHEIGHT,game) :

13 if self.rect.y<(WINDOWHEIGHT):

14 self.rect.y+=speed*5

15 else:

16 if self._species=="raspberry":

17 game.update_score(50)

18 game.update_raspberries_saved()

19 else:

20 game.update_score(-10)

21 self.ki1l1Q

22

23 def shot(self,game):

24 if self._species=="raspberry":

25 game.update_score(-50)

26 else:

27 game.update_score(10)

28 self.ki1l1Q

We begin by importing the pygame library and the random module. Take
a look at line 2 — you can see that we’ve added pygame.sprite.Sprite to the
class definition. This is an example of class inheritance in action: this line tells
Python to create a new object based on Pygame’s Sprite class, so Python will
assume that this object zs a sprite in all its behaviours and properties — except

86

Ultimate Guide to Raspberry Pi

where we explicitly specify otherwise. A sprite is a specialised object that’s based
on an image and which can be easily moved around the screen. It contains all the
functions needed to handle the visual side of our fruit.

The __init__ function is run when the main program creates a new znstance
of the Fruit class. In other words, when we want a new fruit to appear and fall
down the screen. In line 6 we create a property of the sprite that we’ve named
_species. In reality it’s just a variable like any other, but the convention is to call
variables that are inside objects “properties”.

The self keyword in front of a variable name tells the object that this
variable is part of its unique identity and should be remembered. So every Fruit
instance will remember which species it was set to for as long as it’s alive; this is a
very useful feature of objects, as we’ll see.

In line 7, we use Pygame’s image functions to load a picture into the sprite.
The next line makes sure that the size of the sprite matches the size of the image
just loaded. Line 9 sets the y (vertical) position to zero minus the height of the
image. So if the picture was 50 pixels tall, the top-left corner of the fruit will be
drawn at -50, so it’s just off the top of the screen.

Line 10 looks a little bit more complicated, but it simply specifies a random
horizontal (x) position for the fruit. The random. randint function takes two
parameters, to set the range between which you want it to generate a number.
Our first parameter — the lower bound —is :

In other words, we want the lowest possible horizontal value to be half
the width of the image from the left. This ensures the fruit will never be drawn
either wholly or partially off the left edge of the screen. The second parameter,
specifying the upper bound, is:

WINDOWWIDTH-self.rect.width

In this case, the maximum right-hand position will be the width of the
window minus the width of the image. So with a WINDOWWIDTH of 480 pixels
and a fruit width of, say, 72 pixels, we’d be asking random. randint to provide
a random number between 36 (72/2) and 408 (480-72). That number would be
used to position the fruit: each one in a different horizontal location.

The __init__ function, then, sets things up, but we need to add more
functions to make things happen. These functions will vary depending on the
purpose of the class, and in this case the most obvious attribute of our fruit is
that it moves down the screen, so we’ll begin with a function called update_
position. Unlike __init__, this function will only run when it’s called (in this
case, by the main program).

87

http://self.rect.width/2

Ultimate Guide to Raspberry Pi

The function definition in line 12 includes four parameters that must be
passed to it. se1f is part of all class definitions, but the others are our own
variables. WINDOWHEIGHT is self-explanatory, game is the game object (we haven’t
created it yet) and speed is a parameter we’ll set in main. py shortly.

The function is pretty simple. On line 13 we check to see if the vertical
position of the fruit is still less than the height of the window (if it isn’t, then the
fruit must have dropped off the bottom). If it is, then in line 14 we increase its y
position by an amount related to the speed.

If the fruit sas dropped out of the window then Python will execute the
code after the else in line 15. In this case, the code is another if statement: it’s
very important to understand that the code between lines 16 and 21 will on/y be
executed if line 13 is false.

So, on line 16 we check to see if the current fruit is a raspberry. Remember
that the point of the game is to allow raspbetries to reach the bottom of the
screen, so, in that case, we are going to increase the score and increment the
number of raspberries saved so far (the game ends when this number gets to ten).
Note that we haven’t actually added any code to the game object yet, but we now
know which functions to create.

Line 19 translates as “if the fruit is not on-screen (because it’s reached the
bottom) and it’s not a raspberry then execute the next line”. In this case, line
20 decreases the score because the player has allowed one of the other fruits to
reach the bottom.

Finally, line 21 deletes the object. Look closely at the indentation to make
sure you understand the circumstances under which this line will be executed:
the se1f.ki11 function is #ot inside the if structure starting on line 16, so if the
object has fallen off the bottom of the screen it will be “killed” whichever fruit

} S ICN o1 B Why use variables for constants?

You'll have noticed that once we've set the value of WINDOWWIDTH in
main.py, it stays the same throughout our game - that's why we call it a
constant and why, conventionally, we write it all in capital letters. So why
do we bother with it? Why don't we just specify the value 480 directly
when we need to refer to the width of the window?

We do it this way for two reasons. Firstly, because this allows you to
create a new game - with a different width — by doing nothing more than
changing a value once at the start of the program, rather than having to
find and alter every occurrence of 480. The second reason is that it makes
reading your code much simpler. By using WINDOWWIDTH rather than 480 in
a calculation, you know exactly what that number represents.

88

Ultimate Guide to Raspberry Pi

type it represents. Although the fruit is no longer visible, it makes sense to clear it
and stop it updating: otherwise it will continue to fall, even though we can’t see it,
pointlessly wasting computing power and memory.

Finally, since the object of the game is to shoot fruit (except raspberries), we
add a function called shot. A quick look over the code should be ample for you
to see what it does.

Setting up the game

1 class Game():

2 def __init__(self):

3 self._score=0

4 self._raspberries_saved=0

5

6 def update_score(self,amount):

7 self._score+=amount

8

9 def get_score(self):

10 return self._score

11

12 def update_raspberries_saved(self):
13 self._raspberries_saved+=1

14

15 def get_raspberries_saved(self):
16 return self._raspberries_saved

Having written our Fruit class, we now know what we need (initially, at least) to
include in our Game class (save it as game. py). Remember that this is a different
sort of class to Fruit: it doesn’t relate to a visible object on-screen. It’s simply a
convenient wrapper for code and variables that relate to the game as a whole.

The class definition doesn’t contain anything between the brackets because
we’re not basing Game on a pre-existing class. The __init__ function initialises
two variables — the score and the number of raspberries we've saved — so we can
use them later. update_score takes the amount sent to it and adds that to the
running score (see line 17 of fruit.py to see this function called). get_score,
on the other hand, uses the return keyword to send back the score. So, we could
write a line of code like this to print the current score to the terminal:

print game.get_score

The final two functions fulfil the same purpose for the raspberries_saved
vatiable, so our program can easily check this value too.

89

Ultimate Guide to Raspberry Pi

Updating Main.py

It’s time to fill out the “boilerplate” code we created earlier, to accommodate the
additional features needed to work with our fruit sprites. Update your main. py
module as follows:

1 import math, random,pygame,sys
2 from fruit import *; from game import *; »
from turret import *; from bullet import *
3
4 ##TOP LEVEL CONSTANTS
5 FPS = 30
6 WINDOWWIDTH=480; WINDOWHEIGHT=640
7 GAMETITLE="Pi Splat"
8 WHITE=[255,255,255]; RED=[255,0,0]; GREEN=[0,255,0]; »

BLUE=[0,0,255]; BLACK=[0,0,0]
9 SPEED=0.5

10

11 def mainQ):

12 game=Game ()

13

14 #set up initial display

15 pygame.init()

16 clock=pygame.time.Clock()

17 surface=pygame.display.set_mode ([WINDOWWIDTH,WINDOWHEIGHT])
18 pygame.display.set_caption(GAMETITLE)

19

20 #MAIN GAME LOOP

21 game_over=False

22 Tive_fruit_sprites=pygame.sprite.Group()
23 ticktock=1

24 while game_over==False:

25 for event in pygame.event.get():

26 if event.type==pygame.KEYDOWN:

27 if event.key==pygame.K_ESCAPE:
28 game_over=True

29

30 if ticktock % (FPS/SPEED)==1:

31 if len(live_fruit_sprites)<10:

32 Tive_fruit_sprites.add((Fruit(WINDOWWIDTH)))
33

34 surface.fill(BLACK)

920

Ultimate Guide to Raspberry Pi

35 for sprite in live_fruit_sprites:
36 sprite.update_position(SPEED,WINDOWHEIGHT,game)
37

38 Tive_fruit_sprites.draw(surface)
39

40 pygame.display.update()

41

42 ticktock+=1

43

44 clock.tick(FPS)

45

46 if _name__ == '_main__":

47 main()

You'll see we’ve made quite a few changes. We’ve added a new constant called

SPEED at line 9; and at line 22 we create a sprite group. This is essentially a list of

all the fruit sprites so we can easily handle them later.

The if statement beginning at line 31 checks if there are fewer than ten fruits

on the screen, and if so creates a new fruit object and adds it to the sprite group.

You’ll notice we created a variable called ticktock on line 23, and we use it on

line 30. This is needed because
the main loop (beginning at line
24) runs at 30 frames per second
(see line 44). Without the code
at line 30, all the fruits would

be added almost instantly rather
than spread out.

At line 42, ticktock
increments each loop, so it’ll be
worth 30 after one second, 60
after two seconds and so on.
Line 30 says that if you divide
ticktock by the number of
frames per second (30 in this
case), divided by the speed
variable (0.5 at the moment), and
get a remainder of 1 (that’s what
the % or modnlus means), run
line 31 and add a fruit if there
are fewer than ten. It’s a bit of a
brain-melter, but if you think
it through, you’ll see that

Pi splat

Run the code and you should now see fruit falling
randomly down the window

91

Ultimate Guide to Raspberry Pi

there will be a remainder of 1 when ticktock is worth 61, 121, 181 and so forth.
The effect, then, is to run line 32 every two seconds or so — which is exactly what

we want. Alternatively, we could use Python’s time functions, but doing it this

way keeps things in sync if the computer struggles to keep up for any reason.

Line 34 fills the window with black (you’ll be able to see what happens if you

don’t do this in a moment). Line 35 cycles through every fruit (if there are any)

and, in line 36, runs the Fruit class’s update_position function we just created,

moving each one down the screen or deleting it. Finally, we run Pygame’s draw

function, which will paint every fruit to the screen in one go.

Give it a try. Make sure main.py is in your Geany window and press F5 or

click the cog. You should see fruit appear at the top and move smoothly down

the window. Close the terminal to stop the program and add a hash symbol (#)

to the start of line 34; this “comments out” the line so that Python ignores it.

Press F5 and you should see a very different result.

Shooting fruit

We’re only a few steps away from having a working game, so let’s press on and

add the missing sections of code. We’ll start with the gun turret: enter the code

below and save it as turret.py:

14
15
16
17
18
19
20

92

import pygame
class Turret(pygame.sprite.Sprite):
def __init__(self,WINDOWWIDTH, WINDOWHEIGHT) :

pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("images/turret.png")
self.rect = self.image.get_rect()

self.rect.x = (WINDOWWIDTH-self.rect.width)/2
self.rect.y =WINDOWHEIGHT-self.rect.height

def update_position(self,direction,WINDOWWIDTH) :

if direction=="1eft" and self.rect.x>10:
self.rect.x-=10
elif direction=="right" and »

self.rect.x<(WINDOWWIDTH-10):

self.rect.x+=10

def get_gun_position(self):

position={}
position["x"]=self.rect.x+(Eeltf.rect.width/R)
position["y"]=self.rect.y-
return position

http://self.rect.width/2
http://self.rect.height/2

Ultimate Guide to Raspberry Pi

This class is similar to the Fruit class, with lines 7 and 8 positioning the

turret graphic at the centre of the screen’s bottom edge. At line 10 we set up
the update_position method, which takes the direction and the width of the
window as parameters and either deducts from the turret’s horizontal (x) position

to send the graphic left, or adds to it to send it right. See if you can work out how

the code prevents the turret from disappearing off the side of the screen.
Finally, starting at line 16, we add a function to send back the position of
the gun in the centre of the turret, so we can make bullets appear like they’re

emerging from the gun. Here’s the code for the last class, bullet. py:

O 00 N O U1 A W N R

F R R R R R
i A W N RO

import pygame
class Bullet(pygame.sprite.Sprite):
def __init__(self,position):

pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("images/bullet.png")
self.rect = self.image.get_rect()
self.rect.x=position["x"]
self.rect.y=position["y"]

def update_position(self):

if self.rect.y>=-self.rect.height:
self.rect.y-=5

else:
self.kil10

In the __init__ function, we send the gun position from Turret. The

function update_position is very simple; since bullets go #p the screen, their y

value gets smaller as they move. Once they go off the top, we destroy the sprite.

Main.py - the first fully working version

Now we’ve set up the code to handle our turret and bullets, we simply need

to make a few last changes to main.py to tie it all together and finish the first

version of the game. We’ve marked the changes in red, below:

o v AW N R

import math, random,pygame,sys

*

from fruit import *; from game import *; »

from turret import *; from bullet import *

##TOP LEVEL CONSTANTS
FPS = 30

93

Ultimate Guide to Raspberry Pi

94

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

WINDOWWIDTH=480; WINDOWHEIGHT=640

GAMETITLE="Pi Splat"

WHITE=[255,255,255]; RED=[255,0,0]; GREEN=[0,255,0]; »
BLUE=[0,0,255]; BLACK=[0,0,0]

SPEED=0.5

def main(Q):
game=Game ()

#set up initial display

pygame.init(Q)

pygame.key.set_repeat(l, 75)
scoreFont=pygame.font.Font("256BYTES.TTF",32)
clock=pygame.time.Clock()

surface=pygame.display.set_mode ([WINDOWWIDTH, WINDOWHEIGHT])
pygame.display.set_caption(GAMETITLE)

#MAIN GAME LOOP

game_over=False
Tive_fruit_sprites=pygame.sprite.Group()
bullet_sprites=pygame.sprite.Group()
other_sprites=pygame.sprite.Group()
turret=Turret (WINDOWWIDTH, WINDOWHEIGHT)
other_sprites.add(turret)

ticktock=1

while game_over==False:
for event in pygame.event.get():
if event.type==pygame.KEYDOWN:

if event.key==pygame.K_ESCAPE:
game_over=True

elif event.key==pygame.K_LEFT:
turret.update_position("left",WINDOWWIDTH)

elif event.key==pygame.K_RIGHT:
turret.update_position("right",WINDOWWIDTH)

elif event.key==pygame.K_SPACE:
bullet=Bullet(turret.get_gun_position())
bullet_sprites.add(bullet)

if ticktock % (FPS/SPEED)==1:
if len(live_fruit_sprites)<10:
Tive_fruit_sprites.add((Fruit(WINDOWWIDTH)))

48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86

Ultimate Guide to Raspberry Pi

for sprite in bullet_sprites:
sprite.update_position()

collisions=pygame.sprite.groupcollide(live_fruit_ »
sprites,bullet_sprites,False,True)

if collisions:
for fruit in collisions:
fruit.shot(game)

surface.fi11(BLACK)
bullet_sprites.draw(surface)
other_sprites.draw(surface)

for sprite in Tlive_fruit_sprites:
sprite.update_position(SPEED,WINDOWHEIGHT,game)

Tive_fruit_sprites.draw(surface)

scoreText=scoreFont.render('Score: '+str(game.get_ »
score()),True,GREEN)

surface.blit(scoreText, (10,10))

pygame.display.update()

ticktock+=1
if game.get_raspberries_saved()>=10:
game_over=True

clock.tick(FPS)

#handle end of game
surface.fill(BLACK)
scoreText=scoreFont.render('Game over. Score:

>

+str(game.get_score()),True,GREEN)
surface.blit(scoreText, (10,200))
pygame.display.update()

raw_input("press any key")
if _name__ == '_main__":

main()

95

Ultimate Guide to Raspberry Pi

Line 17 calls a Pygame function that limits the repeat interval on a keypress to 75
milliseconds, so the player can hold down the spacebar and rapidly fire a stream

of bullets. Line 18 imports a custom fontl(www. 1001freefonts. con{ is a good

place to find them) that we’ll use to display the score. In lines 26 to 29, we create
two new sprite groups: one to hold the bullets, and a second catch-all group for
any other sprites we’re adding.

Lines 37 to 40 respond to the left and right arrow keys, updating the turret’s
position using the code we just added to turret.py. Lines 41 to 43 create a new
bullet when the spacebar is pressed and add the bullet to the group. Lines 49 and
50 cycle through all the bullets currently visible and trigger the update_position
function for each in turn.

Line 52 is a little bit of Pygame magic. This one line checks whether azny
bullet has collided with any fruit. If one has, Pygame generates a /s¢ of those fruits
that have collided. All we have to do is pass in the two sprite groups we want to
check (hence our maintaining separate groups for bullets and fruit), along with
parameters indicating whether Pygame should kill colliding sprites. For the fruit,
we send a False parameter because we want to update the score before killing
them manually. For the bullets, it’s fine for

. Pi splat

Pygame to kill them.

In lines 54 to 56, we iterate through
any collisions and run the shot function
of the fruit the bullet has hit. Lines 59 and
60 draw the new groups to the screen.

On line 67 we use Pygame’s font.
render to create a picture that displays
the score in green with a transparent
background. Line 68 paints the score onto
the screen using the b1t function. You
must use this function to draw objects
onto the screen if you’re not using sprites,
otherwise they won’t appear.

Lines 72 and 73 set up a simple
if statement that breaks out of the
main game loop once we’ve saved 10
raspberries. Finally, the code from lines
78 to 83 clears the screen, draws the final
score and waits for the user to press a key.

Once your code matches our listings,
save and press F5 to play the game. Whilst

it’s certainly basic, you now have a fully
working, playable, arcade game in fewer Our code allows the player to hold down
than 200 lines of code. Not bad! the spacebar to loose off a hail of bullets

96

http://www.1001freefonts.com

Ultimate Guide to Raspberry Pi

Completing the game

To add a bit of depth to Pi Splat, we might add levels that become progressively

harder. While we’re at it, we should also implement the additional input and

output functions we planned at the start: adding a splash/instructions screen

at the start of the game, and giving the player the ability to save and restore the

player’s progress. We'll also smooth out a few rough edges to give the game a

more professional polish.

