

Unity 4.x Game Development

by Example Beginner's Guide

A seat-of-your-pants manual for building fun, groovy

little games quickly with Unity 4.x

Ryan Henson Creighton

BIRMINGHAM - MUMBAI

Unity 4.x Game Development by Example Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Second edition: September 2011

Third edition: December 2013

Production Reference: 1191213

Published by Packt Publishing
Ltd. Livery Place
35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-526-8

www.packtpub.com

Cover Image by Dan John Cox (http://danjohncox.tumblr.com/)

Credits

Author Project Coordinator

Ryan Henson Creighton Venitha Cutinho

Reviewers Proofreaders

Trond Abusdal Elinor Perry-Smith

Huzaifa Arab Mario Cecere

John Hutchinson Bridget Braund

Wei Wang

 Indexers

Acquisition Editors Mariammal Chettiyar

Wilson D'souza Mehreen Deshmukh

Mary Jasmine Nadar Rekha Nair

Owen Roberts Tejal Soni

Lead Technical Editors Graphics

Owen Roberts Sheetal Aute

Poonam Jain

 Production Coordinator

Technical Editors Nitesh Thakur

Tanvi Bhatt

Akashdeep Kundu Cover Work

Nitesh Thakur

Edwin Moses

Nikhil Potdukhe

Tarunveer Shetty

Faisal Siddiqui

Sonali Vernekar

About the Author

Ryan Henson Creighton is a veteran game developer, and the founder of Untold
Entertainment Inc. (http://www.untoldentertainment.com) where he creatively

consults on games and applications. Untold Entertainment creates fantastically fun interactive

experiences for players of all ages. Prior to founding Untold, Ryan worked as the Senior Game

Developer at Canadian media conglomerate Corus Entertainment, where he created over fifty

advergames and original properties for the YTV, Treehouse TV, and W networks. Ryan is the

co-creator of Sissy's Magical Ponycorn Adventure, the game he authored with his then five-

year-old daughter Cassandra. Ryan is the Vice President of the IGDA Toronto Chapter. He is

also the author of the book that you are currently reading.

When Ryan is not developing games, he's goofing off with his two little girls and his
fun-loving wife in downtown Toronto.

Big thanks to Cheryl, Cassandra, and Isabel for their love, their support, and

their cinnamon rolls. Thanks to Jean-Guy Niquet for introducing me to Unity;

to Jim "McMajorSupporter" McGinley for help with the book outline and

ongoing mentorship; to the technical reviewers and Packt Publishing staff for

letting me leave a few jokes in the book; and to David Barnes, for having such

a great sense of humor in the first place. Special thanks to
Michael Garforth and friends from the #unity3d IRC channel on Freenode.
I also want to thank Mom, God, and all the usual suspects.

About the Reviewers

Trond Abusdal, though having been interested in computers since his parents bought him
and his brother a C64 in the early 90s, he first got into programming years later when
writing a modification for Quake2 with a childhood friend.

This interest lead to a bachelor's degree in Computer Science in 2006, after which he started

working for TerraVision, a company using game technologies as a tool for education and

visualization. In 2008, he first got introduced to Unity, which is still his main game development

tool, although knowledge of other technologies and tools often come in handy.

Since 2010, he is a programmer and more recently a partner at Rock Pocket Games, which

makes games for a variety of different platforms, both client projects and internal projects.

Huzaifa Arab is a Game Designer by choice and a Game Programmer by need. He has been
playing games since young age, which progressed to Modding/Map-making/Scripting, when he
realized that some games could be a whole lot more fun if he could put his own twist
in them. And so, his hobby became a professional career choice after formally
graduating from DSK Supinfogame, India (where his team won the prestigious Square
Enix Game Dev Competition). After a year of freelance Game Development, he currently
works at Tiny Mogul Games, India, as a Principal Game Designer.

He loves to connect with people interested in Human Computer Interface, Game Engines/
VR Tech, Game Design in Education, and Instrumental music. You can drop him a line
at arabhuzaifa@gmail.com.

I would like to thank Packt Publishing for giving me an opportunity to
review a book on Unity 3D, a technology I am so passionate about. I
would like to thank my best friend Angad for recommending me to Packt
Publishing and I would like to thank my family and co-workers/friends
for their support as I took time out to review such a wonderful book.

John Hutchinson is the founder of Rubber Ducky Games, an independent
game development studio based in California.

In addition to being an exceptional programmer in multiple languages and
frameworks, he is an experienced graphic designer, talented game system architect
and gets excited about experience-focused design (and rubber duckies).

He is especially interested in games which push the boundaries of twitch-reflex
response, explore human emotion, or leverage the interactive medium for more
powerful learning experiences.

He is currently working with Making Friends Inc. as Lead Engineer and as part of the core
design team, to deliver a game intent on teaching kids on the Autism-Asperger's
spectrum valuable social skills.

When his face isn't glued to a computer screen he likes to play with his kids, explore
board game design, and read technical books like this one.

Thanks to my brothers, for providing feedback (and teaching me some things

about games). To my sister, for making me feel like a hero (not a robot). To my

parents, for teaching me to be caring and to work my butt off. And to my kids,

for just being you. I love you all more than words can express.

Wei Wang made his first iOS casual game with Unity 3D in his college time, which got big
success with more than 5 million downloads world-wide. Since then, he has discovered it's
a great thing to make great games. After earning his master's degree from Tsinghua
University (one of the best universities in China), he joined a game company in Japan and
now he is trying to create interesting games with Unity 3D.

Right now, he is a skilled engineer and always eager to learn more. He now lives in Kawasaki
with his wife. You can know more about him from his project's page http://project.
onevcat.com or find him on his blog http://onevcat.com (Chinese). You can also
follow him on twitter @onevcat.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book

library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

‹

‹

‹

‹

‹

‹

Fully searchable across every book published by

Packt Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1

Chapter 1: That's One Fancy Hammer! 9

Introducing Unity 3D 9
The engine, the tool, and the all-weather tires 10
Unity takes over the world 11
Why choose Unity? 11
Why burn this book and run away screaming? 12
Browser-based 3D – welcome to the future 13
Time for action – install the Unity Web Player 13
Welcome to Unity 3D! 14
What can I build with Unity? 14

FusionFall 14
Completely hammered 15
Should we try to build FusionFall? 15
Another option 16

Off-Road Velociraptor Safari 16
Fewer features, more promises 17
Maybe we should build Off-Road Velociraptor Safari? 17

I bent my Wooglie 17
Big Fun Racing 18
Diceworks 18
Lovers in a Dangerous Spacetime 20
Showcase Showdown 20

Unity Technologies – "Made with Unity" page 21
Kongregate 21
The iOS App Store 22

Table of Contents

Walk before you can run (or double jump) 22
There's no such thing as "finished" 23
Stop! Hammer time 23

Fight Some Angry Bots 24
The wonders of technology! 26
The Scene window 26

The Game window 27
The Hierarchy panel 28
The Project panel 29
The Inspector panel 30
Heads Up? 31
Layers and layout dropdowns 33
Playback controls 33
Scene controls 33

Don't stop there – live a little! 34
Summary 35

Big ambition, tiny games 35
Chapter 2: Let's Start with the Sky 37

That little lightbulb 38
The siren song of 3D 39
Features versus content 40
A game with no features 40
Mechanic versus skin 41
Trapped in your own skin 41
That singular piece of joy 42
One percent inspiration 42
Motherload 43

Possible additional features: 45
Heads up! 46
Artillery Live! 46

The skinny on multiplayer 50
Bang for your buck 51

Pong 52
The mechanic that launched a thousand games 54
Toy or story 56
Redefining the sky 58
Summary 59

Let's begin 59

[ii]

 Table of Contents

Chapter 3: Game #1 – Ticker Taker 61

 Kick up a new Unity project 62
 Where did everything go? 63
 'Tis volley 63
 Keep the dream alive 64
 Slash and burn! 64
 The many faces of keep-up 65
 Creating the ball and the hitter 65
 Time for action – create the Ball 66
 A ball by any other name 67
 Time for action – rename the Ball 68
 Origin story 68
 XYZ/RGB 70
 Time for action – move the Ball Into the "Sky" 70
 Time for action – shrink the Ball 71
 Time for action – save your scene 72
 Time for action – add the Paddle 73
 What's a Mesh? 75
 Poly wants to crack your game performance? 78
 Keeping yourself in the dark 78
 Time for action – add a light 79
 Time for action – move and rotate the light 80
 Extra credit 83
 Are you a luminary? 84
 Who turned out the lights? 84
 Darkness reigns 84
 Cameramania 85
 Time for action – test your game 86
 Let's get physical 87
 Add physics to your game 87
 Understanding the gravity of the situation 88
 More bounce to the ounce 89
 Time for action – make the Ball bouncy 89
 Summary 92
 Following the script 93

Chapter 4: Code Comfort 95

 What is code? 95

 Time for action – write your first Unity Script 96

 A leap of faith 97

[iii]

Table of Contents

Lick it and stick it 99
Disappear me! 99

It's all Greek to me 100
You'll never go hungry again 101
With great sandwich comes great responsibility 102
Examining the code 103
Time for action – find the Mesh Renderer component 103
Time for action – make the ball re-appear 104
Ding! 105
Time for action – journey to the Unity Script Reference 105
The Renderer class 107
What's another word for "huh"? 110
It's been fun 111
Time for action – unstick the Script 111
Gone, but not forgotten 112
Why code? 113
Equip your baby bird 113
Time for action – create a new MouseFollow Script 113
A capital idea 115
Animating with code 116
Time for action – animate the Paddle 117
Why didn't the Paddle animate before? 118
Pick a word – (almost) any word 118
Screen coordinates versus World coordinates 119
Move the Paddle 120
Worst. Game. Ever. 121
See the matrix 121
Time for action – listen to the paddle 121
A tiny bit o' math 122
Tracking the numbers 123
Futzing with the numbers 124
Time for action – Log the New Number 124
She's a-work! 125
Somebody get me a bucket 125
Time for action – declare a variable to store the Screen midpoint 126
Using all three dees 128
Time for action – follow the y position of the mouse 129
A keep-up game for robots 129

Once more into the breach 130

[iv]

 Table of Contents

 Time for action – re-visit the Unity Language Reference 130

 Our work here is done 131
 Time for action – add the sample code to your Script 131
 One final tweak 133
 What's a quaternion? 133
 Wait, what's a quaternion? 133
 WHAT THE HECK IS A QUATERNION?? 133
 Educated guesses 134
 More on Slerp 135
 Right on target 136
 Keep it up 137
 Beyond the game mechanic 138
 C# Addendum 138

Chapter 5: Game #2 – Robot Repair 143

 You'll totally flip 144

 A blank slate 145
 You're making a scene 146
 Time for action – set up two scenes 146
 No right answer 147
 Time for action – prepare the GUI 148
 The beat of your own drum 149
 Time for action – create and link a custom GUI skin 150
 Time for action – create a button UI control 152
 Want font? 156
 Cover your assets 158
 Time for action – nix the mip-mapping 159
 Front and center 160
 Time for action – center the button 161
 The waiting game 162
 The easiest button to button 162
 To the game! 164
 Time for action – add both scenes to Build List 165
 Set the stage for robots 166
 Time for action – prepare the game scene 167
 The game plan 167
 Have some class! 168
 Time for action – store the essentials 170

 A matter of great import 171

[v]

Table of Contents

Building a better bucket 172
How big is your locker? 173
Start me up 174
Going loopy 175
The anatomy of a loop 175
To nest is best 176
Seeing is believing 177
Time for action – create an area to store the grid 178
Build that grid 179
Now you're playing with power! 181

C# addendum 182
Chapter 6: Game #2 – Robot Repair Part 2 187

From zero to game in one chapter 187
Finding your center 189
Time for action – centering the game grid vertically 189
Time for action – centering the game grid horizontally 192
Down to the nitty griddy 194

Do the random card shuffle 195
Time for action – preparing to build the deck 195

Let's break some robots 196
Time for action – building the deck 196
Time for action – modifying the img argument 200
What exactly is "this"? 202
Random reigns supreme 205
Second dragon down 205
Time to totally flip 205
Time for action – making the cards two-sided 206
Time for action – building the card-flipping function 207
Time for action – building the card-flipping function 210
Pumpkin eater 212
Stabby McDragonpoker rides again 213
Game and match 213
Time for action – ID the cards 213
Time for action – comparing the IDs 214
On to the final boss 217

Endgame 218
Time for action – checking for victory 218

Endgame 221
Bring. It. On. 222

C# Addendum 228

[vi]

 Table of Contents

Chapter 7: Don't Be a Clock Blocker 235

 Apply pressure 236

 Time for action – preparing the Clock Script 236
 Time for more action – preparing the clock text 237
 Still time for action – changing the clock text color 238
 Time for action rides again – creating Font Texture and Material 240
 Time for action – what's with the tiny font? 244
 Time for action – preparing the clock code 245
 Time for action – creating the countdown logic 246
 Time for action – displaying the time on-screen 248
 Picture it 251
 Time for action – grabbing the picture clock graphics 251
 Time for action – Flex those GUI muscles 253
 The incredible shrinking clock 257
 Keep your fork – there's pie! 258
 How they did it 258
 Time for action – rigging up the textures 260
 Time for action – writing the pie chart script 261
 Time for action – commencing operation pie clock 264
 Time for action – positioning and scaling the clock 267
 Unfinished business 269

 C# Addendum 270

Chapter 8: Hearty Har Har 275

 Welcome to Snoozeville 276

 Model behavior 276
 Time for action – exploring the models 277
 Time for action – hands up! 280
 Time for action – changing the FBX import scale settings 281
 Time for action – making the mesh colliders convex 282
 Time for action – making the hands and tray follow the mouse 284
 Time for action – getting your heart on 284
 Time for action – ditching the Ball and Paddle 287
 Time for action – material witness 288
 This just in – this game blows 293
 Time for action – multiple erections 293
 Time for action – creating a font texture 296
 Time for action – create the HeartBounce script 297
 Time for action – tagging the tray 298

 Time for action – tweaking the bounce 300

[vii]

Table of Contents

Time for action – keeping track of the bounces 301
Time for action – adding the lose condition 303
Time for action – adding the Play Again button 305
Ticker taken 307

C# Addendum 307
Chapter 9: Game #3 – The Break-Up 311

Time for action – bombs away! 313
Time for action – poke those particles 316
Time for action – creating a spark material 318
Time for action – prefabulous 321
Time for action – lights, camera, and apartment 324
Time for action – adding the character 325
Time for action – registering the animations 326
Time for action – scripting the character 328
Time for action – open the pod bay door, Hal 330
Time for action – collision-enable the character 331
Time for action – apocalypse now? 332
Time for action – go boom 333
Time for action – kill kill murder die 336
Time for action – the point of impact 337
Time for action – hook up the explosion 338
Summary 339

