

Unity 2D Game Development

Combine classic 2D with today's technology to build
great games with Unity's latest 2D tools

Dave Calabrese

BIRMINGHAM - MUMBAI

Unity 2D Game Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 3220414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-256-4

www.packtpub.com

Cover Image by Dave Calabrese (dave@ceruleangames.com)

Credits

Author
Dave Calabrese

Reviewers
Greg Copeland

Fırtına Özbalıkçı

Karin Rindevall

Jack O. Snowden

Acquisition Editor
Rebecca Pedley

Luke Presland

Content Development Editor
Sruthi Kutty

Technical Editors
Akashdeep Kundu

Neha Mankare

Faisal Siddiqui

Copy Editors
Roshni Banerjee

Mradula Hegde

Project Coordinator
Mary Alex

Proofreader
Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Sushma Redkar

Cover Work
Sushma Redkar

About the Author

Dave Calabrese is an independent professional video game developer who has
worked in the industry since 2002. Starting as an intern and working his way up
to running his own small studio, Cerulean Games, he strives to produce fun and
quality entertainment while also inviting others to learn from his experience and
mistakes. Dave has had the opportunity to work on branded projects for top names
and produce titles for multiple platforms, including Xbox 360, iOS, PC, and Mac.
Today, he continues to produce fun and original games, participate in game jams,
and author books.

Special thanks to my fiancée Kelly Myers for always putting up
with my shenanigans.

About the Reviewers

Fırtına Özbalıkçı is an enthusiast of video games and game development tools.
He is experienced in various game engines, including the Unreal Development Kit,
Source Engine, Ogre3D, and Unity 3D. Additionally, he has studied open source
physics engines such as Box2D in order to achieve a greater understanding of game
mechanics. He has published several game mods and trainers and is a long-term
contributor to several game development communities and GitHub. His latest
project is a plugin to enhance the usability of the 2D physics of the Unity3D engine.

Fırtına is currently employed by a British billing company as a core developer.
Previously, he worked for a visual effects company, specializing in production tools
development. He graduated from the University of Bath in the United Kingdom,
earning a degree with honors in Computer Science. He maintains a tiny garden in his
London flat's balcony.

I would like to thank my parents: Sonay and Erdoğan Özbalıkçı,
my sister Goncagül, as well as Chelsea for their support in me being
a reviewer.

Karin Rindevall is a Swedish animator and game artist with six years of experience
in the gaming industry. She has worked with the Unity engine on several games
released on various platforms. Her first Unity 3D title was MilMo (2008), the first 3D
action adventure MMO played on a web browser. Today, she makes animation and art
assets for 2D and 3D games released on PC and mobile devices at Hello There, a game
studio in Gothenburg, Sweden. Their most recent game titles are Avicii | Gravity and
Khaba. When Karin isn't creating games, she runs half marathons and creates comics.

Jack O. Snowden presently works for Wargaming of America, researching best
practices for game development and game design. This includes environment design
and modeling, texturing, object modeling, and game design.

He has worked at Electronic Arts Canada, Edmark (Riverdeep), spent a long extended
time with Nintendo Software Technology, and finally as an academic director at the
Seattle Art Institute, where he ran the gaming and animation departments.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface 1
Chapter 1: Introduction to the 2D World of Unity 5

Remembering the past to build the future 5
The 2D world of Unity 8
The perspective camera 8
Getting grounded 9
Making new friends 12
Let's move it! 14
Gotta move it! 21
Make 'em run! 26
Summary 28

Chapter 2: It Lives! 29
Cameras – they now stalk us! 29
Falling to your doom! 34
Falling fatally into death colliders 35
Death and resurrection – respawning 37
Jump to it! 38

Jumping for fun (and profit) 38
Not missing the ground 40
Wait, did I collide with something? 43
Got a glitch? 45
Making the world bigger 49
Let's get dangerous 50
Bullets are better when they hit things 55
Summary 56

Table of Contents

[ii]

Chapter 3: No Longer Alone 57
Making enemies 57
Make it move 60
Make it deadly 63
Let's go huntin'! 65
The swarm 69
Summary 70

Chapter 4: Give It Some Sugar 71
Expanding the world! 71
Parallax scrolling 73

Parallax layer ordering 75
Let's score! 78
Enemies – forever! 81
Summary 84

Chapter 5: The Ultimate Battle of Ultimate Destiny 85
Meet the king 85
Crown the king 87
Dusty platforms 97
Crushing defeat 98
Summary 100

Chapter 6: The Finishing Touches 101
Game rounds 101
Give it a start screen 103
Summary 109

Index 111

Preface
Howdy and welcome! Take a seat and grab a drink. There you go. So, you say you
want to learn all about this old-fashioned 2D stuff in that new-fangled Unity game
engine? Well, you've come to the right place. Er, book. This here book? It's all about
using those awesome 2D updates that Unity added in v4.3 to make an entire game.
Yup, a whole, basic platformer, complete with parallax scrolling, enemy logic, UI,
and a boss battle. Pretty sweet deal, eh?

What this book covers
Chapter 1, Introduction to the 2D World of Unity, covers the basics of getting Unity
up and running for 2D games and setting up a simple, animated, sprite-based
player character.

Chapter 2, It Lives!, is all about camera control, 2D triggers, player death and
resurrection, firing a weapon, and a bit about state machines for good measure.

Chapter 3, No Longer Alone, adds enemies! Shoot them, get killed by them, and watch
them patrol. It's a party where everyone wants to kill you!

Chapter 4, Give It Some Sugar, shows you how to build dynamic, endless enemy
generation and a bigger game world, introduces parallax scrolling, and adds
a scoring system.

Chapter 5, The Ultimate Battle of Ultimate Destiny, lets you know that the enemies
have a friend, and he's angry! In this chapter, you will build an entire boss battle.

Chapter 6, The Finishing Touches, is exactly what it sounds like—the final gravy on
this awesome mountain of 2D goodness. You'll be adding in game rounds and
a start screen.

Preface

[2]

What you need for this book
This book is intentionally developed for only those who need one piece of
software—Unity 4.3 or newer. That's it. Don't have Unity? No worries, you can
nab a free version of this most excellent game engine from www.Unity3D.com.

Who this book is for
This book is ideal for anyone who wants to learn how to build 2D video games
or wants to expand their knowledge of the Unity game engine. To get the most
from this book, having knowledge of C# and Unity is important, however, if you
are less experienced in these areas, this book still gives you all the necessary tools
to create your own game.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "Import the image labeled Platform.png."

A block of code is set as follows:

case PlayerStateController.playerStates.idle:
playerAnimator.SetBool("Walking", false);
break;

case PlayerStateController.playerStates.left:
playerAnimator.SetBool("Walking", true);
break;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To do
this, select playerSpriteSheet in the Project tab and look over at the inspector."

Preface

[3]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/2564OT_ColorGraphics.pdf.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to the 2D
World of Unity

In this chapter, we will dive into the two-dimensional world of Unity. We will cover
the following topics:

• Introduction to Unity's native 2D support
• Sprite sheets, sprites, and sprite animations
• 2D movements

Remembering the past to build the future
Sometimes, the best way to go forwards is to go backwards. Science advances by
learning how things worked in the past then improving upon them. Video games are
quite the same in that they learn how things worked in the past, improve them, and
then double the explosions. Although the actual improvement of games is in the eyes
of the beholder, few can argue the extreme advancements that have been made in
game technology—both visually and in capability.

Today, we live in a world of hyper-advanced 3D graphics rendered by computers
that are powerful enough to rise against us and dominate our race. Some games even
challenge the player to compare their visuals against those in real life and determine
which is the game and which is real. New technological advancements now even
allow a full-body scan of an actor or actress that can then be applied as a texture to
a 3D model. The same model can also be built off a 3D scan of the same actor/actress
and placed in a real-time game environment. The result is a 3D character that, when
properly lit, can bypass the uncanny valley.

Introduction to the 2D World of Unity

[6]

Many gamers, however, find themselves craving something a bit more classic. Some
want a more approachable gaming experience without all the triple-axis complexity
of three-dimensional space. Many just remember a simpler time, when a scene only
traveled in a pair of dimensions rather than a full trio. It is for these gamers—who in
reality make up an incredibly large group—that the art of 2D games has been revived.
Many of those gamers are also people who now want to make games—and want to
make the kinds of games they grew up with. You might fit that exact category! In
addition, the boom of mobile devices and tablets over the past five years has also
added to the resurgence of 2D gaming due to the hardware limitations on these
devices. However, this revival has not come with the same dark-age technology that
was used to make classic 2D games and evolved into what we make games with today.
No, instead, today's 2D game technology has embraced the power that makes today's
video games possible, and combines it with the design strengths that made the first
video games feasible.

For this happy marriage, we combine the power of a 3D game engine with the
techniques of a 2D video game to create something that is neither new nor old,
yet is both.

Overkill? Most certainly not. There is actually a lot that a 3D game engine can do
just as well as a 2D game engine—and much more. And in reality, most 2D game
engines these days are actually 3D engines in disguise, as everything on the screen
is rendered as a two-poly quad or a square built from two triangles, thanks to the
power of OpenGL or DirectX.

One of today's most powerful game engines, which is affordable for large and small
companies alike, is the Unity game engine available on the Web at http://unity3D.
com. Throughout this book, we will be using the Unity game engine to learn how
to build 2D video games. We will learn how to think in 2D—we will operate the
camera in 2D, learn how to move in the environment in 2D, and learn how to build
a platformer video game in 2D. There will even be a few surprises in there for good
measure. Version 4.3 of Unity has built-in native 2D game support because they love
you and your awesome game creation skills.

Before we get started, let's go over some basics. This is a professional book; however,
it is written to be useful for anyone. It is expected that you will understand how to
use the Unity game engine—we will not be explaining the basics, nor will
we be explaining how to build games in Unity. We will, however, explain how
to build a 2D game in Unity using Unity 4.3's all-new 2D capabilities. If you have
been building 2D games prior to Version 4.3, then you're probably already familiar
with using a number of tricks, such as the Box 2D physics engine, jointed paper
doll sprites, and physics plane restrictions. All of that information is still quite
worthwhile as it translates well into what Unity 4.3+ now offers.

Chapter 1

[7]

This book uses the C# programming language for its scripting. You should have
enough understanding of C# to read and understand the scripts we are supplying.
We will not be discussing the basics of programming languages or why C# works
the way it does (which as most programmers know, works on a mix of caffeine and
fairy dust, with just the slightest hint of magic smoke).

If you don't meet those requirements, read along anyway! Since you were awesome
enough to pick up this book, I'm sure you are also smart enough to learn as you go.

The first thing you will want to do now is open Unity and create a new project.
On the project creation window, use the following settings: call your new project
Ragetanks and make sure that you set the Set up defaults for dropdown to 2D.
This is shown in the following screenshot:

This will be the project in which our work will be done throughout the course of this
book. So, grab some coffee, soda, or your favorite libation, and strap on your crash
helmet. It's time to go 88 miles per hour into the future's past as we build 2D video
games in Unity!

Introduction to the 2D World of Unity

[8]

The 2D world of Unity
Unity is, of course, a 3D game engine. The first thing one must understand to build
a 2D video game in Unity is how exactly to treat the engine. Sure, you may know
how to treat the engine right to get a gorgeous tomb-raiding game out of it, but do
you know how to make a gorgeous side-scrolling platformer? The same techniques
you used for the tomb game will be used here as well; however, your way of
thinking needs to be slightly adjusted.

The perspective camera
If you have ever done any work with the camera in Unity, then you may have
noticed that it has two projection modes—Perspective and Orthographic. Both
have their uses. And I bet you are sitting there thinking, "Orthographic. Totally.
We're using that."

If that's what you said, you'd be correct! However, before Unity 4.3, it would have
some drawbacks. But we aren't holding anything against you, so here's a cookie
(cookie sold separately). For everyone who doesn't know the difference, it's actually
quite simple. A perspective camera (on the right in the following image) is Unity's
default camera. It shows the scene the way it actually is, just like our eyes see things.
Orthographic (on the left in the following image), on the other hand, completely
removes depth. So, no matter how far an object is from the camera, it looks like it's
right there. Everything parallel remains parallel to the camera. An orthographic
camera simply renders an object, or it doesn't. However, the Z order of objects is
maintained. In older versions of Unity, a perspective camera would have done
a great job as it would give automatic parallax support, but more about that later.

Chapter 1

[9]

Prior to Unity 4.3, we actually would have wanted a perspective camera for the
simple fact that we could make use of its depth information for easy parallax
scrolling, or a visual effect where things further from the camera move slower
(much like how they would in real life). Even in Version 4.3, if you plan to make
a 2.5D game (or a 2D game that uses full 3D meshes), then you probably still want
to use the perspective camera. Otherwise, for a 2D game in Unity 4.3, make sure
that the camera is set to orthographic—which it should have already defaulted to by
setting your project defaults to 2D.

We'll talk more about parallax scrolling and z-depth later in this book.

Getting grounded
OK, we've gone over some of the basics of the camera and models. I think it's time
we started really getting our hands dirty, don't you? Here is the part where we get
to start building a 2D game! Yes, it really is that easy. So, let's get started.

Pro Tip
Images for your video games, as you most likely already know, work
best if they are always a power of two (2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048), because the video card requires image map to be a power
of two. Otherwise, the image map will automatically be resized to be a
power of two by the game engine. While this is not as noticeable in 3D
games with mapped imageries, in a 2D game where the 1:1 art for the
image map is quite important, it can easily look stretched or blurry.

Considering that this is a 2D platformer, the first thing we will want to do is build
the ground. This is because without the ground, our heroes and villains would just
fall through space forever.

This book comes with asset files which can be downloaded from the publisher's
website. Once you acquire those assets, follow these simple steps:

1. Find the Textures folder, and inside that, look for the Scenery folder.
2. Import the image labeled Platform.png.
3. To keep things nice and clean, let's also create a folder called Textures

within your project (the Project tab). Inside that, create another folder
called Scenery and put the Platform texture in there.

Introduction to the 2D World of Unity

[10]

Unity 4.3 now has the texture type of Sprite. You can find this by selecting the
Platform texture file in the Project tab and looking over at the inspector. With the
project in 2D defaults, it will automatically import textures in Sprite mode—which
you can see at the top of the inspector. Most of these options will already be set
properly, but let's change the texture Max Size to 512 and Format to 16 bits. A size of
512 makes sure that Unity recognizes the image as anything up to 512 x 512 before it
resizes it to something smaller. 16 bits makes sure it's an uncompressed image which
allows trillions of possible colors. That's kind of an overkill in most cases for classic
2D sprites; however, many modern sprites share similarities with modern high-
resolution textures for 3D games. Unity also doesn't have a setting for 8-bit imagery,
so 16-bit is a great setting to use! Compression? That tries to literally compress the
image to take up less space, at the penalty of a lower quality image. In most cases,
you won't want a compressed image. However, it will have its uses. Now, if you
wanted your art to look more pixelated, set Filter Mode to Point. Otherwise, give
Bilinear or Trilinear filtering a shot to add some excellent smoothing to the visuals.

The following screenshot shows what the import settings should look like for your
sprite platform:

When creating images for a 2D game in Unity or any modern game engine, be
careful not to use true gradients. You can use gradients, but the image map will need
to have its format set to Truecolor to look proper. Otherwise, the gradient will look
like a set of hard-colored segments. While the Truecolor property allows the image
to render properly, it takes up more space in video memory.

To get this platform into your scene, simply drag the platform image from the
Project tab and drop it into the Scene tab or the Hierarchy tab. It auto-magically
appears within the scene. Make sure its position in the scene is X: 0, Y: 0, Z: 0
and its scale is X: 1, Y: 1, Z: 1.

Chapter 1

[11]

To make sure our player can walk on this, we'll need to give it some collider
properties. With the platform selected in the Hierarchy tab, navigate your cursor
to the menus at the top of the screen and then Component | Physics 2D | Polygon
Collider 2D. You could also go to the inspector with the platform selected, click on
the Add Component button at the bottom, and search for Polygon Collider 2D. Both
ways work, and you are welcome to do as you wish anytime we ask you to add a
component to an object".

With the platform selected in the Scene tab, you'll now see a bunch of green lines
going through the platform. This is by far one of the coolest features of Unity 4.3's
2D support—it automatically creates a polygon collider based on the shape of your
texture (as shown in the following image)! This saves many potential headaches.
Unity determines the shape of the collider based on the alpha of your image, so do
keep that in mind when creating your artwork.

Now, in reality, we could have just used a simple box collider for this platform as
well. However, we would like our enemies to be able to collide realistically with the
platform. On the sides of the platform, it indents in a little. If you try applying a Box
Collider 2D instead of the Polygon Collider 2D, which you can see in the following
image, you'll see that it goes straight down at the sides:

Introduction to the 2D World of Unity

[12]

There are many platforms that a simple box collider would work properly on.
However, take a look at the imagery of this platform—it has an indentation on both
sides. If you were to put a simple box collider on this, the collision would go straight
down from the edges of the platform. Any bullet that collided with the box collider
would disappear, which wouldn't look correct. We want those bullets to disappear
when they hit the actual graphics. You now have a platform!

This would also be a good time to save your scene for the first time. Name it
RageTanksScene and place the scene within a folder called Scenes.

Making new friends
With our platform made, let's make a hero. Back in the assets you downloaded from
the publisher's website, look for the folder labeled Player in the Art directory. Inside
the Texture folder in your project, create a new folder called Player and import the
image named playerSpriteSheet.png to that folder.