Rather than typing in all the code that follows, we recommend you

download the complete version of the game from www. rpilab.net/code,
load it into Geany and follow the discussion.

The finished code

Most of the remaining work takes place in main.py. This makes sense, as adding

levels doesn’t affect the way individual objects such as fruits or bullets behave.

On line 1, we add two new modules: pickle and os. Both are needed so that

we can save the user’s progress. We remove the SCORE constant and replace it

with NUMBER_OF_LEVELS, which we’re setting to five. You can change the number

of levels in your version of the game by altering this number.

Starting at line 23, we’ve added some code to create a splash screen. This has

been created as a single graphic. It might have been more flexible to add the text

at runtime, but a static image is fine for a simple game such as this.

0 N O v b~ w

import math, random,pygame,sys,pickle,os

s

from fruit import *; from game import *; »

from turret import *; from bullet import *

##TOP LEVEL CONSTANTS

FPS = 30

WINDOWWIDTH=480; WINDOWHEIGHT=640

GAMETITLE="Pi Splat"

WHITE=[255,255,255]; RED=[255,0,0]; GREEN=[0,255,0]; »
BLUE=[0,0,255]; BLACK=[0,0,0]

NUMBER_OF_LEVELS=5

def mainQ):
game=Game ()

http://www.rpilab.net/code

Ultimate Guide to Raspberry Pi

13

14 #INITIAL SETUP

15 pygame.init(Q

16 pygame.key.set_repeat(l, 75)

17 pygame.mouse.set_visible(False)

18 displayFont=pygame.font.Font("256BYTES.TTF",28)

19 clock=pygame.time.Clock()

20 surface=pygame.display.set_mode ([WINDOWWIDTH, »
WINDOWHEIGHT])

21 pygame.display.set_caption(GAMETITLE)

22

23 #SPLASH SCREEN

24 splash=pygame.image.load("images/splash.png")

25 surface.blit(splash, (0,0))

26 pygame.display.update()

27 game_over=False

28 start_game=False

29

30 while start_game==False:

31 for event in pygame.event.get():

32 if event.type==pygame.KEYDOWN:

33 if event.key==pygame.K_ESCAPE:

34 game_over=True

35 elif event.key==pygame.K_RETURN or »
event.key==pygame.K_KP_ENTER:

36 resume=False

37 start_game=True

38 elif event.key==pygame.K_LSHIFT or »
event.key==pygame.K_RSHIFT:

39 resume=True

40 start_game=True

41

42 if resume==True: #if they want to pick up a saved game

43 if os.path.exists("savedata.dat")==True:

44 game. Toad_game ()

At line 24, we load the splash screen and b1t it to the surface on line 25,
before refreshing the screen so it becomes visible. We’ve moved the game_over
variable to this point so the user can exit even when a game isn’t underway.

Lines 30 to 40 wait for the user to press a key, and respond when he or she
does. The instructions tell them to press Enter to start a new game or Shift to
resume an existing one. Since there are two physical Enter keys (the one under

98

Ultimate Guide to Raspberry Pi

Backspace and the one alongside the numeric keypad), we have to handle this
in line 35. Similatly, there are two Shift keys: line 38 captures this and sets the
resume variable to True.

On line 42, we check to see if they chose to continue an existing game, but
we first need to check if a save file already exists (there won’t be one if it’s the
first time they’ve played the game). This is achieved through the os (“operating
system”) module function. On line 44, we run a yet-to-be-created function of the
game object. The code continues:

45

46 #MAIN GAME LOOP

47 while game.get_level()<=NUMBER_OF_LEVELS and »
game_over==False:

48

49 #SHOW LEVEL NUMBER

50 surface.fi11(BLACK)

51 levelText=displayFont.render('Level: '»
+str(game.get_level()),True,GREEN)

52 surface.blit(levelText, (150,300))

53 pygame.display.update()

54 pygame.time.wait(1500)

55

56 #SET UP VARIABLES FOR LEVEL

57 game.save_game()

58 Tive_fruit_sprites=pygame.sprite.Group()

59 game._raspberries_saved=0

60 bullet_sprites=pygame.sprite.Group()

61 other_sprites=pygame.sprite.Group()

62 turret=Turret (WINDOWWIDTH,WINDOWHEIGHT)

63 other_sprites.add(turret)

64 ticktock=1

65 level_over=False

We’ve added a new loop that runs while the current level is less than or
equal to the total number of levels and the user hasn’t pressed Escape. Before
each level begins, we want to display a text message, so on lines 50 to 54 we erase
the splash screen (by filling it with black) and set up a font. We’ve changed the
name of this variable from scoreFont because it now has a more general use.

We then use Pygame’s time.wait() function to pause for 1.5 seconds, after
which we statt the code for each level (remember, the code after line 47 runs
each time a new level is started). On line 57 we run another function of game
— one we haven’t yet written — to save progress. Why save it now? Because we

99

Ultimate Guide to Raspberry Pi

want the user to come back at the start of the level they were playing when they

exited, so we save the state before it begins. The only other changes to this block

of code are that we zero the variable game._raspberries_saved before the level

starts and we create a new variable Tevel_over.

66
67
68
69
70
71
72
73
74

75
76

77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
97
97
98
99

100

#PLAY INDIVIDUAL LEVEL
while level_over==False and game_over==False:
for event in pygame.event.get():
if event.type==pygame.KEYDOWN:
if event.key==pygame.K_ESCAPE:
game_over=True
elif event.key==pygame.K_LEFT:
turret.update_position("left", »
WINDOWWIDTH,game.get_level())
elif event.key==pygame.K_RIGHT:
turret.update_position("right", »
WINDOWWIDTH,game.get_level())
elif event.key==pygame.K_SPACE:
bullet=Bullet(turret.get_gun_position())
bullet_sprites.add(bullet)

if ticktock >=120:
ticktock=0
if lTen(live_fruit_sprites)<10:
Tive_fruit_sprites.add((Fruit(WINDOWWIDTH)))

for sprite in bullet_sprites:
sprite.update_position()

collisions=pygame.sprite.groupcollide »
(Tive_fruit_sprites,bullet_sprites,False,True)

if collisions: #if there are any
for fruit in collisions:
fruit.shot(game)

background=pygame.image.load »
("images/gameBoard.png")
surface.blit(background, (0,0))
bullet_sprites.draw(surface)
other_sprites.draw(surface)

Ultimate Guide to Raspberry Pi

100 for sprite in live_fruit_sprites:

101 sprite.update_position »
(game.get_level () ,WINDOWHEIGHT, game)

102 Tive_fruit_sprites.draw(surface)

103

104 scoreText=displayFont.render »
('score: '+str(game.get_score()),True,GREEN)

105 levelText=displayFont.render »
('Level: '+str(game.get_level()),True, WHITE)

106 raspberriesText=displayFont.render »
('Raspberries: '+str(game.get_raspberries_saved()),True,RED)

107 surface.blit(scoreText, (10,10))

108 surface.blit(levelText, (10,50))

109 surface.blit(raspberriesText, (10,90))

110 pygame.display.update()

111 ticktock+=game.get_Tlevel O

112

113 if game.get_raspberries_saved()>=10:

114 game.update_Tlevel (1)

115 level_over=True

116 clock.tick(FPS)

You'll notice that all of this code has been indented by an additional tab (do
this in Geany by highlighting the lines you want to indent and pressing Tab once).
If you think this through you’ll see that we’ve done this because, at the end of
each level, we want to loop back to line 47 to see if we’ve reached the final level.

You'll also see that on line 68 we’re testing two conditions: the level will
play if Tevel_over isn’t True and if the user hasn’t pressed Escape. The event-
handling code is unchanged, but we’ve simplified the code for adding new fruits
to the screen: we’re now doing this every time ticktock reaches 120, which, for
level 1, will be 4 seconds (30 frames per second into 120).

On lines 95 and 96 we load a more interesting background, as an 8-bit PNG.
The code then remains unchanged until line 101 when we add a new parameter
to the update_position function of the Fruit class. We’ll come to this when we
look at the changes to that class.

Lines 104 to 110 have been enhanced to add extra player information. And
on line 114 we call a new function of the game object to increment the level if
ten raspbetries have reached the bottom of the screen. We set Tevel_over to
True so that the level exits and Python loops back to line 47.

The only change to the last few lines (which we haven’t reproduced here) is
to add a summary to the final screen showing the player’s overall score.

101

Ultimate Guide to Raspberry Pi

1 import pickle

2 class Game():

3 def __init__(self):

4 self._score=0

5 self._raspberries_saved=0

6 self._level=1

7

8 def update_score(self,amount):

9 self._score+=amount*self._level

10

11 def get_score(self):

12 return self._score

13

14 def update_raspberries_saved(self):

15 self._raspberries_saved+=1

16

17 def get_raspberries_saved(self):

18 return self._raspberries_saved

19

20 def update_level(self,amount):

21 self._level+=amount

22

23 def get_level(self):

24 return self._level

25

26 def save_game(self):

27 save_data={"score':self._score, 'level':self._level}
28 save_file=open("savedata.dat","wb")
29 pickle.dump(save_data,save_file)

30

31 def load_game(self):

32 progress_file=open("savedata.dat","rb")
33 progress_data=pickle.load(progress_file)
34 self._score=progress_data['score']
35 self._level=progress_data['level']

The main change to game.py is to add the code for saving and loading the
player’s progress. So, on line 1 we import the pickle module. We've also
added functions to update the score — on line 9 we multiply the amount the
score changes by the level number, so the further through the game you get the

102

Ultimate Guide to Raspberry Pi

bigger the rewards for hitting the right fruit (and the deductions for shooting a

raspberry!). We also add functions to update and get the level numbers.

The interesting stuff starts at line 26. The code here is very similar to the

examples in the section on Python libraries. On line 27 we create a dictionary

containing the data we want to save (just score and level numbers for this game,

but we could include the player’s name for example). We open a file to save the

data (if it doesn’t exist, Python creates the file) and then dump it to save.

The Toad_game function is almost exactly the reverse. If the user had reached

level 3 with a score of 1,234 when they pressed Escape, on restarting the game,

pickle would load that data and game._level would now be 3. game._score

would be 1,234, exactly as if they had never exited.

Fruit.py

o v A W N R

10
11

12

14
15
16
17
18
19
20
21
22
23
24

import pygame, random
class Fruit(pygame.sprite.Sprite):

def __init__(self,WINDOWWIDTH) :
pygame.sprite.Sprite.__init__(self)
self._species=random.choice(["raspberry", »
"strawberry"”,"cherry","pear", "banana"])
self.image=pygame.image.load("images/"+ »
self._species+".png")
self.image=pygame.transform.rotate(self.image, »
random. randint(-35,35))
self.rect=self.image.get_rect()
self.rect.y=0-self.rect.height
self.rect.x=(random.randint(self.rect.width/2, »
(WINDOWWIDTH-self.rect.width)))

def update_position(self,level,WINDOWHEIGHT,game) :
if self.rect.y<(WINDOWHEIGHT) :
self.rect.y+=2+Tevel
else:
if self._species=="raspberry":
game.update_score(50)
game.update_raspberries_saved()
else:
game.update_score(-10)

self.kil1Q

103

Ultimate Guide to Raspberry Pi

25
26
27
28
29
30
31

def shot(self,game):
if self._species=="raspberry":
game.update_score(-50)
else:
game.update_score(10)

self.ki1l1Q

We’ve made only a couple of minor changes to fruit.py. Line 8 rotates new

fruit images by a random value between -35 and 35 degrees, making their

appearance a little more interesting. You could add code into update_position

to have them gently swing as they fell if you wanted the full effect!

Otherwise, the only change is on line 13, where we replace the speed

parameter with Tevel and then, on line 15, use that to increase the speed as the

player progresses through the game.

Turret.py

©O© 00 N O U1 A W N R

e el
w N R o

14
15
16
17
18
19
20

import pygame
class Turret(pygame.sprite.Sprite):
def __init__(self,WINDOWWIDTH,WINDOWHEIGHT) :

pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("images/turret.png")
self.rect = self.image.get_rect()
self.rect.x = (WINDOWWIDTH-self.rect.width)/2
self.rect.y =WINDOWHEIGHT-self.rect.height

def update_position(self,direction,WINDOWWIDTH, level):
if direction=="1eft" and self.rect.x>10:
self.rect.x-=10+1evel
elif direction=="right" and »
self.rect.x<(WINDOWWIDTH-10) :
self.rect.x+=10+Tevel

def get_gun_position(self):
position={}
position["x"]=self.rect.x+(SeIT.rect.width/R)
position["y"]=self.rect.y-(Seltf.rect.height/2)]
return position

The final change we’ve made is to add the level number to the amount the turret

moves each cycle. This has the effect of speeding up as the levels get higher;

104

http://self.rect.width/2
http://self.rect.height/2

Pi-Spuay

lle.come o Pi-SPLAT
Shoot fruits but let raspberries through. There
are 5 waves of fruit to foil.

InSTRUCTIONS
Press ENTER to start a new game or SHIET to
continue an existing game

Use the ARRDW keys to move your gun left and
right

Press SPACE to fire

Press ESCAPE to exit at any point

Our game is complete, including its own splash screen

Ultimate Guide to Raspberry Pi

otherwise, as the gameplay accelerates,
the player would struggle to get across
the screen in time to shoot the fruit.

Run the game and you should find
you can play multiple levels and get a final
score. It may not be of commercial quality
but it’s a complete, working game, and
strangely addictive!

Targeting the Raspberry Pi
If you’ve been using a PC to create your
game for the Pi, the last step is to test it
on real Raspberry Pi hardware to ensure it
performs acceptably.

Pi Splat could certainly be enhanced
— with animations and explosions, for
example — but since it isn’t currently
possible to access the Pi’s full graphics
capabilities from Python reliably, you
may have to keep your ambitions modest.
Once support is added, you’ll be able to
include spectacular graphical effects with
very little impact on performance.

Sharing your game

Once you’ve polished your masterpiece, you’ll want to share it. Exactly how you

go about that depends on your target audience.

Sharing with Raspberry Pi and Linux users
Every major Linux distribution, including Raspbian, comes with Python installed,

and Raspbian also has Pygame as part of its default installation. If you share your

game with users of other distributions, they may need to install Pygame.

Zip it up

To share a Python program with other Linux users, you can simply compress

the files into an archive (on Windows, these are called ZIP files) and send it. To

do this on the Raspberry Pj, right-click on the main folder containing your game

and select Compress. Then choose a file name and type for the package. If you’re

sharing with other Linux users then you can leave the type as .tar.gz. (If you

want to share your file with Windows users, you’ll want to change it to .zip —in

this case, there are other some steps you’ll need to take too, which we’ll discuss

105

Ultimate Guide to Raspberry Pi

below.) When the recipient receives this archive, they’ll be able to extract your
files, load main.py into Geany (or their preferred Python environment) and
launch the game.

Clearly it would be nicer if the player could simply double-click a file to run
the game. We can achieve this by creating a script file that tells the computer
how to launch and run it. Here’s how to do this in Linux: start by navigating to
the folder containing your main. py file, then right-click and select “Create New
Document

Empty Document”. Give it the name start. sh. Now, right-click and
select “Open with Geany”. Then, in Geany type the single line:

python main.py

...and save the file. This is the same line you would type in at the terminal to
run a Python file. We now need to tell Linux that it should execute this command
when the text file is double-clicked. To do this, open a terminal window and type
the following:

cd Desktop/Pi_Splat

cd is the Linux command for “change directory” and it simply tells the
terminal that we want to work in the folder containing the game. Replace
Desktop/Pi_splat with the location of your game if you’ve saved it somewhere
different. Now, in the terminal type:

chmod +x start.sh

The chmod command changes the “mode” of the file; in this case, the +x
makes it executable. So, for example, instead of launching a text editor, the
operating system will run the command. To see this in action, double-click the
“start.sh” icon and select Run.

Sharing with Windows users
Windows doesn’t come with Python installed as standard, so you can’t simply
send a Windows user an archive of your game and expect them to be able to
play it. An easy solution to this problem is a tool called Py2Exe, which can
compile your game into a single executable file that a Windows user can run
with a double-click. The process feels convoluted the first time, but needs
doing only once — and the person you’re sharing with doesn’t need to do
anything at all.

To begin, head over to www. rpitab.net/ Tinks|and download Py2Exe.
Next, we need to delve into the bowels of Windows to make sure Py2Exe can
find Python. To do this in Windows 7 or 8, press the Windows key and type

106

http://www.rpilab.net/links

Ultimate Guide to Raspberry Pi

“Edit Environment Variables” as a search term. Open the Settings dialogue

that comes up, click the Environment Variables button, and then, in the System
Variables list, find the entry “Path” and click the “Edit...” button. Now, assuming
you’ve installed Python 2.7 to the default location, simply add the following entry
to the text in this box (making sure the entry before it ends in a semi-colon):

c:/Python27;
Save these settings and then reboot the PC.

When Windows comes back up, go to[Www. pygame . org/wiki/PygameZexe|
and copy and paste the text in the white box on that page into a Geany window.

This is a template specifically written for

= using Pygame with Py2Exe, so, to get it to
| work for our project, we need to change
e . the following lines:
R Lot 45, change filename to main. py
s eeseee | 48. Change project name to Pisplat

S0 I W YA O P Tt m. 7 849 v T e S N

T B e P s o B e mssssii | 54, change project version to 0.1

57. change licence to GNU General
Public License (si)

65. change description to A simpTle
shoot-em-up

71. change the self.extra_datas list to

include images so that the game images,

o

.. in a subfolder of that name, will be
bundled into the resulting file.
When you’ve done all this, save the

Download Py2Exe from the Pygame website

file as compile.py, then open a Windows command prompt and navigate to the
folder containing your game using the cd command. So, for example, if you’ve
been saving the program files into a folder on your desktop, you might type:

cd Desktop\pi_splat

Now, to compile your EXE file type:

python compile.py

At the end of the process, you'll find a new subfolder called dist that
contains all the files you need to distribute for your game to run. Double-click

the file with the EXE extension and your game should now run. To share the
game, all you need to do is ZIP up and distribute the contents of the dist folder.