C# addendum 339
Chapter 10: Game #3 – The Break-Up Part 2 343

Time for action – amass some glass 343

Time for action – create a particle system 344
Time for action – make it edgier! 346
Time for action – contain the explosion 348
Time for action – let's get lazy 349
Very variable? 351
Terminal velocity is a myth – bombs fall faster 351
Time for action – tag the objects 353
Time for action – write the collision detection code 354
Time for action – animation interrupts 355
Time for action – add facial explosions 356
Time for action – make some noise 357
Time for action – add sounds to FallingObject 358
Silent 'Splosion 360

[viii]

 Table of Contents

 What's the catch? 360

 Time for action – mix it up a bit 362
 Summary 365

 C# Addendum 365

Chapter 11: Game #4 – Shoot the Moon 369

 Time for action – duplicate your game project 370

 Time for action – space the shooter up a bit 371
 Time for action – enter the hero 376
 Time for action – it's a hit! 378
 Time for action – bring on the bad guys 381
 Time for action – do some housekeeping 383
 Time for action – fixing the fall 384
 Time for action – tweak the hero 386
 Time for action – give up the func 388
 Time for action – itchy trigger finger 391
 Time for action – futurize the bullet 392
 Time for action – building Halo 393
 Time for action – fire! 396
 Time for action – code do-si-do 397
 Time for action – the maaagic of aaaarguments 399
 Time for action – add the most important part of any space shooter 400
 Last year's model 402
 Summary 403

 C# Addendum 403

Chapter 12: Game #5 – Kisses 'n' Hugs 407

 Computers that think 407

 Time for action – haul in the hallway 409
 Time for action – hash it out 410
 One Script to rule them all 413
 Time for action – it's hip to be square 413
 Squaring the Square 415
 Time for action – now you see it... 417
 Family values 418
 Time for action – X marks the spot 418
 Time for action – boy O boy 420
 Time for action – bottoming out 421
 Here comes the drop 422

 Time for action – +9 accuracy 424

[ix]

Table of Contents

Time for action – solve for X 426
Time for action – it takes two to Tic Tac Toe 426
Time for action – designer to player. Come in, player. 428
Slowly building to a climax 431
Read after thinking 431
On deaf ears 433
Time for action – pretty maids all in a row 433
Winner is coming 437
Codesplosion 437
Need-to-know basis 438
Need-to-know basis 438
Clean-up on aisle code 439
Shave and a haircut 440
Time for action – check for a win 441
Sore loser 442
Time for action – notify the winner 443
Time for action – you win. Now what? 444
Nice moves 445
Time for action – the final bug 446
All done but for the shouting 446

C# addendum 447
Chapter 13: AI Programming and World Domination 449

Take it away, computer 449
Time for action – add computer control 450
Herpa derp derp 450
Unpacking the code 451
Time for action – code consolidation 452
Tic Tac Toe at the speed of light 456
Sore loser 456
Click-spamming for fun and profit 457
Artificial stupidity 457
Time for action – winning is everything 459
It's a trap! 460
The leftovers 462
Time for action – pseu pseu pseudocode 463
Time for action – begin at the end 464
Time for action – the final four 466
Code one, get one free 467

The actual intelligence behind artificial intelligence 468

[x]

 Table of Contents

 Time for action – score! 469

 Shut your trap 473
 Detecting the tri-corner trap 476
 Time for action – to catch a competitor 476
 Perfection Horrible, horrible perfection. 480
 Time for action – programming fallibility 480
 Turning it up to "Smart" 482
 Code encore 482
 Summary 490
 More hospitality 490
 C# addendum 490

Chapter 14: Action! 501

 Open heart surgery 501
 Time for action – haul in the hallway 502
 Time for action – meet me at camera two 504
 Time for action – adjust Main Camera 506
 Time for action – deck the halls 507
 Time for action – turn on the lights 508
 Time for action – set up the camera rig 517
 Time for action – animate the bouncer 519
 Time for action – I like to move it move it 521
 Time for action – animate the runner 524
 Time for action – how to "handle" Nurse Slipperfoot 526
 Time for action – you spin me right round 528
 Time for action – deploy your game 530
 Time to grow 532

 Beyond the book 533

Appendix 535

Index 539

[xi]

Preface

A word about the third edition

As I sit here in my luxurious velvet smoking jacket, taking a long draw on a pipe, and
admiring the various stuffed hunting trophies around the room in an attitude of quiet
contemplation, it dawns on me that I don't smoke or advocate sport-hunting, and that I have
no idea what I'm doing in this room. The jacket, however, is quite nice. I think I'll keep it.

It's wonderful to see that this book, one of the very first instructional guides about Unity 3D
on the market, has withstood both the test of time, and Unity Technologies' relentless
release schedule. Owing to the rapid pace of technology, many things have changed in a
few short years. C# has largely overtaken UnityScript as a preferred language; to that end,
all of the code in the book has been supplemented with a C# translation, including notes on
how to perform that translation yourself for past and future projects.

In the time since the first edition, computers have increasingly become our evil, dominating

overlords. With that in mind, the third edition includes two bonus chapters that teach you how

to build a two-player game, and then how to program the computer to act as the merciless

second player who never loses. That chapter also contains information on how to make the

computer player lose, which I present as secret codified data to be used by the resistance

movement during the inevitable machine uprising. Stay ever vigilant!

Preface

Your future as a game developer

"Game Developer" has rapidly replaced "firetruck" as the number one thing that kids want to

be when they grow up. Gone are the days when aspiring developers needed a university

education, a stack of punch cards, and a room-sized computer to program a simple game.
With digital distribution and the availability of inexpensive (or free) game development
tools like Unity 3D, the democratization of game development is well underway.

But just as becoming a firetruck is fraught with peril, so too is game development. Too
often, aspiring developers underestimate the sheer enormity of the multidisciplinary task
ahead of them. They bite off far more than they can chew, and eventually drift away from
their game development dreams to become lawyers or dental hygienists. It's tragic. This
book bridges the gap between "I wanna make games!" and "I just made a bunch of games!"
by focusing on small, simple projects that you can complete before you reach the bottom of
a bag of corn chips.

What this book covers

Chapter 1, That's One Fancy Hammer!, introduces you to Unity 3D—an amazing game
engine and game authoring tool that enables you to create games and deploy them to a
number of different devices. You'll play a number of browser-based Unity 3D games to get a
sense of what the engine can handle, from a massively-multiplayer online game all the way
down to a simple kart racer. You'll download and install your own copy of Unity 3D, and
mess around with one of the demos that ships with the product.

Chapter 2, Let's Start with the Sky, explores the difference between a game's skin and its

mechanic. Using examples from video game history, including Worms, Mario Tennis, and
Scorched Earth, we'll uncover the small, singular piece of joy upon which more
complicated and impressive games are based. By concentrating on the building blocks of
video games, we'll learn how to distil an unwieldy behemoth of a game concept down to a
manageable starter project.

Chapter 3, Game #1 – Ticker Taker, puts you in the pilot seat of your first Unity 3D game
project. We'll explore the Unity environment and learn how to create and place primitives,
add Components like Physic Materials and rigidbodies, and make a ball bounce on a
paddle using Unity's built-in physics engine without ever breaking a sweat.

Chapter 4, Code Comfort, continues the keep-up game project by gently introducing
scripting. Just by writing a few simple, thoroughly-explained lines of code, you can make
the paddle follow the mouse around the screen to add some interactivity to the game.
This chapter includes a crash course in game scripting that will renew your excitement
for programming where high school computer classes may have failed you.

[2]

Preface

Chapter 5, Game #2 – Robot Repair, introduces an often-overlooked aspect of game
development—"front-of-house" User Interface design—the buttons, logos, screens, dials,
bars, and sliders that sit in front of your game—is a complete discipline unto itself. Unity
3D includes a very meaty Graphical User Interface system that allows you to create
controls and fiddly bits to usher your players through your game. We'll explore this system,
and start building a complete two-dimensional game with it! By the end of this chapter,
you'll be halfway to completing Robot Repair, a colorful matching game with a twist.

Chapter 6, Game #2 – Robot Repair Part 2, picks up where the last chapter left off. We'll
add interactivity to our GUI-based game, and add important tools to our game
development tool belt, including drawing random numbers and limiting player control.
When you're finished with this chapter, you'll have a completely playable game using only
the Unity GUI system, and you'll have enough initial knowledge to explore the system
yourself to create new control schemes for your games.

Chapter 7, Don't Be a Clock Blocker, is a standalone chapter that shows you how to build

three different game clocks—a number-based clock, a depleting bar clock, and a cool pie

wedge clock, all of which use the same underlying code. You can then add one of these

clocks to any of the game projects in this book, or reuse the code in a game of your own.

Chapter 8, Hearty Har Har, revisits the keep-up game from earlier chapters and replaces the

simple primitives with 3D models. You'll learn how to create materials and apply them to

models that you import from external art packages. You'll also learn how to detect collisions

between game objects, and how to print score results to the screen. By the end of this chapter,

you'll be well on your way to building Ticker Taker—a game where you bounce a still-beating

human heart on a hospital dinner tray in a mad dash for the transplant ward!

Chapter 9, Game #3 – The Break-Up, is a wild ride through Unity's built-in particle system
that enables you to create effects like smoke, fire, water, explosions, and magic. We'll
learn how to add sparks and explosions to a 3D bomb model, and how to use scripting to
play and stop animations on a 3D character. You'll need to know this stuff to complete
The Break-Up—a catch game that has your character grabbing falling beer steins and
dodging explosives tossed out the window by his jilted girlfriend.

Chapter 10, Game #3 – The Break-Up Part 2, completes The Break-Up game from the previous

chapter. You'll learn how to reuse scripts on multiple different game objects, and how to build

Prefabs, which enable you to modify a whole army of objects with a single click.
You'll also learn to add sound effects to your games for a much more engaging experience.

Chapter 11, Game #4 – Shoot the Moon, fulfills the promise of Chapter 2, Let's Start with the

Sky, by taking you through a re-skin exercise on The Break-Up. By swapping out a few
models, changing the background, and adding a shooting mechanic, you'll turn a game
about catching beer steins on terra firma into an action-packed space shooter! In this
chapter, you'll learn how to set up a two-camera composite shot, how to use code to
animate game objects, and how to re-jig your code to save time and effort.

[3]

Preface

Chapter 12, Game #5 – Kisses 'n' Hugs, teaches you to build a two-player 3D Tic Tac Toe
game entirely within the Unity 3D game authoring tool. You'll learn about writing return
values for your custom functions, and using 3D objects to build an essentially 2D game. This
simple strategy game forms the basis for the following chapter.

Chapter 13, AI Programming and World Domination, steps you through the process of
developing an artificial intelligence program, enabling your computer to win at Tic Tac
Toe. From there, you'll modify the terrifyingly perfect AI algorithm so that it randomly
makes "mistakes", and gives humankind a slim chance at Tic Tac Toe survival.

Chapter 14, Action!, takes you triumphantly back to Ticker Taker for the coup de grace—a
bouncing camera rig built with Unity's built-in animation system that flies through a model
of a hospital interior. By using the two-camera composite from The Break-Up, you'll create
the illusion that the player is actually running through the hospital bouncing a heart on a tin
tray. The chapter ends with a refresher on bundling your project and deploying it to the
Web so that your millions of adoring fans (including your grandma) can finally experience
your masterpiece.

Appendix is an essentially vestigial component of the colon, which can be surgically

removed if it gives you any trouble.

What you need for this book

You'll need to be in possession of a sturdy hat, a desk chair equipped with a seatbelt, and
an array of delicious snack foods that won't get these pages all cheesy (if you're reading
the e-book version, you're all set). Early chapters walk you through downloading and
installing Unity 3D (http://unity3d.com/unity/download/). A list of resources and
links to additional software can be found in the Appendix.

Who this book is for

If you've ever wanted to develop games, but have never felt "smart" enough to deal with
complex programming, this book is for you. It's also a great kick start for developers
coming from other tools like Flash, Unreal Engine, and Game Maker Pro.

[4]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The audio.PlayOneShot command is
perfect for collision sound effects."

A block of code is set as follows:

for(var i:int=0; i<totalRobots; i++)
{

var aRobotParts:List.<String> = new List.<String>();

aRobotParts.Add("Head");
aRobotParts.Add("Arm");
aRobotParts.Add("Leg");

}

When we wish to draw indicate that a line of code needs to be added or edited, the
relevant lines or items are set in bold:

function Awake()
{

startTime = Time.time + 5.0;
}

New terms and important words are shown in bold. Words that you see on the screen, in menus

or dialog boxes for example, appear in the text like this: "When you click on the Apply button,

Unity creates its set of raster images based on the font that you're importing".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

[5]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams used in

this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/5268OT_ColoredImages.pdf

Downloading the example code

You can download the example code files for all Packt books you have purchased from your

account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit

http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Each project in the book is intended to be built from the "ground up", beginning with an new

project file. The downloadable .unitypackage files for this book contain the assets (sounds,

images, and models) you need to build the projects. You may also download completed, working

versions of each project for your reference, though these are not intended to be your "first

stop" – they're more like the answer sheet at the back of a text book.

[6]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would

be grateful if you would report this to us. By doing so, you can save other readers from

frustration and help us improve subsequent versions of this book. If you find any errata, please

report them by visiting http://www.packtpub.com/support, selecting your book, clicking on

the errata submission form link, and entering the details of your errata. Once your errata are

verified, your submission will be accepted and the errata will be uploaded to our website, or

added to any list of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the
suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[7]

1

That's One Fancy Hammer!

Technology is a tool. It helps us accomplish amazing things, hopefully more
quickly, more easily, and more amazingly than if we hadn't used the tool.
Before we had newfangled steam-powered hammering machines, we had
hammers. And before we had hammers, we had the painful process of
smacking a nail into a board with our bare hands. Technology is all about
making our lives better and easier. And less painful.

Introducing Unity 3D

Unity 3D is a piece of technology that strives to make life better and easier for game
developers. Unity is a game engine, and a game authoring tool, which enables
creative folks like you to build video games.

By using Unity, you can build video games more quickly and easily than ever before. In

the past, building games required an enormous stack of punch cards, a computer
that filled a whole room, and a burnt sacrificial offering to an ancient god named
Fortran. Today, instead of spanking nails into boards with your palm, you have Unity.
Consider it your hammer—a new piece of technology for your creative tool belt.