This image is what is referred to, obviously, as a sprite sheet, or a sprite atlas.
Essentially, it's just a collection of images; however, rather than each individual
image taking up space in memory, all of those images only take up one image in
memory. If that isn't clear, think of it like this: imagine you are hosting a holiday
dinner. You could have every ingredient you are cooking within a separate fridge
or every ingredient you are cooking all neatly organized in one fridge. The first
option will overload your home with boxes—it is the same idea here with video
memory and sprite sheets/atlases.

Say you already have a collection of sprites and need to turn them into a sprite
sheet. You could build that by hand in a tool such as Photoshop; however, that
gets somewhat tedious. There are some tools that can automatically build sprite
sheets—check out Shoebox and Texture Packer.

So, even though we can clearly see that this image is a sprite sheet, we need to let
Unity know. To do this, select playerSpriteSheet in the Project tab and look over at
the inspector. Find where it says Sprite Mode and change it to Multiple. You should
now see Packing Tag, Pixels to Units, and the Sprite Editor button. Whack that
Sprite Editor button so we can edit the sprites.

Chapter 1

[13]

A shiny new dialog box will open, which will allow you to tell Unity what each
individual sprite is within this sprite sheet. Like most things in Unity, this is pretty
easy—simply click and drag the cursor around each individual sprite. This will draw
a box around each one! As you do this, a little sprite popup will be displayed in the
bottom-right of the Sprite Editor window, which gives you some precision controls
on the position of the sprite and allows you to change the pivot. You may also click
on the Trim button to help trim the box of any unneeded empty space around the
sprite, which will trim the sprite down based on the transparency of the sprite.

As you draw out the position for each sprite, you will want to make sure the pivot
is set for the bottom each sprite. Another option would be to go to the Slice menu
(top left), leave Automatic as the Type option, change the pivot to Right, and click
on the slice button. Think of this like the origin point of the sprite—it will rotate
from this point, react from this point, and exist from this point. You will also
want to set the name of the sprites to something clear. Name the first 4 sprites
playerSprite_idle_01, playerSprite_idle_02, playerSprite_idle_03,
and playerSprite_idle_04, and the final three sprites playerSprite_walk_01,
playerSprite_walk_02, and playerSprite_walk_03. With the sprites defined,
your Sprite Editor window should now look something like this:

When you are happy with how the sprite setup looks, click on the Apply button in
the top-right of the Sprite Editor window. You can also now close the Sprite Editor
tab. In the Project tab, you'll notice that playerSpriteSheet now has individual
sprites for each of the sprites you just set up! You now have a properly configured
sprite sheet to use in the project.

Introduction to the 2D World of Unity

[14]

Let's now place the player in the world just like we did for the platform.
Drag-and-drop playerSprite_idle_1 into the Hierarchy or Scene tab,
rename the sprite to Player in the Hierarchy tab, and change the position to
X: 0, Y: 0. The player should now be standing on top of the platform as shown
in the following screenshot. If it looks a bit large, no problem—just change the scale
to X: 0.7, Y: 0.7 and it should look fine.

Let's move it!
With the player sprite in the world, let's set up some animations for it. From the
sprite sheet, you can probably gather that our player has two animations: idle and
walking. If you are at all familiar with Unity's Mecanim system, then this setup will
seem familiar to you. If not, no problem—read along and we shall explain in the
following steps:

1. Create a new folder in the Project tab called Animations.
2. Inside this folder, create another folder called Player.
3. At the top of the screen, navigate to Window | Animation to open the

Animation tab. This is where we will actually build the sprite animations.
4. Select the player object in the Hierarchy tab then click on the little red circle

(the record button) in the top-left corner of the Animation tab. A Create New
Animation window will pop up.

Chapter 1

[15]

5. Select the newly created Animations/Player folder, name the animation
PlayerIdleAnimation, and click on Save.

You now have a blank animation, and you'll notice that a few other changes occurred
as well. First off, in the Animations/Player folder, there is now a Player object
along with PlayerIdleAnimation. This player object is actually an Animator
Controller object, which Mecanim uses to know how to animate something; sort of
like a description of dance steps. It is essentially a tree of animations, with certain
requirements that are met to switch between different animations. We'll discuss that
further in a little bit, but to keep things organized, rename the player animator object
to PlayerAnimatorController. Now it's clear what it is.

When you click on the player object in the scene Hierarchy tab, you'll see that
an Animator component has already been attached and the Controller field uses
PlayerAnimatorController. This Animator component does all the actual
animation-changing work for the sprite's animations and uses the Animator
Controller fed to it as the guidelines on how to animate.

In the Animation tab, you'll now see that PlayerIdleAnimation is open. If it's not,
click on the player object in the Hierarchy tab and PlayerIdleAnimation should
automatically open.

Make sure the Dope Sheet button, which you can see circled in the following
screenshot, is clicked on at the bottom of the Animation tab:

Introduction to the 2D World of Unity

[16]

The next part is really easy—to build the animation. All you have to do is drag
and drop each sprite into it. Start by dropping the playerSprite_idle_1 sprite.
You'll see that the sprite image appears in the dope sheet, along with a diamond
above it. This diamond represents the position on the timeline that the sprite is
displayed. Now add playerSprite_idle_2 and align its diamond to be two hash
lines after the first. Keep doing this until all four sprites have been added. Your
PlayerIdleAnimation should now look like the following screenshot. If you have
a lot of frames, you can also just drag them all at once by selecting them all in the
Project tab and then dragging them over.

Clicking on the Play button in the Animation tab will now play the sprite animation
on the player object; it looks pretty good, except that it snaps back to the beginning.
To fix this, simply add three additional sprites to the animation after the first
sprites—add playerSprite_idle_3, playerSprite_idle_2, and playerSprite_
idle_1 sequentially at the end.

What this does is it now allows the animation to play so that the robot hovers up and
back down, and then the animation loops back to the beginning. Play the animation
again now and it should animate just fine.

Chapter 1

[17]

We can adjust one more item here—the Samples setting. This is essentially how
many times the animation is sampled per second, which affects the frame rate
and smoothness of the animation. Since we have already built the animation at
the default value of 60 samples, we don't really have to go back and move things
around; Unity will do that for us. Go ahead and set Samples to 125 to speed up the
animation and then click on Play. Much smoother!

With the idle animation completed, go ahead and create the walking animation.
To do this, make sure you have the player object selected in the Hierarchy tab,
and in the Animation tab, click on PlayerIdleAnimation. As displayed in the
following screenshot, this is actually a dropdown that contains the Create New
Clip option— select that and create a new clip in Animations/Player called
PlayerWalkingAnimation.

Just like before, place the sprites in the dope sheet so that the walking animation
looks and plays properly. We'll let you do this one on your own for practice;
however, you can use the following screenshot as a reference if you get stuck. Note
that we set this animation to 80. That's because visually it animates better than 125
and is a great example of how every animation can have its own sampling rate!

Introduction to the 2D World of Unity

[18]

Excellent! We now have a pair of animations for our player object to use. Now, we
need to set up that animator object so that Mecanim knows how to actually make use
of the animations. Start by selecting the PlayerAnimatorController object in the
Animations/Player folder. If you take a look at the inspector, it looks completely
empty, except in the top-right corner. There's a small Open button. Click on it to
open the Animator Editor tab. You should now be looking at a window that looks
like the following screenshot:

As we previously mentioned, Mecanim reads the animator trees to know how to
play the animations. What we need to do here is build an animation tree. Unity was
nice enough to already add both our animations to the animator for us—we just need
to tell them when to play. To handle this, we will use a simple Boolean check.

At the bottom left, look for the Parameters window. Click on the small + button on
that window and you will see a list of variable types. Choose Bool and a New Bool
variable will be created. Name this Walking. To determine if Mecanim should play
the idle or walking animation, we will use the Walking Boolean.

Chapter 1

[19]

The orange-colored state is the default animation and the default state in the
animator tree. Right-click on the orange-colored PlayerIdleAnimation node in
the Animator tab and select Make Transition. This will attach the translation line
to the cursor. Move your cursor over PlayerWalkingAnimation and click on it to
drop it there. Now do the same thing, only in reverse—create a transition from
PlayerWalkingAnimation to PlayerIdleAnimation. Your animator node tree
should now look something like the following screenshot:

If you were to click on Play on the game now, you'll see that the animations play on
the Player object; however, it plays the idle animation, then immediately plays the
walk animation, then loops back to idle, and repeats ad nauseam. Almost there!

Introduction to the 2D World of Unity

[20]

Let's now give those transition connects some information on how to act so that
rather than playing in a loop, they actually play when we want them to. Click
on PlayerIdleAnimation, then click on the transition, and then look over in the
inspector. The transition has some simple data that it uses to know when to go to
the connected animation. In this case, the animation simply waits until the time has
reached 1 second, then goes to the next animation––which is why this condition is
specified as Exit Time with the property of 1.00. Let's change this to use our Boolean
Walking state instead. The Exit Time condition is good when you wish to blend two
animations; however, for the sake of this animation, it will simply play or not play;
therefore, Boolean. Click on Exit Time to reveal it as a pop up. The Walking Boolean
has already been listed for us; click on that. All you need to do now is make sure
that the transition going into PlayerWalkingAnimation has True as the Walking
condition, and the transition going into PlayerIdleAnimation has False as the
Walking condition. The following screenshot shows what the animation should
now look like:

With that completed, we can go ahead and test! Perform the following steps:

1. Hit Play in the game.
2. With the game running, select the Player object.
3. In the Animator tab, select the checkbox next to Walking under Parameters.

When the checkbox is active, the walking animation will play, whereas when the
checkbox is inactive, the idle animation will play. It really is as simple as that.

Chapter 1

[21]

Gotta move it!
Our player now has a basic idle animation, but we can't interact with him yet. Let's
fix that. Here is where we add the ability for the player to move around the scene.

We are going to use the existing key bindings that are present by default in a Unity
project. To see what these are or change them, navigate to Edit | Project Settings |
Input and mess around. Unity stores all keybinds as axes, as they all have floating
point values. This allows all input buttons for the engine to support the classic
on/off function as well as support more touch-sensitive buttons and joysticks,
such as those present on most modern gamepads.

Let's create a new folder in our project folder called Scripts, and inside that, create a
new C# script. Call this script PlayerStateController. Here's how it should look:

using UnityEngine;
using System.Collections;
public class PlayerStateController : MonoBehaviour
{
public enum playerStates
{
idle = 0,
left,
right,
jump,
landing,
falling,
kill,
resurrect
}
public delegate void playerStateHandler(PlayerStateController.
playerStatesnewState);

public static event playerStateHandleronStateChange;
void LateUpdate ()
{
// Detect the current input of the Horizontal axis, then
// broadcast a state update for the player as needed.
// Do this on each frame to make sure the state is always
// set properly based on the current user input.
float horizontal = Input.GetAxis("Horizontal");
if(horizontal != 0f)
{

Introduction to the 2D World of Unity

[22]

if(horizontal < 0f)
{
if(onStateChange != null) onStateChange(PlayerStateController.
playerStates.left);
}
else
{
if(onStateChange != null) onStateChange(PlayerStateController.
playerStates.right);
}
}
else
{
if(onStateChange != null) onStateChange(PlayerStateController.
playerStates.idle);
}
}
}

Pro Tip
If you have a game with hundreds or even thousands of objects that
track events from one object, such as a player, then it would be advised
to use a singleton in those cases and have the other objects keep track of
the state of the player on their own. Otherwise, you can get a massive
load spike if you are loading thousands of events on a level load, which
would happen even if you are using a pooling system.

As you may have noticed, we listed out a number of states here. This makes up most
of the states we'll use in the game. Don't worry, we'll add some more as we go on,
which will show you how to add new states to the code.

This script also handles listening to the input keys. We're currently only listening to
the horizontal input. If it is negative, we are moving left, and if it is positive, we are
moving right. All of this is then managed by a simple Event and Delegate. This makes
sure all enemies and other objects in the world can be informed of state changes to
the player. All this does is open up numerous possibilities; we like possibilities.

Chapter 1

[23]

Now, we need a script that listens to when the state changes and knows what to do
when this happens. Create another script called PlayerStateListener and make
that code look like the following code. The code is a rather large bit of code, and only
part of it is displayed here. Check out the entire code in the supplied code examples!

// Every cycle of the engine, process the current state.
void onStateCycle()
{
switch(currentState)
{
case PlayerStateController.playerStates.idle:
break;

case PlayerStateController.playerStates.left:
transform.Translate(newVector3((playerWalkSpeed * -1.0f) * Time.
deltaTime, 0.0f, 0.0f));
break;

case PlayerStateController.playerStates.right:
transform.Translate(newVector3(playerWalkSpeed * Time.deltaTime, 0.0f,
0.0f));
break;
}
}

// onStateChange is called when we make a change to the player's state
from anywhere within the game's code.
public void onStateChange(PlayerStateController.playerStatesnewState)
{
// If the current state and the new state are the same, abort - no
need to change to the state we're already in.

if(newState == currentState)
return;

// Check if the current state is allowed to transition into // this
state. If it's not, abort.
if(!checkForValidStatePair(newState))
return;

// Having reached here, we now know that this state change is //
allowed. So let's perform the necessary actions depending // on what
the new state is.

Introduction to the 2D World of Unity

[24]

switch(newState)
{
case PlayerStateController.playerStates.idle:
break;

case PlayerStateController.playerStates.left:
break;

case PlayerStateController.playerStates.right:
break;
}

// And finally, assign the new state to the player object
currentState = newState;
}
// Compare the desired new state against the current, and see // if we
are allowed to change to the new state. This is a
// powerful system that ensures we only allow the actions to // occur
that we want to occur.

bool checkForValidStatePair(PlayerStateController.
playerStatesnewState)
{
bool returnVal = false;

// Compare the current against the new desired state.
switch(currentState)
{
case PlayerStateController.playerStates.idle:
// Any state can take over from idle.
returnVal = true;
break;
case PlayerStateController.playerStates.left:
// Any state can take over from the player moving // left.
returnVal = true;
break;
case PlayerStateController.playerStates.right:
// Any state can take over from the player moving // right.
returnVal = true;
break;
}
return returnVal;
}
}

Chapter 1

[25]

Pro Tip
Event listeners and delegates are extraordinarily powerful. There's no
longer any need to write massive amounts of state-check code for all
of your objects. Say you have a huge sequence occurring in your game,
such as a giant alien spaceship moving into attack position over a town.
Instead of having every single object in the scene constantly check the
state of the alien spaceship, just use event calls on the ship and event
listeners on the reactive objects to update their local states based on the
actions that occur. This saves time and headaches, giving you more time
to make that sequence even better rather than spending more time just
trying to make it work.

Phew! Now that the code is a bit lengthier, give it a good read and it's pretty clear
what is going on. What we have here is a decently powerful State System. With this,
we can manage how the player object acts based on other current events. Whenever
the player pushes movement keys, the onStateChange(newState); function is
called. The code then checks to make sure if the current state is allowed to transition
in to the state defined in newState—we wouldn't want the player to start walking
around when dead! If the state change is allowed to occur, then some immediate
code is applied, such as changing the current animation, and then the state is set.
On every LateUpdate, the onStateCycle();function is called, which allows state
events per engine cycle to occur. This is paced in LateUpdate rather than the Update
function to make sure the input control has been processed first by Unity.

You probably noticed we haven't added all of the states in that code yet. No worries,
we'll keep adding states as needed in the coming chapters.

Apply both the PlayerStateController and PlayerStateListener scripts to the
player object. Now click on Play and… the big moment… press the left or right keys
as assigned in Unity's input setup (which default to A and D as well as the left
and right arrow keys).

The player moves! You now have a walking character that the player can control!

Pro Tip
Your state system should be flexible and allow new states to be added
easily. This means no state should directly rely on another state but
instead can transition from one state to another. Plan your state systems
in detail and in advance! Some very complex state systems go as far
as having transitional states rather than just cycling states. Games
have used state systems (also known as state machines) for decades,
including in the original Super Mario Bros. games.

Introduction to the 2D World of Unity

[26]

Make 'em run!
Ready for a challenge?

This is where we take a bunch of the things that were taught through this first part of
the book and combine them into a culmination of events. We'll call this: CHALLENGE
1. If you just heard a thunderclap and electric guitars after reading this, it's perfectly
fine—you're not alone.

When you look at the player, you may notice one very major issue. When it runs, its
orientation doesn't change. The player stays facing one direction and never plays its
run animation.

This is where we fix that.

Let's update the state code to change the Boolean Walking state of the player's
animator component. Open PlayerStateListener.cs and access the state in
onStateChange(newState). Let's add the ability to play the run animation. Change
the entries for idle, left, and right of the state code to look like the following:

case PlayerStateController.playerStates.idle:
playerAnimator.SetBool("Walking", false);
break;

case PlayerStateController.playerStates.left:
playerAnimator.SetBool("Walking", true);
break;

case PlayerStateController.playerStates.right:
playerAnimator.SetBool("Walking", true);
break;

With that one small change, you can now switch between the run and idle
animations. Play the game again, and you will see the player running while moving
and idling when not moving!

OK, this covers half of our current problem. Next, we need to solve that little always
faces the same direction issue. There are quite a number of ways to solve this.
The easiest, however, will be to flip the horizontal scale of the player object.
Sounds crazy? Think of it this way, if you scale something from 1.0 to -1.0, it's now
facing the opposite direction. This works even with us using a one-sided plane
because we do not actually flip the plane to its other side—all we are doing is
reversing the order in which its vertexes are rendered, causing it to render as if it
were mirrored. This couldn't really get much easier, could it?

Chapter 1

[27]

Go ahead, give it a try, and trust me, you'll like the results! Open up the same switch
statement as the previous one and add some code so it now looks like the following
code. Note that we are adding a new Vector3 object at the top to grab and store the
localScale of the object.