107

http://www.pygame.org/wiki/Pygame2exe

Creating a
polished game

Back in the mid-1990s, Russian programmer Eugene Alemzhin released a game
called Sharik: in which the player scored points by matching three or more circles
of the same colour. These circles then disappeared and their places were filled by
the circles from the rows above, with additional circles randomly dropping from
the top of the board to fill the gaps. Sound familiar?

Shariki was the basis of many popular games including the hugely successful
Bejeweled series by PopCap Games and current favourite Candy Crush Saga by
Togcthcr, this genre has become known as match-three games.

In this chapter, we’ll look at a Raspberry Pi version of this game called Fruit
Pi. Although (in principle) match-three games are relatively simple, creating a
commercial-quality game is a more involved task than Pi Splat, our simple shoot-
‘em-up. So, we’re going to take a look behind the scenes at the game halfway

through its development. That way, we can discuss the game’s design phase, the

programming techniques used so far and what remains to be done before it can
be released. The code can be downloaded from rpilab.net/code.

http://King.com

Ultimate Guide to Raspberry Pi

How the game works

As with Pi Splat, the first step is to look
at the game from the user’s point of view:
what do they expect from a match-three
game? Here are the basic rules, which are
shared by most games of this type:

* The player sees objects arranged in a
grid, usually 8x8.

Shariki was the first “match-three game” * These objects are randomly drawn
from a limited selection. In the case
of an 8x8 grid; there are usually six. Too small a selection would lead to too
many matches, while too large a selection would result in too few matches.

* The aim is to swap adjacent objects so that, in their new configuration,
they form a pattern of three or more identical objects either vertically or
horizontally. If no swap is possible, the objects return to their original place.

* The initial board for each level should contain no matches (this is why it is
psendo random rather than truly random).

* When a pattern is formed, the objects are then removed from the board and
points are awarded.

* The objects directly above then drop into that space. Random fruits are
added at the top of the grid to keep the whole board populated.

* If this change in configuration causes matches, the game processes them and
awards points.

* The level is complete when a pre-determined score threshold is reached.

* Different versions of the game add extra features such as “power-ups” or
rewards for matching the same object type more than once in succession.

This is a comparatively brief list of rules — it’s not like learning chess.
However, translating these simple requirements into a computer program is
a different matter. Once again, we’ll start by breaking the rules down into the
familiar categories of input, logic and output to artive at an initial set of tasks.

109

Ultimate Guide to Raspberry Pi

Input

The user needs a way to indicate which objects they wish to swap. In a computer-
based game, this will usually mean by using a mouse. The final game will also
need a way of reading in any saved progress data or stored game preferences.

Logic

The code must generate a pseudo-random set of objects with no matches for the
initial board. When the player starts swapping objects, it must check for matches.
When a match is made, the logic must identify which objects to delete as a result,
move existing objects down the grid, and add new objects at the top to replace
them. Finally, our game logic must keep track of game data, such as the player’s
current score and which level has been reached.

Output
From the player’s perspective, the graphics, animations and sounds are what
generate the experience of playing the game. So the game design, and the code
we create to implement it, must include:
* Drawing attractive graphics
* Loading them into appropriate classes
* Animating them onto the screen
* Indicating which fruit has been selected during swapping
* Displaying the score and other game information
* Saving game progress and preference information to a file
* Playing in-game music and sounds

It’s quite a list — and each of these tasks breaks down into many smaller
programming jobs. Ultimately, we could be looking at hundreds or even
thousands of lines of code. But don’t be intimidated: as we mentioned eatlier,
many successful games have been developed by very small teams or individuals.
Fruit Pi
As with Pi Splat, we’ll aim to get a single level running before going on to
add multiple levels and the various other features that make for a complete,

professional game. Aside from sourcing the fruit images for our game, we need
to make several decisions, namely:

110

Ultimate Guide to Raspberry Pi

1. The size of the playing area. We’ve decided on a width of 1,024 pixels
and a height of 768. This stretches the Pi’s capabilities whilst still being large
enough to make for a good visual experience.

2. How we will indicate which fruit is selected. The player needs a visual
indicator. This might be that the fruit increases in size when clicked, for
example. We've opted for a simple rectangle over the selected fruit.

3. How we will animate fruit. Many games make use of mwetaphor. We present
the fruit as if they’ve been poured into the top of the computer screen from
left to right, so we need to reflect this in the animation.

4. How we will present user information. Our 1,024 x 768 window leaves
room for us to display information alongside the play area. We’ve opted to
put the board on the right and the information on the left.

The game background is an 8-bit PNG file, and we’ve created a graphic for
the board that’s placed on top. We can refresh just this area when fruits move,
saving processing power. We’ll use sounds from [freesound.orglas before,
but before implementing them we’ll focus on getting the game mechanics and
graphics working well on the Pi.

Programming approach

As with Pi Splat, each fruit will be based on a Fruit class, which will remember
what type of fruit it is and where it’s located on the screen. It will be capable of
updating its own position and following rules about when to stop moving. We’ll
also once more organise our code into modules. The main module contains the
game loop; most of the logic is contained in a Togic module and most of the
output code will go in a module called display.

Our fruit-themed match-three game, ingeniously named Fruit Pi

® prosme window

http://freesound.org

Ultimate Guide to Raspberry Pi

Under the microscope

Fruit Pi follows a structure that’s typical of games, and in particular those games
created in Python. The central module, main.py, contains the core of the game
— the main loop — with most of the work of generating and displaying the visual
objects and handling user interaction undertaken by an array of modules and
classes summarised in this diagram:

iy

classes modules

game.py logic.py display.py

fruit.py

cursor.py globvars.py

This structure provides good examples of the differences between modules
and classes. You can see that each of the classes defines an object that has a clear,
individual, identity. The Fruit and Cursor classes are graphical objects and the
Game class is used to hold information about the game currently being played
(including the score and level).

The modules, on the other hand, are simply blocks of code organised
according to their purpose. The file Togic.py, for example, doesn’t define a sort
of object: it’s a set of functions that handles the program’s decision making.

Similarly, the functions in display.py deal with the visual aspects of the
game — including creating and handling the fruit objects. To use a juggling
analogy, the class defines the balls and the module describes how the juggler
throws them. We'll see this working in practice as we look at the code itself.

Modules, then, are mainly used to organise code into logical units, and they
also make it easier to share code across projects. You could dump the entire
contents of each module into the main.py file and it would still work, but it
would be ungainly, impossible to reuse and hard to manage.

You’ll have noticed that the module names are influenced by our input,
logic and output approach (display.py representing the last of these). The
only reason there isn’t a discrete input module is because, for this game, the
user input amounts to little more than clicking a pair of fruits, so it can be easily
handled within the other modules.

The way you organise your code must make sense to you (and your team
if you aren’t working alone). And, above all else, whatever approach you use, it
must be practical. If you ever feel you’re being restricted by the structure you’ve
created, then you’ve created the wrong structure!

112

Ultimate Guide to Raspberry Pi

So, from our thoughts on design and by using our input, logic, output
approach we can very quickly generate a code structure for our game: we know
from the start which objects we’re likely to need and which modules to create.
We may add or remove classes or modules as we develop, but by thinking in
those terms we have a good starting point.

You’ll notice one module that doesn’t fit this rule: globvars. py. As its
name suggests, this module contains all the gTobal variables for the game. Now,
mention the phrase global variable to programmers of a certain type and
they’ll throw up their hands in horror because, used inappropriately, they can
cause problems.

However, it makes sense to use globals for variables that need to be accessed
by all modules, especially where they are constants. We do this by defining them
in a separate Python file and then importing it into all modules and classes.
Here’s the relevant code:

1 [import pygane

2 ###TOP LEVEL VARIABLES

3 FPS = 38 # frames per second to update the screen

4 WINDOWWIDTH = 1824 # width of the program's window, in pixels
5 WINDOWHE IGHT 58 # height in pixels
]
g
8

BOARDLEFT=308 #the position of the board, from the left
BOARDTOP=58 #the position of the board, from the top
CELLWIDTHHEIGHT=82 #the width of individual cells
9 CELLIMAGEWIDT # the width of the image files
18 BOARDWIDTH # how many columns in the board
1 BOARDHEIGHT = & # how many rows in the board
12 NUDGE={ CELLWIDTHHE IGHT - CELLIMAGEWIDTH) /2+4 #because the cell image is smaller than the|

255]; RED=

255,0,8); GREEN=[0,255,0]; BLUE=[0,0,2

5); BLACK=[9,8,0]

16 pygame. init()
17 displayFont=pygame. font.Font(.28)

In the case of this game we’re defining variables including the height and
width of the game window, the position of the game board within that window,
and the height and width of the cells within the board. We also define some
common colours and a typeface.

The main loop

Let’s look at the structure of a typical main loop for a game. Broadly speaking,
this will be all that main.py contains, with all the other work being done by the
modules and classes. We might characterise the structure of operations as:

#Import modules and classes
#Define variables
#Draw the background
#Game Loop
#Level Loop

113

Ultimate Guide to Raspberry Pi

So, when the player first launches the game and the background has been
drawn, they enter the game loop. Unless they’ve continued a saved game, they’ll
be at level 1, so the player enters the Tevel loop that handles everything that
happens within the level — fruit dropping into view, swapping, deleting and so on.

Once the level is completed, the player is sent back to the game loop (as the
Tevel loop is inside it). This checks to see whether the player was playing the
final level and, if not, starts a new iteration of the Tevel loop. This continues
until the levels run out or the player exits the game. Let’s take a look at how this

works in practice.

Imports
We start by importing the various Python libraries we want to use on line 1:

import pygame, random, time, math, sys, copy
from pygame.locals import *

from game import *

from fruit import *

from logic import *

from display import *

from globvars import *

from cursor import *

| DO s W

=

game=Game ()

pygame is the only one of these libraries that isn’t included in a standard Python
install (although it is included on the Raspberry Pi). Lines 3 to 8 import our
custom classes and modules. With these we use a slightly different syntax:

from [module/class name] import *

The from keyword is mainly used to allow us to import part of a module. For
example, the following line would import only the randint function from the
Random library:

from random import randint

This is a more resource-efficient way of doing things, because Python doesn’t
have to import any unnecessary code — but it means that if you subsequently
want to use another function from the library, you’d have to go back and add it
to the from line. By specifying an asterisk we import everything, exactly as if we’d
used the import keyword. This may seem to defeat the object of using from; but
by doing it in this way we can refer to the functions within the module by just
using their function name, rather than having to also add the module name. So, if
we use the from keyword with an asterisk as above, we can turn this line:

my_number=random.randint(0,5)

114

Ultimate Guide to Raspberry Pi

... into the simpler:
my_number=randint(0,5)

In other words, once you’ve imported a function using the from syntax, you
can use it as if it were built into the language rather than imported. This saves
typing and, in many cases, is just as clear as explicitly naming the module.

There’s one caveat to this approach, though. If multiple functions in separate
modules have identical names then this will cause an error, so it needs careful
handling. One way to do this is to use only the from method of importing with
your own classes. This means that game=game.Game () becomes game=Game ().
The first one must indicate which file the class is contained in; the second doesn’t
have to because we’ve used from.

This is another reason why you must organise your modules logically. If
your code is to be easy to understand, either by yourself or another programmer,
you can either prefix all module functions with their name by using import or,
if you use the shorter form, have a logical structure to the modules that makes
it obvious which one a function belongs to. For example, you could reasonably
expect to find a function called animateFruits in the display module; you
wouldn’t expect to see it in Togic.py.

Let’s look now at the heart of the game — the level loop. This loop runs many
times per second and carries out the following instructions during each cycle:

1. If fruits are falling (both at the beginning and when fruit is removed) draw
the animation before moving on.

2. Ifnot:

a. Check whether any keys have been pressed or whether the mouse button
has been clicked.

b. If a fruit has been clicked on then:
i. Ifit’s the first of a pair, draw the cursor.
ii. Ifit’s the second of a pair, check whether the two fruits are

neighbours (if not, they can’t possibly match).

iii. If so, run the matching algorithm and:

1. If they do match, swap the fruits, update the score, delete the
fruits, regenerate the board in its new configuration and animate
into place.

2. If they don’t match, move the fruits back.

iv. If the two fruits were not neighbours, set the second fruit to be the
new position for the cursor and await a second click.

3. If no animation is taking place, refresh the screen.

115

Ultimate Guide to Raspberry Pi

This level loop continues to run until a pre-determined score is reached for
the level, at which point it exits back to the main game loop. Most of the lines
within the level loop call functions from modules or classes that carry out the
actual work. For example, consider this line:

animateFruits(board,DISPLAYSURFACE, fruit_sprite_group, »
BOARD_AREA, board_graphic)

This single statement calls a 34-line function in display.py. Using functions
in this way makes it easy to reuse the function elsewhere in this program, and
it helps keep the code clear and easy to understand. Without knowing any of
the detail of how animateFruits works, another programmer could look over
the main module and instantly understand what the line does. So, main.py is,
in a sense, a road map showing the primary route the program takes, with each
module serving as a street atlas providing the detail.

Loading fruits

Before each level begins, the game must create a valid board. To do this we must
first decide how the board will be represented; that is, what sort of variable can
we use to store it? Fundamentally, the board is simply a table with eight rows and
cight columns, and once you're used to Python you’ll immediately realise that the
humble list is the ideal variable type to store this. We might create a list for the
bottom row of the playing area that looks like this:

('strawberry', 'strawberry', 'pear', 'banana', 'pear', 'cherry', »
'raspberry', 'raspberry')

To deal with the fact that we have eight different rows to handle, we’ll make
use of the fact that a list can contain other lists. In other words, we’ll store the
play area as a list of eight lists, each of which represents a row. We can then
access the value of, say, the second fruit on the bottom row via the statement
below. Remember that all lists are zero-indexed!

Fruit=board[7][1]

In practice, we rarely need to do this: it’s easier simply to pull the whole row
out and then access it in the normal way.

Now we’ve decided how our board will be represented, we can write a
function that will create a new valid grid of fruits. The game loop runs this

command before each level:

loadFruits(board, fruit_sprite_group)

116

Ultimate Guide to Raspberry Pi

As you’d expect, this function is found in display.py: here’s how the
relevant code looks:

16 cidef loadFrults(board, frult sprite group):

17 cell_number=l
18
19 if len(board)=0:del board[:] #clear the board AT there are any frult objects already there (ie this is level 2+)
20
21 | #ewewss CREATE FRUIT OBJECTS AND LOAD THEM INTO THE LIST BOX
22
13 8 for row in range(8) :#run once for each of the B rows
24 thisrows=[] #each row is a separate list
y=row*CELLWIDTHHE IGHT+BOARDTOP+NUDGE #set the vertical position for the whole of the row
=] for column in range(B):#run once for each of the B columns in each row
exclude fruits=[] #list of fruits that musn't be picked because they'd make an immediate match
=] if column>1: #check that the two fruits to the left do not match each other (mot a prob for the first 2 columns)
-] it thisrow{column-2]. name==thisrow[column-1]. name: #if the two to the left are the same as this one
exclude fruits.append|thisrow|column-1]. name)
-] if rows1l: #mow check whether the previous two rows hold the same fruit in this colusn
a if board[row-2][column]. name==board[row-1][column]. name:

exclude fruits.append|board|row-1][colusn]. name)
fruit nameslogic.get fruit{exclude fruits) #now get a fruit from the valid choices
x=colusn*CELLWIDTHHEIGHT +BOARDLEFT+NUDGE #set the left pesition of each fruit

this fruit=Fruit{fruit name, x,y, row,column, speed, BOARDWIDTH, BOARDHEIGHT) #create a fruit ohject

thisrow.append(this fruit) # add a reference to the frudt object to the List for this row
board.append(thisrow) #add the whole row to the board, as a separate sublist

SLostsuEYERRENEEREYRY

The use of two for..1in loops such as this is very common when you want
to represent two-dimensional structures such as a table in code. Line 23 runs
eight times, once for each row — during which line 27 runs eight times, once for
each cell in the row.

Line 25 sets the vertical position of the row, using the global variables to
do so. By doing it this way we could replace the existing board with one of a
different size by simply changing the values of those global variables.

Remember that one of the rules for the initial board is that it mustn’t contain
any immediate matches, so the if statements at lines 30 and 34 check whether a
pair of the same fruit already exists to the left of the current cell or immediately
above it. If so, then we can’t use that fruit for this cell. So, we make a list called
exclude_fruits, specifying those fruits we mustn’t choose this time. We then
call the get_fruit function in the logic module, which will send back the name
of a randomly generated valid fruit. Here’s the relevant section of Togic. py:

128 def get fruit{exclude list=[]): #however many fruits there are, send back one randomly

121 fruit names=|"banana”, "t ’ o' ’ . » "5t . 1

122

123 for rottenfruit im exclude list: #if any of the fruits are invalid

124 if rottenfruit in fruit names: fruit names.remove(rottenfruit) #remove them from the list of choices
125

126 fruit_name=randint(@,len(fruit_names)-1) #pick a fruit from the list of valid choices

127 return fruit_nases[fruit_name]

Take a look at the parameters for get_fruit. You'll see that we specify
exclude_Tist as you’d expect, so that display.py can send a list of fruit names

117

Ultimate Guide to Raspberry Pi

we mustn’t choose. However, most of the time this list will be empty. By setting
exclude_Tist=[] we’re telling Python that if we aren’t sent a list, we can assume
that there are no fruits, and to therefore use an empty list in this function. This is
a default setting — it can be very useful if you aren’t sure which parameters will be
passed to a function.