That's One Fancy Hammer!

The engine, the tool, and the all-weather tires

You may have heard people call Unity and other tools "game engines". That's
almost correct. The confusion here comes from the fact that we have three distinct
things, and we call them all "Unity".

When you download Unity, as you'll do in a moment, you're downloading the Unity 3D
game authoring tool. To use a car analogy, the authoring tool works like your auto body
shop. You use it to design and build the car's chassis, its handling, and its sweet, sweet
leather interior and boss rims.

Under the hood, the authoring tool uses the Unity game engine, which is like the driving
force behind your game. Unless you work out a pricy licensing deal with Unity
Technologies, you are not allowed to mess around with the engine itself, but the engine is
the piece that makes your car run.

When you're finished designing your game with the Unity authoring tool, your content gets
bundled with the Unity game engine, and the two of them are packaged together with an
extra piece that enables the game to run in a certain situation. The analogy gets weaker
here, but consider tires: you can add snow tires to your car so that it can drive in the
tundra, or dune buggy tires so that it can drive in the desert. In this way, you package your
game content with a certain target platform in mind: PC, Mac, iOS, Android, or one of the
various home video game consoles.

[10]

Chapter 1

Unity takes over the world

Throughout this book, we'll be distilling our game development dreams down to small, bite-

sized nuggets instead of launching into any sweepingly epic open-world game. The idea here

is to focus on something you can actually finish instead of getting bogged down in an

impossibly ambitious opus. This book will teach you how to build five games, each of which

focuses on a small, simple gameplay mechanic. You'll learn how to build discrete
pieces of functionality that you can apply to each project, filling the games out to make
them complete experiences. When you're finished, you can publish these games on the
web, Mac, PC, and Linux systems. If you spring for an additional software license for one of
Unity's many add-ons, you may be able to publish your games for other platforms, including
home video game consoles.

The team behind Unity 3D is constantly working on packages and export options ("snow tires")

for other platforms. At the time of this writing, Unity could additionally create games that can

be played on iOS, Android devices, Xbox One, PS4, and Wii U. Each of these tools is an add-on

functionality to the core Unity package, and comes with an additional cost, while console

development usually requires a developer relationship with the platform owner. These licenses

are constantly in flux, however, and the mobile development add-ons that used to cost an

additional fee are now free. By the time you read this book, who knows? To be safe, we'll stick

to the core Unity 3D program for the remainder of this book.

With the initial skills that you learn in this book, you'll be able to expand on your knowledge
to start building more and more complex projects. The key is to start with something you
can finish, and then for each new project that you build, to add small pieces of functionality
that challenge you and expand your knowledge. Any successful plan for world domination
begins by drawing a territorial border in your backyard; consider this book as your backyard.

Why choose Unity?

There are a great many game authoring tools, engines, and frameworks that you may
have explored or read about before investigating Unity 3D. What makes Unity an
attractive option? Here are a few selling points:

‹ ‹ Large community: You want to avoid going with a tool that only you and some
middle-schooler in Siberia know how to operate. Unity has a very large user base,
which makes it much quicker and easier to find answers to your questions, and
to find online videos, tutorials and books like this one that explain new concepts.
A large community also implies that development on the software will continue.
Nothing's worse than training on a tool that is later abandoned.

[11]

That's One Fancy Hammer!

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Social proof: The fact that large companies have bought into or partnered with Unity

Technologies bodes very well. Electronic Arts has purchased a site-wide license, and (at

the time of this writing) two out of three major console manufacturers have struck

licensing deals with Unity to spur development on their systems.
Bang for the buck: If you ever "go pro", you'll want to invest some pennies against a

full version of Unity. While it's not chicken scratch, the amount of power and the

number of options you get from Unity vastly outweigh the cost outlay.
Market success: On any given day, a survey of the chart-topping iOS games turns
up a proportionately large number of Unity-developed titles. Unity is being used by
a great many developers to create games that survive in the market, and thrive
once they're there.
Customizability: The entire Unity authoring tool can, itself, be authored.
Developers can create their own windows, buttons, and panels to add to the Unity
authoring tool, which has led to a very active secondary market called the Unity
Asset Store, where you can download toolmakers' creations to make your
development experience even better.
Multiplatform: It mystifies me why people pour so much energy into tools like
XCode, which can target exactly one platform (or maybe two? I honestly don't
care enough to check). When faced with such a diverse marketplace, it's a
savvy developer who chooses a technology that targets multiple platforms.

Why burn this book and run away screaming?

Of course, no game development tool is perfect, and in certain areas, other tools have the

advantage over Unity. Here are a few places where Unity doesn't stack up against its rivals:

‹

‹

‹

‹

‹

‹

Learning Curve: Even with the abundance of training available, Unity largely
requires developers to learn how to program and to deal with complex
concepts such as shaders and the third dimension. If you've come to Unity
after hearing "it makes game development simple! Anyone can do it!", you've
been fed a hot bowl full of filthy lies.

Cost: Bang for buck notwithstanding, when you get into a situation where you're

buying pro versions of Unity for an entire development team, and the Unity Asset
Server on top of that, as well as copies of the deployment add-ons, the cost
begins to add up. I may have knocked XCode in the previous section, but it does
have the advantage of being free.

Purity: If you're coming from a "pure" programming background, some of the
ways in which you solve different problems in Unity may seem outright
sacrilegious to you. If the thought of working within a GUI and dragging things on
top of other things to create reflexive relationships gives you the willies, you may
not dig the way Unity gets things done.

[12]

Chapter 1

Browser-based 3D – welcome to the future

One of Unity's most astonishing capabilities is that it can deliver a full 3D game experience
right inside your web browser. It does this with the Unity Web Player—a free browser
plugin that embeds and runs Unity content on the web.

Before you dive into the world of Unity games, download the Unity Web Player. Much the
same way the Flash player runs Flash-created content, the Unity Web Player is a plugin
that runs Unity-created content in your web browser.

1. Go to http://unity3d.com/webplayer (click either the
Windows or Mac OS X button on the page to select your platform).

2. Click on Download.
3. Follow all of the onscreen prompts until the Web Player has finished installing.

[13]

That's One Fancy Hammer!

4. The install process is only slightly more involved on a Mac. You have to
download and run a .dmg file, and then enter your administrator password to
install the plugin, but it's relatively quick and painless.

Welcome to Unity 3D!

Now that you've installed the Web Player, you can view the content created with the Unity
3D authoring tool in your browser.

What can I build with Unity?

In order to fully appreciate how fancy this new hammer is, let's take a look at some projects
that other people have created with Unity. While these games may be completely out of
our reach at the moment, let's find out how game developers have pushed this amazing
tool to its very limits.

FusionFall

The first stop on our whirlwind Unity tour is FusionFall—a Massively Multiplayer Online
Role-Playing Game (MMORPG). You can find it at fusionfall.com.

[14]

Chapter 1

FusionFall was commissioned by the Cartoon Network teevee franchise, and takes
place in a re-imagined, anime-style world where popular Cartoon Network
characters are all grown up. Darker, more sophisticated versions of The Powerpuff
Girls, Dexter's Laboratory, Foster's Home for Imaginary Friends, and the kids from
Codename: Kids Next Door run around battling a slimy green alien menace.

Completely hammered

While it's not the newest game on our tour, FusionFall remains one of the largest, most
expensive and technically complex Unity games around. FusionFall is historically important
to Unity Technologies, as it helped draw a lot of attention to the then-unknown Unity game
engine when the game was released. As a tech demo, it's one of the very best showcases of
what your new technological hammer can really do! FusionFall has real-time multiplayer
networking, chat, quests, combat, inventory, NPCs (non-player characters), basic AI
(artificial intelligence), name generation, avatar creation and costumes. And that's just a
highlight of the game's feature set. This game packs a lot of depth.

Should we try to build FusionFall?

At this point, you might be thinking to yourself, "Heck YES! FusionFall is exactly the
kind of game I want to create with Unity, and this book is going to show me how!"

Unfortunately, a step-by-step guide to creating a game the size and scope of
FusionFall would likely require its own flatbed truck to transport, and you'd need a
few friends to help you turn each enormous page. It would take you the rest of your
life to read, and on your deathbed, you'd finally realize the grave error that you had
made in ordering it online in the first place, despite having qualified for free shipping.

Here's why: the FusionFall credits

http://fusionfall.cartoonnetwork.com/game/credits.php

This page lists all of the people involved in bringing the game to life. Cartoon Network enlisted

the help of an experienced Korean MMO developer called Grigon Entertainment. There are

over 80 names on that credits list! Clearly, only two courses of action are available to you:

1. Build a cloning machine and make 79 copies of yourself. Send each of those copies
to school to study various disciplines, including marketing, server programming,
and 3D animation. Then spend a year building the game with your clones. Keep
track of who's who by using a sophisticated armband system.

2. Give up now because you'll never make the game of your dreams.

[15]

That's One Fancy Hammer!

Another option

Before you do something rash and abandon game development for farming, let's take
another look at this. FusionFall is very impressive, and it might look a lot like the
game that you've always dreamed of making. This book is not about crushing your
dreams. It's about dialing down your expectations, putting those dreams in an airtight
jar, and taking baby steps. Confucius said:

"A journey of a thousand miles begins with a single step."

I don't know much about the man's hobbies, but if he was into video games, he might
have said something similar about them—creating a game with a thousand awesome
features begins by creating a single, less feature-rich game.

So, let's put the FusionFall dream in an airtight jar and come back to it when we're ready. We'll

take a look at some smaller Unity 3D game examples and talk about what it took to build them.

Off-Road Velociraptor Safari

No tour of Unity 3D games would be complete without a trip to Blurst.com—the game
portal owned and operated by independent game developer Flashbang Studios. In
addition to hosting games by other independent game developers, Flashbang has packed
Blurst with its own slate of kooky content, including Off-Road Velociraptor Safari:

[16]

Chapter 1

In Off-Road Velociraptor Safari, you play with a dinosaur in a pith helmet and a monocle
driving a jeep equipped with a deadly spiked ball on a chain (just like in the archaeology
textbooks). Your goal is to spin around in your jeep doing tricks and murdering your
fellow dinosaurs (obviously).

For many independent game developers and reviewers, Off-Road Velociraptor Safari was
their first introduction to Unity. Some reviewers said that they were stunned that a fully 3D
game could play in the browser. Other reviewers were a little bummed that the game was
sluggish on slower computers. We'll talk about optimization a little later, but it's not too
early to keep performance in mind as you start out.

Fewer features, more promises

If you play Off-Road Velociraptor Safari and some of the other games on the Blurst site, you'll

get a better sense of what you can do with Unity without a team of experienced Korean MMO

developers. The game has 3D models, physics (code that controls how things move around

somewhat realistically), collisions (code that detects when things hit each other), music, and

sound effects. Just like FusionFall, the game can be played in the browser with the Unity Web

Player plugin. Flashbang Studios also sells downloadable versions of its games, demonstrating

that Unity can produce standalone executable game files too.

Maybe we should build Off-Road Velociraptor Safari?

Right then! We can't create FusionFall just yet, but we can surely create a tiny game like
Off-Road Velociraptor Safari, right? Well... no. Again, this book isn't about crushing your
game development dreams. But the fact remains that Off-Road Velociraptor Safari took
five supremely talented and experienced guys eight weeks to build on full-time hours,
and they've been tweaking and improving it ever since. Even a game like this, which may
seem quite small in comparison to full-blown MMO like FusionFall, is a daunting
challenge for a solo developer. Put it in a jar up on the shelf, and let's take a look at
something you'll have more success with.

I bent my Wooglie

Wooglie.com is a Unity game portal hosted by M2H Game Studio in the Netherlands. One

glance at the front page will tell you that it's a far different portal than Blurst.com. Many of

the Wooglie games are rough around the edges, and lack the sophistication and slick

professional sheen of the games on Blurst. But here is where we'll make our start with
Unity. This is exactly where you need to begin as a new game developer, or as
someone approaching a new piece of technology like Unity.

Play through a selection of games on Wooglie. I'll highlight a few of them for your interest:

[17]

That's One Fancy Hammer!

Big Fun Racing

Big Fun Racing is a simple but effective game where you zip around collecting coins in a toy
truck. It features a number of different levels and unlockable vehicles. The game designer
sunk a few months into the game in his off-hours, with a little help from outsource artists
to create the vehicle models.

Diceworks

Diceworks is a very simple, well-polished game designed in Unity 3D for iPhones. We
won't be covering any iPhone development, but it's good to know that your Unity content
can be deployed to a number of other devices and platforms.

[18]

Chapter 1

Diceworks was created by one artist and one programmer working together as a team. It's

rare to find a single person who possesses both programming and artistic talent

simultaneously; scientists say that these disciplines are split between two different lobes in

our brains, and we tend to favor one or the other. The artist-programmer pairing that
produced Diceworks is a common setup in game development. What's your own brain
telling you? Are you more comfy with visuals or logic? Art or programming? Once you
discover the answer, it's not a bad plan to find someone to make up the other half of your
brain so that your game handles both areas competently.

[19]

That's One Fancy Hammer!

At any event, with Diceworks we're definitely getting closer to the scope and scale that
you can manage on your own as you start out with Unity.

It's also interesting to note that Diceworks is a 2D game created in a 3D engine. The third "D" is

largely missing, and all of the game elements appear to exist on a flat plane. Nixing that extra

dimension when you're just starting out isn't a half-bad idea. Adding depth to your game brings

a whole new dimension of difficulty to your designs, and it will be easier to get up and running

with Unity by focusing on the X and Y axes, and leaving the Z-axis in one of those dream jars.

With a few sturdy working game examples under your belt, it won't be long before you can take

that Z-jar down off the shelf and pop it open. The games that we'll be building in this book will

stick to a two-dimensional plane, using three-dimensional models. Even so, certain games have

taken this concept and ran with it: New Super Mario
Bros. Wii locked its 3D characters to a 2D plane and wound up an extremely complex
and satisfying platformer.

Lovers in a Dangerous Spacetime

With their game Lovers in a Dangerous Spacetime, the talented three-person team at
the Asteroid Base adds half a "D" to that formula. This is a two-and-a-half-D game,
which combines the advantages of a 2D game with all the eye-popping pizzazz of all 3Ds.

Showcase Showdown

Unity portals—game sites that feature Unity-made games—are popping up all over
the place. Here are a few more sites to hit in your survey of what Unity can do:

[20]

Chapter 1

Unity Technologies – "Made with Unity" page

http://unity3d.com/gallery/made-with-unity/game-list

Unity's own showcase of games features titles that aren't all playable, but they're
sure to blow your mind.