// Grab the current localScale of the object so we have
// access to it in the following code
Vector3 localScale = transform.localScale;

switch(newState)
{
case PlayerStateController.playerStates.idle:
animation.Play("idleAnimation");
break;

case PlayerStateController.playerStates.left:

// Play the Run Animation when the player is moving Left animation.
Play("runAnimation");

if(localScale.x > 0.0f)
{
localScale.x *= -1.0f;
transform.localScale = localScale;
}
break;

case PlayerStateController.playerStates.right:
// Play the Run Animation when the player is moving Right
animation.Play("runAnimation");

if(localScale.x < 0.0f)
{
localScale.x *= -1.0f;
transform.localScale = localScale;
}
break;

It really is as easy as that. Now play the game and you'll see the player object facing
the correct direction while moving. You now have an animated player capable of
moving left and right, updating its orientation and its animations, and doing all of
this along a platform!

Introduction to the 2D World of Unity

[28]

Summary
At this point, you have now built a very rudimentary game in Unity. While this isn't
much of a game, it is the start of many possible games. Nearly any 2D platformer you
can conceive can now be evolved from the point which your project is currently at.
Think of it like this, you just made the primordial ooze of a 2D platformer. I salute you!

In the next chapter, we will begin with our first quest.

It Lives!
You've got a working game. You've got a character running around. OK, so that was
cool while it lasted, but now you want to see more and do more. You've come to
the right place because this is your first "Quest". Yes, quest. You're now on a quest.
I suggest that you find a good chalice and a horse or, at the least, a very capable pony.

In this first quest, appropriately named "Quest 1," we will be taking our snazzy little
back and forth walking game and giving it some pizzazz.

Cameras – they now stalk us!
It's one thing for the camera to see what we're doing, but it's another thing entirely
for that camera to follow the player. Almost like a hungry stalker, that camera
should always know what the player is doing and where they are doing it. It should
also take a video of the player at all times to salivate over later, like a stalker. So, let's
make that happen.

We're going to do this by creating a new script component for the camera which will
be able to listen to the player's state changes. This is just one way of handling camera
movements; however, for the scope of this book, it will be helpful for you if we see
the power of using events and delegates, and learn a bit more about why exactly
we love state machines.

Oh sorry! What is a state machine? Wikipedia offers a pretty nice description.
However, in quick terms, a state machine (in the context of programming) is a piece
of code that performs separate actions based on the current state of an object. For
example, a cat has three states—awake, sleeping, and trying to take over the world.
The cat's state machine would perform different actions depending on which state
the cat is currently in.

It Lives!

[30]

Chances are that most of you already know what lerping is, but for
anyone who doesn't—lerping is a way to smoothly transition between
two values. The term lerp is actually short for linear interpolation,
which is a mathematical method to fit a curve using linear
polynomials. Congratulations! You are now 3 IQ points smarter.

Create a new script called CameraController and attach it to the object called Main
Camera, which already exists in your scene. This script is going to look a little similar
to the PlayerStateListener script; however, it does not need to be as complex.
Make the script look like the following:

using UnityEngine;
using System.Collections;
public class CameraController : MonoBehaviour
{
public PlayerStateController.playerStatescurrentPlayerState =
 PlayerStateController.playerStates.idle;
public GameObjectplayerObject = null;
public floatcameraTrackingSpeed = 0.2f;
private Vector3lastTargetPosition = Vector3.zero;
private Vector3currTargetPosition = Vector3.zero;
private floatcurrLerpDistance = 0.0f;

 void Start()
 {
//Set the initial camera positioning to prevent any weird jerking
//around
 Vector3playerPos = playerObject.transform.position;
 Vector3cameraPos = transform.position;
 Vector3startTargPos = playerPos;

//Set the Z to the same as the camera so it does not move
 startTargPos.z = cameraPos.z;
 lastTargetPosition = startTargPos;
 currTargetPosition = startTargPos;
 currLerpDistance = 1.0f;
 }

 void OnEnable()
 {

Chapter 2

[31]

 PlayerStateController.onStateChange +=
 onPlayerStateChange;
 }

 void OnDisable()
 {
 PlayerStateController.onStateChange -=
 onPlayerStateChange;
 }

void onPlayerStateChange(PlayerStateController.playerStatesnewState
)
 {
 currentPlayerState = newState;
 }

 void LateUpdate()
 {
// Update based on our current state
 onStateCycle();

// Continue moving to the current target position
 currLerpDistance += cameraTrackingSpeed;
 transform.position = Vector3.Lerp(lastTargetPosition,
 currTargetPosition, currLerpDistance);
 }

// Every cycle of the engine, process the current state
 void onStateCycle()
 {
/*We use the player state to determine the current action that the
camera should take. Notice that in most cases we are tracking the
player - however, in the case of killing or resurrecting, we don't
want to track the player.*/

 switch(currentPlayerState)
 {
 case PlayerStateController.playerStates.idle:
 trackPlayer();
 break;

 case PlayerStateController.playerStates.left:
 trackPlayer();

It Lives!

[32]

 break;

 case PlayerStateController.playerStates.right:
 trackPlayer();
 break;
 }
 }

 void trackPlayer()
 {
// Get and store the current camera position, and the current
// player position, in world coordinates
 Vector3currCamPos = transform.position;
 Vector3currPlayerPos = playerObject.transform.position;

 if(currCamPos.x == currPlayerPos.x&&currCamPos.y ==
currPlayerPos.y)
 {
// Positions are the same - tell the camera not to move, then abort.
 currLerpDistance = 1f;
 lastTargetPosition = currCamPos;
 currTargetPosition = currCamPos;
 return;
 }

// Reset the travel distance for the lerp
 currLerpDistance = 0f;

// Store the current target position so we can lerp from it
 lastTargetPosition = currCamPos;

 // Store the new target position
 currTargetPosition = currPlayerPos;

 // Change the Z position of the target to the same as the current.
 //We don' want that to change.
 currTargetPosition.z = currCamPos.z;
 }

 void stopTrackingPlayer()
 {
 // Set the target positioning to the camera's current position
 // to stop its movement in its tracks
 Vector3 currCamPos = transform.position;

Chapter 2

[33]

 currTargetPosition = currCamPos;
 lastTargetPosition = currCamPos;

 // Also set the lerp progress distance to 1.0f, which will tell the
lerping that it is finished.
 // Since we set the target positionins to the camera's current
position, the camera will just
 // lerp to its current spot and stop there.
 currLerpDistance = 1.0f;
 }
}

In the Camera Controller (Script) checkbox region in the Main Camera component
within the Inspector panel, you'll find the Player Object field. If you haven't yet,
make sure to drag the Player object into the Player Object field. This is shown in
the following screenshot:

Now, save your scene by pressing Ctrl + S or going to File | Save Scene, and then
play your game. As you move the player left and right, the camera will now move
with the player, stalking the player and observing the player—creepy! As you may
have already noticed, there is quite a lot of power we can now implement to the
camera thanks to the use of both a state machine and events/delegates. With the
previous code, not only can we track the player, but we could also implement states
that allow the camera to track other objects as needed. The camera will always
smoothly transition between the two objects without jumping around.

Currently, when the player reaches the ledge, they just keep going. Like a Vegas
magician earning his bread, the player walks across that huge empty gap like it's
nothing. It's high time we brought that player tumbling to the inky darkness below.

It Lives!

[34]

Falling to your doom!
The first thing that we need to do is give our player a collider. For this game, we don't
need to be too concerned about the player's specific shape; so for that reason, we can
use a box collider. We don't want to use a circle or polygon collider here because it
would result in the player just sliding off the platform. A box collider gives a nice,
flat surface for the physics to collide with. A box collider is also the quickest type of
collider to use for performance. Select the Player object and attach a Box Collider 2D
component to it, which is found under Component | Physics 2D in the menu bar. The
collision box on your player should look like the box in the following screenshot:

Now that the player has collision information, let's give it some actual physics.
Attach a Rigidbody 2D component to the player. A Rigidbody component is sort
of what it sounds like—a physical body that is completely rigid, as opposed to a
Softbody component that would be used for things such as cloth, rubber, and hair.

With the Rigidbody 2D component attached, change its Gravity Scale property to 2.
This scales the gravity to something a bit higher so that the player can fall in a more
realistic manner. If you play with the gravity scale setting, you can see how different
types of objects would have different gravity scales—it allows heavy objects to fall
quickly, and very light objects to fall slowly (or even rise)!

Also, set the Sleeping Mode property to Start Awake and the Collision Detection
property to Continuous. We want this to be continuous because the player is
constantly moving and in control; therefore, we need the player to always be
carefully checking its collisions. If you were to set it to something other than
Continuous, there is a higher chance of the physical collisions not registering,
causing the player object to pass through other colliders.

Chapter 2

[35]

Finally, go into the Animator component on the player. Disable Apply Root Motion
and enable Animate Physics by clicking on the checkboxes. This allows the physics
to have a little more control of the animations—something we don't really take
advantage of in this sample project. However, we still do this to prevent the engine
from making unwanted physics adjustments.

If you play the game now, you can move the player and fall off the edges of the
platform! And you can fall forever and ever, and you just keep falling—forever.

That's boring.

In the real world, you can't fall down a pit that's not more than a screen deep without
turning into a shower of dead pixels ("Shower of Dead Pixels" just so happens to be
the name of my cover band). In this game, the player should cease to exist as well.
At least, they should cease to exist for a few short moments.

Falling fatally into death colliders
Like everything in this book, there are many possible ways to set up death pits and
world boundaries. We are going to go over one option that allows you to specify a
world that is nonrectangular and allows death pits and boundaries to exist anywhere.
Let's start by adding an empty GameObject to the scene. This is going to be the core of
our death trigger. In fact, let's name it that—name it Death Trigger as it sounds nice
and ominous (and could also be a good backup name for my cover band).

Now, let's allow this Death Trigger GameObject to collide with the player. Add
a Box Collider 2D component, check the Is Trigger checkbox, and set its Size to
X: 20, Y: 1. Now, move its position to underneath the platform and set the Death
Trigger GameObject's Y position to -2.5.

Let's add a new script. Call this one DeathTriggerScript and write its code
as follows:

using UnityEngine;
using System.Collections;

public class DeathTriggerScript : MonoBehaviour
{
 void OnTriggerEnter2D(Collider2DcollidedObject)
 {
 collidedObject.SendMessage("hitDeathTrigger");
 }
}

It Lives!

[36]

OK! Attach that script to the Death Trigger object, play the game, run your player
off the platform and—nothing happens! That was pretty anticlimactic. We promised
you all kinds of player killing, yet they annoyingly continue to fall.

We need to do a few things here. First, we are going to give the player a
hitDeathTrigger method. To do that, open up the PlayerStateListener script,
find somewhere sanitary, and add the following code:

public void hitDeathTrigger()
{
 onStateChange(PlayerStateController.playerStates.kill);
}

Now, the player will accept the message from the trigger. However, we don't have
a Kill state set up yet in the PlayerStateListener script! Let's do that. Start by
scrolling to the onStateChange function. Inside the switch condition, add a case
for kill:

case
PlayerStateController.playerStates.kill:
break;

case
PlayerStateController.playerStates.resurrect:
break;

Now, add the exact same thing inside the switch statement inside onStateCycle.
Then, add the following code in checkForValidStatePair:

case PlayerStateController.playerStates.kill:
// The only state that can take over from kill is resurrect
if(newState == PlayerStateController.playerStates.resurrect)
 returnVal = true;
else
 returnVal = false;
break;

case PlayerStateController.playerStates.resurrect:
// The only state that can take over from resurrect is idle
if(newState == PlayerStateController.playerStates.idle)
returnVal = true;
else
 returnVal = false;
break;

Chapter 2

[37]

Death and resurrection – respawning
With the state system now set up properly, we need to add some logic to the
PlayerStateListener script so that it knows how to handle player death and
respawn. What we want to happen is this: when the player dies, they respawn at
a point in the level and the camera snaps back to this point. So, let's start by adding
another empty GameObject. Name this one Player Respawn Point and set the X
and Y position of it to X: 0, Y: 1.5. It should now be hovering above the same place
that the player is at in the level.

This will give the game a way to find a spawn point in the level and allow us to
move it around if we need to. Next, let's tell the player's state scripts to use this
object. Open the PlayerStateListener script and add the following code near its
beginning, where the properties are defined:

public GameObject playerRespawnPoint = null;

As you may have guessed, we need to place the new respawn point object in the
Player Respawn Point field in the Inspector panel. Go back to the Unity editor
and add the playerRespawnPoint object to this newly created field on the Player
object's PlayerStateListener component.

Scroll down a little bit in PlayerStateListener; let's modify the resurrect state
inside the onStateChange method. Set the code to look like the following:

case PlayerStateController.playerStates.resurrect:
 transform.position = playerRespawnPoint.transform.position;
 transform.rotation = Quaternion.identity;
 rigidbody2D.velocity = Vector2.zero;
break;

This will now cause the player object to move to the appropriate respawn point in
the scene when the resurrect state is toggled. As the camera is already tracking
the player based on its states, the Main Camera object will automatically keep up.
Currently, we don't need much else to happen except for the player to resurrect as
soon as they die, so let's temporarily modify the kill and resurrect cases in the
onStateCycle method to quickly jump to the next state.

case PlayerStateController.playerStates.kill:
onStateChange(PlayerStateController.playerStates.resurrect);
break;
case PlayerStateController.playerStates.resurrect:
onStateChange(PlayerStateController.playerStates.idle);break;

It Lives!

[38]

Now give that game a play and run off the platform. The player should now die
when it hits the death trigger and then respawn wherever the player respawn point
exists. Also, the camera should move as well, keeping its existing distance! Run off
those platforms all you want; you're going to come back every time. See? We keep
our promises.

Jump to it!
Running back and forth and falling off a platform to our death—now that is pretty
cool! But you know what it isn't? JUMPING.

Jumping is going to use a number of new properties. However, most of them aren't
anything that we haven't already worked with. Let's start by adjusting our states to
support jumping.

Jumping for fun (and profit)
First, we need to make it so that the player object can understand how to jump.
Open up the PlayerStateController script. We are going to add a condition to
check for jumping.

In the LateUpdate function of PlayerStateController, add the following code
after all of the left/right/idle checks that we have previously added:

float jump = Input.GetAxis("Jump");
if(jump > 0.0f)
{
if(onStateChange != null)
 onStateChange(PlayerStateController.playerStates.jump);
}

We put this after the left/right/idle checks so that we can find the current movement
state. With this, we can determine what direction we want the player to jump in—or in
other words, we are allowing the player to jump left and right as well as straight up.

OK, so now the player can be told that they are jumping. Next, let's make it
actually jump! Head on over to PlayerStateListener and scroll on down to
onStateChange. In the newState switch, add a case for jumping and make it look
like the following:

case PlayerStateController.playerStates.jump:
 if(playerHasLanded)
 {

Chapter 2

[39]

// Use the jumpDirection variable to specify if the player
// should be jumping left, right, or vertical
 float jumpDirection = 0.0f;
 if(currentState ==
PlayerStateController.playerStates.left)
 jumpDirection = -1.0f;
 else if(currentState ==
PlayerStateController.playerStates.right)
 jumpDirection = 1.0f;
 else
 jumpDirection = 0.0f;

 // Apply the actual jump force
 rigidbody2D.AddForce(new Vector2(jumpDirection *
playerJumpForceHorizontal, playerJumpForceVertical));

 playerHasLanded = false;
 PlayerStateController.stateDelayTimer[
(int)PlayerStateController.playerStates.jump] = 0f;
 }
break;

At the beginning of PlayerStateListener, add the following variable:

private bool playerHasLanded = true;

Under the switch condition currentState, in the checkForValidStatePair
method, add the following code:

case PlayerStateController.playerStates.jump:
 // The only state that can take over from Jump is landing
 //or kill.
 if(newState == PlayerStateController.playerStates.landing
 || newState == PlayerStateController.playerStates.kill
 || newState == PlayerStateController.playerStates.firingWeapon
)
 returnVal = true;
else
 returnVal = false;
break;

In the onStateCycle method, you don't need any special code. However, to keep
things clear, make sure that it has a place for jumping using the following jump case:

case PlayerStateController.playerStates.jump:
break;

It Lives!

[40]

Here, we've checked to see if the player is moving left or right and then gave the
player an impulse force based on its current movement direction. The last thing we
need for jumping to work is to add the adjustable variables used in the AddForce
command. At the top of PlayerStateListener, add the following public variables:

 public float playerJumpForceVertical = 500f;
 public float playerJumpForceHorizontal = 250f;

Now, with these, you can easily and quickly adjust the values to find what seems
best for you and your game.

Go ahead and play the game and press the jump button as assigned in the Input
Manager for your project. By default, the jump button in Unity is always the Space
bar. Your player should now jump up! You can even jump left or right while running
for a running jump. Landing, on the other hand, doesn't do anything right now.
Let's change that.

Wouldn't it be cool if the player did an animation while jumping?
Using what you've learned about animations and changing
between them, challenge yourself to add in a jump animation!

Not missing the ground
What we are going to do now is make the player register whenever they have landed
on a platform. To do this, we will work with colliders that allow us to be certain not
only of when we land, but also what we land on.

We could have checks that verify whether the player is moving
vertically or not, and then automatically set the landing state based
on the vertical movement state. However, this has a number of
drawbacks including being less flexible than the method described
on the following pages, and if the player slows down enough in
mid-air to not be moving for a moment, the game could actually
register that they landed! So instead, we will work with colliders,
which allow us to be certain of when we land and what we land on;
we will automatically set the landing state based on that information.

Now, let's perform the following steps:

1. Select a Platform object.

Chapter 2

[41]

2. Add a new tag called Platform to your game by selecting Add Tag from
the Tag list located in Tags and Layers, which you can reach through the
Project Settings option under the Edit menu item, as shown in the
following screenshot:

You can also access the tags and layers by selecting Add Layer when you
select Edit in the Inspector, which you can see in the following screenshot:

It Lives!