We then create a list with the complete set of fruit names and, in line 123,
cycle through the list of excluded fruits, removing them from the list of fruit
names in line 124. The if statement in line 124 is needed because if, say, there
are two raspberties to the left and two above, then exclude_1ist would contain
“raspberry” twice — and Python would throw an error if we tried to remove it
when it had already been deleted.

Lines 126 and 127 pull a random fruit out of the remaining candidates and
send them back.

Once we have that name, we can create a new Fruit object for this cell.

We then add this fruit to the row and, once we have a whole row, we add it to
the board.

this_fruit=Fruit(fruit_name,x,y,row,column,speed, »
BOARDWIDTH, BOARDHEIGHT)

This calls the initialisation routine in the Fruit class and sends it the
information it needs in order to create a fruit object. In this case, this means it
will load the correct graphic and set its final position on the board. It also sets a
variable called _moving, which the code will use later to work out if the fruit is
still animating or whether it’s arrived in place.

The other functions contained in the Fruit class illustrate how self-aware
it is. calculate_new_position works out where the fruit should be the next
time it’s drawn to the screen. It takes account of whether it’s travelling down
the screen (as it would be initially), across or up (in the case of a swap), and also
works out when to change the _moving variable to False so that the game can
then ignore it during animation. In traditional procedural programming, you’d
need to write a complicated nested list to track each fruit from within the level
loop; here we leave it to the object itself to do this.

The calculate_neighbours method records the fruits above, alongside
and below this fruit (where applicable). This is used later by the level loop when
determining whether fruits can be swapped.

change_image is used when we swap fruits — this is because we’re actually
changing their image rather than directly swapping objects. This is a much
simpler approach because it means that each object can retain its x and y
positions in the grid for the entire level, and simply needs to update its fruit
graphic to reflect the state of play. This function handles all the changes
necessary when a fruit changes.

118

Ultimate Guide to Raspberry Pi

Animating fruits

One particularly distinctive aspect of
games such as Bejeweled and Candy
Crush Saga is the way the objects — gems,
sweets of, in our case, fruit — fall onto
the screen. When designing a routine for
this, the first step is to write a set of rules
for displaying the objects. Our rules are
simple enough: first, the fruit appears
from the top and fills the board from the
bottom upwards. Then, fruit fills from the
right-hand side of the row.

In other words, when building an
empty board, the bottom right-hand cell
is the first to be filled with fruit, and the
top-left-hand cell the last. The implication
of this is that we have to build a routine
that not only adds fruit from bottom to

animate_fruits produces the effect of fruit being -
poured onto the screen from bottom to top, right to left top but also from right to left.

Remember, at this point we have a list

called board containing eight sub-lists representing the rows and each containing
eight fruit objects, one per cell. Our job now is to animate them onto the screen
rather than simply plonking them there in one go (even though that would be
much simpler to programl). To make matters more difficult, the row should fill
from right to left rather than the whole row appearing at once.

The animateFruits function is contained in display.py, as you'd expect,
and is called from the level loop whenever the re_paint variable is set to True.
This will be the case at the start of each level as the board fills up and each time
fruit is removed by swapping.

Here’s the line that calls it:

animateFruits(board,DISPLAYSURFACE, fruit_sprite_group, »
BOARD_AREA, board_graphic)

What do we send to animateFruits? The board (the list of fruits organised
by row), the Pygame surface onto which we’re going to draw, the sprite group
into which all the fruits will be placed, a global containing a rect of the board
area (that is, its x, y, height and width), and a reference to the graphic itself.

The structure of animateFruits is similar to that of ToadFruits in that
we’re iterating over rows and columns. This time, however, we’re altering the
position of the fruit each cycle.

119

Ultimate Guide to Raspberry Pi

51 adef animatefruits|board, DISPLAYSURFACE, fruit sprite group, BOARD AREA,board graphic):
52 #global speed

53 #ssss SHOW THE ANIMATION OF TME FRAUTTS FALLING IN STAGGERED FASHION

54 clock=pygame . time . Clock|) #create a game clock for Limiting the frames per second
58

58

L1l falling fruitss[] #create a copy of the board mested List

E for fruit row in range(8):
falling frulits.append(listiboard[fruit row]))

CUrrent_rowss
[for fruit row in reversed(falling fruits): sthe “reversed” keyword starts at the end of the Llist and works up

fruit sprite group.sdd(fruit_row) #add sll the fruit objects from this row Lo the sprite group ready to be displayed
]

- for fruit in reversed(fruit_row): ##stagger initlal pesitiens

fruit. speed=speed

fruit. current_y+=n #add n to the starting pasition of the fruit

SUEINEEEE28 R

n-=speed #makes n ssaller (negative numbers) so the starting position goes up the screen off the page
E while Len|fruit row)>8: #while there are amy Truits still in fruit row {ie still in motion)
E for fruit im frult _row: #for each frult in the row
fruit.move me() #move it
- if fruit. movinge=Fa # if it's reached the bottom

fruit_row.resove(fruit) #remove it from fruit row

shrinking board area=(BOARD AREA[@], BOARD AREA[1],BOARD AREA[Z],BOARD AREA[]]- [CELLWIDTHMEIGHT®(current row-111)
DISPLAYSURFACE .blitiboard graphic,shrinking board area) #only blit the bit of the board over which the fruits are falling

fruit sprite group.draw{DISPLAYSURFACE|) # draw the sprites in their new positions to the surface
pygame . display.update(shrinking board area) # update only the anisated part of the display
clock. ticki6@)# Limit ta & fps

CUrrent_rows=]

ELELEIETE)

The above code shows the relevant part of display.py. We begin by making
a copy of the board Tist — we’ll see why later. In line 63 we begin the row by
row loop; the reversed keyword specifies to start at the end of the list (the
bottom row) and work upwards. On line 65, we add the entire row to the sprite
group; then we work through each fruit (again using reversed; this time to work
from right to left) progressively raising the vertical position as we go. This gives a
staggered line with the left-hand fruit further off-screen than the right.

We then run each fruit in the row’s move_me function, which launches the
calculate_new_position function we covered eatlier. We check whether the
fruit’s _moving property is False — indicating that it’s arrived at its final position
— and if so, we remove the reference to that row from fruit_row. Thus, we use
fewer resources as each fruit stops moving, and we can use the Ten function
in line 72 to check when the row has completed. If we’d been using the actual
board variable, it would end up containing no fruits. This is why we copied it.

Line 79 calculates the minimum area the fruit will pass over as it falls. As the
rows build up from the bottom, we don’t need to redraw the settled rows every
cycle, so this area becomes smaller and smaller. We feed this calculation into
line 81°s b1t operation, which draws the board. We draw the fruit sprite group
in one go but only update the shrinking board area. We could redraw the whole
board each cycle, but this more efficient approach helps the Pi to keep up.

Once the board has been drawn, the program waits for the user to click
on a fruit. Just as with key presses, Pygame can /Zsten for mouse events, such as
MOUSEBUTTONDOWN. Working out which fruit the mouse pointer was over when
the button was clicked is handled in the Togic.py function which_fruit:

120

Ultimate Guide to Raspberry Pi

112

114
115
116

def which fruit(board,position): #work out which fruit is under the pointer when the mouse button is pressed

for fruit_row in board:
for fruit in fruit row:
if fruit. rect.collidepoint(position):
return fruit

This code takes advantage of a Pygame function called co11idepoint, which
receives as a parameter the event.pos returned by MOUSEBUTTONDOWN (this is
actually two numbers, namely the x and y positions). Our loop simply iterates
through each fruit in turn, checking whether collidepoint is True for that fruit.
When it is, we know we’re dealing with the fruit that’s located under the mouse
pointer, so we return this object.

e e N ER 3T ETNEI2222028R2888YY

if clicked _fruit: #if the mouse has been clicked over a fruit
if pair of fruits| ==None:
pair of fruits|]J=clicked fruit
decoration sprite group.add(cursor)
cursor.moveMe(clicked fruit. rect)
else:
result=check for neighbour(pair of fruits| e].clicked fruit)
is_it_a neighbour=result[8]
direction=result[1]
if is it a neighbour:
pair of fruits| dest |=clicked fruit
board=swap fruits(pair of fruits,direction, board)
result=handle matches(board,pair of fruits)
if result[@]==True: #if there were matches
pair of fruits| |=None
game.update score(result[1])
re paint=True
else:
if direction==
direction=
elif direction==
direction=
elif direction=="1
direction==
else:
direction==
swap fruits(pair of fruits,direction,board)

re_paint=True
else:
pair_of fruits| J=clicked fruit
decoration sprite group.add(cursor)
cursor.moveMe (clicked fruit. rect)

Back in main.py, we now check whether this was the first fruit to be clicked
in a pair by establishing whether pair_of_fruits['source'] already contains a
fruit. If it doesn’t, we assume this is the first click, move the cursor over this fruit
and wait for the player to click again.

Otherwise, the else at line 61 is triggered and we check whether the second
fruit is a neighbour of the first. If it isn’t, we consider this a “new” first click,
since we assume that the player has found a match elsewhere. If the second fruit
75 a neighbour of the first then we must check whether there is a match and, if
so, increment the score and update the screen. If not, we swap the fruits back to
their original positions and go back to square one.

121

Ultimate Guide to Raspberry Pi

Finishing the game

So far, we’ve seen how the code builds a playing board, animates the pieces into
place and handles the player’s attempt at matching fruit. The next thing we need
is some code to check that two selected fruits really are a valid match. The first
step here is to check whether the selected fruits are neighbours. Here’s the code
from logic.py that handles this:

31 pGdef check for neighbour{first fruit,second fruit):

32 if second fruit. row==first fruit. row and second fruit. column==first fruit. neighbours| 1
3 return (True, I

34 elif second fruit. rowss=first fruit. row and second fruit. column==first fruit. neighbours| B
k> return (True, ')

36 elif second fruit. row==first fruit. neighbours|] and second fruit. column==first_fruit. column:
7 return (True,)

38 elif second fruit. row==first fruit. neighbours|] and second fruit. column==first fruit. column:
a9 return (True,)

48 else:

41 return (False, None)

This code is pretty simple: remember that when we created each fruit object,
we ran a function that established its immediate neighbours. Take a look at line
32 and consider how this would translate into plain English: “If both fiuits are on the
same row and the second fruit’s column number is the same as the first fruit’s neighbonr on the
left, then they must be neighbonrs.”

We then check the same on the right; then, in lines 36 and 38, we work out
whether they are neighbours above or below. If any of these tests returns a True
result, we immediately return this, along with the direction. If none of them
returns True, we return False because we’ve established that the selected fruits
can’t be neighbours.

Assuming they are neighbours, our next task is to work out whether, by
swapping the fruits into the place the player intends, a vertical or horizontal line
of at least three fruits would be formed:

4 OCidef check for matches(board,pair of fruits):
5 copy_board=copy.deepcopy(board) #we make a copy so that we can work on it without affecting the original
6
7 #first check for row matches
8 any matches=False #use this to track if there were any matches at all
9 row=0
1 g for fruit row in copy board:
n col=8
n g for fruit in fruit row:
13 g if cole<t: #we only need to check the first & fruits in the row
4 o if fruit row[col+1]. name==fruit_row[col+2]. name==fruit. name:
15 #are the two fruits to the right the same as this one?
16 any matches=True
17 fruit. delete=True; fruit row[col+l]. delete=True; fruit row[col+2]. delete=True
18 g if rowefi: #again, we only need to check the first 6 fruits in a column
19 B if copy board[row+1][col]. name==copy board|row+2][col]. name==fruit. name:
28 #are the two fruits below the samse as this one?
21 any matches=True
22 fruit. delete=True;copy board[rowsl][col]. delete=True;copy board|row+2][col]|. delete=True
23 col+=1
24 rows=]
25
26 return_parameters=[any matches]
27
8 g it any matches==True:
2 return parameters.append(copy board)
ﬂ _return return parameters

Ultimate Guide to Raspberry Pi

The actual business of finding matches is pretty straightforward. We begin by
making a copy of the board, so we can work on it without changing the original.
We then use our familiar double for. .1in structure to go through each row and
column in turn. Note that at line 13 we only need to check the first six fruits in a
row: this is because any pattern that begins in the seventh would be too short to
be valid (the same applies to columns). For each fruit, we check to see whether
the two fruits to its right are the same as it. If so, we set the _delete property to
True for all three fruits. This has no immediate effect — it simply marks the fruit
for deletion later.

We repeat this for the columns from line 18, and send back both the any_
matches variable (True or False) and, if True, the updated copy of the board.
This contains copies of all the fruit objects, with those that are part of a matching
pattern having their _delete property set to True.

<

2898 BLESCE3E2ERREREEdddanEdNEE2g%sna2288

|

EBdef delete matches(copy board,board):
#now assemble a list of all the fruits that are to be deleted
delete fruits=|]

extra_fruits_needed=[9,0,0,0,0,0,0,0]
last_affected row=[0,8,6,6,0,0,8,8)
row=i
=] for fruit row in copy board:
column=6
=] for fruit in fruit_row:
=] if fruit. delete==True:

extra fruits needed[column]s+=1
last affected row|[column]=row
delete fruits.append(fruit)
column+=1
rows=]

#generate the new board

rowsg
col=a
=] for number of new fruits im extra fruits needed:
=] if number of new fruits>d:
lastrow=last affected row[col]
=] for thisrow in range(lastrow,nusber of new fruits-1,-1):

board[thisrow] [col]. current_y=board[thisrow-nusber of new fruits][col]. y
board[thisrow] [col].change image(board[thisrow-nusber of new fruits]col]. name,\
Bboard[thisrow-nusber of new fruits]{col]. x,board[thisrow][col]. current y)

board[thisrow] [col]. moving=True

board[thisrow] [col]. direction=

y= B
=] for thisrow in range(0,nusber of new fruits):
board|thisrow] [col]. current y=y
board[thisrow] [col].change image(get fruit(), board[thisrow][col]. x, board[thisrow][col]. current y)
board|[thisrow][col]. moving=True
board[thisrow] [col]. direction=
y-=68
col+=l

number of fruits matches=len(delete fruits)

The above code implements the deTete_matches function — arguably the
most important function in the entire program. This section of code removes
fruits that have been found to be part of a matching set, and generates a new
board with all the necessary changes made. It begins by creating two lists, both of
eight elements (one for each column of the board).

123

Ultimate Guide to Raspberry Pi

Each element of the first list, extra_fruits_needed, represents the number
of new fruits that need to be generated for that column. The second list contains
the number of the last row that is affected by the changes, again by column. This
enables us to simply ignore the rows that remain the same.

At this point, we need to think about how we’re going to handle fruits
disappearing and being added. From the player’s perspective, when a gap appears,
the fruit above drops to fill the gap. As we’ve mentioned, it’s easiest to handle
this by updating the objects in the relevant positions. So, if three raspberries
disappear and the fruit above the gap is a cherry, we can simply change the
bottom raspberry to a cherry. This starts at line 79, above. To provide the
correct visual effect, however, we don’t want the cherry to instantly jump down
into place, but to fall from its old position to the new one. We achieve this by
temporarily changing the y position of each affected fruit to the same as the fruit
whose variety it’s stolen. Then we animate it moving back to its original position.

Lines 90 to 94 deal with adding new fruits to the board — or, to be precise,
assigning new fruit names as needed to fill the gaps where fruits have fallen
down. We generate random names for the relevant slots, load in the graphics and
set the new fruits above the board so they can be animated into place.

There’s one final eventuality we must deal with: what if, after the player has
matched a line of fruits, and the board has been updated, the resulting updated
board itself contains new matches? This is easy to handle: once the fruits have
animated back into position, we run the check_for_matches process again.

The function doesn’t care whether the board it’s working on was created by

a user swapping fruits, or is the result of being regenerated. Either way, it will
check through and report any matches.
Because we’ve used modular code, we’re
able to reuse the animate_fruits and
check_for_matches procedures to handle
both the initial board and all subsequently
generated boards with no additional work.

We now have a fully working single

level. The next step is to implement
multiple levels, along with a splash screen,
instructions and a function to save
progress. The graphics and animations
will need a little extra polish and sound
effects are more or less mandatory.

However, adding additional pizzazz will
impact performance. So it’s important Fruits drop into place to fill the gap left by a match

124

Ultimate Guide to Raspberry Pi

to thoroughly test the game on the Raspberry Pi, and optimise the basic version

for this slow platform before adding anything else. If your game is intended only

for more powerful computers you can omit this stage, but you’re narrowing

your audience. The best approach is to optimise as far as you can and add only

a minimum of extra graphical overhead to the final game — that way, it should

work well on all platforms.

Tips for programming games

1.

Get each part fully working before moving on. For this game, the first
step is to create the initial game board — so this was implemented before
animation was considered. That was completed before the interactive
features were added. This approach can mean updating code when you move
to the next stage, but you’re always building on a fully working foundation.

Code, test, code, test... Remember that coding is done in small steps: you
write a line (or a short block) and you test it. It almost never works first time,
so amend and test again. Only move on once it’s working.

Write it down! Don’t be afraid to pull out a pen and paper when you get
stuck. It can be hard to visualise the effect of what you’re doing sometimes,
but by drawing a rough representation of what the player will see, you can
work out the consequences of your code.

Use the terminal. If you’re unsure of how a piece of code works, type it
into the Python interpreter via the terminal and see what happens.

Use the documentation. Python has excellent official documentation

at and on third-party sites such as fwww . stackoverflow. com.

There’s no need to struggle — the Python community is very helpful.

Write the documentation. Use the # symbol to document your code as you
go. The code examples in this book don’t include extensive documentation
for reasons of space, but the online samples are heavily commented.

Take a break. If you find yourself struggling with a particular problem, take
a break. It’s amazing how often a solution to a seemingly intractable problem
can pop into your head when you’ve rested.