Kongregate

http://www.kongregate.com/unity-games

Once the king of Flash game portals, Kongregate also features Unity-made games. Any developer

can submit a game to Kongregate, and once the game is live, the Kongregate community can

play, rate, and comment on it. If you're a first-time developer, that may sound a little scary. And

if you're a veteran developer, you know exactly how scary it is! But an excellent goal for you to

set, after reading this book, is to develop something of your own in Unity, and submit it to the

scrutiny of complete strangers on a portal like Kongregate. Let's be honest...
Mom is going to like everything you do. This may be your best shot at getting honest
feedback, and it will help you grow as a developer.

[21]

That's One Fancy Hammer!

The iOS App Store

Unity developers have taken to Apple's App Store in a big way. On any given day,
a good number of the games on the "Top 100" list are Unity-made titles. For a particularly

good time, try The Room, which is a short-and-sweet MYST-like game that will have
you safe-cracking increasingly complex puzzle boxes nested inside one another.
Again, a significant amount of time, talent, and effort went into creating The Room,
but this tour is about getting a feel for what Unity can do—and what you can do with
it (given enough time, talent, and effort!).

Walk before you can run (or double jump)

A common mistake that new game developers make is biting off more than they can chew.
Even experienced game developers make this mistake when they get really excited about a
project, or when they approach a new technology and expect to be immediately proficient
at using it. The real danger here is that you'll sit down and try to create your dream—let's
say it's a sword and sorcery RPG epic that combines all the best parts of League of Legends,
ChuChu Rocket!, and Microsoft Excel. When you've sunk days and weeks and months into
it and it still looks nothing like the game you envisioned, you give up. You figure that since
you failed at creating your dream game, you were never really cut out to be a game
developer to begin with.

You owe it to yourself to start small! Rome wasn't built in a day, and neither was your
dream cart-racing game starring famous figures from Roman history. By taking smaller
steps, you can experience success with a number of smaller games. Then you can take what
you learn and add to it, slowly building your expertise until you're in a position to take that
dream game jar off the shelf.

[22]

Chapter 1

For now, let's keep our dream shelf fully stocked, and turn our attention to something
small and achievable. By the end of this book, you'll have a collection of working
games that started out simply, and grew more and more complex as you got smarter.
My hope is that once you finish this book, you'll be well-equipped to dream up new
incremental features for your games, and to hunt down the resources you will need to
fill the gaps in your new-found knowledge.

In Chapter 2, Let's Start with the Sky, we'll go into detail about where you should start when

you're deciding what kind of game to create. We'll also see some real-world examples of games

that began as simple, effective ideas and later grew into enormously complex and feature-rich

titles. From small acorns, mighty multiplayer oak tree games grow.

There's no such thing as "finished"

We'll be learning a lot about iteration throughout this book. Some game developers who
produce content for fixed media like game disks and cartridges are used to producing a
"gold master"—the final build of the game—and calling it a day. One of the joys of
deploying games to the web or mobile is that they're never truly finished. You can continue
tweaking your web games and modifying them until you end up with a far more fun and
polished game than you started with.

If you follow Flashbang Studios on Twitter or if you read the studio's blog, you'll see that
it's constantly modifying and improving its games, even years after they were "finished".
The Flashbang team continued to tweak and modify Off-Road Velociraptor Safari even
three years after the game was finished.

Likewise, we'll be creating some games that are raw and unfinished at first. But as we
learn more about how to program the crucial bits and pieces common to many games,
we'll keep revisiting our rough, early games to add those pieces and improve them.

Stop! Hammer time

Now that you've seen some of what Unity can do, it's time to download the
program and kick the tires! The free version of Unity is available for a low price of...
well, free (at the time of this writing) from the Unity 3D website.

1. Go to http://unity3D.com.

2. Click on the Download button.

3. Download the latest version of the Unity 3D authoring tool for your platform—
Mac or PC. If you are given the option, make sure to download the sample project
along with the program.

[23]

That's One Fancy Hammer!

4. Follow all the onscreen prompts until the Unity authoring tool has finished installing.

5. Launch Unity!

Fight Some Angry Bots

After a quick registration process, Unity is ready to go. With any luck, the AngryBots
Demo will automatically open. If it doesn't, and you're faced with a dialogue asking you to
open a project, you can find the AngryBots Demo in the following location by default:

‹ ‹ Max OS: /Users/Shared/Unity/4-0_AngryBots

‹ ‹ Windows XP: C:\Documents and Settings\All Users\Documents\Unity
Projects\4-0_AngryBots

or

‹‹ C:\Documents and Settings\All Users\Shared Documents\Unity

Projects\4-0_AngryBots

‹ ‹ Windows 7/ 8/ Vista: C:\Users\Public\Public Documents\Unity
Projects\4-0_AngryBots

If you thought you'd be a rebel and you unchecked the sample projects box when you
downloaded Unity, you may find yourself re-downloading Unity to get the AngryBots
Demo. You can pull down other sample learning projects, such as the AngryBots
Demo from the Unity website:

http://unity3d.com/support/resources/example-projects/

These paths may change depending on which version of Unity you've
downloaded. As the Unity Technologies team improves the software, they
launch new and more impressive demos to show off what Unity can do. If
you're reading this book, and your copy of Unity 3D launches a different
demo project, or if the Angry Bots Demo is no longer available by the
time you begin reading this book, don't freak out! Everything we're about
to discuss can be generally applied to most demos.

When the Angry Bots Demo first opens, you may see a splash screen referring you to
different tutorial resources and language guides. How helpful! Now close it (don't worry, it'll
be there next time, unless you uncheck the Show at Startup box). If you checked the box
but you'd really like to see that welcome screen again, look in the menus under Help |
Welcome Screen. In the menus, click on Window | Layouts | 2 by 3 to see the different
panels that we're about to tour.

[24]

Chapter 1

After the panels have repositioned themselves, look for the Project panel. It should be one
of the three vertically oriented panels on the right half of your screen. At the top right of the
Project panel is a very small button that looks like a downward-facing triangle next to three
horizontal lines. Click there, and choose One Column Layout from the resulting context
menu. This will get an annoying split view out of your way:

If you don't see all the fancy highfalutin' 3D jazz going on in the Scene and Game windows,

you may just need to load the main game scene. To do this, find the Scene called
AngryBots at the top of the Project panel (it has a black-and-white Unity icon next to it),
and double-click it.

To try out the demo, click on the Play button at the top center of the screen:

[25]

That's One Fancy Hammer!

You can walk around the Angry Bots Demo using the WASD keys on your keyboard. Hold

down the left-mouse button to fire your boomstick at the aggravated automatons. When

you're finished exploring, press the Esc key to pause the game and regain mouse control.
Then click on the Play button again to end the demo:

The wonders of technology!

Much of what you see in the AngryBots Demo can't be built directly in Unity. Most of the
assets were created with other software; Unity is the program you use to put everything
together and to make it interactive. The Demo contains special models, such as the
airlocks, which were imported from 3D software packages like 3D Studio Max, Maya, or
Blender. Certain elements, like robot enemies, have scripts attached to them. Scripts are
lists of instructions that tell the items in the game world how to behave.

Throughout the book, we'll learn how to import 3D models and write scripts to control them.
Let's take a quick look around the Unity interface and note a few points of interest.

The Scene window

The Scene window is where you can position your GameObjects and move them around. This

window has various controls to change its level of detail. Use these controls to toggle lighting

on and off (in the editor only—not in your actual game), and to display the window contents

with textures, wireframes, or a combination of both. You can use the colorful
Gizmos at the top-right corner to constrain the view to the X, Y, and Z axes to view the
top and sides of your scene. Click on the white box in the middle to return to Perspective
view. This window also features a search field.

[26]

Chapter 1

Try clicking on the gizmo's green Y cone to view the AngryBots Demo from above, and
then type rock into the search field. Every object with rock in its name lights up, while
the rest of the scene fades to grayscale. Click the tiny x button to clear the search field:

The Game window

The Game window shows you what your players will see. When you click on the Play button to

test your game (as you just did with the Angry Bots Demo), the results of your efforts play out in

this window. Toggle the Maximize on Play button to test your game in full-screen mode:

[27]

That's One Fancy Hammer!

The Hierarchy panel

The Hierarchy panel lists all of the GameObjects in your Scene. GameObjects—cameras,
lights, models, and prefabs—are the things that make up your game. They can be
"tangible" things like the generators or the giant robot arm in the Angry Bots Demo. They
can also include intangible things, which only you as the game developer get to see and
play with, such as the cameras, the lights, the scripts, and colliders, which are special
invisible shapes that tell the game engine when two game objects are touching.

The AngryBots Demo Hierarchy panel contains GameObjects for the cannisters, the tables, the

airlocks and the computer terminals, to name a few. It also lists the Player, a very complicated

GameObject that controls how the hero moves and collides with his environment. The player

character has a camera following him. That camera is our eye into the game world. The Demo

lists a collection called Environment(sounds)—a series of GameObject that determine what the

player hears when he walks through different parts of the level (for example, torrential rain

outside, and the droning equipment hum when he moves indoors). So, GameObject can include

touchy-feely "physical" objects such as canisters and airlocks, as well as behind-the-scenes

intangible things such as lights, cameras, and actions (scripts).

Click on a GameObject in the Hierarchy panel, and then hover your mouse over the Scene

window. Press the F key on your keyboard, and the Scene window will automatically pan and

zoom directly to that object. Alternatively, you can navigate to Edit | Frame Selected, which can

be more reliable than using the keyboard shortcut. (I like to think of the F key standing for

"Focus" to help me remember what this shortcut does). You can also double-click on the
GameObjects in the Hierarchy panel.

[28]

Chapter 1

The Project panel

The Project panel lists all of the elements that you'll use to create GameObjects in your project.

For example, look for the mech_bot in the Objects | Enemies folder. The AngryBots
Demo EnemyMech GameObjects is made up of a series of meshes that represent the mech's

shape, a material to depict its "skin" or coloring, and an animation to describe its movement.
All of these types of goodies are listed in the Project panel.

The Project panel displays the contents of a special folder called Assets on your computer's

operating system. Unity automatically creates the Assets folder for you when you create a new

project. If you drag a compatible file, like a 3D model, a sound effect, or an image into the

Project panel, Unity copies it to the Assets folder behind the scenes, and displays
it in the Project panel.

[29]

That's One Fancy Hammer!

The Inspector panel

The Inspector is a context-sensitive panel, which means that it changes depending on what
you select elsewhere in Unity. This is where you can adjust the position, rotation, and scale
of GameObjects listed in the Hierarchy panel. The Inspector can also display controls to
configure components that add functionality to the GameObjects. Between the three main
panels in Unity (Hierarchy, Project, and Inspector), the Inspector is where you'll likely
spend most of your time because that's where you'll be tweaking and fiddling with every
aspect of the elements that comprise your game projects.

[30]

Chapter 1

This screenshot of the Inspector panel shows the components attached to the
Player GameObject in the Angry Bots Demo. This includes:

‹

‹

‹

‹

‹

‹

A number of scripts (including Free Movement Motor and Player Move

Controller) A Rigidbody component

A Capsule Collider

To see the same content on your computer, click to open the Player GameObject
in the Hierarchy panel. In later chapters, we'll dive deeper to learn what these
various components are all about.

Heads Up?

Let's use the Inspector panel to make a quick change to the orientation of the character.
We'll begin the demo with the hero standing on his head (which is a sure-fire way to
make those bots even angrier, by the way).

We can use the Inspector panel to change the rotation of the player. Follow these steps:

1. In the Hierarchy panel, click to select the Player game object.

2. Click on the Rotate button near the top left of the screen, which looks like

two arrows sniffing each others' behinds:

[31]

That's One Fancy Hammer!

A globe appears around the bottom of the Player GameObject in the Scene view. (If

you don't see the player, hover over the Scene view and press the F key on your

keyboard.) The blue Z-axis rotator handle encircles the player's body. Clicking and

dragging it rotates the player model as if he were standing in a very dodgy canoe.
The red X-axis rotator handle rotates the player as if he was a foosball player, stuck
on a metal rod. If we click and drag that handle, the player rotates to either fall flat
on his face, or flat on his back, like he's got space sickness. And the green Y-axis
rotator handle runs around the player like a hula hoop. Dragging this handle
around makes the player spin to face different directions. The Player GameObject
can get pretty hairy; in order to isolate the rotation controls, type player into the
Scene window's search field to exclude all other GameObject.

3. You can click-and-drag the red X-axis rotator handle to turn the player upside

down, but a better method is to change the X-axis rotation in the Inspector panel.
Expand the gray arrow next to Transform in the Inspector panel if it's not already
open, and change the X value under Rotation to 180. The player flips upside down.

[32]

Chapter 1

4. Now, when you click on the Play button to test the game, the player will
break-dance his way around the Angry Bots Demo, electric boogaloo-
style. The robots are freaking out, thinking "ERROR! DOES NOT
COMPUTE!" Way to keep them on their mechanical toes.

The Transform is the component that governs a GameObject's Position, Rotation, and
Scale. Every object in the scene has a Transform component that determines where it is
(Position), how big or small it is (Scale), and how it's oriented (Rotation). Objects can be
stretched and deformed by scaling them along one axis, as we'll see in later chapters.

Layers and layout dropdowns

Above the Inspector panel, you'll see the Layer and Tag drop-down menus. Game
objects can be grouped into layers, somewhat like in Photoshop or Flash. Unity stores
a few commonly used layouts in the Layout drop-down menu (mine is set to the 2 by
3 configuration). You can also save and load your own custom layouts.

Playback controls

As we've seen, these three buttons help you test your game and control playback. The
Play button starts and stops your game. The Pause button works as expected—it pauses
your game so that you can make changes to it on the fly. The third button is a step-
through control; use it to advance frame-by-frame through your game so that you can
more tightly control what's going on.

Scene controls

At the top-left of your screen, you'll see four controls that help you move around your
Scene, and position GameObjects within it. These controls are mapped to the Q, W, E, and R
keys on your keyboard. From left to right, they are.

[33]

That's One Fancy Hammer!

‹

‹

‹

‹

‹

‹

‹

‹

The Hand tool (Q): Use it to click-and-drag around your scene. Hold down the Alt
key on your keyboard to rotate the view. Use your mouse wheel to zoom the scene
in and out. Hold down the Shift key to pan, zoom, and rotate in larger increments
to speed things up. This is a way for you to navigate around the game world. It
doesn't actually impact the way the player sees the game. To modify the Game
view, you need to use the Move or Rotate tools to modify the Camera position.
Hold Shift to make the camera move farther. Hold the right or alternate mouse
button to pivot the scene as if you're viewing it through a 3D camera.