[42]

3. Set the same new Platform tag as the tag to the Platform object.
4. Create a new empty GameObject and name it SceneryToggler.

On Scenerytoggler, add a Box Collider 2D component and make the
SceneryToggler object a child of the Player object. The SceneryToggler
object is going to be used for the player to know what it collided against
in the scene.

5. Set the Size property for the Box Collider 2D component of SceneryToggler
to be about X: 0.74, Y: 0.06.

6. With the position of SceneryToggler at X:0, Y:0 and the Center fields
as X: 0, Y: 0.03, the collider should be at the bottom of the player.
Make sure that the collider is below and completely covers the feet area
of the player, and goes below the feet area as well.

7. Also, make sure that the Is Trigger property in the Box Collider 2D section
is checked.

What you should now have is a rectangular collision box that stretches out below the
player object's colliders, as shown in the following screenshot. Here, you can see the
big collider around the player and the new SceneryToggler box at the base of the
player sprite:

We have created a unique collider mesh. The reason we use a second Box Collider 2D
component to check what we're touching below the player is because the player's box
collider is smart enough to not intersect with the platform's box collider. The result is
that the OnTriggerEnter2D of the SceneryToggler object will never toggle if we rely
on the player's box collider—which is a good thing, because we want those collisions
to be accurate!

Chapter 2

[43]

Wait, did I collide with something?
Next, we need to set up some code so that this collider can tell the Player
object that a specific kind of collision happened. Create a new C# script called
PlayerColliderListener, attach it to the SceneryToggler object, and make
it look like the following code snippet:

using UnityEngine;
using System.Collections;

public class PlayerColliderListener : MonoBehaviour
{
 public PlayerStateListener targetStateListener = null;
void OnTriggerEnter2D(Collider2D collidedObject)
 {
switch(collidedObject.tag)
 {
case "Platform":
// When the player lands on a platform, toggle the Landing state.
 targetStateListener.onStateChange(PlayerStateController.
playerStates.landing);
 break;
 }
 }
}

Assign the Player object to the SceneryToggler object's Target State Listener slot.
With this, there is one issue: the state system could get into a flow where a state
transition occurs, which takes the current state away from the jump even though
the player is still jumping. We need to make sure the jump state is still active while
the player is jumping, at least for this game. Therefore, we need to know if the player
has landed or not. For that, we'll just use a simple Boolean. This will serve as our
check as to whether we have or have not landed. It defaults to true because we can
only jump if we have already landed.

Go back to the jump case in the method onStateChange within
PlayerStateListener and wrap it in an if check with if(playerHasLanded).
Finally, add a case for landing in onStateCycle, onStateChange,
checkForValidStatePair, and checkIfAbortOnStateCondition. Make each
of those methods look like the following code snippet:

OnStateCycle:
case PlayerStateController.playerStates.landing:

It Lives!

[44]

break;

OnStateChange:
case PlayerStateController.playerStates.landing:
playerHasLanded = true;
break;

checkForValidStatePair:
case PlayerStateController.playerStates.landing:
// The only state that can take over from landing is idle, left or
// right movement.
if(newState == PlayerStateController.playerStates.left
 || newState == PlayerStateController.playerStates.right
 || newState == PlayerStateController.playerStates.idle
)
returnVal = true;
else
returnVal = false;
break;

Now, the player can only jump if they have already landed, and the state system can
safely transition to and from the jump state.

There is one more thing to do here. With the preceding code, we can now support
the falling state of the player as well. In the PlayerColliderListener script, add
the following function:

void OnTriggerExit2D(Collider2D collidedObject)
{
 switch(collidedObject.tag)
 {
 case"Platform":
// When the player leaves a platform, set the state as falling. If //
the player actually is not falling, this will get verified by //the
PlayerStateListener.
 targetStateListener.onStateChange(PlayerStateController.
playerStates.falling);
 break;
}
}

Chapter 2

[45]

Just like OnTriggerEnter, this will be called whenever the SceneryToggler object
leaves another object. We then check the tag, and if this was a platform, we toggle the
falling state of the player. Let's also add the falling state real quick:

• In PlayerStateListener, add the following switch case in onStateCycle:
case PlayerStateController.playerStates.falling:
break;

• In PlayerStateListener, add the following switch case in onStateChange:
case PlayerStateController.playerStates.falling:
break;

• In PlayerStateListener, inside the landing case in
checkForValidStatePair, add the following:
case playerStateController.playerStates.landing:
// The only state that can take over from landing is idle,
//left or right movement.
if(
 newState == PlayerStateController.playerStates.left
|| newState == PlayerStateController.playerStates.right
|| newState == PlayerStateController.playerStates.idle
)
 returnVal = true;
else
 returnVal = false;
break;

Got a glitch?
Now, you may have noticed a small glitch if you are holding down your jump button.
The player can occasionally get stuck in the ground and then refuse to move or
jump. The reason for this is how physics are checked. When objects are moving fast,
often they will actually intersect another object before the collision detection occurs.
This happens so fast your eyes will rarely ever actually notice it—but to the game's
physics, it can mean the difference between working and... freezing in one place.
We're now going to improve the capabilities of the state system to address this.

It Lives!

[46]

What we are going to do is add the ability for states to have a conditional check
and, if certain conditions are true, abort them from occurring. We are then going
to use that check to see if enough time has passed since the previous jump to allow
us to jump again. This will ensure that enough time has passed for the physics of
the previous landing to have finished resolving, without the player object being
somewhat stuck in the ground.

Let's first add the ability for us to know how many states there are in the
playerState enum. Open up PlayerStateController and change the bottom part
of the playerStates enum to look like the following code snippet:

kill,
resurrect,
_stateCount // Adding this to check the state count

The _stateCount variable will now display the actual number of states in the
enum. This works because the enum starts at 0. So, whatever the last entry is,
provided that the last entry is not an actual state itself, it will always read the correct
number of states.

Next, let's add a new line of code just below the same enum:

public static float[] stateDelayTimer = new
float[(int)playerStates._stateCount];

This array will be used to perform any timer checks on the states. Most of the states
will not have timers associated with them. However, this setup allows you to easily
add timers in the future if, for any reason, you have or want to do so.

Remember that at any time you can make your code more flexible for
the future; especially when it doesn't take any extra development time,
always make it more flexible. You will thank yourself five months from
now when you suddenly need to build a huge custom event into the
system in a weekend to meet a deadline.

Head on over to PlayerStateListener, and at the beginning, add the following
code to the existing Start method:

// Set up any specific starting values here
PlayerStateController.stateDelayTimer[
(int)PlayerStateController.playerStates.jump] = 1.0f;

Chapter 2

[47]

Now, our jump value has an initial timer value—this will be important (as you will
see shortly). Now, go into onStateChange in PlayerStateListener. In the jump
portion of the switch case, change the bottom part to look like the following just
after playerHasLanded = false:

PlayerStateController.stateDelayTimer[
(int)PlayerStateController.playerStates.jump] = 0f;

We use the fact that the timer is 0f as part of our checks. If the timer is 0f, then it is
not running, and so we do not allow jumping. Specifically, the timer is not running
while the player is in the middle of jumping or in the middle of falling, giving them
all the time they need to land and start the timer again.

Having said that, you will also need to change the falling case statement in the
same switch condition. Make sure that it is like the following code:

PlayerStateController.stateDelayTimer[(int)PlayerStateController.
playerStates.jump] = 0f;

Only one more change to make in this method—we need to add the code that starts
the timer backup. In the landing check of this same switch condition, add the
following line of code:

PlayerStateController.stateDelayTimer[(int)PlayerStateController.
playerStates.jump]= Time.time + 0.1f;

That line will cause jumping to be allowed again 0.1 seconds after landing occurs.
Once nextAllowedJumpTime is equal to 0f, we can jump again.

Almost there!

Now for the meat of the code that will control this new "conditional abort"
functionality—at the very bottom of PlayerStateListener, add the following
method:

//checkIfAbortOnStateCondition allows us to do additional state
//verification, to see if there is any reason this state should
// not be allowed to begin.
bool checkIfAbortOnStateCondition(PlayerStateController.playerStates
newState)
{
 bool returnVal = false;
switch(newState)
 {

It Lives!

[48]

case PlayerStateController.playerStates.idle:
 break;

case PlayerStateController.playerStates.left:
 break;

case PlayerStateController.playerStates.right:
 break;

case PlayerStateController.playerStates.jump:
float nextAllowedJumpTime = PlayerStateController.stateDelayTimer[
(int)PlayerStateController.playerStates.jump];

if(nextAllowedJumpTime == 0.0f || nextAllowedJumpTime > Time.time)
 returnVal = true;
 break;

case PlayerStateController.playerStates.landing:
 break;

case PlayerStateController.playerStates.falling:
 break;

case PlayerStateController.playerStates.kill:
 break;

case PlayerStateController.playerStates.resurrect:
 break;
 }

// Value of true means 'Abort'. Value of false means 'Continue'.
 return returnVal;
}

Now, we just need to call the checkIfAbortOnStateCondition method when we
do our state change. In onStateChange, just after the newState == currentState
check, add the following code snippet:

//Verify there are no special conditions that would cause this
//state to abort
if(checkIfAbortOnStateCondition(newState))
return;

Chapter 2

[49]

When working with a state system, it is best to include all states in
any function that works with the state system. All this does is keep
your code clean, and if you ever need to grow the functionality of
your states, you know that the basic state call is already handled
anywhere it might possibly be used.

And that's that! Jumping will no longer be locked up when you're holding down
the jump key. This completes the technical functionality of jumping!

Now your player can fall off the ledge after walking off of it. And with the power
of the state system, you won't be able to jump or move left or right in mid-air. Of
course, if you wanted to modify things so that the player can glide left and right,
the state system makes that easy to accomplish. Make it a challenge to yourself to
add gliding to the player's movements!

The most astute of you, while paying attention to the console, probably noticed an
error that keeps popping up: SendMessagehitDeathTrigger has no receiver!. What's
happening here is the SendMessage method in the death trigger is sending messages
to all colliders that hit it—which happens to include the SceneryToggler object. To
fix this, change how the death trigger is treated. Remove DeathTriggerScript from
the Death Trigger object. Then, go back into PlayerColliderListener and add the
following case to the switch condition inside OnTriggerEnter2D:

case "DeathTrigger":
 // Player hit the death trigger - kill 'em!
 targetStateListener.onStateChange(PlayerStateController.
playerStates.kill);
break;

So what was the point of creating the death trigger in a different way before?
The answer is that we could show you multiple ways to handle 2D collisions.
You're welcome!

Making the world bigger
Now that your player can jump around the world, let's give them a few more
platforms to jump on. First things first, let's make that platform standard. Let's create
a Prefab with it. In the Project tab, create a folder called Prefabs. Now, drag-and-drop
the Platform into the Prefabs folder to automatically turn it into a Prefab. Now you
can go ahead and place more platforms around the scene by dragging and dropping
the platform from the Prefabs folder into the scene, spacing them so the player can
jump between them. This is the power of Prefabs. Because now if we need to change
the platform, we simply change the one in the Project tab and all placed platforms in
the game world will automatically update with the changes.

It Lives!

[50]

Let's keep this organized. Create a new empty GameObject and name it Platform
Container. In the Hierarchy tab, drag-and-drop all of the platforms into this new
object, making them children of it, as shown in the following screenshot:

All this does is keep things a bit cleaner and easier to work with.

Let's get dangerous
Let's add one more additional feature to our jumping, walking, dying player—the
ability to fire a weapon. Yup! It's time to make the player dangerous. If you feel the
need to apply a lead apron and a hard hat to your person, now would be the time
to do it:

1. Dig up your downloaded assets (available at http://www.PacktPub.com/
support—register to have the files e-mailed directly to you) again and
import the image map titled PlayerBullet.png, which should look like the
following screenshot. Use the same image import settings you've been using
for all the sprites:

2. Drag-and-drop the PlayerBullet sprite just like you did with previous
sprites into the Hierarchy tab.

Chapter 2

[51]

3. Give it a Box Collider 2D component and check the Is Trigger
property checkbox.

4. Also, attach a RigidBody 2D component and set its Gravity Scale to 0.
Create a new tag called Player Bullet and set that as the tag for the
PlayerBullet object.

Phew! OK, that was quick, but we now have a working bullet object
with the base properties. One last thing to do; create a new script called
PlayerBulletController, apply it to the PlayerBullet object, and make the script
look like the following code:

using UnityEngine;
using System.Collections;

public class PlayerBulletController : MonoBehaviour
{
public GameObject playerObject = null; // Will be populated
//automatically when the bullet is created in PlayerStateListener
public float bulletSpeed = 15.0f;

public void launchBullet()
 {
// The local scale of the player object tells us which
//direction the player is looking. Rather than programming in extra
//variables to store where the player is looking, just check what
//already knows that information... the object scale!
float mainXScale = playerObject.transform.localScale.x;
Vector2 bulletForce;
if(mainXScale< 0.0f)
{
// Fire bullet left
bulletForce = new Vector2(bulletSpeed * -1.0f,0.0f);
}
else
 {
// Fire bullet right
bulletForce = new Vector2(bulletSpeed,0.0f);
}

 rigidbody2D.velocity = bulletForce;
 }
}

It Lives!

[52]

Notice that we save on extra code and variables by simply checking the horizontal
scale of the Player object to determine which direction they are facing. Handy!

Now save this as a Prefab called Player Bullet and delete the current instance of
it from the game world. We won't need that one.

Next, we want to add a new state to the player called firingWeapon. Open up
PlayerStateController and add the new state to the playerStates enum. Simply
add it to the end of the enum, as follows:

 kill,
 resurrect,
 firingWeapon, // Our new state!
 _stateCount

There is one minor complexity in adding this state: we want the firingWeapon state
to immediately switch back to the previous state. To do this, let's add the ability to
store what the previous state was.

At the beginning of PlayerStateListener, add the following line of code:

private PlayerStateController.playerStates previousState =
PlayerStateController.playerStates.idle;

Next, add support for the code to store the previous state whenever it is changed.
At the bottom part of onStateChange in PlayerStateListener, modify the code
so that it looks like the following:

//Store the current state as the previous state
previousState = currentState;

Finally, assign the new state to the player object:

currentState = newState;

The previous state is now properly stored when we change states—fantastic! Now
we are ready to set up the code for the firingWeapon state. At the beginning of
PlayerStateListener, add the following additional code:

public GameObject bulletPrefab = null;

Be sure to also add the Player Bullet Prefab to the Bullet Prefab slot in the Player
object to fill this new property!

Chapter 2

[53]

Next, add the proper switch / case check for the firingWeapon state to onStateCycle,
onStateChange, checkForValidStatePair, and checkIfAbortOnStateCondition.
Also, add the new state to onStateCycle in the script CameraController. We won't
be using this, but it is always best to make sure all of your states in all scripts are the
same, just in case you find you want to use it in the future. It's OK to leave all of the
cases blank for now.

Let's add a quick transform node that we can use as the spawn point for the bullets.
Create a GameObject, name it BulletSpawnPoint, and make it a child of the Player
object. Assign its position X: 0.21, Y: 1.08. It should look a little something like
the following screenshot:

At the beginning of PlayerStateListener, add the following code:

public Transform bulletSpawnTransform;

Then, apply the BulletSpawnPoint GameObject to that new property in the
Inspector panel.

In the onStateChange method's case, check in PlayerStateListener and add
the following code to the new firingWeapon state:

// Make the bullet object
GameObject newBullet =
(GameObject)Instantiate(bulletPrefab);

// Set up the bullet's starting position

It Lives!

[54]

newBullet.transform.position = bulletSpawnTransform.position;

// Acquire the PlayerBulletController component on the new object
// so we can specify some data
PlayerBulletController bullCon = newBullet.GetComponent<PlayerBulletC
ontroller>();

// Set the player object
bullCon.playerObject = gameObject;

// Launch the bullet!
bullCon.launchBullet();

// With the bullet made, set the state of the player back to the
// current state
onStateChange(currentState);

With the preceding code, we now create the bullet, set its needed properties, and
then reset the player back to the previous state, all in one shot. We also need to make
sure that the checkForValidStatePair method allows this to pass. So, go ahead
and add the following code inside this method in PlayerStateListener:

PlayerStateController.playerStates.firingWeapon:
returnVal = true;
break;

We also need to change a few states to allow firingWeapon to occur while they
are active. So, be sure to add the following code to the state comparisons in
checkForValidStatePair for the states of jump, landing, and falling:

|| newState == PlayerStateController.playerStates.firingWeapon

Finally, all we need to do now is set up the code to actually trigger all this to happen
whenever the button is clicked. Open up PlayerStateController, and in the bottom
part of LateUpdate, add the following code:

float firing = Input.GetAxis("Fire1");
if(firing > 0.0f)
{
if(onStateChange != null)
 onStateChange(PlayerStateController.playerStates.firingWeapon);
}

Chapter 2

[55]

With that, the player can now fire its weapon! Play the game and press the Fire1
button (by default, it's the Ctrl key) and then watch a consistent stream of bullets fire
out from the player! However, the player currently fires a burst of bullets on every
firing. So, let's add in a quick firing delay. To do this, we will simply make use of our
state abort check.