Enjoy yourself. Give yourself a big pat on the back when you get each part

of the game working. There is nothing quite like working hard on a piece of
code, getting deeply into it, running it and seeing it work on-screen.

125

http://python.org
http://www.stackoverflow.com

Pi in the sky

The Raspberry Pi has a number of features that make it ideally suited to real-
world projects. It’s cheap, small and rugged, and needs only a modest power
supply. In this section, we’re going to discover how to turn a Pi into a climate-
monitoring station that can take measurements of the temperature, air pressure
and light levels outside — and save them in a form you can then analyse using a
spreadsheet program such as Microsoft Excel.

We’re also going to cover how to connect to Dropbox, so that our project
can share its results across multiple devices. Finally, we’re going to look at how
to use a Raspberry Pi without a keyboard, monitor or mouse, so that you can use
your Piin a wide range of small-scale projects.

The project objectives

Every home, school or workplace has its own micro-climate, so by taking
measurements, you are generating unique local data. You can record seasonal
fluctuations, for example, or observe how climate readings relate to weather.

126

Ultimate Guide to Raspberry Pi

Here ate five questions you might want to design experiments for:
1. Does higher air pressure correlate with higher temperatures and clear sky?

2. Cana trend in air pressure predict temperature and/or light levels? If so, how
far ahead?

3. What is the range of temperatures experienced at your location this year?
What is the average? How does that compare with the average at your local
Met Office weather station and actross the region/country? How does it
compare with historical averages?

4. Is there a correlation between light level and temperature on any given day?

5. How does the length of the day vary during the year? Is the speed of
lengthening/shortening consistent or does it change with the seasons?

The list of theories to test is almost endless, but we’re going to design our
experiment with these five in mind. We can always add extra sensors and code to
enhance it later.

Equipment list

To answer the questions above, we need sensors to read temperature, air pressure
and light levels, as well as somewhere to house them. You can hook sensors
directly to the Raspberry Pi’s GPIO pins (or via a breakout board), but we’ve
opted for a system based on USB. This makes the hardware setup dead simple
(no soldering required) and it also means you could use a laptop as the host
computer if you don’t have a Pi.

Specifically, we’ll use the TinkerForge system [(www . tinkerforge. cdn),

which is made up of controllers (“bricks”) that plug into the Pi’s USB socket and
sensors (“bricklets”) that connect to the bricks. This tutorial has been written
specifically for these components; find direct links at rpilab.net/1inks.

* Raspberry Pi and case — any version (we used a Model A).

¢ Raspberry Pi power supply

* 4-port unpowered USB hub

¢ Compatible USB wireless dongle — see [fttp://€Tinux.org/RP1_]

verifiedPeripherals#UsB_wi-Fi_Adapters for a list of possible options.
We used the TP-Link TL-WN723N in this project.

127

http://www.tinkerforge.com
http://elinux.org/RPi_

Ultimate Guide to Raspberry Pi

* 4GB SD card — or larger with Raspbian and Geany.

* Keyboard, mouse and monitor — needed only for development; once we
deploy the project, these can be disconnected.

* A Master Brick, Temperature Bricklet, Ambient Light Bricklet,
Barometer Bricklet and optional Humidity Bricklet, all available from
TinkerForge. We also recommend a 3m USB cable and mounting kit for the
Master Brick, plus cables and mounting kits for each bricklet. The length
of the bricklet connector cables will depend on your specific project; if in
doubt, get the largest size. The mounting kits consist of four small pillars.
Each sensor is fixed to the pillars with the included bolts, which can then be

screwed into a mount of your choice.

* Bird nesting box — yes, really! We’re going to use this to house our sensors
and, optionally, depending on how you want to set it up, the Master Brick.
Drill holes in the front and sides to allow air flow (if the holes are big enough
for birds to fit through, use gauze
or chicken-wire to prevent this) and
paint it white to reflect heat. You also
need to drill a hole in the back to feed
cables through.

Choosing a location

The Raspberry Pi must be within range
of a Wi-Fi router (unless you’re able to
connect directly to a wired network). The
bird box containing your sensors must be
outside in a position where it isn’t exposed
to direct sunlight at any time, as this
would affect the temperature readings. It
should be sited around 4ft off the ground
and positioned so that there’s reasonable
air flow around it.

The Pi itself will need to be protected
from the rain. One option is to attach the
bird box to the outside of a house, school
building or garden shed with the Pi inside.
You can try housing the Raspberry Piin a

weatherproof box (don’t put it in the bird

128

s . This bird box hides a set of sensors linked to a Raspberry
box), but you’ll need to think about how Pi inside the shed that has been monitoring the climate
you’re going to provide it with power. continuously since July 2012

Ultimate Guide to Raspberry Pi

Step 1: Getting started

Our development process will involve using the Raspberry Pi in the
normal way, connected to monitor, keyboard and mouse. Once we have
everything working, we’ll move it to its final position and log into it
remotely. Prepare your sensors by connecting the USB cable to the Master
Brick and then connecting the sensors to the brick — do not plug these into
the Pi yet (you can get further instructions from TinkerForge). Boot into
the desktop.

Step 2: Install Brick software

We'll now set up the driver that allows the Raspberry Pi to communicate with the
Brick — the Brick Daemon — and a utility called the Brick Viewer, which allows us
to see the status and readings from the brick and sensors.

1. Brick Daemon
Begin by starting L. XTerminal and typing the following:

sudo apt-get install python-twisted python-gudev 1ibusb-1.0-0

This will install the relevant libratries. Then follow with these two lines to
“get” the latest version of the Brick Daemon from the TinkerForge website and
extract and install the driver:

wget http://download.tinkerforge.com/tools/brickd/1inux/»
brickd_Tinux_latest_armhf.deb
sudo dpkg -i brickd_linux_latest_armhf.deb

2. Brick Viewer
Once the Daemon is installed, return to LXTerminal and type the following:

cd /home/pi

sudo apt-get install python python-qt4 python-qt4-g1 »
python-qwt5-qt4 python-opengl

wget http://download.tinkerforge.com/tools/brickv/Tinux/»
brickv_Tinux_latest.deb

sudo dpkg -i brickv_linux_latest.deb

Shut down the Pi, plug the Master Brick into the computer’s USB port and
start it up again. You can then launch Brick Viewer (it’s in the “Other” folder)
and click the Connect button. After a couple of seconds, the Master Brick and
Bricklets will appear. Click the tab for the temperature sensor and you’ll see the
reading it’s reporting.

129

Ultimate Guide to Raspberry Pi

3. Installer Software

Before we go any further, we can make life easier for ourselves by installing
Python’s Setup Tools library. This will in turn make installing the additional
Python tools we need to communicate with our various bricklets very
simple. To install the library, go to [htEps://pyp1.python.ora/pypi/l
setuptools#tiles download the appropriate version for your system. Once
this has downloaded, type:

sudo sh setuptools-0.6cll-py2.7.egg

..into LXTerminal, replacing the setuptools version with the name of the
file you’ve actually downloaded (the above line is for a Pi running Python 2.7).
An egg file is the Python equivalent of a standard Linux package. It contains
all the necessary files as well as setup information that ensures the package is
propetly installed into the operating system.

Once this process has completed, we’ll have access to a new command,
easy_install, which we can then use to set up additional Python tools with
a single line.

Coding the basic app

You can download the code for this project from

We’ve now set up a working connection between our sensors and the Raspberry
Pi. The next step is to make them programmable through Python. To do this, we
need to install the language bindings — a code library that forms a bridge between
the bricklets and our application.

Begin by going to[Attp:/7www. tinkertorge. com/doc/DownToads.]
html#bindings-and-examples and downloading the Python bindings.

Right-click the file once it’s downloaded and extract the contents to
home/pi/tinkerforge.

We now need to set up the library so that Python knows where to find it.
Open a terminal and type the following:

cd tinkerforge
sudo easy_install tinkerforge.egg

The first line moves the terminal into the Tinkerforge folder and the

second one uses easy_install to set up the libraries. We can now use import
tinkerforge in any Python code we write.

130

https://pypi.python.org/pypi/setuptools#files
https://pypi.python.org/pypi/setuptools#files
http://www.tinkerforge.com/doc/Downloads
http://www.rpilab.net/code

Ultimate Guide to Raspberry Pi

Structure

We want our code to take periodic readings and then save them in a form we can
use. If we intended our code to also process our measurements into charts and
tables then we’d probably choose SQLite as the method for saving data, because
it lets us retrieve the results using sophisticated database queries.

However, it’s much simpler to use a spreadsheet application such as
Microsoft Excel or Google Docs to analyse and graph data. So, at this stage at
least, we’re going to output our data in CSV (comma separated values) format,
which can be read by all spreadsheet programs. It’s a very simple format —
effectively it’s a text file, which, in our case will contain each set of measurements
on its own row.

Since we want to make repeated measurements, our main structure will be
a loop, exactly as in a game, except that the code will loop much more slowly —
every 15 minutes in our case. You can, of course, pick a different interval.

Getting connected

Each Tinkerforge sensor has its own unique ID (UID), which allows you to have
more than one of the same sensor type connected at once. For example, you
might want to measure the temperature both inside a building and outside. The
easiest way to find out the UID is to start up the Brick Viewer and click the tab
representing each one; you’ll see the identifier listed.

Once you have the IDs, create a new file in Geany called main. py and enter
the import statements we need:

import pygame, csv

HOST=
PORT=4223

AMBIENT UID=
TEMP_UID=
BARO_UID=

DD od Wk

10 from tinkerforge.ip connection import IPConnection

11 from tinkerforge.bricklet barometer import Barometer

12 from tinkerforge.bricklet temperature import Temperature

13 from tinkerforge.bricklet ambient light import AmbientLight

Once again, we import Pygame to handle keyboard events, plus the CSV
module to save our spreadsheet file. We then set up a number of variables
including the UIDs for each of the sensors. Finally, we import four Tinkerforge
libraries: the first is the code for connecting to the Master Brick and the
remaining lines import libraries for each of the sensors we’re using in this project.

131

Ultimate Guide to Raspberry Pi

Reading the sensors
For testing purposes, we’ll write a loop that senses every two seconds (as waiting
15 minutes to see if our code is working is clearly daft). Here’s the code:

15 gBdef main():

16 ipcon=1PConnection ()

17 barometer=Barometer (BARO_UID, ipcon)

18 temp_sensor=Temperature (TEMP_UID, ipcon)

19 light_sensor=AmbientLight (AMBIENT UID, ipcon)
20

21 ipcon.connect (HOST, PORT) #connect to the master brick
22 pygame.init()

23 clock=pygame.time.Clock()

24

25 end_prog=False

26

27 while end_prog==False:

for event in pygame.event.get():

)
=]

29 if event.type==pygame .KEYDOWN:

30 if event.key==pygame.K ESCAPE:

31 end_prog=True

32

33 air_pressure=barometer.get_air_pressure()/

34 temperature=temp_sensor.get_temperature()/100.0
39 light_level=light_sensor.get_illuminance()/10.0
36

37 print (+str(air_pressure)+ ")
38 print (' : '+str(temperature)+'c')

38 print(: '+str(light_level)+)
40

41 pygame.time.wait (2000)

It begins by creating variables based on the IPConnection object, and then one
variable for each sensor. In line 21, we make the connection to the Master Brick.
We then set up a loop that’s very similar to those we used for our games: it keeps
cycling until we press the Escape key.

Lines 33, 34 and 35 read the measurements from the sensors and convert
them to the standard form: millibars for air pressure, degrees Celsius for
temperature, and lux for light.

Finally, we print the values. Give it a go! You should see the current readings
appear in the terminal every couple of seconds.

Saving to spreadsheet

For our project, we’ll need to keep track of calendar dates and times of day — and
these are complicated things for computers to handle. Thanks to the ancient
Babylonians, our time measurement system is based largely on the number 60
(with 60 seconds in the minute and 60 minutes in the hour), which isn’t entirely

132

Ultimate Guide to Raspberry Pi

computer friendly. In addition, the Earth takes approximately 365.25 days to
orbit the sun so we also need to account for leap years. A final complication is
added by the fact that the same point in time will represent different times of day
in different locations — and those times vary throughout the year. In the UK, we
use Greenwich Mean Time (GMT) in the winter and British Summer Time (BST
or GMT+1) in the summer.

What our project requires is a standard and accurate way of recording when
measurements were made. For example, we might want to compare the time of
sunrise throughout the year: if we stick to local time, that will seem to “spring
forward” by an hour in March and “fall back” in October. The best plan is to use
GMT (or its international equivalent UTC) throughout the year and add an extra
column to our data that records how many hours to add or deduct from that to
get the local time.

Fortunately, Python provides libraties to help with managing time. We need
to add the following lines to the top of the code:

from datetime import datetime
import pytz

The second of these modules, pytz, adds time zone information to make
the job of working out how many hours to add a doddle. Building on these,
we can create 2 module called get_formatted_time, which returns the current
time formatted the way we want it. We begin by defining a time zone using
pytz’s built-in definitions and calling it GMT. We then retrieve the current UTC

23 pdef get_formatted time():

24 GMT=pytz.timezone ()

25 utc_time=datetime.now()

26 the_time={}

27 gmt_time=GMT.localize (utc_time)

28 the_time []=gmt_time.strftime ()
29 the_time |]=gmt_time.strftime ()
30 the_time []=gmt_time.strftime ()

31 return the time

time using the now() method of datetime before using Tocalize to return the
GMT equivalent:

Once this is done, in line 28 we create a date in the format “dd/mm/
yy” using the string format conventions common across most programming
languages. We do the same for the time in line 29 and then, in line 30, we store
the current zone offset. In the summer, this will be a 1 because the UK time at
that point will be one hour ahead of UTC. Finally, we return these values to the
calling function in the form of a dictionary with date, time and zone entries.

133

Ultimate Guide to Raspberry Pi

33 pdef main():

34 ipcon=lPConnection()

35 barometer-Barometer (BARO_UID, ipcon)

36 tamp_sensorsTemperaturs (TEMP_UID, ipcon)

n light_sensor=AmblentLight (AMBIENT UID, ipcon)

38

35 ipcon.connect {HOST, PORT) #cunnect to the master brick
40 pygame . init ()

41 clock=pygame . time.Clock()

42

43 end_prog=-False

L1

45 o while end _prog--False:

16 o for svent in pygame.event.get():

47 B if event.type==pygame .KEYDOWN:

48 g if event.key==pygame.K_ESCAPE:

45 end prog=True

50

51 air_pressure=barometer.get_air_pressure()/1
52 temperature=temp sensor.get_temperature()/1
53 light_level=light_sensor.get_illuminance()/
54

55

13 time info=get formatted time ()

57

58 thia_row=(time_info['date’],time_info['time'],time_info| ne], temperature, air_pressure, light_level)
58 save_csv(this_row)

60 pygame . time.wait {2000)

Back in the main loop, we’ve removed the temporary print statements
that wrote temperature, pressure and illuminance values to the screen. We've
replaced them with the code at line 56, which calls our new get_formatted_time
function. Then, on line 58, we assemble a new list object that contains the
information returned from this function. For example:

"27/02/2013,14:14:17,0,6.75,1027,594.3"

8 AMBIENT UID="

9 TEMP_UID="L¥!
10 BARO_UID=
11 OUTPUT_FILE="%

13 from tinkerforge.ip connection import IPConnection

14 from tinkerforge.bricklet barometer import Barometer

15 from tinkerforge.bricklet temperature import Temperature

16 from tinkerforge.bricklet_ambient light import AmbientLight

18 gdef save _csv(line):

19 csv_file=open(QUTPUT FILE, 'z+')
20 writer=csv.writer(csv_file)

21 writer.writerow(line)

22 csv_file.close()

Now, all we to do is save this information to a CSV file. In line 11, we’ve
created a new constant OUTPUT_FILE that holds the name we’re giving to this file.
Lines 18 to 21 are all we need to add the current measurement to that file. In line
19, we open the file (it will be created if it doesn’t already exist). The parameter
a+ tells Python that we want to append this measurement to the end of the file.

134

Ultimate Guide to Raspberry Pi

We then create a new object based on the csv object and, on line 21, we use the
csv library’s writerow function to save the measurements to the CSV file as a
single line. We then close the file.

If you run the completed code for this version of the program, you should
notice the CSV file being created and lines being added every two seconds. End
the program and open the CSV file in your spreadsheet program: you’ll see that
several rows have appeared.

Adding a summary

Our CSV file grows at quite a rate, and even once we’ve set the sampling period
to its final value of 15 minutes (which we’ll do by increasing the interval in
pygame.time.wait to 900,000 milliseconds) — we’ll still be generating a lot of
data over time. For most purposes this is good. If we want to see if there’s a
correlation between light levels and temperature, for example, having plenty of
data to choose from across any particular day is helpful.

However, if you wanted to examine the link between air pressure and average
temperature over a month or more, it would be more convenient to have the
data summarised and organised by date. Fortunately, the work involved in saving
a second set of data is pretty minimal: all we need to do is total up the day’s
readings and then save them once per day.

We’ll do this by creating a class called Today, which we can call from our
main module at the appropriate time. This class has three variables (also called
properties) to keep running totals of the temperature, air pressure and light levels.
Every time measurements are made, we now add a function called update that
tells Today to update its totals and check whether the day has finished:

32 & def update (self,day, row):

33 newday=False

34

35 if day<>self._day:

36 self. day=day

37 daysummary=self.summarise (row[0])
38 newday=True

39

40 g else:

41 self._temp.append(row[3])

42 self. lux.append(row[5])

43 self. pressure.append(row[4])
44 self.pickle_data()

45

46 o© if newday==True:

47 self.clear values (day)

48 self. temp.append(row([3])

49 self. lux.append(row[5])

50 self. pressure.append(row[4])
51 return daysummary

52 ® else:

P33 I return newday

135

Ultimate Guide to Raspberry Pi

Working out whether the day has ended is pretty simple: all we do is pass the
current day number to the function and check whether it equals the one stored
by Today. If, for example, we took a reading at 11.50pm on 21 July, then today._
day would have a value of 21 and the value of day passed by the main loop
would also be 21. Fifteen minutes later, however, the day value in the main loop
would have increased to 22, as it would now be 22 July. When day was compared
with today._day, the two would now be unequal and we’d set newday to True.
You can see on line 37 that this triggers the summarise function and sends it the
final set of measurements.