The Move tool (W): This tool lets you move the GameObjects around your scene.
You can either drag the object(s) around by the X, Y, or Z-axis handles, or by
the square in the center for freeform movement. Holding down the Ctrl key or
the command key (Apple) will snap movement to set grid increments.

The Rotate tool (E): Use it to spin your objects around using a neat spherical gizmo.
The red, green, and blue lines map to the X, Y, and Z axes.

The Scale tool (R): This tool works much the same as the Move and Rotate tools.
Use it to make your game objects larger or smaller. Dragging an X, Y, or Z handle
will non-uniformly scale (squash and stretch) the object, while dragging the gray
cube in the center will uniformly scale it.

Don't stop there – live a little!

We've glanced briefly at the key elements of the Unity interface, but there's no need to
stop poking around. Far beyond the scope of this book, there is a wealth of menu
options, buttons, and controls that we haven't covered. Why not explore those menus or
start randomly clicking on things that you don't yet understand? Now is the time to safely
break stuff. You didn't work hard to create the Angry Bots Demo, so why not mess
around with it a little bit?

Some of the changes you make to the Demo will "stick", even if you don't explicitly choose
to save your changes. Duplicate the entire Angry Bots Demo folder before you go crazy.

Here are some things to try:

‹ ‹ Select some of the GameObjects in the Hierarchy panel and move them around in
the Scene window using the Scene controls. What happens when you put an
airlock in the middle of the sky? Can the player still pass through? What if you put
the canisters or the computers over the player's head before the game starts? Do
they fall, or do they hover? Can you remove objects to help the player careen off
the edge of the balcony? What happens when he does?

[34]

Chapter 1

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Randomly right-click / alternate-click in the three different panels and read
through the context menu options to see what you're getting yourself into.

Poke around in the GameObject | Create Other menu. There's a whole list
of interesting things that you can add to this scene without even touching a
3D modeling program.

What happens when you delete the lights from the scene? Or the camera? Can

you add another camera? More lights? How does that affect the Scene?

Can you move the player to another part of the Demo to change your
starting position? Can you replace the audio files to make the gun "moo"
whenever you fire it?

Download a picture of kittens from the Internet and see if you can wrap it
around a boulder model. Kittens rock! You can pull the kitties into your project
using the Assets | Import New Asset option in the menu.

Summary

This chapter was all about getting a feel for what Unity can do and for what the
program interface had to offer. Here's what we found out:

‹

‹

‹

‹

‹

‹

‹

‹

Massive 80-person teams, all the way down to tiny one- or two-person
teams are using Unity to create fun games.

By thinking small, we'll have more success in learning Unity and producing
fully functional games instead of huge but half-baked abandoned projects.

Different flavors of Unity help us deploy our games to different platforms.
By using the free version, we can deploy to the web, and to Mac, PC,
Linux, and certain mobile platforms.

The Unity interface has controls and panels that let us visually compose our
game assets, and test games on the fly right inside the program!

I hope you've taken some time to thoroughly vandalize the Angry Bots Demo. If you save
the file by clicking on File | Save Project, you'll have a perma-upside-down space marine in
your Demo. If you want to return to a pristine AngryBots Demo later to wreak more havoc,
don't bother saving the hilarious (but meaningless) changes we've made in this chapter.

Big ambition, tiny games

Now that we've trashed the joint, let's take a quick trip through some game design
theory. In the next chapter, we'll figure out the scope and scale of a game that a solo,
beginner developer should actually tackle. Crack your knuckles and put on your favorite
hat because you're about to dip yourself in awesome sauce.

[35]

2

Let's Start with the Sky

So, you've downloaded and cracked the seal on a fresh copy of Unity. You've seen

some examples of what other people have done with the game engine, and you've

taken a whirlwind tour of the interface. You can clear out the Angry Bots Demo

project by clicking on File | New Project in the menu. After choosing an empty

folder for the new project (you can call it Intro), Unity will close down completely

and start up again. Once it does, you're left staring at a 3D plane.

Click on the little landscape icon at the top middle of the Scene view to see this plane,
as shown in the following screenshot. It stretches on forever in all directions—
seemingly infinitely to either side of you, ahead of you, behind you, straight down to
the deepest depths, and straight up to the sky.

Let's Start with the Sky

It's time to build a game, right? But how do you start? Where do you start?

That little lightbulb

The idea's the thing. Every game starts with an idea—that little lightbulb above your head that

flicks on all of a sudden and makes you say, "Aha!" If you've gone as far as picking up a book on

Unity, you probably have at least one game idea floating around in your noggin. If you're like me,

you really have 10,000 game ideas floating around in your head, all clamoring for your attention.

"Build me! Build me!" Which of these ideas should you go ahead with?

The quality that defines a successful game developer is not the number of ideas he has. The
guy with 10 game ideas is equally as valuable as the girl with 500 game ideas. They're both
essentially worthless! A game developer develops games. The one thing that separates you
from success is not the number of ideas you've had or the number of projects you've
started and abandoned. It's the games you've finished that count. To put it another way: he
who executes, wins. Don't worry about getting it right just yet; worry about getting it done.

And what's with all this pressure to make your first game good—anyway? Before he
directed Titanic and Avatar, James Cameron worked on the sequel to Piranha—a zero-
budget, B-movie schlockfest about murderous fish. Don't worry—you'll be the game world's
answer to Cameron some day. But for now, let's finish the fish.

[38]

Chapter 2

The siren song of 3D

The biggest barrier between you and your success as a Unity game developer is finishing a
project. The idea stage that you enter when you sit staring at that endless 3D plane is crucial
to you overcoming that barrier. If you choose the right idea, you will have a much better
shot at finishing. Choose the wrong idea, and you might crash and burn. Then you'll
probably go back to school and study to be an accountant. Starting in game development
and ending in accounting is your worst-case scenario. Let's avoid that at all costs.

Before you even begin, the odds are stacked against you. That endless 3D plane is calling
you, begging you to start a project that's way over your head. You may begin thinking of
the other 3D games you've played: gritty, wide-open "sandbox" games like Saints Row or
Grand Theft Auto; tightly-controlled platformer games with lots of exploration and
interesting challenges like Super Mario 64; sweeping, epic role-playing games like Skyrim
or Fallout 3. All of these games have a few things in common: an animated character or
first-person camera moving around in a physics-based environment; a rich and detailed 3D
world with maps, quests, non-player characters, and pick-ups; and teams of hundreds of
people burning through multimillion dollar budgets.

Odds are that you're not reading this book with 99 of your closest, wealthiest friends who
all want to help you build your game. You need to ignore the dizzying and endless scope
that eternal 3D plane implies—and foster the creativity and resourcefulness that will get
you from point A to point B; that is, from an idea to a finished game.

[39]

Let's Start with the Sky

Features versus content

Another trap fledgling game developers fall into is reducing the scope of their ideas in ways
that still prove the project impossible. For example, they'll say, "I don't want to set my
sights too high, so I'm going to make a game such as Gran Turismo, except with fewer
cars," or "I want to make Diablo III with smaller levels," or "I'm going to build World of
Warcraft with fewer classes and about half the items".

To understand why this approach is so dangerous we'll have to understand a little more

about how games are put together. The two issues here are features and content. All

things being equal, a game with 50 levels has more content than a game with 5 levels.
The 50-level game has ten times more content, but both games have the same feature:

levels. A role-playing game with twelve character classes has more content than a game

with three character classes, but they both have the same feature: character classes.

So, while you may recognize that it's more work to build additional content for a game, try

to peer behind the curtain and recognize the number of features that go into a game.
Every feature that your game supports takes more work, and sometimes it's easier
to build 20 different enemies for a game than to actually build the enemies feature.

A game with no features

We see how it can be dangerous and self-defeating to choose a game with many
features and reduce the amount of content in that game. And, because some features
are so time-consuming to develop, it's also dangerous to choose a fully featured game
and start stripping features to reduce the scope of our project.

A much better approach, and one that you'll have much more success with, is to start with a
game that has zero features, and then add them slowly, one by one. Using this approach,
you can decide when your game is good enough to unleash on your players, and any
additional features you had planned can go into the sequel. This is a winning approach that
will see you through many small victories, and many finished games!

[40]

Chapter 2

Mechanic versus skin

One skill that may help you finish a game is recognizing the difference between mechanic
and skin. Your game's mechanic is how it physically functions. The very best games contain a
simple mechanic that's easy to learn, hard to master, and compelling enough to keep a
player interested. The mechanic in Tetris is to move and rotate falling blocks into place to
create and eliminate one or more solid lines. The mechanic in many golf games is to
simulate swinging a golf club by moving the controller's thumbstick around or tapping a
button when the "Power" and "Accuracy" meters are at the right level. The mechanic in
Breakout is to move a paddle back and forth to bounce a ball into a wall of fragile bricks.

A game's skin is how it looks and sounds. It's the animated cutscenes that establish a
story. It's the theme that you choose for your game. Imagine a game where you've
programmed an object to follow the mouse cursor. There are "bad" objects on the screen
that you must avoid, and "good" objects on the screen that you must collect. That's the
game mechanic. The game skin could be practically anything. The player object could be a
mouse collecting "good" cheese objects and avoiding "bad" rat objects. Or it could be a
spaceship collecting space gold and avoiding black holes. Or it could be a fountain pen
collecting verbs and avoiding conjunctive pronouns. As they say, "the sky's the limit!"

Trapped in your own skin

The advantage that you gain by separating a mechanic from a skin is that you can shuck off
video game conventions and free yourself to develop anything you want. If you think, "I'd
like to create a space-themed strategy game," and you think back to all of the space-themed
strategy games that you've played, you might think of 4X games like Alpha Centauri or
Master of Orion—they both pit you in a massive quest to conquer the universe. They are
huge games that you likely won't finish alone. So, you start trimming them down for sanity's
sake—"I'll just build Master of Orion with fewer planets," or "I'll just build Alpha Centauri
with fewer features". Now you've unwittingly fallen into that self-defeating trap. Your
project is still too huge. You eventually abandon all hope. A few years later, you're an
accountant wondering what might have been.

[41]

Let's Start with the Sky

That singular piece of joy

Instead of going down that doomed copycat road, start asking yourself questions about the

outer space theme and the strategy mechanic. What's fun about each of them? Which

moments in a game like Master of Orion really turn your crank? Do you like mining a planet for

resources and buying new stuff? Do you like the thrill of discovering a new planet? Or does

building an armada of spaceships and conquering enemies really get you excited?

Distill your game down to that one thing—that singular piece of joy. Create that one joyful

experience for your player, and nail it. That's your game. Everything else is just feature creep.

One percent inspiration

The Internet is packed with small, simple, and free-to-play games that offer the cheap
thrill of a singular piece of joy. Let's analyze some of these games to see what we can
learn. For each example, we'll identify:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

The core game mechanic—that singular piece of joy

The skin

The feature set

Possible additional features

Alternate skin ideas

These games require the Flash Player plugin, which you probably already have. If, for some

weird reason, your computer's been living under a digital rock and you need to install it,

browse to http://get.adobe.com/flashplayer/ and follow the instructions there.

[42]

Chapter 2

Motherload

Motherload by XGen Studios (http://www.xgenstudios.com/play/motherload)

distills a complicated 4X game, like Master of Orion, down to two joy-inducing tasks: mining

for resources and shopping for stuff. Here's a screenshot from the game:

[43]

Let's Start with the Sky

The core mechanic: Pilot your vehicle by using the arrow keys—dig, fly, and avoid long

falls—with a finite fuel source. There's only one real "level" in the game, and it
stretches down your screen for a long time. Your drill-enabled vehicle can only dig down
so deep and dig up so many pieces of ore before having to return to the surface to sell off
the goods and clear some cargo space. The trick is to dig up and sell enough ore to
upgrade your ship so that it can dig deeper, carry more loot, and survive longer falls. The
initial goal is to rack up ludicrous cash, but a story eventually develops that adds meaning
to your loot-lust. This mechanic is similar to the much simpler game Lunar Lander, where
the player must gently land a spacecraft on a single non-scrolling screen with limited fuel.
You can look at Motherload as either a dramatically toned-down Master of Orion or a
trumped-up Lunar Lander!

The skin: A quasi-cartoony space mine with a layer of grit and grime over it. The
player character is a futuristic mining vehicle. The only non-player character is a
human being (... or is he??).

The feature set:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Vehicle control

Vehicle upgrades (which include both vehicle and terrain

strengths and attributes)

Shops

Diggable terrain

Scrollable story or dialog

windows The save game option

Front-of-house features

Front-of-house
We'll be looking at front-of-house game wrappers later on. They include
things such as the title screen, instructions screen, pause screen, and
win or lose screens, and are an essential part of your finished game. The
best part is that if you build them well, you can reuse a lot of your work
for every new game that you create!

[44]

Chapter 2

Possible additional features:

Sequel features for Motherload include:

‹

‹

‹

‹

‹

‹

‹

‹

Switching between vehicle types

Mining on different planets

Managing multiple vehicles at the same time

A character mode where you get out and run around as a little
guy, as in Blaster Master

Alternatively, the sequel could just add new content: more ship upgrades, more ore types, a

larger play area, more story sequences, more sound effects and music tracks, and so on.
This is what game reviewers can derisively call a MOTS (more-of-the-same) sequel.
These days, you can get away with it by calling it an "expansion pack".

For a look at what a completely different team has done with a nearly identical mechanic,
check out I Dig It and I Dig It Expeditions from InMotion Software, which counts
underwater exploration among its innovations:

[45]

Let's Start with the Sky

Stretch your skills
We're looking way down the road here, but if you create a sequel
for your game, be sure to add at least one new feature. And,
because you'll still be learning Unity, make sure that developing the
new feature requires a skill that you don't already have. In this way,
each game that you create will stretch your capabilities farther and
wider, until you're an unstoppable Unity pro.

Heads up!

Pay close attention to a game's Head-up display (HUD). Video game HUDs contain graphical

elements that usually don't make sense within the context of the game world, but they provide

vital information to the player. A great example is the heart health meter in any Zelda game, or

the energy bar in any fighting game. The Motherload HUD includes draining Fuel and Hull bars.
It displays dynamic money and depth tallies. Three clickable elements lead the player to
the Inventory, Options, and Instructions screens. Finally, a piece of text lets the player
know that there are more shops to be found past the borders of the viewable game area.

Unity has great features for building game HUDs. Every HUD item type that you see
in Motherload—the graphical bar, the dynamic (changeable) text, the clickable
icons, and the flashing helper text—can all be built in the Unity game engine. Skip
ahead to Chapter 4, Code Comfort if you're dying to try it!