In PlayerStateListener, add the following line of code in the Start method:

PlayerStateController.stateDelayTimer[
(int)PlayerStateController.playerStates.firingWeapon] = 1.0f;

Next, go into checkIfAbortOnStateCondition at the bottom part of
PlayerStateListener and add the following code in the firingWeapon check:

if(PlayerStateController.stateDelayTimer[
(int)PlayerStateController.playerStates.firingWeapon] >Time.time)
returnVal = true;

Finally, go into the onStateChange method in the same script file and add the
following line of code to the firingWeapon state in the newState switch condition:

PlayerStateController.stateDelayTimer[(int)PlayerStateController.
playerStates.firingWeapon] = Time.time + 0.25f;

This will cause a delay of 0.25 seconds (about a quarter of a second) between each
shot. Now, bullets have a firing delay to prevent them from streaming out as fast
while the player holds down the button. Also, this prevents bursts from occurring
when the player just taps the firing key.

At this point, you may want to tweak the physics property of the bullet so it flies
faster or differently. Try playing with the Mass field of the bullet's Rigidbody
2D component.

Bullets are better when they hit things
OK! Almost there. Let's do one more thing. Let's set the bullet to destroy itself
whenever it collides with something that's different from itself, or after a preset
time. Let's start by having the bullet auto-destroyed after a preset time.

Open up PlayerBulletController and add the following line of code at the
beginning, just after the bulletSpeed definition:

private float selfDestructTimer = 0.0f;

It Lives!

[56]

Now, at the bottom part of the launchBullet method, let's give the timer a value
with the following code:

selfDestructTimer = Time.time + 1.0f;

Finally, add an Update method to PlayerBulletController and populate it with
the following code:

void Update()
{
if(selfDestructTimer> 0.0f)
 {
 if(selfDestructTimer<Time.time)
 Destroy(gameObject);
 }
}

Now when you play the game and fire bullets, they will automatically destroy
themselves after 1 second.

Next, let's set up some code so that bullets will also destroy themselves whenever
they collide with something. Create a new script called DestroyOnCollision,
attach it to the Player Bullet Prefab, and make it look like the following code snippet:

using UnityEngine;
using System.Collections;

public class DestroyOnCollision : MonoBehaviour
{
void OnTriggerEnter2D(Collider2D hitObj)
{
DestroyObject(gameObject);
}
}

Fire the bullets now into some platforms and watch them auto-destroy.

Summary
We now have an understanding of how to create a player object with which they
can interact. They can run, they can jump, and they can even collide with platforms.
You know what would be really cool to have next? Some baddies. With that in mind,
here's what we're going to do next in Unity 2D!

In the next chapter, we're going to create enemies, move them, attack them (ooo,
scary!), and so on. We're also going to learn about particle systems for a 2D world.

No Longer Alone
Jumping, running, falling, dying; yeah, we got those. They rock. Now it's time to
explore our violent side and beat up some bad-guys! For your second "Quest", oh
warrior of Unity, it is time to add enemies. I suggest that you power up your official,
licensed, awesome B-movie electricity-emitting equipment—the ones that make the
cool sparks and zap noises.

Making enemies
The initial part of enemy creation is nothing you haven't already done, so let's just
dive in head first and see what's at the bottom:

1. Import the EnemySpritesheet.png file from the assets under Sprites\
Enemy\ and then create a sprite sheet for the enemy as discussed earlier
in Chapter 1, Introduction to the 2D World of Unity.

2. Call the first sprite EnemyWalk_1 and the second sprite EnemyWalk_2.
3. Drag-and-drop the EnemyWalk_1 sprite into the Scene or the Hierarchy tab

to create the sprite in the world. If it looks a bit large to you, go ahead and
change the Scale to X: 41, Y: 41.

4. Set the pivot of both sprites to be Bottom.

No Longer Alone

[58]

5. Create a new animation called EnemyWalkingAnimation and set
up the frames so that they create a ping pong effect similar to the
PlayerWalkingAnimation file (see the following screenshot for reference).

6. Rename the automatically generated animator controller named
Enemy to EnemyAnimatorController, and then make sure that
the EnemyWalkingAnimation animation is placed within it as the
default animation.

7. Make sure the Enemy object has a Box Collider 2D and a RigidBody 2D
component.

8. On the RigidBody 2D component, set the Collision Detection property
as Continuous and set the Gravity Scale to 30. The gravity scale property
is the degree to which this object is affected by gravity. In layman's terms,
higher numbers will make the object heavier. The actual size and shape of
the box collider on the enemy only needs to cover the center portion of the
treads. Therefore, it can be quite small—just large enough to let the enemy
stand on the ground.

9. Set the Size of the Box Collider 2D component to X: 1.71, Y: 0.95
and the Center component to X: 0, Y: 0.49.

Chapter 3

[59]

Check out the following screenshot for a reference of how that looks:

Alright! The base enemy object has now been set up. Let's start giving it some true
enemy potential! Make a new script called EnemyControllerScript, attach it to
the Enemy object, and make it look like the following code snippet:

using UnityEngine;
using System.Collections;

public class EnemyControllerScript : MonoBehaviour
{
 public void switchDirections()
 {
 }
}

Yup, we're starting with the basics here. These enemies are going to be easier
than you think!

No Longer Alone

[60]

Make it move
For the purpose of this game, we're going to have the enemies walk back and forth
on the platforms. The concept we're going to use here is that of a main object with
two notification objects. The notification objects sit on either side of the Enemy object
and simply tell it when it is about to walk off of a platform object. The notification
objects do this by acting as triggers and checking to see when they have left the
collision area of the Platform object:

1. Create two empty GameObjects. Name them LeftGuide and RightGuide
respectively, and then make these children of the Enemy object.

2. Give each one a Box Collider 2D component, check the Is Trigger boxes
on both, and set their Size property as X: 0.48, Y: 0.64.

3. Arrange them so that they are on either side of the enemy, outside of its main
Box Collider 2D, and just off to the sides of the visual sprite. The following
screenshot shows how that looks:

4. Now, create a new script called EnemyGuideWatcher and code it up
as follows:
using UnityEngine;
using System.Collections;

public class EnemyGuideWatcher : MonoBehaviour
{

Chapter 3

[61]

 public EnemyControllerScriptenemyObject = null;

 void OnTriggerExit2D(Collider2D otherObj)
 {
 // If this trigger just left a Platform object,
 //then the enemy is about to walk off the platform.
 //Tell the enemy that they need to switch
 //directions!
 if(otherObj.tag == "Platform")
 enemyObject.switchDirections();
 }
}

5. Attach EnemyGuideWatcher to both the LeftGuide and the RightGuide
objects and make sure to add the Enemy object to the Enemy Object field
on both objects in the Inspector panel.

Next, we need to make sure the enemy knows how to flip its direction by reversing
its movement direction, just like we did with the player back in Chapter 1,
Introduction to the 2D World of Unity. Go back to EnemyControllerScript
and give it some code. Fill the script with the following code:

using UnityEngine;
using System.Collections;

public class EnemyControllerScript : MonoBehaviour
{
 public float walkingSpeed = 0.45f;
 private bool walkingLeft = true;

 void Start()
 {
 // Randomly default the enemy's direction
 walkingLeft = (Random.Range(0,2) == 1);
 updateVisualWalkOrientation();
 }

 void Update()
 {
// Translate the enemy's position based on the direction
// that they are currently moving.
 if(walkingLeft)
 {
 transform.Translate(new Vector3(walkingSpeed *

No Longer Alone

[62]

 Time.deltaTime, 0.0f, 0.0f));
 }
 else
 {
 transform.Translate(new Vector3((walkingSpeed * -1.0f)
 * Time.deltaTime, 0.0f, 0.0f));
 }
 }

 public void switchDirections()
 {
 // Swap the direction to be the opposite of whatever it
 // currently is
 walkingLeft = !walkingLeft;

 // Update the orientation of the Enemy's material to match
 //the new walking direction
 updateVisualWalkOrientation();
 }

 void updateVisualWalkOrientation()
 {
 Vector3 localScale = transform.localScale;
 if(walkingLeft)
 {
 if(localScale.x> 0.0f)
 {
 localScale.x = localScale.x * -1.0f;
 transform.localScale = localScale;
 }
 }
 else
 {
 if(localScale.x< 0.0f)
 {
 localScale.x = localScale.x * -1.0f;
 transform.localScale = localScale;
 }
 }
 }

}

Chapter 3

[63]

Now you have a setup where the enemy can walk back and forth on a platform and
switch directions before walking off of the ledge. With all the scripts in place, put the
enemy on a platform and hit play. Now you can watch them walk back and forth!
Regardless of what platform you put the enemy on, they will now walk back and
forth across it.

Pro tip
With a solid knowledge of Unity's programming system, you
could easily customize an enemy so that when it reaches the end
of a platform, they will look for another nearby platform and then
jump to it, rather than only switching directions. Try adding some
additional logic and see what else you can make the enemy do!

Make it deadly
As you may have noticed, walking into the enemy currently just messes with the
player's collision system. In fact, that's a little ugly; so, let's clean it up. All that we
need to do here is create a collision mask. Start by going to the Tags & Layers panel
of Unity, just like you did before, and add a layer for both player and enemy. Set the
layer on the player to be Player and the layer on the enemy to be... you guessed it,
Enemy. When you apply the layer to either object, it will ask if you want to apply to
the child objects—go ahead and say Yes.

With the proper layers specified on the objects, we need to set the Layer Masking.
Go to Edit | Project Settings | Physics 2D and set the checkboxes so that Player
and Enemy do not collide with each other, as shown in the following screenshot:

No Longer Alone

[64]

Now when the player runs over the enemy, there will no longer be any weird
hiccups in the player's or enemy's movements. With that cleaned up, let's now make
the player die when it comes in contact with an enemy. For this, we are going to
create another empty GameObject with a Box Collider 2D component attached. We
will use another collider here so that each collider has a very specific job with very
specific collision requirements. It's actually somewhat rare that the same collider can
be used for multiple things simply because their positioning and sizing needs to be
different. I can say from the experience of working on two entirely separate "Beat 'em
up" games that each enemy usually has between three to five unique collision areas
such as feet rectangle, defense rectangle, and attack rectangle..

Thankfully, Unity makes all this collision madness very simple. Name that empty
GameObject Defense Collider and make it a child of the Enemy object at position
X: 0, Y: 0.29. Resize the Box Collider 2D component so that it is about a quarter of
the size of the whole Enemy object, with a Size of X:0.58, Y: 0.55. The idea here
is that the player should be able to collide with the enemy, but if it's too precise, the
game becomes far too difficult. So, give a proper defensive collision range on the
enemy to allow the player some leeway to escape; refer to the following screenshot:

Let's add a new script that tells the enemy's Defense Collider GameObject to kill the
player on touching. Wait, we already have one of those! The beauty of Unity is that it
allows us to reuse scripts in surprising places. Make sure that the box collider on the
Defense Collider object has its Is Trigger checkbox ticked, and then add the existing
DeathTriggerScript to the Defense Collider object. Set the Script field in the
Inspector panel of Defense Collider to DeathTriggerScript, and make sure that
the Layer drop-down menu is set to Default.

Chapter 3

[65]

You may remember that we just set up the enemy and player's physics layering
to mask out these collisions. Just make sure that the Defense Collider object has
a Default layer and it will accept collisions with the player, while the rest of the
enemies continue to ignore one another—which is exactly what you want.

Now, play the game and run head-first into the enemy. What happened? The player
just died and respawned at the spawn point! Yup, it really is that easy to make 2D
games work in Unity.

You may notice that the message hitDeathTrigger has no receiver! is showing up in
the console. If you do, very good, you've got your console open! The console keeps
you up to date about errors, warnings, and messages—you should be watching it all
the time. If you aren't watching it, now would be a great time to open it up. But how
do we fix this issue? Easy; the message is showing up because now there are colliders
on the player that are hitting the death trigger. Let's just tell the death trigger that we
don't care if a receiver is there or not. Open up DeathTriggerScript and replace the
SendMessage line with the following line of code:

collidedObject.SendMessage("hitDeathTrigger",SendMessageOptions.
DontRequireReceiver);

Play again and everything works without errors!

Pro tip
Learn your event listeners and delegates! It would be quite easy to make
all the enemies laugh at the player whenever the player gets killed. In fact,
give it a shot! Add an event and event delegate object to the player, and
then add an event listener to the enemy that listens for when the player
gets killed. Make the enemies laugh like the bad guys they are!

Let's go huntin'!
The enemy can now kill the player on impact. Well, that's kind of one-sided, isn't it?
The player needs a way to fight back! If only the player had some kind of weapon.
Oh wait, they do! Let's make the player's bullets actually do something. However, we
aren't going to edit the bullets, we're going to edit the enemy.

The enemy's Defense Collider object has a perfect size and position to also act as
the collider that takes damage. This is a case where a collider can have multiple
purposes. Let's add a new script that is specifically meant to accept damage from the
player's weapon shots. Create a new script called TakeDamageFromPlayerBullet
and write it up as follows:

using UnityEngine;
using System.Collections;

No Longer Alone

[66]

public class TakeDamageFromPlayerBullet : MonoBehaviour
{
 public delegate void hitByPlayerBullet();
 public event hitByPlayerBullethitByBullet;

 void OnTriggerEnter2D(Collider2D collidedObject)
 {
 if(collidedObject.tag == "Player Bullet")
 {
 if(hitByBullet != null)
 hitByBullet();
 }
 }
}

Attach the script to the Defense Collider object inside the Enemy parent object. Now
we can accept weapon shots from the player and call the hitByBullet event when it
occurs. Let's modify the EnemyControllerScript to listen to these events.

First, at the beginning of EnemyControllerScript, add an object reference to
TakeDamageFromPlayerBullet using the following line of code:

public TakeDamageFromPlayerBullet bulletColliderListener = null;

Make sure that you assign the Defense Collider object to this field in the
Inspector panel. Next, add the following functions above the Start function in
EnemyControllerScript:

 void OnEnable()
 {
 // Subscribe to events from the bullet collider
 bulletColliderListener.hitByBullet += hitByPlayerBullet;

 }

 void OnDisable()
 {
 // Unsubscribe from events
 bulletColliderListener.hitByBullet -= hitByPlayerBullet;
 }

Finally, add a function called Destroy to manage what happens when the enemy is
hit by a bullet, as shown in the following code snippet. This code could technically
go anywhere, but let's place it at the bottom of the EnemyControllerScript.

public void hitByPlayerBullet()

Chapter 3

[67]

{
// Wait a moment to ensure we are clear, then destroy the
//enemy object.
Destroy(gameObject,0.1f);
}

Now, play the game and fire the player's weapon at the enemy. When the bullets hit
the enemy, they will cease to exist!

You may be wondering why we used events and delegates for this when we could
have just used a script component reference. Well, let me ask you this, if you did not
know how events and delegates worked a page ago, do you know now? No? Well
then go over it and hopefully you will get it the second time around. Essentially,
each event is a type of delegate, and any object can listen to events.

Now you are ready for the future event and delegate work that we will be doing in
the rest of this book, as much of that upcoming work will not work well with object
references. If you don't understand, give it another read-through.

Just for fun, let's give the enemy a particle effect when they are killed. First things
first, create a new Particle System object named EnemyDeathFX. As a skilled Unity
ninja, it is most likely that you already know how to build these, so I won't go into
the nitty-gritty of making awesome particle emitters. To help you out, we have
included some particle graphics for you to use; import the graphics from the folder
Sprites\Particles.

While I'm not going to describe how to create particles, I will, however, discuss a
small requirement that you will need to fulfill to make these particles work in a 2D
world. If your emitter has too much depth to it, the particles won't be in the camera
view of the Orthographic camera. Keep this in mind when building out the particles,
and test them frequently to ensure they look the way you want. Try and keep your
emitters very, very thin. Check out the following image; that thin line in the middle
is the particle system that we created. We really mean thin here.

No Longer Alone

[68]

Now, build a neat-looking enemy death particle using those rules. For our enemy
tanks, I will build an effect of red metal shards flying about. Store this new particle
emitter as a Prefab called EnemyDeathFX.

In EnemyControllerScript, add the following code at the beginning to store the
particle emitter:

public ParticleSystemdeathFxParticlePrefab = null;

At the bottom of EnemyControllerScript, modify hitByPlayerBullet
to read as follows:

public void hitByPlayerBullet()
 {
 // Create the particle emitter object
 GameObjectdeathFxParticle =
 (GameObject)Instantiate(deathFxParticlePrefab);

 // Get the enemy position
 Vector3 enemyPos = transform.position;

 // Create a new vector that is in front of the enemy
 Vector3 particlePosition = new
 Vector3(enemyPos.x,enemyPos.y,enemyPos.z + 1.0f);

 // Reposition the particle emitter at this new position
 deathFxParticle.transform.position = particlePosition;

 Destroy(gameObject,0.1f);
 }

Be sure to also assign the EnemyDeathFX Prefab to the deathFxParticlePrefab
property of the Enemy object. Now, your enemies will display a particle effect
when defeated! However, the particle system we created is not getting destroyed
automatically. To wrap up this task, let's make the particle system destroy itself.
To do this, we will add a quick self-destruct script.

Create a new script called SelfDestruct, attach it to the EnemyDeathFX Prefab,
and code it up to look like the following:

using UnityEngine;
using System.Collections;

public class SelfDestruct : MonoBehaviour
{

Chapter 3

[69]

 public float fuseLength = 0.1f;
 private float destructTime = 0.0f;

 void Start()
 {
 destructTime = Time.time + fuseLength;
 }

 void Update()
 {
 if(destructTime<Time.time)
 Destroy(gameObject);
 }
}

Assign an appropriate value such as 1.25 to the Fuse Length field on the Self
Destruct component in the Inspector panel, and then play the scene again. Now, you
will notice that the enemy’s death particle system object will clean itself up after the
specified amount of time.

The swarm
At this point, your standard enemies are now complete! Save the Enemy object
as a Prefab and create another Enemy object on each platform. To keep things
clean, create a new empty object called _EnemyContainer in the Hierarchy tab and
place all of the Enemy objects in there. Play the game and see how each one acts
independently of the others using our events and delegates and effects.