If it’s not a new day, we add the current measurements to the lists and then
save them using pickle (otherwise, if the program were stopped at any point
during the day, all the previous measurements would be lost). Then, on line 47,
today's variables are cleared ready for the new day to start from scratch and
then the latest set of measurements is added to the new lists:

13 8 def summarise (self,date):

14 self.unpickle data()

15 maxtemp-max{self. temp)

16 mintemp=min(self. temp)

17 avgtemp=int (sum(self._temp)/len(self._ temp)*100)

18 avgtemp=avgtemp/100.0f

19 maxpressure=max(self. pressure)

20 minpressure=min(self. pressure)

21 avgpressure=sum(self. pressure)//len(self. pressure)
22 maxlux=max(self._lux)

23 summary=(date, maxtemp, mintemp, avgtemp, maxpressure, minpressure, avgpressure, maxlux)
24 return summary

Once we’ve read the pickle data into the lists, we want our summary
to include minimum and maximum temperatures for the day, along with the
average temperature. We do the same with average pressure and also report the
maximum light level — we don’t report the minimum because that will always be
zero (at night). We don’t record an average for the same reason.

You can see that, because we’ve stored each set of measurements in a list, we
can use Python’s built-in functions to make finding the maximum and minimum
very simple. Once the values have been calculated, we create a new list called
summary and send it back. Now we simply need to insert three lines into our
main loop to trigger the update:

‘ 98 newday=today.update (time_info|].this_row)
99

100 o if newday<>False:

101 save_summary (newday)

Note that newday will either be False if we’ve simply updated the current
day’s running totals, or it will be a list if midnight has just passed. In this latter
case, we then trigger a new function in the main module to save the summary:

136

Ultimate Guide to Raspberry Pi

30 odef save summary (thedata):
31 summary file= +
32
33 8 if os.path.exists(summary file)==False:
34 csv_file=open|summary file,)
35 writer=csv.writer(csv_file)
36 writer.writerow((’ ' ' ’
' i ')
37 writer.writerow(thedata)
8 o else:
39 csv_file=open(summary_file,)
40 writer=csv.writer(csv_file)
141 writer.writerow(thedata)

Since thete are more values to deal with, and it isn’t necessatily obvious what
each one represents, we’re going to add a header row to the spreadsheet. So, on
line 33, we use the os module’s path.exists function to establish whether the
CSV file has previously been created (in other words, whether this is the first
time the program has been run).

If the file doesn’t exist, we write a header row, followed by the summary data
line. Note that in this case we use the ‘w’ parameter for opening the file: this is
because we are writing a new file rather than appending to an existing one.

1f the file does exist, the code in lines 39-41 saves the additional row in
exactly the same way as with the 15-minute measurements.

Using third-party services

Python is powerful and easy to use — but what if the functionality you’re after

already exists in another service? For example, you might want to allow users

of your latest game to be able to post their scores to Facebook (thus attracting

potential new players). The social network doesn’t give you direct access to its

code, naturally, but it has created an Application Programming Interface (API)

that allows your programs to talk to theirs. The API effectively specifies the rules
for the “conversation” between your

P program and the service, and specifies

which “topics” are allowed.

What is Dropbox? If you wanted to provide your users
el sl iy Sh e | with a list of books on a specific topic, for

example, you could do that by using the

28\
e

{ = ‘/Q-‘_;D Google Books API — or direct them to
o A v’y P Y their nearest bookshop with the Google
¥} @ == Places API. You can embed Netflix’s

functionality into your app using its

API, or save files into the cloud using
Google Drive, Amazon S3 or the popular

Dropbox service. Let’s do that now.

137

Ultimate Guide to Raspberry Pi

Dropbox

Dropbox is a cloud storage service. Essentially it works by providing a special
folder on the Dropbox server that’s accessible only to the user. When you install
the “client” software on your computer or mobile devices, the contents of that
folder are copied onto it. Dropbox keeps all devices synchronised as files are
added, edited and deleted — so, for example, if you create a new document on
your PC and save it to your Dropbox folder, you could then access the same
document on your iPad without taking any other action.

As well as client software and a web application for managing your content,
Dropbox also offers an extensive API to allow you to access your files via a
program. Given that there is no official Dropbox client for the Raspberry Pi,
we have no choice but to make use of the API — but this is a convenient way
to proceed anyway, since it gives us sophisticated access to Dropbox, enabling
us to build complex and useful features into our code, without any need for
user intervention.

Dropbox and Python work well together, not least because the Dropbox
client is itself written in Python. As with most APIs, Dropbox includes its own
library that makes connecting with its services possible, in much the same way as
Tinkerforge’s library makes connecting with its sensors possible.

Before you can do anything useful with Dropbox, you need to create an
account (a free account is fine). You can then go to https:7/www. dropbox. com/]
developers/apply?cont=/developers/apps and, once you've agreed to the

terms and conditions, click the “Create an app” button. This might seem a bit
odd, but every program that wants to connect to Dropbox needs its own unique
ID to identify it to the service.

Give your app a name and leave the “Access setting” value set to Folder. This
means that any Dropbox user connecting to your climate-measuring app will see
a new folder created in their Dropbox account called apps (if one doesn’t already
exist) and, within that, a subfolder with the same name as your app. In our case,
we’ve chosen to call the app RPi_Lab.

On the “General information” page I
for your new app you’ll see values for
“App key” and “App secret” — you’ll need i
both of these values for your Python code.

Make sure to keep these private since they
give the code full access. You’re now set

up on the Dropbox server.

The final step before we can start
integrating your app with Dropbox is to Agaitinal users
download the Software Development

Kit (SDK), which is analogous to the Make a note of the App key and App
Tinkerforge bindings. To do this, head secret — you’ll need those for your code

138

https://www.dropbox.com/

Ultimate Guide to Raspberry Pi

over to[htEps://www.dropbox. com/deveTopers/core/sdklon your Pi and click
the Python heading under Download SDK.

Once the SDK has been safely downloaded, right-click the file and select
Xarchiver from the context menu. Extract the files to home/pi/dropbox and type
the following into the terminal:

cd /dropbox/dropbox-python-sdk-1.5.1

Bear in mind that the folder name could be slightly different if the SDK’s
version number has been updated since publication; if the above command
doesn’t work, adjust your syntax accordingly. Finally, type this into the terminal:

sudo python setup.py install -f

This uses the easy_install library we added earlier to install the necessary

Dropbox files. We'll now be able to access all the API functionality through a
simple import statement.

Finishing the climate monitor

You won'’t be surprised to learn that we need authorisation from a Dropbox
user before connecting to their account to upload the data. To handle Dropbox
operations, we’re going to create a new module called upload.py with two
functions: auth_dropbox and save_to_dropbox.

adaf auth_dropbox() :

from dropbox import client, rest, session

import pickle,os

APP_KEY

AFP_SECRET =

ACCESS_TYPE =

sess = session.DropboxSession(APP_KEY, APP_SECRET, ACCESS_TYPE)

fhas an access token been saved already?

if os.path.existsi j==False:
request_token = sess.obtain_request_token ()
url = sess.build_authorize_url (request_token)

Make the user sign in and auth ze this tc

print ¢ url

print

raw_input ()

¢ This will fai the user didn't visit the above t

access_token = sess.obtain_access_token(request_token)
if access_token:
33\'9_561&'[:acce:s_Loken.Key. :access_token.ﬂecretl
save_file=open | ' }
pickle.dump (save_data,save_file)
print

139

https://www.dropbox.com/developers/core/sdk

Ultimate Guide to Raspberry Pi

Authorising Dropbox

Assuming you’ve installed the Dropbox SDK, you can now import the relevant
parts using the from keyword as shown on line 3. We’re also going to use the
pickle and os standard libraries.

Dropbox works using sessions, which, for our purposes, you can think of as
being one-off attempts to use the service. For each session you need to supply
the application key, its Secret key and the access type (app_folder in almost
every case). Dropbox uses these to establish that your application is registered
with them and you, as the coder, are connecting legitimately (only you should
know the Secret key).

Dropbox also needs to know which uset’s account you want to connect
to and that you’re authorised to do so. For this it requires an access token and
secret token: these are different for each user and each session, and can only
be generated when you’re actually running the code. Since this isn’t a publicly
distributed app, some security restrictions apply: the Dropbox user must be
cither the person who registered the app with Dropbox (you) or one of the five
additional accounts you can add on the “app details” page.

If you don’t want the user to have to go through the rigmarole of authorising
your app every time they run the program, you need to store these tokens to use
again later. Not surprisingly, we’ll be using pickle to do this.

The first step is to save the access information into properly named variables
and create an object (sess) that’s an znstance of the Dropbox session class. We’ll
be using this to connect.

On line 11, we use os.path.exists to check whether config.dat exists —
this being the name we’ve given the file in which we’ll save the tokens. If it does
exist then the program must have been run at least once before, and tokens must
have been generated already and saved here. If so, we don’t need to do anything
further at this point.

If the file doesn’t exist then we need to get the user’s authorisation. Given
that this is a progtam we’ll be running ourselves, we can use a fairly basic
approach to this; if you were creating a commercial app that connects to
Dropbox accounts, you’d need to polish it up a bit.

The first step in obtaining authorisation is to create a request token that
identifies us to the Dropbox server. Using this, we create a URL for the user to
visit and authotise our access to their account. We add a raw_input() statement
to halt execution until they’ve done this. Once they have, then the access token
will be a property of the sess object and we can set a variable to its value.

This variable is actually a dictionary containing two tokens — the access token
key and the access token secret — and we can then use pickle to save them to the
config.dat file. Having done this, we can reuse these tokens in future sessions.
To connect with a different Dropbox account, simply delete config.dat: the
authorisation process will trigger again next time you run the program.

140

Ultimate Guide to Raspberry Pi

Saving to Dropbox

Now that we have our access credentials and are linked to a uset’s account, we’re
ready to save our data to their Dropbox folder on a regular basis. Here’s the code
that handles the actual writing of the file:

29 pdef save to_dropbox (thefile):

30 # Include the Dropbox SDK libraries

31 from dropbox import client, rest, session

132 import pickle,os,sys

33

34 APP_KEY =

35 APP_SECRE

36 ACCESS_TYPE

37 ¢ txy:

38 sess = session.DropboxSession (APP_KEY, APP_SECRET, ACCESS_TYPE)
33 token_file=open()

40 token_data=pickle.load(token_file)

41 access token=token data|]

42 access_secret=token_data| |
43 sess.set_token(access_token,access_secret)
44 client client.DropboxClient (sess)

45 f=open(thefile)

46 response=client.put_file(tthefile, £, True)
47 print response|]

48 o except IOError as e:

45 print

50 E[: except:

51 print ¢3ys.exc_info() [0]

It’s important to bear in mind that Dropbox relies on a working network
connection to upload the latest data. If a network error should occur to prevent
Dropbox from connecting to the internet, Python’s default response will be
to exit the program with an error code, causing monitoring to stop. This is
a potential stumbling block for such projects, because once the program is
deployed we’ll want the Raspberry Pi to run remotely, without a keyboard,
monitor or mouse. This means that every time we want to reboot it, we’ll have to
connect to it over the network (if it’s accessible) and restart the program. If we
weren’t able to do this until hours later, we’d lose a lot of measurements.

Fortunately, Python has a built-in mechanism for handling errors using the
try statement — and its best friend except. When Python encounters the try
statement, it knows that if any of the following code produces errors, it shouldn’t
abort the program, but should skip to the except statement later on to handle it.

In our case, we’re instructing Python to attempt to upload the data (lines 38-
47). If there’s a problem with the network connect, an I0Error will be generated
and the first except block will run. In this case, it simply prints a message. Any
other error prints some information to help us diagnose the problem. Crucially,
in neither case does the program stop, so your data needn’t be lost. As a rule of
thumb, you should always use this technique when conditions you can’t control
directly (such as an internet connection’s availability at any specific moment)
would otherwise cause the program to crash.

141

Ultimate Guide to Raspberry Pi

Let’s walk through the code in our try block. First, we create a new
Dropbox session. We then open the config.dat file and use pickle to load
in the access token and secret token we saved earlier. We then assign these
to the session object, giving it all the information it needs to connect to the
correct account.

We’re now able to create an object based on Dropbox’s core class
— DropboxcClient — which takes our session variable as its argument, and
we have the Dropbox API at our command. In this scenario, all we want to
do is upload a specific file to a particular folder, but you could build the complete
functionality into your application if you wanted (for example, file browsing).

On line 45 we open the file and then pass it to the put_fiTe function of
the cTient object:

response=client.put_file('/'+thefile,f,True)

The first parameter tells Dropbox to upload the file; ‘£’ is a reference to
the file itself and the True switch ensures that Dropbox overwrites the file in the
user’s account. If we didn’t use this (it’s False by default) then Dropbox would
create a new file each time.

The response variable contains various data about the file once it’s been
successfully uploaded. On line 47 we simply print it out so we can see, by looking
at the interpreter output, that it’s working.

The code is now almost complete: all we have to do now is add a few lines to
main.py to trigger the Dropbox uploads:

68 pygame.init()

69

70 clock=pygame.time.Clock()

71 pygame.time.set timer (USEREVENT+1, 1)000) #upload every 30 minutes
72 upload.auth dropbox()

73

74 end_prog=False

75

76 8 while end prog==False:

¥ 8 for event im pygame.event.get():

18 ¢ if event.type==USEREVENT+1:

79 upload.save_ to_dropbox (OUTPUT_FILE)
80 ¢ if event.type==pygame .KEYDOWN:

81 ¢ if event.key==pygame.K ESCAPE:

82 end prog=True

Having imported the upload module into main, we add a call to the
authotisation function in the main loop at line 72.

We’ve decided to upload the data every 30 minutes (in other words, after
every second measurement) and this is achieved by line 71. This creates a new
event that will be triggered every half an hour in line 78, at which point we run
the save_to_dropbox function we just created.

142

Ultimate Guide to Raspberry Pi

Finally, we add a line to the save_summary function of main that causes the
daily summary to be uploaded in one go after midnight. The end result is that
every 15 minutes measurements are taken and saved to the SD catd; every 30
minutes the latest version of this CSV file is uploaded to Dropbox; and then, at
midnight, we calculate the daily averages, minimums and maximums, add them to
the summary CSV file, save this locally and upload it.

Dialling into your Raspberry Pi
Our weather station is almost ready to deploy in its final position. The last thing
to do is set up a remote connection to it so we can access the desktop from
another computer — this means we don’t have to have a monitor, keyboard or
mouse connected to the Pi. Before we disconnect, however, we need to know its
network IP address. Whilst this might change when you reconnect it, more often
than not it will be assigned the same address, so this is a good place to start.

To find the current IP address type this in LXTerminal:

ip a

This will cause a lot of information to appear: we’re only interested in the
final line, beginning inet. Specifically, you need to write down the numbers that
follow it. In most cases, the first three sets of numbers will be 192.168.1, so look
for these and add the final one-, two- or three-digit number.

Finally, we need to install the software the Raspberry Pi will run to accept
and manage connections. In LXTerminal, enter the following lines:

sudo apt-get update
sudo apt-get install tightvncserver
vncserver :1

You'll be prompted to create a password, which will be truncated to eight
characters: this is the password you’ll use when your computer connects to the
Pi. You’ll be asked whether you would like to add a “view only” password: in
most cases, you won’t need one.

We now need to set this server to run automatically when the Raspberry Pi
is rebooted in its new location. To do this, launch the File Manager from the
Raspbian desktop. Click View and then tick the Show Hidden option. You should
now see a folder called .config in the Pi folder. Inside this folder, you should
see an autostart directory (if it’s not there click File | Create New | Folder).
Right-click and select Create New | Blank File and name it tightvnc.desktop.

Now, right-click tightvnc.desktop and open it in Geany. You need to add
the following text to the file (be careful to include the space before the colon on
the fourth line):

143

Ultimate Guide to Raspberry Pi

[Desktop Entry]
Type=Application
Name=T1ightVNC
Exec=vncserver :1
StartupNotify=false

You should now be able to log in remotely. To test this in Windows, go to
[Www tightvnc. com/downToad. php and select the “Installer for Windows” entry
appropriate for your setup. Download the installer, choose the “custom” option
and deselect TightVNC Setver (you only need the TightVNC Viewer). Mac and
Linux users can use a built-in remote client or the Java version of Tight VNC

available from the downloads page.

Now launch the TightVNC Viewer and type the IP address of the Pi into
the “Remote Host” box, following it with :1. Then click Connect. You’ll be
prompted for the password you chose and, once that’s been entered, you should
see a large window appear with a view of the Raspbian desktop. Congratulations,
you’ve connected your computers together!

You can now shut down your Raspberry Pi, remove the keyboard, mouse
and monitor, and install it in its final location, henceforth using Tight VNC
Viewer to control it remotely.

If TightVNC Viewer reports that it can’t make the connection, this is
possibly because the Pi’s IP address has changed. In that case you can either
guess by starting at 192.168.1.2 (or 192.168.0.2 if your network is set up that
way) and moving upwards until you connect, or you can log into your router and
examine the list of connected devices to find the IP address.

When you’re ready to begin monitoring the climate, load your main.py file
into Geany and run it. The first set of readings should appear quickly, confirming
that the program is working.