Artillery Live!

Artillery Live! (http://www.gamebrew.com/game/artillery-live/play) is one of
the many, many iterations of the classic Artillery game mechanic, which is nearly as old as
video games themselves. It was also built in Flash, but there's no reason it couldn't be built
in Unity using 3D tank models and some awesome exploding particle effects.

[46]

Chapter 2

The core mechanic: Artillery games share a familiar mechanic where the player sets the
trajectory and power of his shot to demolish the enemy tanks. This version also has a wind
speed feature that affects the way the tank shells travel through the air. Over time and in
other incarnations, the game mechanic evolved into a pull-back-and-release experience,
mimicking a slingshot. Other versions have the gun turret automatically angling towards
the mouse, and the player holds down the mouse button to power up his shot.

[47]

Let's Start with the Sky

The skin: The Gamebrew version is a classic tanks-and-mountains affair, holding true to the

very first Artillery games developed by game development pioneers in the 1970s.
These games transformed from text-only titles to primitively illustrated games with
pixelated tanks. An obvious alternate skin is to replace the tank with a man holding a bow
and arrow (refer to the Bowman series of online games):

Among the more interesting Artillery skins in recent memory is the Worms series, which

replaces tanks with teams of anthropomorphic annelids bent on heavily armed destruction, and

GunBound, an online multiplayer game where players pilot giant vehicles and mounts into

battle. In addition to tanks, GunBound throws animals and mythical creatures into the mix. It

could even be argued that the pull-back-and-release slingshot mechanic of Angry
Birds is an evolution of the Artillery mechanic.

[48]

Chapter 2

The feature set: In addition to the core mechanic, the front-of-house features, and computer-

controlled players, the Gamebrew version of Artillery offers turn-based multiplayer gameplay.

Multiplayer games are a huge topic and deserve a book of their own. Unity does have features to

enable multiplayer play. Unity interfaces nicely with out-of-the-box socket server solutions, or

any server you decide to write on your own. Multiplayer play is largely outside the scope of this

book, but Chapter 12, Game #5 – Kisses 'n' Hugs, has you creating a two-player game with a

computer-controlled opponent. If you've never programmed a multiplayer game before, you

should know that they come with a universe of headaches all their own! As a general rule, you're

better off tackling single-player games if you're just starting out.

[49]

Let's Start with the Sky

The skinny on multiplayer

More and more, gaming is moving from the lonely, isolated hobby of teenage boys in their
moms' basements to a pastime that people enjoy in groups, either in person or virtually.
Any time you move beyond a single-player experience, you're spending more time, money,
and brain power to build the game. Here's a list of multiplayer features in order from the
most expensive or difficult to the least:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Multiplayer, different computers, real-time: Think of an action game such
as Quake, where everyone's running around and shooting all at once. Real time is
the most expensive to develop because you need to make sure all the computers
"see" the same thing at once. What if the computer drops a connection or is
slower than the rest?

Multiplayer, different computers, turn-based, synchronous: Boggle, Battleship,
and various card and parlor games fit into this category. You don't have to worry
about the computers constantly sending and receiving the right messages
multiple times per second, so it's a little more forgiving.

Multiplayer, different computers, turn-based, asynchronous: Instead of people

playing at the same time, their latest turn is sent via a Facebook message or an e-

mail. Enabling players to grow old and die between moves really takes the messaging

pressure off. The Scrabble-like Words With Friends is a great example.

Multiplayer, human versus computer: This is a costly option because you have to

write code to make the computer player intelligent enough to defeat a human
player. The difficulty in doing this changes depending on the type of game. It's
easier to program artificial intelligence for a game such as Connect Four than Chess.

Multiplayer, same computer, human versus human: This is the easiest to do.
There's no complicated messaging going back and forth between computers,
and you don't have to write artificial intelligence for a computer player.
Regardless, it's still more effort to build than a strictly single-player game.

Possible additional features: The Worms series did a great job of iterating on the
Artillery concept by adding a slew of additional features:

‹

‹

‹

‹

‹

‹

‹

‹

Weapons inventories (including the standard-issue bazooka, and
the not-so-standard-issue Super Sheep and Holy Hand Grenade)

Limited or collectible ammo Team-

based play with turn time limits

Environmental extras such as land mines, oil barrels, and cargo drops

[50]

Chapter 2

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Moving and jumping

Physics-based platforming with the ninja rope

Cutscenes Nameable

characters Single-

player levels

Unlockable extras

The Worms series is an excellent example of how you can take a simple, fun
mechanic, skin it creatively, and go nuts with a bevy of brilliant features. But, the
most important thing is to start by building Artillery, not Worms.

Bang for your buck

By far, the Holy Grail of feature development is finding features that are fast and cheap to
build, but that give players the most pleasure. Being able to name your team of worms
provided untold entertainment. I remember spending a lot of time with one version of
the game creating my own custom sound effects for the worms to say whenever they'd
blow stuff up. It wasn't too tough a feature for the developers to build, and I almost spent
more time customizing my team than I did playing the game!

[51]

Let's Start with the Sky

Build a game, buy a house?
If you think that players only notice the big ideas and the big games with
hundreds of people working on them, Artillery offers you a re-education!
iPhone developer Ethan Nicholas released a version of Artillery on the
iPhone and reported to Wired magazine that he had earned $600, 000
on his game. It's definitely possible to be small and successful.

Pong

Seriously, Pong? Yes, Pong. The British Academy of Film and Television Arts hosts an
online version of the classic game (http://www.bafta.org/games/awards/play-
pong-online,678,BA.html). The original Pong is credited with kick-starting the
commercial video game industry that we know today:

The mechanic: Pong takes its name from "ping pong"—a real-world activity where
two players use paddles to bounce a ball at each other across a table with a tiny
net. Ping pong was adapted from tennis, after people finally realized that all that
running around was too much effort.

[52]

Chapter 2

Some real-world activities lend themselves very well to video game mechanics. Not quite
50-years old, the video game industry is still very much in its infancy. There is an
enormous wealth of fun stuff in the physical world (such as playing ping pong or blowing
up tanks) that's waiting to be adapted to a terrific video game mechanic. Are you clever
enough to find one of those undiscovered mechanics and build the next Pong?

The skin

Like many early games, Pong obviously leaves a lot to be desired. Video game skins
of tennis and ping pong have come a very long way, and can be radically diverse. Compare
the ultra-realistic treatment of ping pong in Rockstar Games presents Table Tennis with
the all-out insanity of Nintendo's Mario Tennis games, which add spinning stars and
carnivorous plants to the playing field.

[53]

Let's Start with the Sky

In both cases, be aware of the HUD elements. All three games—Pong, Table Tennis, and
Mario Power Tennis—display a dynamic (changeable) piece of text on the screen to show
the score data. Table Tennis also has player names, an exertion meter, and little circles
that display how many games each player has won. Look at the positioning of those
elements. In all cases, and in our Motherload example, these HUD elements are displayed
at the top of the screen.

The feature set: As Pong evolved, the feature set became far richer. Satisfied that the simple

mechanic of hitting a virtual ball back and forth was enough to hang a game on, both Rockstar

Games and Nintendo were able to blow out Pong with feature sets so juicy that the games'

Pong origins are barely recognizable. By implementing tennis-style scoring, they made these

games much more like tennis with very little effort. Both games add tournaments, rankings,

and different player characters with varying skill sets. Mario Power
Tennis adds about 30 new features involving mushrooms. Pong is a true testament to
the level of complexity a simple, strong game mechanic can aspire to. But, again, if you
want to make a fully featured game like Table Tennis or Mario Power Tennis, the key is
to start with is a simple game like Pong.

The mechanic that launched a thousand games

The Pong game mechanic is so simple and so effective that its impact can be felt far
and wide throughout the annals of video game history.

From Pong, we get Breakout. The innovation here is to turn Pong into a single-player game like

real-world handball or squash, with the addition of a breakable brick wall. Breakout introduces

stages or levels to the Pong concept, each with a different configuration of bricks:

[54]

Chapter 2

Arkanoid iterates on Breakout by changing the skin to a sci-fi theme. The paddle becomes a
spaceship. Arkanoid adds a few new features, most importantly power-ups that come in the
form of capsules that are released when the ball smashes into the bricks. When the player
catches the capsules with the spaceship, the game rules get bent. The spaceship can
become longer. It can become sticky so that the player can catch the ball and plan the next
shot. My favorite Arkanoid power-up is the red capsule marked L; it enables the spaceship
to fire laser beams to destroy the bricks!

The Pong legacy brings us all the way to the present day, with Peggle by PopCap Games.
Peggle combines a few different game mechanics: the brick-smashing and ball-bouncing of
Breakout, the angular aiming of Bust-A-Move or Puzzle Bobble, and the random insanity
of real-world pachinko games. To jazz up the skin, PopCap adds cartoon unicorns and
gophers, and in one of the most-talked-about payoffs in video game history, Peggle
rewards players with an absolutely over-the-top slow-motion winning shot while blaring
the climax of Beethoven's ninth symphony!

[55]

Let's Start with the Sky

Peggle teaches us some important lessons:

‹

‹

‹

‹

‹

‹

‹

‹

A few small twists on a timeless mechanic will still sell. Peggle has been
downloaded over 50 million times!

Small games and large games can play nicely together. The famed MMORPG World
of Warcraft (WoW) is embedded with a special version of Peggle, along with
another blockbuster PopCap Games hit, Bejewelled. WoW players can use Peggle
to decide how to distribute loot among the party members, which is probably
more fun than flipping a coin.

You stand to reach a broad audience if you package your game with friendly,
well-illustrated unicorns and gophers instead of dark and brooding axe-
wielding superwarriors named "Kane" or "Glorg".

Music and sound play a crucial role in your design. They can make the game.

What if you were in charge of creating sequels to some very well-known games? Sequels
to Pac-Man added 3D mazes, jumping, and a red bow to the main character's head. Is that
what you would have done? Take a look at this list of popular games and think about
which gameplay features you might add if you were in charge of the sequel:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Pac-Man

Tetris

Wolfenstein 3D

Wii Sports – Boxing

Chess

Space Invaders

Toy or story

The approach that we're taking to your initial idea phase is not an approach that comes
naturally. Usually, new game developers want to start with setting the story and
characters, as if writing a book. That's how we've always been taught to begin a creative
project. As there's often so much overlap between narrative forms such as books, movies,
and teevee shows, it's tempting to start there. "My game is about a dark, brooding
superwarrior named Kane Glorg who doesn't know who his parents are, so he travels the
wasted landscape with his two-handed axe and his vicious battle sloth, slicing through
hordes of evil slime demons in his ultimate quest to punch Satan in the face."

[56]

Chapter 2

The take-away from this chapter is that all that stuff is window dressing. When you're just
starting out (and unless you're building an explicitly narrative game like a graphic or text-
based adventure), story, setting, and character are the end point, not the start point. Too
many would-be game developers get caught up in the epic implications of their story
design instead of worrying about what's most important: does my game have a fun,
simple mechanic that players will enjoy?

When you're designing a game, you're not creating a narrative. You're creating a toy,
which can be wrapped like a sausage roll in flaky layers of delicious storytelling,
character arcs, and twist endings, but you need to start with the toy. You need to start
with that small, singular piece of joy that puts a smile on your player's face. As Shigeru
Miyamoto, the man who created Mario, Donkey Kong, and Zelda, said in his 2007
keynote at the Game Developers Conference,

"Start by imagining your player having fun with your game, and work

backwards from there."

Shopping for ideas
One great place to find inspiration for games is your local toy store. Ignore the toy

skins, like the high-seas adventure of Lego Pirates sets, and focus on the

mechanic: building. Ignore the giant fire-breathing scorpion head skin on that
Hot Wheels track set, and think about the mechanic: the fun, the physical way the

little cars fly over the ramps. And be sure to investigate the small, simple toys in

the end aisles, in the nickel bins, and inside those chocolate eggs and bags of

caramel popcorn. You're bound to find game mechanic ideas there.

Pop Quiz

What follows is a list of video games that are all based on a real-world physical game
mechanic. In some cases, they're based on a physical game, and in other cases, they're
based on goofing around. Can you identify the singular piece of joy from which these games
take their cue? The answers are written on a folded piece of paper that I've hidden
underneath your chair.

‹

‹

‹

‹

‹

‹

Super Monkey Ball: Tilt the level to guide a sphere along ramps, spirals,

and treacherously thin platforms suspended above a bottomless void.
Metal Gear Solid: Hide behind crates and other pieces of cover while
heavily armed guards seek you.
Boom Blox: Throw a ball at a stack of blocks that have different
physical properties to knock them all down or to make them explode.

[57]

Let's Start with the Sky

‹

‹

‹

‹

Katamari Damacy: Roll a ball around in random detritus scattered around the
level and watch it grow ever larger. Roll up a writhing junk wad of sufficient
size to reach the goal.

Dance Dance Revolution: Light up a series of scrolling arrows by stepping on their
corresponding buttons on a flat input pad. The button presses are timed to the
beat of a backing soundtrack.

Redefining the sky

The sky's the limit, and Unity starts us off with an endless sky. But through this chapter,

we've seen that that endless sky can actually trap us into an ambitious concept that we'll

have no chance of completing. So, let's redefine the sky. Instead of wondering how big and

complex your game can be, think about the endless array of simple interactions and

moments of joy our world contains. Throwing and catching a ball, knocking a pile of stuff

over, feeding an animal, growing a plant—the world is packed with simple, effective
interactions that ignite our most primitive, most basic "Joy Cortices", which is a
neurological term that I've entirely invented just now.

If you want to discover one of these joy-producing real-world moments, study a child.
Because games are all about playing, the simple things that amuse and delight children and
babies are the stuff of award-winning games. What is Metal Gear Solid if not a complex
game of hide and seek? Rock Band and Guitar Hero are digital versions of all those times
you played air guitar and pretended to be a rock star in front of the mirror with your
bedroom door closed. Have you ever rolled snow into giant balls to build a snowman?
Katamari Damacy is the video game expression of that joy-producing activity.

[58]

Chapter 2

Creative limitation is not something to rebel against—it's something to be embraced! It's
when we're under restriction that we come up with the most creative and interesting
solutions to problems. Conversely, when we have absolutely no limitations, we're at risk
of producing junk. This is a common criticism leveled at George Lucas for creating his
vastly inferior Star Wars prequels; so the theory goes, no one dared to tell George "no",
and the horrifying result was Jar Jar Binks.

It's even possible that in the midst of your limitations, you'll stumble upon a game bug
or a strange behavior that's so fun and interesting, it becomes your core gameplay
mechanic! In the world of video games, anything is possible.