No Longer Alone

[70]

Doesn't the player just look so cozy with his new friends?

Pro tip
Tried placing two enemies on the same platform? You probably noticed
that they collide with one another and prevent any further movement.
Use what you have learned to modify their collision properties so that
an enemy cannot collide with other enemies. Also, try to make the
enemies swap directions when they are getting close to one another!

Summary
Now this is getting more fun! Running, jumping, and kicking the metallic rear
of evil robots! However, wouldn't it be nice if we had more room to do all that
butt-kicking? Let's do something about that in the next chapter.

In Chapter 4, Give It Some Sugar, we're going to learn about parallax scrolling,
because a solid blue background is boring. We're going to kill enemies and earn
points. Finally, we'll also learn about dynamic enemy generation!

Give It Some Sugar
Look around your world within the game. Things are happening. There are enemies.
There is a bottomless pit. There are platforms you can jump between. Things are
really starting to feel like a solid 2D game, all built in a 3D engine. Pretty cool, eh?

However, it is starting to feel a bit claustrophobic, isn't it? Just this one screen
and a handful of enemies. Just one screen, no where to go. OK, I can't breath.
The monitor is closing in on us.

Let's prevent any further hyperventilating and add more to this world. We need
more room to breathe; I mean, move. You get the picture. Just breathe; we're going to
get through this together. In this chapter, we're going to discuss the following topics:

• Building a bigger game world
• Parallax scrolling
• A scoring system
• Generating enemies endlessly

Expanding the world!
It's time to make the world bigger! We already have a camera that follows the
player and also all the Prefabs we need to add platforms and enemies. So, let's
start by building up the level a bit more. Have some fun here and put up a bunch
of new platforms. Drag-and-drop the Platform Prefab from the Project tab into the
Hierarchy tab. Make sure the player can jump between the platforms, or the game
won't be much fun. Also, make sure your Death Trigger object covers the full area
below your level. With all these new platforms, be sure to also place a bunch of new
enemies on them, because awesome platforms need awesome enemies.

Give It Some Sugar

[72]

Next, you will want to wall in the player so that it can't leave the level area.
The main concept to think of here is that you need to wall off all four sides—top,
bottom, left, and right—so that the player and enemies cannot escape the level area.
This is actually true for any 2D game; puzzle games need to keep their game pieces
within the 2D gameplay area, platformers keep the player and enemies in the 2D
gameplay area, and so forth. This doesn't need to be a box either. Many game levels
for both 2D and 3D games have very odd-shaped level areas. It's all about making
sure the players can't escape into the nether that exists outside the game. Go ahead
and do a little something as outlined in the following steps:

1. Import the Wall.png image map, located in the Assets package in Sprites\
Scenery\Wall.png, and set it up like the other sprites you've imported.

2. Drop one of the Wall sprites into your scene and give it a Box Collider
2D component.

3. Adjust the Y Size field of the box collider so that it's 20; this will make sure
the player can't escape even if they jump above the wall.

4. Now go ahead and drop a Wall sprite on either side of your level to
prevent escape!

5. Make sure the death trigger fills the entire gap below them and that the
player is safely sealed inside the intended play-area.

6. Create a new GameObject called _WallContainer and store the Wall objects
inside to keep things clean.

Your scene should now look something like the following screenshot. Don't worry
if your enemies and platforms look different—the important thing here is that your
walls surround your level on either side.

Think you have a good sense of how the platforms are positioned in
the world? Challenge yourself to build an automatic level generator!

Chapter 4

[73]

Parallax scrolling
OK. Breathe. We're about to explain parallax scrolling, which is an effect where
objects further in the distance move slower than objects closer to the camera.
From what I understand, many of you may now need to take a moment to stop
hyperventilating. Go for it, I'll wait.

As a developer, we have been asked numerous times about how to implement
parallax scrolling in a 2D game. Cerulean Games, my game studio, has even had
the elements of parallax scrolling as the "do or die" requirement to close a project
deal with a client. In reality, this is incredibly easy to accomplish, and there are
a number of ways to do this.

In Power Rangers Samurai SMASH! (developed by Cerulean Games for Curious
Brain; you can find it in the iOS App Store), we implemented a simple check that
would see what the linear velocity of the player is and then move the background
objects in the opposite direction. The sprites were layered on the Z plane, and each
was given a speed multiplier based on its distance from the camera. So, as the player
moved to the right, all parallax scrolling objects would move to the left based on
their multiplier value. That technique worked, and it fared us and our client quite
well for the production of the game. This is also a common and quick way to manage
parallax scrolling, and it's also pretty much how we're going to manage it in this
game as well.

OK, enough talk! Have at you! Well, have at the code:

1. Create a new script called ParallaxController and make it look like
the following code:
using UnityEngine;
using System.Collections;

public class ParallaxController : MonoBehaviour
{
 public GameObject[] clouds;
 public GameObject[] nearHills;
 public GameObject[] farHills;

 public float cloudLayerSpeedModifier;
 public float nearHillLayerSpeedModifier;
 public float farHillLayerSpeedModifier;

 public Camera myCamera;

Give It Some Sugar

[74]

 private Vector3 lastCamPos;

 void Start()
 {
 lastCamPos = myCamera.transform.position;
 }

 void Update()
 {
 Vector3 currCamPos = myCamera.transform.position;
 float xPosDiff = lastCamPos.x - currCamPos.x;

 adjustParallaxPositionsForArray(clouds,
 cloudLayerSpeedModifier, xPosDiff);
 adjustParallaxPositionsForArray(nearHills,
 nearHillLayerSpeedModifier, xPosDiff);
 adjustParallaxPositionsForArray(farHills,
 farHillLayerSpeedModifier, xPosDiff);

 lastCamPos = myCamera.transform.position;
 }

 void adjustParallaxPositionsForArray(GameObject[]
 layerArray, float layerSpeedModifier, float xPosDiff)
 {
 for(int i = 0; i < layerArray.Length; i++)
 {
 Vector3 objPos =
 layerArray[i].transform.position;
 objPos.x += xPosDiff * layerSpeedModifier;
 layerArray[i].transform.position = objPos;
 }
 }
}

2. Create a new GameObject in your scene and call it _ParallaxLayers.
This will act as the container for all the parallax layers.

3. Create three more GameObjects and call them _CloudLayer, _
NearHillsLayer, and _FarHillsLayer, respectively.

4. Place these three objects inside the _ParallaxLayers object, and place
the Parallax Controller component onto the _ParallaxLayers object.

Chapter 4

[75]

Done? Good. Now we can move some sprites. Import the sprites from Sprites\
ParallaxScenery. Start placing sprites in the three layer containers you created
earlier. For the hills you want to be closer, place the sprites in the _NearHillsLayer
container; for the hills you want to be further away, place the sprites in _
FarHillsLayer; and place the clouds in the _CloudLayer container. The following
screenshot shows an example of what the layers will now look like in the scene:

Pro tip
Is this the absolute, most efficient way of doing parallax? Somewhat;
however, it's a bit hardcoded to only really fit the needs of this game.
Challenge yourself to extend it to be flexible and work for any scenario!

Parallax layer ordering
Wait, you say that the objects are layered in the wrong order? Your hills are all mixed
up with your platforms and your platforms are all mixed up with your hills? OK,
don't panic, we've got this.

What you need to do here is change the Order in Layer option for each of the
parallax sprites. You can find this property in the Sprite Renderer component.
Click on one of the sprites in your scene, such as one of the clouds, and you can
see it in the Inspector panel. Here's a screenshot to show you where to look:

Give It Some Sugar

[76]

Rather than changing each sprite individually, we can easily adjust the sprites
in bulk by performing the following steps:

1. Select all of your cloud layer sprites, and under their Sprite Renderer
components, set their Order in Layer to 0.

2. Set the Order in Layer property of the _NearHillsLayer sprites to 1 and that
of the _FarHillsLayer sprites to 0.

3. Select the Prefab named Platform and set its Order in Layer to 2; you should
see all of your Platform sprites instantly update in the scene.

4. Set the Order in Layer values of the Prefabs for Enemy and Player Bullet to 2.
5. Set the sprite on the Player object in the scene to 2 as well.
6. Finally, set the Wall objects to 3 and you're good to go.

With the layers all set up, let's finish setting up the parallax layers. First, finish placing
any additional parallax sprites; I'll wait. Brilliant! Now, go to the _ParallaxLayers
object and let's play around with that Parallax Controller component. We're going
to want to add all of those sprites to Parallax Controller. To make this easy, look at
the top-right corner of the Inspector panel. See the little lock icon? Click on it. Now,
regardless of what you do, the Parallax Controller component will not be deselected.
Since it can't be deselected, you can now easily drag-and-drop all of the Cloud
sprites into the Clouds array in the ParallaxController component, and all of the
_FarHillsLayer child objects into the Far Hills array—you see where this is going.

Set the My Camera field to use the Main Camera object. Finally, let's set some values
in those Layer Speed Modifier fields. The higher the number, the faster the object
will move as the camera moves. As an example, we set the Cloud layer to 0.05, the
Near layer to 0.2, and the Far layer to 0.1. Feel free though to play with the values
and see what you like!

Go ahead and play the game. Click on the play button and watch those layers move!
But, what's this? The particles that burst when an enemy is defeated render behind
the sprites in the background—actually, they render behind all the sprites! To fix
this, we need to tell Unity to render the particles on a layer in front of the sprites.
By default, the sprites render after the particles. Let's change that.

Chapter 4

[77]

First, we need to create a new sorting layer. These are special types of layers that
tell Unity the order to render things in. Go to the Tags & Layers window and
look out for the drop-down menu called Sorting Layers. Add a new layer called
ParticleLayer on Layer 1, as shown in the following screenshot:

With this in place, it means anything with the Sorting Layers menu of ParticleLayer
will render after the Default layer. Now, we need a way to assign this Sorting Layer
to the particle system used when enemies are defeated. Create a new script called
ParticleLayering and make it look like the following code:

using UnityEngine;
using System.Collections;

public class ParticleLayering : MonoBehaviour
{
 public string sortLayerString = "";

 void Start ()
 {
 particleSystem.renderer.sortingLayerName = sortLayerString;
 }
}

Give It Some Sugar

[78]

Add this script to the EnemyDeathFX Prefab and set the Sort Layer String field to
ParticleLayer. Go ahead and play the game again now to watch those particles
fly in front of the other objects.

Finally, if you want a solid color background to your scene, you don't need to worry
about adding a colored plane or anything. Simply select the Main Camera object,
and in the Inspector panel, look for the Background field in the Camera component.
Adjust the color there as per your need. For the example game, we made this color
a nice sky blue with the following values: R: 128, G: 197, B: 232, and A: 0.

The one thing you may notice we're missing is something at the bottom of the scene.
Here's a nice little challenge for you. We've given you a Lava sprite. Now, add in a
lava layer of parallax sprites in the foreground using all the info you've read in this
chapter. You can do this!

Let's score!
One of the most important elements to a game is being able to track progress.
A quick and simple way to do this is to implement a score system. In our case,
we will have a score that increases whenever you defeat an enemy.

Now, Unity does have a built-in GUI system. However, it has some drawbacks,
which will be discussed in detail in Chapter 6, The Finishing Touches. With this in
mind, we won't be relying on Unity's built-in system. Instead, we are going to create
objects and attach them to the camera, which in turn will allow us to have a 3D GUI.

Pro tip
If you want to use what this author believes is the best UI system for
Unity, purchase a license for NGUI from the Unity Asset Store. I'm not
the only one to think it's the best; Unity hired the NGUI developer to
build the new official UI system for Unity itself.

Let's build out some GUI elements:

1. Create a 3D Text object by navigating to the menu item GameObject | Create
Other; name it Score. Make it a child of the Main Camera GameObject
and align it such that it sits in the top-left corner of the screen.

2. Set its position to X: -6.91, Y: 4.99, Z: 10 to get this effect.

Chapter 4

[79]

3. Make the text color solid black and adjust the scaling so that it looks the
way you want it to.

4. Set the Anchor field to Upper Left and Alignment to Left.
5. Adjust the scene to your taste, but it should look a little something like

the following screenshot:

Pro tip
Unity's default 3D text font looks rather low quality in most situations.
Try importing your own font and then set the font size to something
much higher than you would usually need; often around 25 to 40.
Then, when you place it in the world, it will look crisp and clean.

Let's make it so that the Score visual element can actually track the player's score.
Create a new script called ScoreWatcher and write the following code in it:

using UnityEngine;
using System.Collections;
public class ScoreWatcher : MonoBehaviour
{

Give It Some Sugar

[80]

 public int currScore = 0;
 private TextMesh scoreMesh = null;

 void Start()
 {
 scoreMesh = gameObject.GetComponent<TextMesh>();
scoreMesh.text = "0";
 }

 void OnEnable()
 {
 EnemyControllerScript.enemyDied += addScore;
 }

 void OnDisable()
 {
 EnemyControllerScript.enemyDied -= addScore;
 }

 void addScore(int scoreToAdd)
 {
 currScore += scoreToAdd;
 scoreMesh.text = currScore.ToString();
 }
}

You may notice that in the preceding script, we are listening to the enemyDied event
on the EnemyControllerScript. What we did here was we allowed other objects to
easily create scoring events that the Score object can optionally listen to. There is lots
of power to this!

Let's add that event and delegate to the enemy. Open up EnemyControllerScript,
and in the beginning, add the following code:

 // States to allow objects to know when an enemy dies
 public delegate void enemyEventHandler(int scoreMod);
 public static event enemyEventHandler enemyDied;

Then, down in the hitByPlayerBullet function, add the following code just above
Destroy(gameObject,0.1f);, right around line 95:

// Call the EnemyDied event and give it a score of 25.
if(enemyDied != null)
 enemyDied(25);

Chapter 4

[81]

Add the ScoreWatcher component to the Score object. Now, when you play the
game and defeat the enemies, you can watch the score increase by 25 points each
time! Yeeee-haw!

Sorry 'bout that... shootin' things for points always makes me feel a bit Texan.

Enemies – forever!
So, you defeated all your enemies and now find yourself without enemies to defeat.
This gets boring fast; so, let's find a way to get more enemies to whack. To do this,
we are going to create enemy spawn points in the form of nifty rotating vortexes
and have them spit out enemies whenever we kill other enemies. It shall be glorious,
and we'll never be without friends to give gifts—and by gifts, we mean bullets.

First things first. We need to make a cool-looking vortex. This vortex will be
a stacked, animated visual FX object that is built for a 2D world. Don't worry,
we've got you covered on textures, so please go through the following steps:

1. Import the ones in the assets folder under Sprites\Vortex.
2. Create a new GameObject called Vortex and add all three of the Vortex

sprites in it, with each of their Position values set to X:0, Y:0, and Z:0.
3. Adjust their Order in Layer values so that the Vortex_Back child is set to 10,

Vortex_Center is set to 11, and Vortex_Front is set to 12. You should
now have an object that looks something like the following screenshot:

Give It Some Sugar

[82]

4. Go ahead and give it a nice spinning animation by rotating the Z axis from
0 to 356.

5. Once you're happy with it, create a new script called EnemyRespawner
and code it up as shown in the following code snippet:

using UnityEngine;
using System.Collections;
public class EnemyRespawner : MonoBehaviour
{
 public GameObject spawnEnemy = null;
 float respawnTime = 0.0f;

 void OnEnable()
 {
 EnemyControllerScript.enemyDied += scheduleRespawn;
 }

 void OnDisable()
 {
 EnemyControllerScript.enemyDied -= scheduleRespawn;
 }

 // Note: Even though we don't need the enemyScore, we still
 // need to accept it because the event passes it
 void scheduleRespawn(int enemyScore)
 {
 // Randomly decide if we will respawn or not
 if(Random.Range(0,10) < 5)
 return;

 respawnTime = Time.time + 4.0f;
 }

 void Update()
 {
 if(respawnTime > 0.0f)
 {
 if(respawnTime < Time.time)
 {

Chapter 4

[83]

 respawnTime = 0.0f;
 GameObject newEnemy = Instantiate(spawnEnemy) as
 GameObject;
 newEnemy.transform.position = transform.position;
 }
 }
 }
}

Now attach the preceding script to your Vortex object, populate the Spawn Enemy
field with the Enemy Prefab, and save the Vortex object as a Prefab. Scatter a bunch
of Vortex Prefabs around the level and you can get the hydra effect, where killing
one enemy will create two more enemies or even more than two!

Also, if you haven't already done so, you may want to go to the Physics Manager
option and adjust the settings so that enemies won't collide with other enemies.

One more thing—those enemies sort of glide out of their portals very awkwardly. Let's
boost the gravity so they fall faster. Click on the main Enemy Prefab and change the
Gravity Scale value of the RigidBody 2D component to 30. Now, they'll fall properly!

Pro tip
There are so many things you can do with enemy spawners that go far,
far outside the context of this book. Take a shot at adding some features
yourself! Here are a few ideas:

• Make the spawn vortexes play a special visual effect when an
enemy is spawned

• Give vortexes a range so that they only spawn an enemy if
another enemy was killed in their range

• Make vortexes move around the level
• Make vortexes have multiple purposes so that enemies can walk

into one and come out another
• Have a special gold enemy worth bonus points spawn after every

100 kills
• Make an enemy that, when defeated, spawns other enemies or

even collectable objects that earn the player bonus points!

Give It Some Sugar

[84]

Summary
So, what have we learned here today aside from the fact that shooting enemies with
bullets earns you points? Well, check this out.

You now know how to build a 2D world using individual sprite objects; how to use
parallax scrolling, 2D layers, and generate objects; and how to use a scoring system.