[PR Ter—
AUNTA NS =l

What next? & e
ol Q
You should now start receiving updates a
to your Dropbox folder every 30 3
minutes (assuming you’re using the same g =
update interval as in our example). The :
. . & 2
update will appear as a CSV file in your
application folder. Make a copy and open ® m
it in your spreadsheet — you should see & "

your initial readings listed. Remember
to check the following morning for the
summary CSV file. If that’s there too, you RO o =

know everything is working as intended. TightVNC lets you access your Raspberry Pi remotely

144

http://www.tightvnc.com/download.php

Ultimate Guide to Raspberry Pi

Calibrate your unit
It’s a good idea to check your readings against those of your local weather

station. The Met Office’s observations page atfwww.metoftice.dov.uk/|

weather/uk7observations| will help you find the station nearest to you. If your
value for current temperature differs from the “official” value by more than a
degree then you should investigate whether your box is being overheated by
direct sunlight (or cooled by the wind). You can check for this by waiting for a
sunny day, then plot your temperature data as a graph. You should see a fairly
smooth, bell-shaped curve as the temperature rises and falls. If you see big jumps
in temperature then it might indicate that the box is warming up too much.

If you have this problem, try moving the box, shading it or covering it in
aluminium foil to reflect the heat away. Otherwise, your readings won’t be valid.

Next steps
Your weather station can be used for long-term studies, but it will start
generating useful data very quickly, so it makes sense to decide on some short-
term objectives too, to start drawing conclusions sooner rather than later.
Let’s say that you’re interested in the relationship between air pressure
and temperature. Once you have a week’s worth of data, you can plot graphs
to see how they interrelate. Here’s how to generate your chart in LibreOffice/
OpenOffice Calc:

1. Make a copy of the CSV file and open it in LibreOffice.

2. Select the date column first, then hold down Ctrl and select the AvgTemp
and AvgPressure columns — you should now have three selected columns.

3. Click Insert/Chart choosing the Points and Lines chatt type. Click in the
Smooth Lines checkbox and click Finish.

4. You'll notice an immediate problem in the chart: the temperature values vary
over a much smaller range than the air pressure values. To fix this, right-click
over the chatt and choose Insert/Delete Axes. Now, under Secondary Axes
click next to Y axis — this adds another vertical axis on the right-hand side.

5. Right-click over the temperature line (in blue, at the bottom) and select
Format Data Series. Under “Align data series to”, select Secondary Y axis.
The temperature readings will now be plotted against a much smaller scale.

To draw any firm conclusions you might want to wait until you have a larger data

set, so you can compare results in different seasons, for example. Ultimately, it’s
up to you what you do with your data — that’s what spreadsheets are for, after all.

145

http://www.metoffice.gov.uk/weather/uk/observations
http://www.metoffice.gov.uk/weather/uk/observations

Build a roving robot

The Raspberry Pi is the perfect robot “brain”, not least because its diminutive
size makes it easy to slot into all manner of robot “bodies” and its lack of
moving parts makes it durable — essential if you’re going to send it where no
droid has gone before. Unlike your laptop, the Pi is also very easy to directly
connect to hardware, so it can drive motors or read the values of sensors. Finally,
the Pi can be powered by standard household batteries, making it truly mobile;
the cheaper Model A variant uses only one-third the power of the Model B,
making it ideal for use in a robotics project.

The Carpet Crawler
In this chapter, we’re going to create a roving robot that you can use to learn
about robotics or carry out real tasks, all for a fraction of the cost of buying
a traditional kit. The first step is to decide what we want our robot to do, and
there’s no better inspiration than NASA’s Mars Curiosity rover.

Since it takes up to 48 minutes for a radio signal to complete the round trip

146

Ultimate Guide to Raspberry Pi

between Earth and Mars, NASA uploads a complete sequence of commands in
one go. The robot executes those commands 24 minutes later, one after the other
and without human involvement. However, the robot also senses its environment
so that if it’s in danger of colliding with a rock, for example, it will alter its course
to avoid it, overriding the instructions from ground control.

We’re setting more modest, and strictly terrestrial, goals for our Carpet
Crawler robot. In our case, mission control will be in the kitchen, while our robot
trundles around the living room. Just like Curiosity, however, Carpet Crawler will
load and execute a seties of commands, and our modest mechanoid will be able
to take photographs of its immediate environment so that its controller (you)
can see exactly where it is. Like its illustrious counterpart, it will also use a pan-
and-tilt mechanism to capture a wide view while stationary. Finally, the Carpet
Crawler will include an infrared sensor so that it can react if anyone, or anything,
walks into its field of view.

A platform such as this can be used for all sorts of research and educational
purposes, not to mention that most important pastime of cat photography. It
can be expanded to incorporate more sensors both to record the environment
around the robot and to help it cope with bumping into objects. Follow this
tutorial through and you’ll have an excellent general-purpose educational rover —
and, you never know, perhaps the start of a career or hobby in robotics.

Build your robot

Robotics is a practical subject so we’re going to dive right in and get building, I’ll
deal with the concepts you need to know as we come to them, so let’s get started.
Note: you can find a complete parts list, including links to suppliers, at[fvww-]

|rpilab.net/robot.|You can choose your own parts, improvise or recycle old

bits and pieces — that’s part of the fun — but my instructions assume you’re using
the “official” parts list. You’ll also find all the code used in this chapter at the
URL above, along with extra photos, hi-resolution wiring charts and video of the
robot in action.

Warning: this project involves directly connecting your Raspberry Pi to real
hardware. We’ve taken great care to provide detailed instructions on how to do
this safely, but accept no responsibility if you damage your Pi in the process.

Step 1: Raspberry Pi

To prepare the Raspberry Pi, load up an SD card with the latest version of
Raspbian, add a Wi-Fi dongle and install Geany (following the instructions in
Chapter 1). Once that’s done, set up the Pi to be used “headerless” (without
monitor, mouse and keyboard) by following the instructions in the previous
chapter. Before you begin to build the robot, check that you can access the Pi
using TightVNC.

147

http://www.rpilab.net/robot
http://www.rpilab.net/robot

Ultimate Guide to Raspberry Pi

We’re using the Raspberry Pi camera module so, when setting up your Pi, be
sure to select “Enable Camera” (option 5) on the Raspi-Config screen. You can
always relaunch the configuration tool by opening up LXTerminal, typing sudo
raspi-config and pressing Enter.

You’ll need a case for your Pi. Choose one made from a non-brittle
material that includes slots for the GPIO and camera module ribbons (see my

recommended choice atlwww. rpilab.net/ robol:).

Step 2: Chassis
I chose the popular and cheap Magician
chassis, which includes two powered
wheels and a caster built into a framework
that has plenty of mounting points for
bits and pieces. It should be possible
to use most two-wheeled chassis with
this project or, indeed, to repurpose an
old remote-control toy if you’re feeling
particularly adventurous.

Follow the instructions (or
download from[AEEp://5crib.me/]
magicianchassis) supplied with the

chassis to start construction, halting after The blue variant of the Magician chassis, as supplied by

step 5 (don’t bother with the “speed board Dawn Robotics [[www.dawnrobotics.co.uk)l
holders”). Skip step 6 and, in step 7, add
all the spacers except those at the left and right of the curved edge — we’ll need

to be able to access this atea later.
Before you complete construction of the chassis, you need to add some
components to the top layer; this is easier to do before screwing it into place.

Step 3: GPIO and servos
Use a nut and bolt to secure the bottom part of the Raspberry Pi case to the top
layer of the chassis. We’re going to use the top of the case to mount the camera
and a GPIO breakout board. The Raspberry Pi has 26 GPIO (General Purpose
Input Output) pins, many of which you can use to send or receive digital pulses
in the form of a 5V signal.

Misuse of the GPIO pins is the most likely cause of damage to your Pi, so,
to make misconnections much less likely, we’re going to use a breakout board
that sits on top of the case and connects to the GPIO pins via a ribbon cable.
My favourite board uses “paddle” connectors, into which you push wires and
then push down the paddles to engage: this forms a secure connection that can
be easily released if you want.

This board comes with four mounting holes, but I suggest using only three

148

http://www.rpilab.net/robot
http://scrib.me/
http://www.dawnrobotics.co.uk

Ultimate Guide to Raspberry Pi

Here we see the chassis with case, modules and breadboard in place

and leaving out the one immediately above the slot for the camera module. This
gives room for the module’s ribbon cable. Place the board on top of the Pi case
and mark the position of the three mounting holes, then drill through the marks
using a 3mm (or similar) metal drill bit. Now you can mount the board on brass
or plastic spacers.

We’re going to mount the camera on the Dagu Pan & Tilt kit, so we can
move it independently of the robot chassis. This kit contains two identical servos
(a specialised form of motor), one of which will be mounted on your Pi case.

To do this, you can either use your imagination or, as I did, carefully remove the
bottom of one of the servos and drill two 3mm holes, a centimetre or so apart.
Pass the nuts that were intended for the battery holder (as they have flat heads)
through the holes and into two of the small brass spacers included as “spare
parts” with the robot chassis.

Position the servo alongside the GPIO breakout board and mark where the
spacers rest on the case. Drill 3mm holes in those positions, but don’t mount the
servo at this point. Plug in the ribbon cable to the GPIO pins (with the central

149

Ultimate Guide to Raspberry Pi

ridge facing the outer edge) and draw it through the slot on the edge of the case
before connecting to the breakout board.

Step 4: Motor Driver

The GPIO pins can only supply a small amount of current — not nearly enough
to drive the robot’s two motors, so we must find a way that allows the GPIOs to
switch power on and off, but which actually supplies this power from a separate
source. While it’s perfectly possible to build a circuit to handle this, it’s more
convenient, and safer, to use a pre-built module. The chip at the heart of this
package is the .298N and the modules built around it come in various forms.
We’re using the most commonly seen one as detailed in the parts list.

The motor driver works by allowing the GPIO to indicate when each motor
is enabled and whether it should be turned forward or reverse. For now, simply
mount the module on the top layer of the robot chassis in front of the Pi case.

You can now attach the top layer to the rest of the robot chassis, pulling
through the wires from the motors so they come out next to the blue screw
terminals on each side. Finally, take the breadboard, peel off the sticky backing
and mount it next to the motor driver module. Your setup should look like the
photo at this stage (see p152).

Step 5: Power

The Magician chassis comes with a battery pack that takes four AA batteries and
supplies power via a barrel jack. In our configuration, we’re going to situate this
at the front, curved end of the chassis. Use good-quality batteries, ideally top-
grade alkaline rechargeables providing around 2,500mAh, as motors consume a
lot of current. Plus, we’re using those batteries to power both the wheels and the
pan-and-tilt servos, which also use the 6V our battery pack will supply (4 x 1.5V).
I used a breadboard barrel jack connector that allows me to send the voltage to
the power rail and -ve to the ground rail; this makes for a solid connection, but
you could simply strip the wire from the battery pack and connect it directly to
the rails.

If you’re using the barrel jack connector, place it on the breadboard facing
the front of the robot. The connector has three legs but the one to the side is
purely there to give extra stability: the back leg is connected to the battery voltage
and the one nearer the front is ground, so you need to use a small patch wire to
connect the breadboard row of each to the correct rail.

You then need to run a cable from the power rail to the left of the three
screw terminals on the motor driver (as seen from the front) and a separate cable
from the ground rail to the middle terminal.

We now need to connect the motors to the motor driver module. You’ll
see two sets of blue double terminals, one on each side. Connect the black
lead of the right-hand motor (as seen from behind) to the top terminal on

150

Ultimate Guide to Raspberry Pi

} Focus On J=CE[oLX:1(s [

Breadboards allow you to connect components together without needing
to use a soldering iron. They come in many sizes (we’re using a “half-size”
version), but they’re all essentially a matrix of holes containing spring
mechanisms, enabling them to grip cables and component legs that are
pushed into them, thus connecting them together electrically.

Take a look at the diagram: it shows a close-up of one corner of a
standard breadboard. At the top, you can see two rows in red and blue (the
actual breadboard shows just the blue and red lines). Plugging a battery’s
+ve terminal anywhere along a row supplies voltage to the entire row; it’s
usually called a “power rail” when this is done. Plugging the -ve terminal
into the other row creates a “ground rail” along the entire length.

To understand how the rest of the breadboard works, look at the
circuit. You can see that voltage runs from the red horizontal rail through
the orange cable and into the first hole in row 27, moving in the direction
indicated by the arrows. In contrast to the rails at the top, in this case
voltage flows down the row so it passes into and through the LED, out
the other leg, along row 26 and into the resistor, then across the resistor
and up row 24 into the ground rail. So, whereas the rails are connected
horizontally (when seen from this angle), the rows are only connected
vertically — in other words, there’s no connection between rows 27 and 26
unless you create one (by using an LED in this case).

Most breadboards are split into at least two independent regions.

In the case of the half-size breadboard in this project, there’s a valley
running up the centre that creates, essentially, two separate breadboards
with their own rails and rows. We’re using one side for the motors and
the other for the Pi.

‘“- AR Battery -l
-

151

Ultimate Guide to Raspberry Pi

L L B B B B B B B B B B B B D B B R
W e e E RS R RS EEEEEEe
L I B B I I O ORI I T O I I O
LI I I I B D B B B B B B B
L I T O I B R I T O I O

L298N Module

The above diagram shows how the breadboard should be wired for power

the left-hand block (the one nearest the heatsink), the red lead to the bottom one.

Now connect the black lead of the left-hand motor to the bottom of the
right-hand terminal block, and the red lead into the final one (nearest the heatsink
on the other side). Check the diagram to see how it should all look; you can see
that power goes from the battery into the motor module and out again through
the two terminals to the wheels. If you’ve got it right, an LED should switch on
when you make the final connection.

You also need to separately power the Raspberry Pi, which requires 5V. You
can do this in several ways, but the simplest is to use a mobile phone battery pack
such as the PowerGen 8400mAh, which will keep your Pi going all day. You can
also use standard batteries, but since there’s no combination of 1.5V cells that
equals exactly 5V, you’ll need to add a converter.

In that case, the best compromise between weight, power and price is
a high-capacity 9v PP3 battery connected to the Pi via a USB convertor (see
the parts list), which steps down the voltage to a safe level. Bear in mind,
however, that you’ll get only a few hours’ continuous use out of even the
best 9V battery.

152

Ultimate Guide to Raspberry Pi

The power supply for the Pi can sit beneath it on the bottom layer — the
PowerGen 8400mAh fits perfectly — and can be connected to the computer via a
short micro-USB cable.

Step 6: Getting ready to move

We need one GPIO pin to control each of the four directions (left-forward, left-
reverse, right-forward, right-reverse) so begin by pushing a patch wire into the
holes marked P22, P23, P24, P25 on the paddle board — make sure they’re secure.

5v0 GP10 Paddieboard

P23
P22
s e ews serses wEees seeew .

/.--- se s e sesEr Ereew

* MOSI

L298N Module

To get your rover moving, connect your GPIO paddle board to the motor driver

The other end of the wire should go into consecutive rows on the
breadboard, starting right next to where it meets the Pi’s case. This might be rows
1,2, 3 and 4 or 30, 29, 28 and 27, depending on which way round you have your
board. Look at the motor module and you’ll see a row of pins. Put a lead into
cach of them and then connect them to the breadboard so that IN1 is in the
same row as P24 — this connects them electrically. IN2 should be connected to
P25, 1IN3 to P22 and IN4 to P23.

There’s also a pin on each end (if they’re covered by a black jumper,
remove it). These pins are labelled ENA and ENB, and they turn each motor
on and off. Use a female-to-male lead to connect both ENA and ENB to the
same row on the breadboard (we want both motors to run at the same speed).
Now, push one end of a cable into the paddle-board hole labelled MOSI

153

Ultimate Guide to Raspberry Pi

(this is GPIO10) and the other into the breadboard row containing the ENA and
ENB leads. Connect a wire from any of the paddle-board ports labelled “5V0” to
the top red power rail.

Important: do NOT connect this wire to the same power rail as the battery!

Now, run a wire from any of the “GND” holes on the paddle board to the
blue ground rail at the top and, finally, run one more cable to connect the ground
rail of the Pi to the ground rail of the battery. Your wiring should look like the
diagram on p133. Note that I’ve left out most of the wiring from the previous
step to avoid it becoming confusing.

Step 7: Get moving

You can find the code for each step at fwww . rpiTab.net/code. Download the

code for the first step to a folder on your Pi’s desktop called Robot. You can
now use TightVNC to access the Pi. Run the program from the command line in
LXTerminal since controlling the GPIO pins requires administrative privileges,
so type the following (assuming you’ve just started your session):

cd Desktop/Robot
sudo python main.py

Your robot should now move forwards, backwards, left and right, and
you should see messages appearing in the terminal window as it runs through
each manoeuvre.

Controlling the GPIO is simple using the RPi.GPIO library. Essentially, each
of the pins we plan to use is set up to be used either for input (to read from a
sensor, for example) or, as in this case, as output to control motors. Once this
is done, we send a “high” value to the pin to send voltage or a “low” value to
turn it off. For example, to move forward, the pins connected to IN1 and IN3
are both set to high. To go backwards, IN2 and IN4 are set high. To go left, IN1
is set high and IN4 to high so that the left and right wheels rotate in opposite
directions — this causes the robot to spin on the spot.

To control speed, we use a technique called Pulse Width Modulation.
Essentially, this involves turning the motors on and off many times a second.
In the example code, at lines 51 and 52, we set up the PWM and, once
done, the Pi will pulse the ENA and ENB ports as we’ve specified. You’ll
see that I’ve written a function that wraps all this up so we can send simple
commands such as go("forward",2,6) to tell the robot to go forward for two
seconds at full speed.