Summary

In case you ever need to answer a multiple-choice quiz on this chapter, here's a
quick rundown of what we've learned:

‹

‹

‹

‹

‹

‹

‹

‹

Big game ideas are the enemy! Consider thinking small and building slowly
to achieve big success.

By cutting features from your game ideas, you can whittle your design
down to a more manageable size than by cutting content.

A game's mechanic is distinct from its skin. A single, strong game mechanic

can support myriad different skins through a whole host of great games.

Start taking notice of the front-of-house aspects and HUDs in the games
that you play. You'll be building your own a few chapters from now!

Let's begin

For the rest of this book, we're going to ignore the epic implications of that endless Big Sky
Country 3D plane in the Unity Scene view. We're going to focus on small, simple, and fun
game mechanics. Once you close the back cover of this book, you can take those simple
concepts and iterate on them, even blowing them out to ambitious fully featured crazy-fests
such as Master of Orion or Mario Power Tennis. But stick to the strategy that will make you
successful throughout—start at zero, discover that singular piece of joy, and iterate until
your game is finished.

[59]

3

Game #1 – Ticker Taker

So far, we've taken a look at what other developers, large and small, are
doing with Unity. We talked about what it's going to take for you to become a
small developer and succeed—to finish a fully functional game. Now it's time
to roll up your sleeves, tie up your inner procrastinator and lock it in the trunk
of your car, and start learning to build a game with Unity.

Here's what we're going to do:

1. Come up with a game idea.

2. Distil it down to that small, singular piece of joy.

3. Start building the game in Unity using placeholder objects.

4. Add lighting to the Scene.

5. Tie into Unity's built-in physics engine.

6. Modify a game object using components to bend it to your steely will.

Let's get cracking!

Game #1 – Ticker Taker

Kick up a new Unity project

Let's get to that crucial decision-making stage where we're staring at a wide-open
3D frontier in an empty project file:

1. Open Unity 3D. The last project you had open should appear. (This might be
the AngryBots Demo from Chapter 1, That's One Fancy Hammer!).

2. In the menu, click on File | New Project….

3. Under Project Location, type in or browse to the folder where you want your project

created. It's a good idea to create a new folder somewhere on your computer where

you'll be able to find it again, and name it something that makes sense. I created

a folder on my desktop called UnityProjects, and created my new project in
an empty folder called Chapter3Game.

4. Unity gives us the option to import a bunch of useful ready-made goodies

into our new project. We don't need any of these yet, so make sure all the
boxes are unchecked:

5. Next, click on the Create button. Unity will briefly close and restart. After

importing the assets we selected, the program will open.

6. Close the Welcome to Unity start screen if it's open. You'll find yourself
staring face-to-face with that wide-open 3D plane.

[62]

Chapter 3

Where did everything go?

If you're staring at nothing but a 3D plane in the Scene view, Unity has pulled a switcheroo on

you. To get back to a layout, like the one you saw in the AngryBots Demo, choose 2 by 3 from

the Layout drop-down menu at the top right of the screen. Note that there are other choices

here, and that Unity enables you to save and restore your own custom layouts:

'Tis volley

What kind of game are we going to make? Well, let's pretend that you are totally pumped
up about volleyball (work with me here). All you can think about night and day is volleyball.
You dream about it at bedtime. You play it at every chance you get. So, when it comes to
making your first game in Unity, there's no question: you have to make a volleyball game.

Let's back away from that idea a little and, using what we learned in Chapter 2, Let's Start with

the Sky, evaluate the difficulty level of a volleyball game. Volleyball features two teams of six

players on either side of a net. A "server" hits a ball with his/her hands over the net, and the

teams compete to keep the ball in the air, hitting it back and forth over the net.
The rally ends when:

‹

‹

‹

‹

‹

‹

One team lets the ball hit the floor

The ball goes out of bounds

An angry puma bursts onto the court and starts chewing on the star players

The first team to score 25 points wins the set. A match is best-of-five. Then there
are a number of rules that govern how often and in what way a player may hit the
ball (hint: no grabsies).

[63]

Game #1 – Ticker Taker

Hopefully, it's clear that volleyball is a BIG game with lots of rules and a heap of helping
of complexity. Multiple teams means that you have four options:

‹

‹

‹

‹

‹

‹

‹

‹

Two-player, same computer: Both players share the keyboard and mouse

to compete against each other

One-player, same computer: So, you'd have to program AI (Artificial
Intelligence) to enable the computer to play against a human

Two-player, different computers:

Multiple players, multiple computers: Where every human player controls a
team of volleyball team members

We saw in the last chapter that these multiplayer options can add significant layers of
complexity to a simple game. Right out of the gate, the challenge is daunting. In addition
to providing for two teams, having multiple players on each team means that you have to
program a way for the player to switch between different characters. And who knows
how you're ever going to animate that puma?

Keep the dream alive

All this results in the simple mathematic equation: you + volleyball game = badIdea

10
. That's a

bad idea to the power of ten, which (mathematically) makes it an exponentially bad idea.

But volleyball is your passion. Does that mean you can never follow your dreams and make
the kinds of games you'd always hoped to build? Of course not! Let's see if we can distil
the game of volleyball down to its barest essentials—to that small, singular piece of joy.

Slash and burn!

If you want to finish a game, you need to cut the complexity and the features. Bring out
your red pen and/or machete, and follow along:

1. Scrap the sets and the best-of-five match structure

2. Kibosh the teams

3. Jettison the multiple players

4. Ditch the net

[64]

Chapter 3

5. Nix the referee and the spectators

What do we have? Just a person with a ball, looking kind of lonely.
Hmm! That person might be a little tricky to model, texture, rig, and
animate. Let's keep slashing.

6. Next, trash the player

Now where are we? We have a ball, floating in midair; a ball that can't hit the floor. So,
we need something simple to hit the ball with. A human character is too complicated, so
let's just say it's a surface. We'll have some kind of thing that we can bounce the ball on.

The many faces of keep-up

You know what? This game is starting to sound a lot like keep-up. You might have played
that as a kid with a balloon that couldn't hit the ground. Or you might have played it in a
circle of hippies and called it "Hacky Sack" or footbag. You might have played it in a soccer
drill by bouncing the ball on different parts of your body. You may even have played it by
taking something scalding hot out of the oven, calling it "Ow! Ow! Ow! It burns! Get me an
oven mitt already! OW!"

Keep-up looks a whole lot like Pong or Breakout from Chapter 2, Let's Start with the Sky.
You have an object to keep up and an object to keep it up with. The innovation is a little bit
of physics—in this case, gravity—which is the force that constantly pulls the object towards
the ground. It's simple, it's effective, and your players will instantly get it. It distills
volleyball down to that singular piece of joy. It's what volleyball was meant to be, before
Johnny McBuzzkill came along and added all of those formalized rules and unflattering
shorts. And, because little kids play and enjoy keep-up, you know that you're tapping into
some primal, intuitive game mechanic that will stand the test of time.

Keep-up sounds like a great first project for learning Unity. Let's do it! Let's build

a keep-up game!

Creating the ball and the hitter

For now, we'll use Unity's built-in 3D primitives to create our game objects. Besides
the terrain editor, Unity doesn't have any great modeling tool built in. You'll need a
piece of 3D software for that. Let's see what we can manage with what Unity gives us.

[65]

Game #1 – Ticker Taker

Let's add a built-in GameObject to the Scene view:

1.
2.
3.

In the menu, click on GameObject.

Point to Create Other.

Click on Sphere.

What just happened – that's all there is to it?

Well, yeah, actually! Unity has a number of prebuilt simple 3D models, also known as

primitives, which we can use to get started. You've just created a built-in game object with four

components on it. A component is a piece of functionality that modifies or augments a
GameObject. Look at the Inspector panel to see what the Sphere's components are:

‹

‹

‹

‹

‹

‹

Transform : This determines how a game object is positioned, rotated, and
scaled (made big or small) in your Scene view.

Mesh Filter: This component takes a mesh, and runs it through the Mesh
Renderer. A Mesh defines the connected vertices that comprise a 3D structure.

Sphere Collider: This is a sphere-shaped boundary on our game object that
helps Unity figure out when instances of game object colliders touch,
overlap, or stop touching.

[66]

Chapter 3

‹ ‹ Mesh Renderer: This component enables the player to see our meshes. Without it,
meshes don't get drawn or rendered to the screen.

We'll get a better understanding of what exactly a Mesh is when we add the Paddle to

the Scene a few steps from now.

A ball by any other name

Let's make a few changes to our ball. We should rename it and move it up into the
"air" so that it has some place to fall from.

[67]

Game #1 – Ticker Taker

1. In the Hierarchy panel, find the GameObject called Sphere, beneath Main Camera.
2. To rename the sphere, you can either right-click/alternate-click it and choose

Rename, or press F2 on the keyboard if you're on a PC. Mac users can press the
Return or Enter key to rename the Sphere. You can also rename a GameObject by

selecting it and typing a new name into the field at the top of the Inspector panel.
3. Rename the game object to Ball:

Your project can fill up fast with generically named game objects and other assorted
things, so let's stay on top of our project by naming game objects as we create them.

Origin story

The center of your game world is called the origin. The origin is the magical place in 3D
space where everything begins. 3D space is divided into three axes: X, Y, and Z. If you
remember your Cartesian grid from grade school, or if you've ever seen a bar or line graph,
the X-axis runs one way (usually horizontally), and the Y-axis runs perpendicular to it (usually
vertically). 3D is like taking a second piece of paper and sticking it at a right angle to your
graph so that this axis is perpendicular to both X and Y-axis and you have a third axis firing
straight up at your face from your desk, and down into the floor in the opposite direction.

[68]

Chapter 3

The orientation (the way the X, Y, and Z axes are positioned) varies from program to
program. Unity has a Y-up orientation. The X and Z axes run perpendicular to each other on
the "floor". If you hold your arms out like a scarecrow, your arms are the X axis, and the Z
axis runs through your belly button. The Y axis runs straight up into the sky, and straight
down to the center of the Earth where there are probably goblins or some such creatures.

Let's get a better look at that ball. To orbit around the Scene view, hold down the Alt key or
option key on your keyboard (depending on whether you're using a PC or a Mac) and press
and hold the primary (usually left) mouse button. If the ball is centered near the origin, you
should notice that the "ground" plane slices right through it. That's because the ball's
transform ("registration" or "pivot point" in other software) is at its center. Half the ball is
above ground, half the ball is below. If the ball's X, Y, and Z position values are all zero, the
center of the ball is at the origin, where the three 3D planes converge. It's entirely likely
that your ball is floating around somewhere else in the scene. Let's fix that right now.

Disoriented?
If you ever get lost orbiting, panning, and zooming around the Scene
view, remember that you can reorient yourself by clicking on the gizmo at
the top-right of the Scene view. Click on the green Y cone to view the
scene from the Top-down. Click the red X cone to view the scene from
the Right. Clicking on the blue Z cone focuses us at the Front of the Scene.
Click the gray box in the middle of the gizmo to return to a perspective
view. If you want to completely reverse your view, you can click on the
white cone sitting opposite to your orientation—doing this will flip the
view around so that you're looking at things from the opposite angle. The
label beneath the cone tells you which view you're currently using.

Remember, you can always use the F key to frame (or focus) the selected game object.

[69]

Game #1 – Ticker Taker

XYZ/RGB

If you've ever listened to your science or art teacher drone on about color spectrum of light,
you might have noticed that X, Y, and Z map onto Red, Green, and Blue. Red, Green, and
Blue are the primary colors of light, and are always listed in that order. If you're visually-
oriented, it might help you to know that X is Red, Y is Green, and Z is Blue, when you're
looking at any depiction of axes in Unity. Most often, your selected axis turns yellow when
you hover over or select it.

We want the ball to start somewhere in the "sky" (the area above the ground plane) so
that it will have somewhere to fall from:

1. Make sure that the Ball game object is selected. Click on it in the Hierarchy panel.
2. See the control gizmo poking out from the center of the ball? You can either click-

and-drag the green Y-axis to move the ball up, or type a new Y position for it in
the Inspector panel. As we want to stay on the same page together, let's type it.
Look in the Inspector panel and find the Y field—it's next to Position in the
Transform component of the Ball:

3. Change the Y position from 0 to 2.
4. Press the Enter key to commit this change.
5. Your ball may not have begun life at the origin. Make sure that the values for its

X and Z position are at 0.

[70]

Chapter 3

6. The Ball game object should now be hovering two units above the ground plane, which
is a marvelous height from where any self-respecting ball can endeavor to fall:

The units in our 3D world are arbitrary. When you're working on your game, it may help
to ascribe real-world measurements to these units. Perhaps one unit equals one foot or
one meter? If you're building a real-time strategy game where the scale is much larger,
maybe one unit equals one mile or one kilometer? The ball that we've just created is a
little large for our purposes, so let's shrink it down:

1. With the Ball still selected, type 0.4 for the X, Y, and Z scale values in the
Transform component of the Ball.

[71]

Game #1 – Ticker Taker

2. Press Tab to move the cursor to each new field, and press Enter after typing in
each field to commit the change:

The Ball should shrink down to 0.4, or 40 percent of its original size. Note that if you
enter 0.4 only into one or two of the three Scale fields, you'll accidentally create a weird-
looking egg or an ovoid-shaped ball. If you dig gizmos, you can also use Unity's Scale
gizmo which, as we've seen, is mapped to the R key. Click and drag the grey box in the
middle of the gizmo to scale the ball uniformly.

Size matters
When it comes to including GameObjects in Unity's physics simulation, as
we'll do by the end of this chapter, scale does actually matter. The Unity
manual recommends that you treat 1 unit as 1 real-world meter (that's
3.2 feet, for you imperial users).

A computer teacher of mine once gave me sage advice: "Save often, cry seldom."
Throughout the book, I won't pester you to save your project in every other paragraph—
that's up to you and how comfy you feel with your dodgy power cable and the fact that
you're reading this book during a lightning storm. At the very least, let's learn how to save
the Scene that we're working on. Save frequency is up to you from this point on!

1. Click on File | Save (or Save Scene As) in the menu. You're asking Unity to save
the current named Scene, but there really is no named Scene for it to save yet.
Let's fix that.

[72]

Chapter 3

2. In the resulting dialog, type a name for your Scene. I chose to call mine Game.
3. Click on the Save button. Unity actually creates a Scene asset in the Project panel

called Game. You know that it's a Scene because it has a Unity 3D icon next to it:

4. Now that you've named your Scene, you can quickly save changes at any point by
pressing Ctrl or Command + S, or by clicking on File | Save Scene in the menu.
Clicking on File | Save Project will do a blanket save across your entire project.