Enemies dying, enemies spawning, freakin' vortexes? I know, you're sitting there
going, "Dude, OK, I'm ready to get started on my first 2D game... the next side-
scrolling MMO Halo meets Candy Crush with bits of Mass Effect and a little Super
Mario Bros!"

However, your revolutionary gaming exploits will have to wait a wee moment; the
evil metal robots have a friend coming. This means the next chapter is going to teach
you how to make the boss battle. Hike up those britches... it's going to be a wild ride!

The Ultimate Battle of
Ultimate Destiny

The player can live. The player can die. Enemies can fight. The player can defend.
Enemies can respawn.

It has been quite a journey. You have learned about 2D games in 3D worlds.
You have learned the power of Unity and how to wield that power to produce
2D games.

Now we have reached the end. But to succeed, there must be one final challenge.
This challenge will encompass all that you have learned, all you know, and prove
that you have what it takes to save the world; or make a 2D game in Unity,
which is pretty much the same thing.

The chorus sings and the guitars play. You stand there, with your weapon
in hand. Everything depends on you and your abilities.

It's time for the final boss battle.

Meet the king
Boss battles in video games can be quite complex to develop. A postmortem was
written on Silent Hill 4 in the March 2005 issue of Game Developer magazine,
where the desire to ship the game with more boss encounters was discussed.
However, due to the complexity of these battles and their allotted budget, the
development team had to work with what they could afford and ship games
with less monstrous fear battles. If a company as massive, well-structured,
and capable as Konami will fear the boss battle, then so should you.

The Ultimate Battle of Ultimate Destiny

[86]

Cerulean Games has worked on games with boss battles, and its author has
personally programmed a number of these encounters. Boss battles should be
looked at like a unique mini game—they will typically require a decent amount
of unique code and a lot of focused testing to ensure accuracy and stability.

The first thing we should think about is what the boss battle will do, how it will
challenge the player, and how it will progress. For our example game, we are going
to have a rather simple boss. The king—as he shall be dubbed—will fall from the sky
on to a platform, dance around allowing the player to hit him, and then jump across
to fall and land on another platform. When the king has taken enough hits, he will
be defeated.

Many boss battles act as a form of puzzle. In World of Warcraft,
Blizzard went to great trouble to make sure their epic raid battles
incorporated strategies, alternate methods, and fun events. Planning
all of that in advance is key to a good boss battle. Of course, video
games are iterative, so chances are you can't plan everything in
advance. So, if you are going to build a very involved boss encounter,
build it up in pieces. Do whatever you can to avoid a scenario where
you are adding loads of features, otherwise the boss can lose its fun
and you might miss your deadline!

Let's also determine what the boss should look like. Based on our evil red
tanks, let's make him a big metal beast with a similar art style, as shown in the
following image:

Chapter 5

[87]

Yeah, that will work.

Open the Graphics package you downloaded from Packt's site and find the boss'
sprite sheet in Sprites\Boss and import it to the project. Build out the sprites from
the sprite sheet (like you have been doing) and animate those suckers.

We know how we want the boss battle to go down, and we know what the new
challenger looks like. Now, it's time to build a boss.

Crown the king
To develop the boss battle, we are going to use everything you have learned
throughout this book to assemble a single combat event in a 2D world. If you have
not cracked your knuckles yet, now would be the time to do that. Always crack
your knuckles before doing something awesome—it lets people know to stand back
and observe the awesome event as it goes down. This is a great time to be excited.
You are near the end of your production. This is the pinnacle of the game, where
you have led your player to a final experience.

Place your animated boss in the scene and name it Boss. Also, add the
TakeDamageFromPlayerBullet script component to the Boss object, and make
sure the Boss object has a Polygon Collider 2D component.

With the collision dealt with, let's set up an event to start the boss battle. We
are going to create a counter whose count increases when you kill enemies.
After 10 enemies are defeated, the boss will spawn. Create a new script called
BossEventController. Add the new component to the Boss object and code it up
as shown in the following code:

using UnityEngine;
using System.Collections;
using System.Collections.Generic; // This is needed to support
 //list objects

public class BossEventController : MonoBehaviour
{
 public delegate void bossEventHandler(int scoreMod);
 public static event bossEventHandler bossDied;

 public GameObject inActiveNode = null;
 public GameObject dropToStartNode = null;

The Ultimate Battle of Ultimate Destiny

[88]

 public GameObject dropFXSpawnPoint = null;
 public List<GameObject> dropNodeList =
 new List<GameObject>();
 public GameObject bossDeathFX = null;
 public GameObject bossDropFX = null;
 public TakeDamageFromPlayerBullet
 bulletColliderListener = null;

 public float MovespeedmoveSpeed = 0.1f;
 public float eventWaitDelay = 3f;
 // Amount of time to wait between each event

 public int enemiesToStartBattle = 10;

 public enum bossEvents
 {
 inactive = 0,
 fallingToNode,
 waitingToJump,
 waitingToFall,
 jumpingOffPlatform
 }

 // Current event to cycle on each Update() pass
 public bossEvents currentEvent = bossEvents.inactive;

The boss is a bit more complex than your average run-of-the-mill red dome on
treads. As a result, he will need a number of additional variables to track what's
going on. The biggest ones you'll want to pay attention to here are the event timers,
which—as you may expect—control events in the battle sequence based on engine
time. The following variables are used to control the timed boss events:

 // The node object that the boss will be
 falling towards.
 private GameObject targetNode = null;

 // Amount of time to wait until jumping or
 falling again.
 private float timeForNextEvent = 0.0f;

 // Target position used for when jumping off a platform.
 private Vector3 targetPosition = Vector3.zero;

Chapter 5

[89]

 // Current health of the boss
 public int health = 20;

 // Health to start the boss at whenever the battle
 begins
 private int startHealth = 20;

 // Used to determine if the boss has been defeated
 private bool isDead = false;

 // How many enemies left to kill before the boss is
 spawned
 private int enemiesLeftToKill = 0;

Note that in the following OnEnable and OnDisable functions, we're using all
existing events. This reuse is part of their power—events can be continuously
reused to check the same actions!

 void OnEnable()
 {
 bulletColliderListener.hitByBullet +=
 hitByPlayerBullet;
 EnemyControllerScript.enemyDied += enemyDied;
 }

 void OnDisable()
 {
 bulletColliderListener.hitByBullet -=
 hitByPlayerBullet;
 EnemyControllerScript.enemyDied -= enemyDied;
 }

 void Start()
 {
 transform.position = inActiveNode.transform.position;
 enemiesLeftToKill = enemiesToStartBattle;
 }

 void Update()
 {
 switch(currentEvent)
 {

The Ultimate Battle of Ultimate Destiny

[90]

 case bossEvents.inactive:
 // Not doing anything, so nothing to do.
 break;

You may be asking yourself, as your eyeballs roll over the following case statement,
"Yo, mister writer! Why don't we just use one of the Rigidbody 2D things and let the physics
engine drop 'em? Eh?". The question itself though is fabulous! And I have a fabulous
answer for you—physics have chaos.

So, you may think the boss is going to land in a specific position, but certain things
may cause it to not happen. Maybe another object collides with it and pushes it
off course. Maybe the physics causes it to not stop at the exact position you want.
Essentially, this is the safest method—use movement functions to put the boss where
you want it to be. If you were working on a big action-oriented game and wanted an
enemy to jump a long distance—such as the Handymen in BioShock Infinite—chances
are you would shut off the physics for the enemy, move it along an arc, and when it
landed, turn the physics back on. Doing all this means there will never be any misses,
which is exactly what the following code does:

 case bossEvents.fallingToNode:
 if(transform.position.y >
 targetNode.transform.position.y)
 {
 // Movespeed here is negative,
 //so the object moves downwards
 transform.Translate(new Vector3(0f,
 -moveSpeed * Time.deltaTime, 0f));
 if(transform.position.y < targetNode.
 transform.position.y)
 {
 Vector3 targetPos =
 targetNode.transform.position;
 transform.position = targetPos;
 }
 }
 else
 {
 // Create the 'Hit Ground' smoke FX
 createDropFX();

 timeForNextEvent = 0.0f;
 currentEvent = bossEvents.waitingToJump;
 }
 break;
 case bossEvents.waitingToFall:

Chapter 5

[91]

 // Boss is waiting to fall to another node
 if(timeForNextEvent == 0.0f)
 {
 timeForNextEvent = Time.time + eventWaitDelay;
 }

 else if(timeForNextEvent < Time.time)
 {
 // Need to find a new node!
 targetNode = dropNodeList
 [Random.Range(0,dropNodeList.Count)];

 // Set the boss position to the sky position of
 // this node
 transform.position =
 getSkyPositionOfNode(targetNode);

 // Set the event state
 currentEvent = bossEvents.fallingToNode;
 timeForNextEvent = 0.0f;
 }
 break;

 case bossEvents.waitingToJump:
 // Boss is on a platform and is just waiting to
 //jump off of it
 if(timeForNextEvent == 0.0f)
 {
 timeForNextEvent = Time.time + eventWaitDelay;
 }
 else if(timeForNextEvent < Time)
 {
 // Build the target position based on the
 // current node
 targetPosition =
 getSkyPositionOfNode(targetNode);

 // Set our event state
 currentEvent = bossEvents.jumpingOffPlatform;
 timeForNextEvent = 0.0f;

 // Also set the target node to null so we know
 // to find a random one when it's time to fall
 // to one again

The Ultimate Battle of Ultimate Destiny

[92]

 targetNode = null;
 }
 break;

 case bossEvents.jumpingOffPlatform:
 if(transform.position.y < targetPosition.y)
 {
 // MovespeedMoveSpeed is positive here, causing
 // the object to move upwards
 transform.Translate(new Vector3(0f,
 MovespeedmoveSpeed * Time.deltaTime, 0f));

 if(transform.position.y > targetPosition.y)
 transform.position = targetPosition;
 }
 else
 {
 timeForNextEvent = 0.0f;
 currentEvent = bossEvents.waitingToFall;
 }
 break;
 }
 }

 public void beginBossBattle()
 {
 // Set the first falling node and have the boss
 // fall towards it
 targetNode = dropToStartNode;
 currentEvent = bossEvents.fallingToNode;

 // Reset various control variables used to track
 // the boss battle
 timeForNextEvent = 0.0f;
 health = startHealth;
 isDead = false;
 }

 Vector3 getSkyPositionOfNode(GameObject node)
 {
 Vector3 targetPosition =
 targetNode.transform.position;
 targetPosition.y += 9f;

Chapter 5

[93]

 return targetPosition;
 }

 void hitByPlayerBullet()
 {
 health -= 1;

 // If the boss is out of health – kill 'em!
 if(health <= 0)
 killBoss();
 }

 void createDropFX()
 {
 GameObject dropFxParticle =
 (GameObject)Instantiate(bossDropFX);
 dropFxParticle.transform.position =
 dropFXSpawnPoint.transform.position;
 }

Killing any enemy, boss or regular, is a little delicate. In the case of our standard tank
enemies, we just spawn a particle system and destroy the Enemy object. In the case of
the boss, however, we want to reuse the Boss object. Why? So you can learn how to
reuse an enemy! You're very welcome.

So, what we're going to do here is check whether the enemy is dead, and if not,
generate an emitter, move the boss, and end the battle, using the following code
in the BossEventController script:

 void killBoss()
 {
 if(isDead)
 return;

 isDead = true;

 GameObject deathFxParticle =
 (GameObject)Instantiate(bossDeathFX);

 // Reposition the particle emitter at the same
 // position as dropFXSpawnPoint
 deathFxParticle.transform.position =
 dropFXSpawnPoint.transform.position;

The Ultimate Battle of Ultimate Destiny

[94]

 // Call the bossDied event and give it a score of
 // 1000.
 if(bossDied != null)
 bossDied(1000);

 transform.position = inActiveNode.transform.position;

 currentEvent = BossEventController.bossEvents
 inactive;
 timeForNextEvent = 0.0f;
 enemiesLeftToKill = enemiesToStartBattle;
 }

 void enemyDied(int enemyScore)
 {
 if(currentEvent == bossEvents.inactive)
 {
 enemiesLeftToKill -= 1;
 Debug.Log("--- Enemies left to start boss battle:
 " + enemiesLeftToKill);
 if(enemiesLeftToKill <= 0)
 beginBossBattle();
 }
 }
}

Now that indeed was a bit of code—lots of good stuff in there though, and lots
that you should now recognize! Let's go through and review some of the
important elements.

Note that at the very beginning, we create a new event for bossDied. This is exactly
the same as our normal enemyDied event, which is used to track the change in scores.

This would be a perfect opportunity for you to expand on the
boss battle by making use of the existing events that the enemies
have. Evoke them to react when the boss dies! Make them angry!
Make it so that a swarm of enemies spawn out of anger! Have
fun with it because those tanks are mad!

Chapter 5

[95]

Let's inform the ScoreWatcher script to pay attention to the bossDied event.
Open up ScoreWatcher and add an event listener to OnEnable:

BossEventController.bossDied += addScore;

And, of course, be sure to unregister the event in OnDisable:

BossEventController.bossDied -= addScore;

Now, you can earn points whenever the boss gets killed.

Add an extra event to allow the player to earn points
whenever the boss takes damage.

Next, you will notice that we use a bunch of nodes. These nodes are simple—the
term node is used here to refer to anything that is locational. A node is nothing more
than a GameObject that contains nothing more than a Transform section, as shown
in the following screenshot:

You may have noticed that anywhere we define these nodes in the
code, we always define a full GameObject, and from there, we access
it with nodeGameObject.transform.position. Well, that's not
entirely needed! You may already know this, but Unity allows you
to set a property in the Inspector panel with a component on another
object! This means you could actually define the nodes as Transform
thisNode; instead of GameObject thisNode;. If you challenge
yourself to modify the code like this, then you can access a node's
position by simply using thisNode.position. Handy!

The Ultimate Battle of Ultimate Destiny

[96]

For the boss, we have defined some initial nodes to be used during its initial drop
at the start of the battle, which allows us to control where he goes. This doesn't
do much aside from moving the boss to its initial starting point, but it could be
expanded to make the boss fly around, jump about, or do whatever you desire.

Need another challenge? We just mentioned giving the boss
an introduction sequence. Have a go at it!

Next, we have something new—a List object called dropNodeList. A list is essentially
a container, like an array. Unlike an array though, you can use functions in a list to
quickly search and see if it contains objects, add objects, pops them out, and—the best
part—it's way faster than an array while working with numerous objects.

Need to know more about C# object types? Check out the Microsoft
Developer Network located online at http://msdn.microsoft.
com/. From there, you can get all sorts of resources, including
information about object types! Just type something, for example,
List, in the search box, and you'll be educated in no time.

The dropNodeList object allows us to define a bunch of target nodes for the boss
to drop to, without needing to know how many nodes there will be. Note that to
use the List object type, we have to add the following code at the beginning of
the script file, which you should have already done:

using System.Collections.Generic;

You will now want to add these nodes to the game world. Nodes can simply be
a GameObject with nothing more than a Transform, or if you want to be able to see
them, create a sprite image just for the purpose of displaying them. Create a node for
dropToStartNode and another for inActiveNode. Place the dropToStartNode object
on the platform you want the boss to first drop towards, and place the inActiveNode
object directly above it, only high above so that it can't be seen in normal gameplay.
To make node alignment extra clear, use the boss sprite itself—then there's no
question as to where the boss will land! Just be sure to add a quick component that
will hide the sprite when the game begins!

Chapter 5

[97]

The following screenshot shows how we laid out our nodes:

Assign those nodes to the appropriate slots in the Inspector panel for the Boss object.
Create additional nodes for landing points where you want the boss to fall during his
attacks, position them around the world, and add each of them to the Boss object's
DropNodeList.

Dusty platforms
The boss landing on the platform is pretty cool, but it doesn't really evoke a sense
of dread (or as us gamers like to call it, "oh holy biscuits what is that?!"). What would
really help here is we should have a nice impact effect when the boss lands on
a platform, so let's make the boss emit dust when he slams against the ground.
To do this, perform the following steps:

1. Create another empty GameObject node and name it DropFXSpawnPoint.
2. Make the new object a child of the Boss object and position it near the

bottom-center of the boss sprite.
3. Create a particle system that looks like dust/smoke bursting out; this

will be used whenever the boss lands on a platform to give a nice visual.
Use the particle image in Sprites\Particles\Particle_Smoke.png.

The Ultimate Battle of Ultimate Destiny

[98]

4. Make the new particle system a Prefab, and then attach this new Prefab
to the Boss Drop FX field of the Boss object.

5. Add the DropFXSpawnPoint node to the Drop FXSpawn Point field.

Now, when the boss falls onto a platform, he should end up looking a little bit like
the following image:

You will want to create a good particle emitter effect as well for when the boss is
defeated. Add the BossDeathFX object to the Boss Death FX field in the Inspector
panel of the Boss object. We've included a Prefab with the example project, which
is a nice, showering explosion of red metal shards. They burst everywhere and rain
down the screen for a few moments, making a very satisfying visual to defeat the boss.

Crushing defeat
We're almost done! The boss needs to be able to actually kill the player, rather than
the current action where it just makes the player jiggle around a bit. In fact, when the
boss drops on enemies, even they jiggle around a bit. Let's make it such that the boss
crushes anything that he lands on.