Step 8: Snap happy

To add photo-taking capabilities, we must first install the camera module and
then mount it on the pan-and-tilt unit. Follow the instructions to insert the

154

http://www.rpilab.net/code

Ultimate Guide to Raspberry Pi

SERVO (PAN%
. . SERVO (TILT)

.oo...oc.'?p17

L L
LN L B

L]
. I.o I/GPCLKO
L
L B B L

Connecting the servos for the pan-and-tilt mechanism is easy: the red cables are power
and the brown cables ground. The orange cables connect to the GPIO paddle board for us
to control the servo positions.

camera’s ribbon cable into the appropriate connector on the Pi and pass it
through the slot beneath the GPIO breakout board.

You can capture photos from within LXTerminal using the raspistill utility,
but Sean Ashton’s PiCam library makes it much simpler to do this from within
Python. Start by booting up your Raspberry Pi (with camera attached) and typing
the following in an LXTerminal window:

sudo apt-get install python-imaging

This downloads the libraries that PiCam uses to function. To install PiCam
itself, start up a browser on the Pi, go to
and click the “Download ZIP” button.

Open up the file explorer in Raspbian and navigate to the /home/pi/ folder
where you should see the ZIP file. Right-click it and select “Xarchiver”, then
extract the ZIP file to the /home/pi folder. Back at LXTerminal, type cd /pi/
picam-master and press Enter, then install the library by typing:

sudo python setup.py install

It’s now time to build the pan-and-tilt mechanism, making sure that the servo
on which you’ve mounted the two spacers ends up at the bottom. Once done,
you can screw the pan-and-tilt assembly to the Pi’s case using the two holes you
drilled earlier, and then mount the camera module on it using plastic screws.

Each servo has three leads that terminate in a female header, so you’ll need
to put six header pins into the breadboard (each on a separate row) on the side
nearest the motor driver modules. Into these you can plug the servo leads — you

155

https://github.com/ashtons/picam

Ultimate Guide to Raspberry Pi

could also use stripped cable or, if you prefer, remove the servo connectors
and plug in the bare wires. Now use small cable jumpers to connect the rows
containing the red cables to the battery power rail, and also to connect the rows
containing the dark brown cables to the battery ground rail.

The third lead is orange — this is the “signal” cable that tells the servo
which position to move to. Take another cable and connect — via the breadboard
— the orange lead of the bottom servo (the one responsible for panning the
camera) to the hole labelled P17 on the paddle board. The orange lead of the
top servo (tilt) should be linked to the hole labelled GPCLKO. That’s it, your
servos ate now connected.

We’re going to use the ServoBlaster library created by Richard Hirst
to control the pan and tilt. To install it, type the following commands into
LXTerminal, pressing Enter between each:

sudo apt-get update

sudo apt-get install git

git clone https://github.com/richardghirst/PiBits.git
cd PiBits/ServoBlaster/user

make servod

sudo chmod 777 servod

ServoBlaster allows us to use any number between 50 and 250 to
control how far each servo will turn, with most having a total range of
around 180 degrees. To simplify matters when it comes to controlling our
robot, we want to use commands such as “right”, “left”, “up” and “down”
rather than numbers, so first work out which values correspond to which
positions. To do this, I've written a program called servotest.py, which you

can download from lew rpilab. net/code.Downloadl it to the same folder as

your main.py and use this command (assuming your LXTerminal is still in this
folder) to run it:

sudo python servo_test.py

You’ll be invited to enter values in paits separated by a space, with the
tilt first. So, typing 180 120 would set the tilt servo to 180 and the pan to
120. Each setup is different since it depends on the position of the servos
when you assembled the pan-and-tilt mechanism. I suggest beginning with
the above values as they’ll probably result in the pan/tilt facing front and
roughly flat — this is your default position. Lower values will make the tilt
move upwards and the pan move left — by experimenting, you can establish
the values to use for left, front and right (for the pan direction) and up, flat
and down for tilt.

156

http://www.rpilab.net/code.Download

Ultimate Guide to Raspberry Pi

Important: find the central position (front, flat) first using safe values such
as 180 120 then add or subtract in tens from there to read the extremes. Don’t
start low or high, since it could strain the servos. If you hear the servos whine,
change the values. To end the program, type “stop”.

You can now download the updated main.py for step 8 from Www. rpilab.]
[net7code] to replace the code from the previous steps. You should also download
servo.py, which is a class containing most of the code for using the pan and tilt.
Open it in Geany and change the values in lines 5 and 6 to those for your setup.
Save and close the file. In the new main.py file, on line 88 you’ll see the self-
explanatory command servo.move_servo("pan","Teft").

T’ve also added a function for taking a photo. To trigger this, call the
function: take_photo() as on line 90. Take a look at all the code from lines 86 to
103 and you’ll see it’s a complete sequence for moving, positioning the camera,
and taking photos. The only thing you need to do before running the code is
to ctreate a subfolder in the Robot directory called “Photos”. You can now use
sudo python main.py to watch the robot go through its paces. If you’re using
TightVNC, you'll see the photos appear in that folder as they’re taken.

Step 9: Sensing movement

Our robot can now be programmed to move, position its camera and take

a photo. It can’t, as yet, respond to its surroundings. So, we’re going to add

a passive infrared sensor (such as those found in burglar alarms) that will

be triggered when something warm moves in front of it. The sensor listed on
[www . rpTTab.net/robotlis cheap and easy to use: you can mount it on the front
of your robot with a little Blutack.

MISO
PIR Sensor
5V0 GPIO Paddleboard
GND P23

P22
-y -
-

P25

g (’
= > P24
- =2 MOSIT

A passive infrared sensor will enable the robot to detect and respond to movement
There are three pins on the top. The VCC pin connects directly to the

power rail from the Pi (it uses 5V, so don’t plug it into the motor’s power rail)
and the GND pin should be connected to the Pi’s ground rail. Whenever the

157

http://www.rpilab.net/code
http://www.rpilab.net/code
http://www.rpilab.net/robot

Ultimate Guide to Raspberry Pi

sensor detects movement, it outputs voltage on the middle pin, so connect that
to a spare row on your breadboard. Run a cable from the same row to the hole
marked MISO on the GPIO paddle board.

You can now download main.py for Step 9 to overwrite your existing
file (servo.py is unchanged). On line 9, you’ll see that we set the PIR_pin as
GPIO 9 (this is the MISO pin) and on line 19, we set up the pin for input. The
function at line 85 cycles through a whiTe loop in case the PIR module had
already been triggered; it continues cycling until the PIR stops sending voltage.
It’s now ready to wait for movement and, as soon as it’s triggered, the function
exits. The result is that the robot will halt execution of the script until something
moves in front of it. All you need to do is add the function call as shown at line
108: PIR().

Run the script as before and your robot will move forward then pan and tilt.
It will then wait for movement and, as soon as it’s detected, take a photo and
then go through another sequence of moves.

Step 9: Next steps

Our robot can now lay in wait for passing pets, or human intruders, and take a
picture of the offenders. You can edit the main.py file to create any sequence of
commands: it’s easy enough to work out what the parameters are by looking at
the functions themselves. For the final version of my robot, I added a buzzer that

CEO

sV0 GPIO Paddleboard
GND

P23

.- .
LI .-
L] P24
L 3 2 MOSI

To receive feedback when the robot is taking actions, we add a buzzer and light

sounds when photos atre taken or movement is detected, along with an LED for
giving visual feedback.

I’m using a piezo buzzer because I can then make it sound simply by passing
voltage through it; the sound it makes is similar to the startup beeps of a desktop
PC. Buzzers are cheap and have only two connections, namely a positive and
ground. To make things more exciting, I'm also adding an LED. You can buy one
for pennies — or “liberate” one from an unloved toy or electronic device.

158

Ultimate Guide to Raspberry Pi

To make it work, connect the positive terminal of the buzzer to a GPIO port
(’m using the one marked CEQ, which is GPIO 8) on the breadboard. Naturally,
the other terminal needs to connect to the ground rail, but rather than doing so
with a bit of wire, if you drop the longer leg of the LED into the same row on
the breadboard as the negative terminal of the buzzer, and the shorter leg into
the ground rail, you complete the circuit through the LED. So, when we turn
on the GPIO port using Python, electricity flows through the buzzer (making a
noise), then through the LED (making it light) before reaching ground. In other
words, by using one Python command, we can control the buzzer and the light.

Once you’ve set up the hardware, you can download the code for step 9.
Adding this auditory and visual feedback is simple. On lines 16 and 31, we set
up the GPIO ports we’re going to use. We then create a new function from line
61 to make the buzzer beep: it does this by turning on the power for 0.1 seconds
then off for 0.2. The function accepts a parameter called repeat, so that we can
make it beep a specific number of times for each purpose. It might beep three
times when it first boots up, for example, and once when taking a photo.

I also wrote code to read in an external text file containing the robot’s
commands, so they could be edited and uploaded in a text editor rather than
having to directly alter the Python code as we’ve been doing up to this point. To
do this, I created a text file called coMMANDS. TXT and invented my own simple
language for instructing the robot. Direction is controlled by the forward,
backward, left, right commands, each of which has a for parameter (which is the
number of seconds the robot must move for) and a speed parameter; you may
remember that these are the parameters used in the go function in our code, so
we won't need to change that at all.

We also have a pan command for controlling the horizontal direction of the
camera using the parameters right, Teft, and front. Plus, there’s a tilt command
for the vertical direction, which uses up, down and flat. The camera is controlled
with snap and the wait PIR command causes the robot to pause until the
infrared sensor is tripped.

So, in the text file, you can type a sequence of commands such as this:

forward for:2.5 speed:6
left for:1 speed:6

wait PIR

pan front

tilt flat

snap

These would make the robot move forward, then left before waiting for the

PIR to be triggered. It would then move the camera to front and centre before
taking a photo. The beauty of this approach is that you can now easily get the

159

Ultimate Guide to Raspberry Pi

computer to carry out a complete sequence without having to go into your
Python code at all.

All we have to do now is read in the text file, extract the commands and, for
each, run the correct function. The code for this begins at line 128 and uses the
with and for structures to loop through the contents of the file until it’s finished.
The series of if statements then works out what command is on the current line,
extracts any parameters, and runs the appropriate function. The code has been
heavily documented, so you can work out what each line does.

As well as making it possible for a non-coder to control the robot by typing

+ 1t - CAUsers T ——T - Geany - =N
fle [da Sessch Yoow [Docwment Broject fuld JTook Heip
- o B x h 9 “ ». @ L]

Hew Open Bovet Clase i » secute | Colow Chooter
Symbat Doguments sommsagine X
(TP — 1 forward for:2.5 speed:é

s pan right

3 tilt down

4 left for:l speed:é

5

(] ront

7 flat

8

L up

10 pan left

11 forward £

12 snap

13 forward [

14 left fo.

15 wait

16 pan

17 tilc flat

18 snap

15 |
b 15/ 19 wel0 skl BS TAR mode Unn(IF] srcodeg UTE-S Batyps Mens wope srinown

By editing this text file, we can make the robot carry out a sequence of commands without
needing to dive into the Python code

simple commands into a text file, this approach also makes it easy to add new
functionality to the robot by writing the Python code and adding a simple text
command to control it. In fact, as your robot becomes more sophisticated, you
might want to make your code more object-oriented as we did with the games
carlier in the book.

Whatever you do, have fun. Robotics is one of the most interesting areas of
computing and there’s a particular thrill in watching your creation navigate its way
around your home or office. Robots may appear to be science-fiction, but they’re
becoming progressively more mainstream and will be used in many aspects of
everyday and commercial life. The Raspberry Pi makes it possible to experiment
in robotics and create real-world projects for minimal cost. Who knows, today’s
Pi owner may create tomorrow’s planetary rover.

160

Ultimate Guide to Raspberry Pi

) IR0l B Robots come in many forms

In this chapter, we’ve built and
programmed a roving explorer, but
many of the robots in day-to-day use
don’t move anywhere.
Robot arms are commonly used
in assembly lines and laboratories
across the world and, whilst the real
thing is expensive, it's possible to
build your own robot arm and control
it with your Raspberry Pi at a very low
cost. Maplin|(http://bit.1y/1g9RzZ0)
stocks a small, self-assembly robot
arm that’s intended to be used with a
Windows PC, but by connecting it to a
Pi we can directly program it to carry out tasks. You can usually buy one of
these robot arms on eBay (search for “Maplin robot arm”) for half the retail
price of around £40; just make sure the one you buy is sealed in its box.
Begin by following the instructions to build the arm. Test that it works
using a Windows PC and the software that comes with it. Connect it to your
Raspberry Pi via a powered USB hub and boot into the desktop. We need
to install a few bits of software, so execute these commands in sequence in
LXTerminal:

sudo apt-get install python-pip
sudo pip install pyusb

This installs the USB library that allows us to control the robot arm
using the Python programming language.

You can download some sample code we’ve created from www. rpi-
net/code/robotarm to give you a head start. You can then open them
in Geany. Feel free to edit armtest. py, but don’t change Robot_Arm.
py unless you know what you’re doing. To run the script, double-click
LXTerminal and, assuming you’ve copied the Python files to a folder
called “robotarm” on the desktop, type: sudo python Desktop/robotarm/
armtest.py.

The armtest.py file contains a sample routine that moves every joint in
the robot. It should be easy enough to see how it moves the arm, so try to
work out how to get it to go through a set of movements and then return to
its original position. Maybe you could program it to stir your tea!

161

http://bit.ly/1g9RzZo

Ultimate Guide to Raspberry Pi

The end?

Congratulations! Having made it this far, you’ve acquired the majority of the

skills youll need for a career in programming. From now on it’s a matter of

broadening your knowledge in the areas that interest you, and then adding the

secret ingredient: practise.

Python can be used for powering websites, creating mobile apps and

programming embedded devices — in fact, there are very few aspects of

programming that aren’t open to Python developers. The Raspberry Pi is a

perfect companion to the language, and perhaps you’ve already thought of how

you can combine the two in all sorts of weird and wonderful ways.

My advice is to start by focusing on an achievable project that interests you,

and then find out whether anyone in the marvellous Raspberry Pi community

has created something similar. Build something personal to you that makes a real

difference to your day-to-day life — perhaps a Pi-powered door-entry system, an

intelligent alarm clock, or a time-lapse photography setup. Or how about building

on the games and projects we've provided?

Always remember, being a good programmer isn’t about memorising the

names of commands and functions. It isn’t necessarily about late nights slumped

over a laptop tracking down a particularly naughty bug. It isn’t the preserve

of geniuses who dream code, and it certainly isn’t a purely male preserve.

Programming is for everyone. It’s about doing something you love; it’s the

ultimate creative pursuit.

Go out thete, make something fabulous — and don’t forget to tell me all

about it by emaj]jng|kevi n.partner@nlightn.nét.

WRITTEN BY ¢ Kevin Partner ¢}
DESIGNED BY ¢ Andrew Bunce *|andrew_bunce@talk21.comn
MANAGING EDITOR - Priti Patel

ADVERTISING
MAGGBOOK ADVERISING MANAGER
Simone Daws ¢ 020 7907 6617

MANAGEMENT
GROUP MANAGING DIRECTOR * Ian Westwood
MANAGING DIRECTOR, TECHNOLOGY ¢ John Garewal
EDITORIAL DIRECTOR, TECHNOLOGY * Tim Danton
MD OF ADVERTISING * Julian Lloyd-Evans
MAGBOOK PUBLISHER ¢ Dharmesh Mistry
NEWSTRADE DIRECTOR ¢ David Barker
CHIEF OPERATING OFFICER - Brett Reynolds
GROUP FINANCE DIRECTOR * Ian Leggett
CHIEF EXECUTIVE ¢ James Tye
CHAIRMAN - Felix Dennis

LICENSING AND REPRINTS
Material in this MagBook may not be reproduced in any form
without written permission. It is available for licensing overseas.
1 To license: contact Carlotta Serantoni
+44 (0) 20 7907 6550, karlotta_serantoni@dennis.co.uk|
To syndicate: contact Anj Dosaj-Halai
+44 (2)20 7907 6132, |anj_dosaj-hala i

LIABILITY
While every care was taken during the production of
this MagBook, the publishers cannot be held responsible
for the accuracy of the information or any consequences
arising from it. Dennis Publishing takes no responsibility
for the companies advertising in this MagBook.

The paper used in this magazine is produced
from sustainable fibre, manufactured with a valid
chain of custody.

ISBN
1-78106-312-5

MAGBOOK
The ‘MagBook’ brand is a trademark of Dennis Publishing Ltd,
30 Cleveland Street, London W1T 4]D.
Company registered in England. All material © Dennis Publishing
Ltd, licensed by Felden 2014, and may not be reproduced
in whole or part without the consent of the publishers.

Raspberry Pi for Beginners is an independent publication. All
trademarks are the properties of their respective owners.
Use of logo: approved by the Raspberry Pi Foundation

Printed by Polestar Stones,
Banbury, Oxfordshire

mailto:kevin.partner@nlightn.net
mailto:kevinpartner@nlightn.net
mailto:andrew_bunce@talk21.com
mailto:carlotta_serantoni@dennis.co.uk
mailto:anj_dosaj-halai@dennis.co.uk

Raspberry Pi for beginners

Bought a Raspberry Pi? Tempted by programming but
put off by all the dull tomes that litter the shelves? Or
perhaps you want to buy a guide that will inspire your
children or grandchildren? Then this guide is for you.
By the end, you’ll know:

* How to get the most out of a Raspberry Pi
¢ The basic concepts of programming
* How to write a game, step by step

e How to build your own roving robot
using the Pi

About the author

Kevin Partner is a programmer, writer and
unashamed geek. He's developed commercial
applications and games in around a dozen
languages, with Python as his current favourite.
Kevin owns more Raspberry Pis than he'd care to
admit and sees the Pi as the most revolutionary
new computing device for many years.

A regular contributor to PC Pro magazine, Kevin currently
writes technical articles and a monthly column covering online
commerce. He's also the author of “How to set up an online
business”, available from www.magbooks.com,|

ISBN 1-78106-312-5 Pc
9"781781 |063125

www.magbooks.com PRO

66,3

=
o
o
-
=]
~

http://www.magbooks.com
http://www.magbooks.com