Chapter 5

[99]

The boss should only be able to kill the player and enemies by squishing them
when he falls. To support this, create a new empty GameObject, call it Boss Crush
Zone, and make it a child of the Boss object. Give it a Box Collider 2D component,
and make it such that its size covers the bottom portion of the boss by setting its
Transform position as X: 0, Y: -0.175, the Size fields to X: 3.74, Y: 0.2, and
set the Center to X: 0, Y: 0.09. It should now be aligned at the bottom-center, as
shown in the following image:

Create a new script called BossCrushTrigger, attach it to the Boss Crush Zone
object, and code it up as shown in the following code:

using UnityEngine;
using System.Collections;

public class BossCrushTrigger : MonoBehaviour
{
 public BossEventController bossController;

 void OnTriggerEnter2D(Collider2D collidedObject)
 {
 if(bossController.currentEvent !=
 BossEventController.bossEvents.fallingToNode)
 return;

 if(collidedObject.tag == "Player")
 collidedObject.SendMessage("hitByCrusher");
 }
}

The Ultimate Battle of Ultimate Destiny

[100]

Note that we checked the object's tag to see whether it's the player or not. Since we
now have different types of objects colliding with one another, we need a way to test
these collisions. Sure, we can keep setting up collision layers, but tags can be handy
too. Perhaps, you have a field of flowers, which are all the same object, but you want
only one of them to be pickable. You could give that one flower a Pickable tag.
Pretty handy, eh? So, make sure that the tag of the Player object is set to Player.
The Player tag is added by default to a new project, so you don't have to worry
about adding it.

Oh, and don't forget to populate the Boss Controller field on the Boss Crush Zone
object. Next, modify PlayerStateListener to listen for the hitByCrusher message.
Add the following function anywhere you want in PlayerStateListener:

public void hitByCrusher()
{
 onStateChange(PlayerStateController.playerStates.kill);
}

Now, whenever the boss lands on the player, the player will get killed; however, not
when the boss collides with the player in other ways! As always, feel free to change
and improve on the code as you desire. Note that enemies give the player points
when they are defeated, but you won't want the boss crushing the enemy to earn the
player points. Take a stab at working through the code to make that happen on your
own. If you get stuck, take a look at what we did in the example project.

Summary
Play the game now and enjoy fighting with the enemies, taking on the boss,
and repeating. The game is now a rather complete game that cycles endlessly with
enemies and a boss.

Now that was a rush! A big freaking boss dropping out of the sky? Yeah, those
robots were pretty upset, but your elite coding skills gave them both a defender
and a way to beat that defender.

There are a few final things to do before we're done here, including some cleanup.
In the next and final chapter, we'll discuss:

• Implementing game rounds with an increase in game difficulty
• Creating a basic start screen

The Finishing Touches
Now, this is a solid game. You've got enemies, you've got a player, and you've even
got a freaking boss! How cool is that? I'll tell you how cool—it's wicked cool! Now
only if it had a start screen and rounds that got more difficult. Oh, what the heck!
I've got a few more minutes. Let's wrap up the book by adding those in. Let's add
in the following:

• Game rounds
• Increasing enemy difficulty with each round
• A title screen

Game rounds
Back in the day of classic games—we're talking the times of Pac-Man and Tetris—the
gameplay became more difficult with each playthrough of the game. Just like those
titles of yesteryear, we should have our example game become more difficult each
time you pass through it by defeating the boss. Start off by adding a new 3D Text
object called Round. Place it in the upper-right corner of the screen and set it up
exactly the way you did with the Score object, making it a child of the Main Camera
object and everything. Also, set its Alignment field to right and its Anchor to upper
right so that it will properly show on the right-hand side of the screen.

Create a new script called RoundWatcher, attach it to the Round object, and make
it look like the following code:

using UnityEngine;
using System.Collections;

[RequireComponent(typeof(TextMesh))]
public class RoundWatcher : MonoBehaviour
{

The Finishing Touches

[102]

 public int currRound = 1;
 private TextMesh roundDisplayMesh = null;

 void Start ()
 {
 roundDisplayMesh = gameObject.GetComponent<TextMesh>();

 currRound = 1;
 roundDisplayMesh.text = "Round: " + currRound.ToString();
 }

 void OnEnable()
 {
 BossEventController.bossDied += increaseRound;
 }

 void OnDisable()
 {
 BossEventController.bossDied -= increaseRound;
 }

 void increaseRound(int ignore)
 {
 currRound += 1;
 roundDisplayMesh.text = "Round: " + currRound.ToString();
 }
}

Now, whenever you defeat the boss, the round will increase by one. Let's use that
same round number to make things more difficult for the player. In the Text Mesh
field of the Round object, name its tag RoundWatcher.

If you don't remember how to set up tags, we'll remind you; they're easy! Just click
on the Tag drop-down menu in the Inspector panel, add a new tag, and then
go back to the object and select the tag in the drop-down menu.

Open up EnemyControllerScript and add the following code at the bottom of the
Start() function:

 // Find the round watcher object
 GameObject roundWatcherObject = GameObject.FindGameObjectWithT
ag("RoundWatcher");

 if (roundWatcherObject != null)
 {

Chapter 6

[103]

 RoundWatcher roundWatcherComponent = roundWatcherObject.
GetComponent<RoundWatcher>();

 // Increase the enemy speed for each round.
 walkingSpeed = walkingSpeed * roundWatcherComponent.
currRound;
 }

Make sure to also reduce the initial Walking Speed value of the enemy to 0.25, or
else they will get crazy fast very quickly. Also, make a note that after a while, the
enemies will start shooting out of the vortexes so quickly that they can actually get
trapped in the scenery. Challenge yourself to adjust the code to either cap the enemy
speed, make the enemies drop out of the vortexes instead of shooting out at their
current speed, or come up with your own solution. That's the beauty of games such
as these—the solution that you feel is right is most likely the correct one.

Give it a start screen
Finally, to wrap everything up, let's go through implementing a quick, button-based
dialog. We're going to add in a start screen with a simple logo to the game as well as
a start button.

As discussed earlier, using Unity's GUI system is generally not the best option due
to its drawbacks, so we will be using more sprites here. There are two key problems
with Unity's native GUI system. The first is performance—it is very slow compared
to other solutions due to using a lot of render calls. Secondly, it is extraordinarily
time consuming to build a UI with. There is no visual editor, which means you have
to write everything in code; it's like HTML in the early '90s all over again. Many
people, however, do swear by Unity's native GUI, but overall it's not for everyone.
This is exactly why Unity is working on overhauling the entire system with a new
GUI system to be added in a future update to the engine.

Let's create some containers so that we can show only what we want. Create two
empty GameObjects and make them both the children of the Main Camera object.
Name the first one Container - HUD and the second one Container - Start. Set
the position of both of these GameObjects to X: 0, Y: 0, Z: 0 to position them at the
center of the camera. Move the Round and Score objects to the project Hierarchy tab
so that they become the children of the Container - HUD object.

Import the Title Screen imagery to the project and set them up as sprites like you
have done before. Place the Title sprite in the Container - Start object, give it a nice
position and scale, and set the Order in Layer field to 100 so that it appears in front
of everything else.

The Finishing Touches

[104]

Now for the start button! Add another empty GameObject, name it Start Button,
and place it inside the Container – Start object. Give them both an Order in Layer
property of 100, and make sure they are both in the exact same location with the
exact same scale. Add a Box Collider 2D component on the Start Button object
itself, and make sure the collider completely surrounds the button imagery inside.
The Box Collider 2D component will actually allow the StartButtonController script,
which we will write in a couple pages, to accept mouse events.

Your hierarchy should now look a little something like the following screenshot:

If you're worried that the gameplay elements—enemies and the player—could
collide with the UI, then you have a very valid concern! Addressing this is easy.
First, add a new layer called UI. Now, set all of the UI elements to the UI layer.
Finally, adjust Physics 2D Layer Collision Matrix in the physics settings, just like
before, to prevent collisions. After you edit the matrix, you'll have a setup that looks
like the following screenshot:

Chapter 6

[105]

You should now have a screen that looks something like the following screenshot:

While Unity is, at the time of this writing, working on integrating
an all-new GUI system, there are some excellent GUI solutions in
the asset store. For example, check out NGUI and Scaleform.

Now you've got a basic title screen set up. Let's add in some basics so that we can
control which UI containers are displayed. Add a new script called GameStates,
attach it to the Main Camera, and make it look like the following script. You could
technically add the GameStates script to any object—the camera is just a nice,
existing central object.

using UnityEngine;
using System.Collections;

The Finishing Touches

[106]

public class GameStates : MonoBehaviour
{
 public GameObject hudContainer;
 public GameObject titleContainer;
 public static bool gameActive = false;

 public enum displayStates
 {
 titleScreen = 0,
 hudScreen
 }

 void Start()
 {
 changeDisplayState(displayStates.titleScreen);
 }

 public void changeDisplayState(displayStates newState)
 {
 hudContainer.SetActive(false);
 titleContainer.SetActive(false);

 switch(newState)
 {
 case displayStates.titleScreen:
 gameActive = false;
 titleContainer.SetActive(true);
 break;

 case displayStates.hudScreen:
 gameActive = true;
 hudContainer.SetActive(true);
 break;
 }
 }

 public void startGame()
 {
 changeDisplayState(displayStates.hudScreen);
 }
}

Chapter 6

[107]

The last thing you will need is a way to interface with the START! button. Create
one final script called StartButtonController and code it as shown in the
following script:

using UnityEngine;
using System.Collections;

public class StartButtonController : MonoBehaviour
{
 public GameObject upSprite;
 public GameObject downSprite;
 public float downTime = 0.1f;
 public GameStates stateManager = null;

 private enum buttonStates
 {
 up = 0,
 down
 }

 private buttonStates currentState = buttonStates.up;
 private float nextStateTime = 0.0f;

 void Start()
 {
 upSprite.SetActive(true);
 downSprite.SetActive(false);
 }

 void OnMouseDown()
 {
 if(nextStateTime == 0.0f && currentState ==
StartButtonController.buttonStates.up)
 {
 nextStateTime = Time.time + downTime;
 upSprite.SetActive(false);
 downSprite.SetActive(true);
 currentState = StartButtonController.buttonStates.down;
 }
 }

 void Update()

The Finishing Touches

[108]

 {
 if(nextStateTime > 0.0f)
 {
 if(nextStateTime < Time.time)
 {
 // Set the button back to its 'up' state
 nextStateTime = 0.0f;
 upSprite.SetActive(true);
 downSprite.SetActive(false);
 currentState = StartButtonController.buttonStates.up;

 // Start the game!
 stateManager.startGame();
 }
 }
 }
}

Now that you've added StartButtonController to the start button, populate its
various fields and you can try it out! Now when you start the game, it will launch on
the title screen, and when you click on the START! button, it will go to the gameplay
we have seen this whole time.

Once you play the game, you will probably notice the one final thing we need
to clean up. The player is able to move on the title screen. Let's use that global
GameStates.gameActive Boolean field to fix that.

Let's fix the player movement first. Open PlayerStateController, and at the
beginning of LateUpdate(), add the following code:

if(!GameStates.gameActive)
 return;

Now the game won't accept any input unless it is actually active. Other ways to
accomplish this include setting the timescale of the engine to 0 when the game isn't
running, or only generating the player and enemies after the game starts. Also, if you
haven't done so already, remove the enemy from the center platform. We don't need
him to be on top of the player as soon as the game starts!

Pro tip
Using sprites or 3D models for our GUIs gives us the added benefit of
having animated elements. Try your hand at making the buttons scale,
the UI slide in and out of the screen, and in general, just have fun with
Unity's animation tool to create awesome GUI animations!

Chapter 6

[109]

Summary
In this final chapter, you learned how to set up game rounds that affected the
gameplay and build out a simple menu screen.

It has been quite a journey. At this point, you should have a very good feeling for what
it takes to build a 2D game in the Unity game engine. Overall, it is a rather simple
transition from 3D to 2D games, provided you follow the guidelines listed in this book.

In reality, much of what was discussed here are raw examples, and they can be
greatly improved, merged, or generally molded to be more of what your game
needs. There is so much that could be expanded upon to turn RageTanks into a
true platformer with more levels, more bosses, more enemies, and even multiple
characters. And with the power of Unity and the techniques described in this book,
this would be quite easy to do.

So, diligent reader, where should you go from here? Why don't you try expanding
RageTanks on your own! Here are some things you can try:

• Give the player health and a visual health bar, and make it lose health with
each touch of an enemy rather than simply dying

• Add in health pickups for the player to collect
• Make the enemies capable of firing weapons at the player when the player

is nearby
• Give the boss improved AI so that he will try and land on the player
• In the boss battle, give the player a fighting chance; add a warning arrow

to the platform that the boss will land on

Pro tip
Take your Unity game development to an entirely new plane
of reality. Pick up other Unity books from Packt Publishing to
understand the engine from every possible angle, allowing your
capabilities to be nothing short of godly.

Thank you, dear reader, for taking the time to read this book. It has been a pleasure
writing it, and I hope you have had just as much fun reading it as I did writing. Most
importantly, I hope you have learned quite a lot from this book and are now much
more comfortable in producing 2D games in the Unity game engine!

Until the next book, this is your friendly neighborhood Dave Calabrese, signing off.

Index
Symbols
2D game

animations, setting up for player 14-20
building 9, 10
challenge 26, 27
images, creating for 10
import settings, for sprite platform 10
platform, getting into scene 10-12
player, creating 12, 13
player, moving around scene 21-25
player, placing in world 14

2D game engine 6
3D game engine 6

A
Animator component 15
Animator Editor tab 18

B
boss battles game

about 85
boss, landing on dusty platforms 97, 98
boss look, determining 86, 87
crushing defeat 98-100
developing 87-96

Box 2D physics engine 6
box collider 34
Box Collider 2D 11
bullet

auto-destroying 55

C
C# 7
camera

script component, creating for 30-33
Cerulean Games 73, 86
code

creating, for collision identification 43, 44
collider

providing, to player 34, 35
collision mask

about 63
creating, for player 64

D
death colliders

adding, to scene 35, 36
Death Trigger GameObject

adding, to scene 35, 36
Defense Collider object 65
delegates 29
DirectX 6

E
enemies

searching 81-83
enemy difficulty

increasing, with rounds 102, 103
enemy object

creating 57-59
moving 60-63

events 29
event timers 88

[112]

G
game engines 6
game rounds

overview 101-103
gamers 6
games

technological advancements 5
game world

expanding 71, 72
glitch

identifying, during jump 45-49

I
images

creating, for 2D game 10

L
lerping 30

M
Mecanim system 14
multiple enemies

on same platform 70

O
OpenGL 6
orthographic camera 8

P
parallax layer ordering

overview 75-77
parallax scrolling

about 9
overview 73, 74

perspective camera 8, 9
player

collider, providing to 34, 35
collision mask, creating 64

dangerous features, adding 50-55
fighting back 65-69
standard platform, creating for jump 49, 50

player death
handling 37

player respawn
handling 37

PlayerStateListener script
player death, handling 37
player respawn, handling 37

Polygon Collider 2D 11
projection modes, camera

orthographic 8
perspective 8

project wizard, Unity 7

R
Ragetanks project 7
Rigidbody 34

S
score system

implementing 78-80
script component

creating, for camera 30
Shoebox 12
Softbody 34
sprite 10
sprite atlas 12
sprite sheet 12
start screen

providing, to game 103-108
state machines 29
states

adjusting, for jumping support 38-40
State System 25

T
Texture Packer 12
triggers 60

[113]

U
unique collider mesh

creating 40-42
Unity

about 8
project wizard 7

Unity 3D
URL 6

Unity 4.3 8

V
video games 5

Thank you for buying
Unity 2D Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3.x Scripting
ISBN: 978-1-84969-230-4 Paperback: 292 pages

Write effcient, reusable scripts to build custom
characters, game environments, and control enemy
AI in your Unity game

1. Make your characters interact with buttons
and program-triggered action sequences.

2. Create custom characters and code dynamic
objects and players' interaction with them.

3. Synchronize movement of character
and environmental objects.

4. Add and control animations to new
and existing characters.

Unity 3.x Game Development
Essentials
ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects,
and more!

1. Kick start your game development, and build
ready-to-play 3D games with ease.

2. Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more.

3. Test & optimize your game to perfection with
essential tips-and-tricks.

Please check www.PacktPub.com for information on our titles

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun,
groovy little games quickly

1. Build fun games using the free Unity 3D game
engine even if you've never coded before.

2. Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3. Deploy your games to the Internet so that your
friends and family can play them.

4. Packed with ideas, inspiration, and advice for
your own game design and development.

Unity iOS Essentials
ISBN: 978-1-84969-182-6 Paperback: 358 pages

Develop high performance, fun iOS games using
Unity 3D

1. Learn key strategies and follow practical
guidelines for creating Unity 3D games for
iOS devices.

2. Learn how to plan your game levels to optimize
performance on iOS devices using advanced
game concepts.

3. Full of tips, scripts, shaders, and complete
Unity 3D projects to guide you through game
creation on iOS from start to finish.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to the 2D
World of Unity
	Remembering the past to build the future
	The 2D world of Unity
	The perspective camera
	Getting grounded
	Making new friends
	Let's move it!
	Gotta move it!
	Make 'em run!
	Summary

	Chapter 2: It Lives!
	Cameras – they now stalk us!
	Falling to your doom!
	Falling fatally into death colliders
	Death and resurrection – respawning
	Jump to it!
	Jumping for fun (and profit)

	Not missing the ground
	Wait, did I collide with something?
	Got a glitch?
	Making the world bigger
	Let's get dangerous
	Bullets are better when they hit things
	Summary

	Chapter 3: No Longer Alone
	Making enemies
	Make it move
	Make it deadly
	Let's go huntin'!
	The swarm
	Summary

	Chapter 4: Give It Some Sugar
	Expanding the world!
	Parallax scrolling
	Parallax layer ordering

	Let's score!
	Enemies – forever!
	Summary

	Chapter 5: The Ultimate Battle of Ultimate Destiny
	Meet the king
	Crown the king
	Dusty platforms
	Crushing defeat
	Summary

	Chapter 6: The Finishing Touches
	Game rounds
	Give it a start screen
	Summary

	Index