We'll borrow a term from Pong by naming our hittable surface paddle. The paddle will be
the thing the player uses to bounce the ball and keep it up in the air. We can build the
paddle using Unity's built-in Cube primitive, like we did with the Sphere.

1. In the menu, navigate to GameObject | Create Other | Cube, as shown in
the following screenshot:

Now, according to Hierarchy, we have three instances of GameObject in our
Scene: the Ball, a Cube, and the Main Camera. Let's rename our Cube to remind us
what it will do in the game:

[73]

Game #1 – Ticker Taker

2. If the Cube is not selected, click on its name in the Hierarchy panel
and rename it Paddle:

Now, we should make the Paddle more paddle-like by changing the

Scale properties of the Transform component.

3. Make sure that the Paddle is still selected in the Hierarchy panel.
4. In the Inspector panel, change the X Scale value of the Paddle to 1.1.

5. Change the Y Scale value of the Paddle to 0.04.
6. Make sure the Position values are zeroed out to move the Paddle to the origin.

[74]

Chapter 3

Ah, that's better! The Paddle looks like a thin, flat, smackable surface—perfect for
whacking around our Ball.

What's a Mesh?

Although technology is constantly changing, most often a piece of 3D artwork comprises
three types of pieces: vertices, edges, and faces. A vertex is a point in 3D space. The
Paddle that we just added has eight vertices (points)—one on each corner. In these
illustrations, we'll depict a cube mesh to make this easier to grasp:

Edges connect the dots—building lines between the vertices. Our Paddle has 12 visible
edges: four along the top, four along the bottom, and four edges at each corner
connecting the top and bottom.

[75]

Game #1 – Ticker Taker

Faces are surfaces that are drawn between (usually) three vertices. Our Paddle has six
faces, like a die. Edges help define where one face ends and another begins:

Each face in our Paddle actually has a hidden edge splitting it up into two
triangles. So, the Paddle is made up of 6 x 2 = 12 triangles:

[76]

Chapter 3

3D models, then, are made up of three-sided (or sometimes four- or more-sided) surfaces. A
multisided shape is called a polygon. When you hear someone say "polygon count", he's
talking about the number of triangles that make up a 3D model. The fewer the polygons,
the less work the computer needs to do to render, or draw, the model. That's why you may
have heard that game artists need to produce low-polygon (or "low-poly") count models,
while film and teevee artists are free to produce high-poly count models. In film or teevee, a
shot only has to be rendered once before it's committed to a frame of the movie forever.
But video game engines such as Unity have to constantly draw and redraw models on the
fly. The fewer the polygons, the faster the game will potentially run.

A low-polygon model looks more crude and roughly hewn than a high-polygon model.
As video games are built for better and faster systems, the models start featuring
higher polygon counts. Compare the character models in a game such as Half-Life with
the higher-polygon count models in the game's sequel, which requires a faster
computer to run it. The difference is clear!

[77]

Game #1 – Ticker Taker

Poly wants to crack your game performance?

The number of polygons that Unity can handle in a single Scene really depends on the
hardware that's running your game. Unity games are hardware-accelerated—the faster the
machine that runs your game, the more polygons you can push. The best thing to do is to
build your models with as few polygons as you can get away with, without making your
game a giant cube-fest (unless you're making Minecraft, in which case, more power to you).
Decide on a minimum system specification, then test early and often on that minimally-
powered system to ensure that your game actually runs!

Of course, it entirely depends on your game, but you might try staying between 1,500 and
4,000 triangles per mesh to keep things humming.

Keep in mind that a number of factors beyond polygon count determine how quickly or
slowly your game runs. Learning how to put together a lean, mean, and optimized
game is something you'll learn over time as you gain experience as a game developer.

When you bring a 3D model into Unity from another program (as you'll be doing later in
this book), Unity converts the model's "whatever-gons" into triangles. When you read
about model architecture in Unity, "triangles" is the term that crops up most often.

Keeping yourself in the dark

If you've kept an eye on the Game view, which is what the player sees, you've noticed that
the Mesh game objects in our Scene are a dark, dreary gray color. Would you believe me if
I told you they're actually closer to white?

Just like on a real movie or teevee set, 3D scenes require lights to illuminate objects. The
lights aren't actually "real" objects (such as our Ball and Paddle meshes), they're virtual
objects in 3D space that determine whether the faces on a mesh will appear bright or
dark. The computer figures this out for us based on the kind of light we use, the way we
position and rotate it, and the settings we give it.

So, while you can move a light around your scene just like the Ball or the Paddle, there's no
actual geometry or triangles comprising the light. Lights aren't made of triangles, they're
made of data. In Unity, as in many 3D programs, lights are represented in the Scene view
by icons (or as Unity calls them—"gizmos"), with lines indicating their direction or their
area of influence.

[78]

Chapter 3

Let's add one of these virtual lights to our Scene so that we can see our objects a bit better:

1. If you're still in Wireframe mode (where your game objects look like they're made
from chicken wire), you'll need to switch to textured mode. In the Scene view
frame, click on the Wireframe button and choose Textured rendering. Then click on
the little light icon (it looks like a sun) a few buttons over to see the effects of our
(as-yet-non-existent) lighting. Your ball and paddle should look as dreary and
dark gray as they do in the Game view.

2. In the menu, navigate to GameObject | Create Other. The three types of lights that
Unity supports are listed there: point light, spotlight, and directional light.

3. Choose Directional Light.

[79]

Game #1 – Ticker Taker

A new directional light is added to the Scene. The icon also looks like an iconic white
sun. When the light is selected (as it is now), a tube of yellow rays shoots out from
it. That tube shows us which way the light is pointing.

Notice that one portion of your ball is now lit, and the objects in the Game view

have brightened up.

This new light is kind of in the way, and a big chunk of our ball isn't properly lit. Let's fix that.

1. Ensure that the Directional Light is still selected. If you deselected it, click on the
Directional Light label in the Hierarchy panel.

2. In the Inspector panel, change the light's position to move it up and out of the
way. Enter 0 for the X position, 4 for the Y position, and -4 for the Z position.
moving a directional light like this does not alter its intensity, but we're just
making sure it's within reach in the Scene view.

[80]

Chapter 3

3. Rotate the light so that it shines down on the objects. Enter a value of 44 for the light's
X Rotation in the Inspector panel. The other two rotation values should be zero.

4. Now, the light is casting its sunny rays a bit more pleasantly on our Scene:

[81]

Game #1 – Ticker Taker

If you're feeling adventurous, now's a great time to get a better feel for these virtual
lights. Switch to the Rotate mode by using the controls at the top-left corner of the
screen, or press the E key on your keyboard. You can freely rotate the light around to see
how it affects your objects:

Switch to Move mode by clicking on the Move icon or by pressing W on the keyboard.
Click on the Transform gizmo to move the light around the scene. How does moving the
light affect the way your objects appear?

Kill the light by pressing Delete on the keyboard (command + Delete if you're on a Mac). Add
one of the other two types of lights—a spotlight or a point light—by navigate to
GameObject | Create Other and choosing another light. You can also change an existing
light's type in the Type drop-down menu in the Inspector panel. What's the difference
between the light you chose and the directional light? Move the new light all around to get a
sense of how each light type treats your objects slightly differently.

Here are the differences between the lights in a nutshell:

‹

‹

‹

‹

‹

‹

Directional light: This light can travel an infinite distance and illuminate everything
in the Scene. This kind of light works like the sun. As we've seen, it doesn't matter
how large or small a directional light is, or where you place it in the Scene—only
by rotating it can we determine which surfaces it illuminates.

Point light: These lights start at a point in 3D space and shine all around like a
light bulb. Unlike directional lights, point lights have a range—anything outside of
that range doesn't get lit.
Spotlight: Spotlights are cone-shaped. They have a range and a direction.

Objects outside a spotlight's cone don't get lit by that light.

[82]

Chapter 3

‹ ‹ Ambient: This is the default type of lighting that you see in your Scene, without adding

any light game objects. Ambient lighting is the most efficient, but it's also the most

boring. You can crank the level of ambient lighting in your Scene up and down by

fiddling with the render settings (Edit | Render Settings). Try clicking on the

Ambient Light swatch to cast a creepy, bright green glow over your entire
Scene, as shown in the following screenshot:

Extra credit

If this lighting stuff really revs you up, check out all of the settings and things to fiddle
with within the Inspector panel when you select a light. You can get more information on
what these and any other Component settings do by clicking on the blue book icon with
the question mark on it in each Component section in the Inspector panel.

[83]

Game #1 – Ticker Taker

Are you a luminary?

Unity takes care of the science behind lighting our scenes, but arranging the lights is an
art. On many 3D animated movies and teevee shows, as well as on large game
development teams, there's often at least one person dedicated to lighting the scene, just
as there are lighting specialists on real-world film sets. Virtual lights are built to mimic the
properties of real-world lights. Lighting, like modeling, can be an entirely unique discipline
in the world of 3D game development.

When you're finished exploring lights, follow the steps mentioned previously in
the Time for action – move and rotate the light section to restore your directional
light, or just press Ctrl + Z or command + Z on the keyboard to undo everything
back to when you started messing around.

Who turned out the lights?

When you light a scene with multiple lights, it can be tricky to see which light is affecting

which area. To turn a light off, select the light in the Hierarchy panel. Then, uncheck the

checkbox at the top of the Inspector panel. Poof! The light is gone; but not forgotten.
Check the checkbox again to make it reappear.

In fact, you can turn any GameObject on and off by using this checkbox. It's a

handy way to isolate things in your Scene without deleting your hard work.

Darkness reigns

If you're working on a particularly grim game and you want to be able to see what's going
on in your Scene, toggle the internal lighting by pressing the sunny little button at the top
of your Scene view. When it's lit, your light game objects take over. When it's unlit,
internal lighting hits your meshes so that you can see what's what:

[84]

Chapter 3

Cameramania

If you had a good time playing with all the light settings, you're going to lose your mind
when you check out the camera! Cameras in 3D programs are simulations of how the
light rays bend around from a single perspective point. 3D cameras can simulate many
different lenses, focal lengths, and effects. For now, we're just going to ensure that our
camera is adjusted properly so that we're all on the same page, but don't be afraid to
goof around with the camera controls if you're dying to get into some trouble.

1. In the Hierarchy panel, click to select the Main Camera game object. You'll
notice you get a cool little Camera Preview picture-in-picture to show you what
the camera "sees":

[85]

Game #1 – Ticker Taker

2. In the Inspector panel, adjust the camera's position to X: 0, Y: 1, and Z:
-2.5. The paddle and ball should now be nicely framed in the Game view:

We have a well-lit and nicely framed Scene containing a Ball and a Paddle. The Ball is poised in

midair, ready to fall. Everything looks good. Let's test our game to see what happens next:

1. Click on the Play button to test your game.

Ack! That was anti-climactic. The Ball is just sort of sitting there, waiting to fall, and the
Paddle is not moving. Somewhere in the distance, a slow, sad strain of violin music plays.

But not to worry! We're one step away from making something amazing happen. Press the
Play button again to stop testing the game.

The pitfalls of Play
Remember that when you're testing your game with the Play button activated, you

can still make changes to your Scene, but these changes don't get saved! When you

stop testing, everything will go back to the way it once was, like Cinderella after the

royal ball. To make it very clear that you're in this potentially confusing game-

testing mode, click on the Maximize on Play button at the top of the Game window.

Now, whenever you test your game, the window will fill the screen to prevent you

from absentmindedly messing with stuff.

[86]

Chapter 3

Let's get physical

I wanted you to test your game at this point, even though nothing happened, to pinpoint
that magic moment when Unity becomes awesome. If you're already having a good
time, you ain't seen nothing yet!

Let's tap into Unity's built-in physics engine by adding a Rigidbody component to the Ball:

1. Select the Ball from the Hierarchy panel.
2. In the menu, navigate to Component | Physics | Rigidbody.
3. A Rigidbody component is added to the Ball. You can see it in the list of

the components of the Ball game object in the Inspector panel:

4. Make sure that the Rigidbody component's Use Gravity checkbox is checked in the
Inspector panel.

5. Press Play to test your game.

[87]

Game #1 – Ticker Taker

6. Press Play again when you've recovered from how awesome that was.

No way! When you tested your game, you should have seen your Ball plummet
straight down and land on the Paddle. How cool was that? If you answered, "Especially
cool", give yourself ten points.

Understanding the gravity of the situation

Unity's built-in physics engine is ready for you to hook into it, but it will ignore your
game objects unless you opt to add a component like Rigidbody to your game
object. The Rigidbody component is so-named to differentiate it from soft body
dynamics, which are calculations that actually distort and deform your meshes.

Unity's Gone Soft
Soft bodies like cloth are partially supported in Unity 4.x, after numerous

developers requested the feature. You can view and vote on upcoming
Unity features here:

http://feedback.unity3d.com/

[88]

Chapter 3

Rigidbody dynamics treat all of our objects as if they're made of wood, steel, or very stale cake.
Collider components tell Unity when game objects crash into each other. As both our Ball and

our Paddle already have sphere- and cube-shaped colliders surrounding their meshes, the

missing link is the Rigidbody component. By adding a Rigidbody component to the Ball, we

include the Ball in Unity's physics calculations. The result is hot ball-on-paddle action.

More bounce to the ounce

The Ball hits the Paddle and comes to a dead stop. Pretty cool for such a small effort, but

it won't do for a keep-up game. We need to get that Ball bouncing!

Select the Ball and take a close look at its Sphere Collider component in the Inspector panel.
One of the parameters, or options, is called Material. Next to that, we see the label None
(Physic Material) (this text may be slightly cut off depending on your screen resolution—to
see the whole label, click-and-drag the left edge of the Inspector panel to increase its
width). There's a small circle with a dot in the middle next to the label that means we can
pop open a selection window. What hidden wonders await us in that window?

1. Let's import a new package with certain goodies we'll need to make the Ball bounce. In
the menu, navigate to Assets | Import Package | Physic Materials, then click on the
Import button. A bunch of Physic Materials (whatever they are) get added to our
Project panel:

[89]

Game #1 – Ticker Taker

2. Make sure that the Ball is selected.
3. In the Inspector panel, find the Sphere Collider component of the Ball. If it is closed,

click on the gray triangular arrow to expand it so that you can get at its goodies.
4. Find the Material parameter of the Sphere Collider.
5. Click the small black circle next to the label that reads None (Physic Material).
6. Double-click Bouncy from the list.
7. Test your game by clicking on the Play button.
8. When you finally snap out of it, press Play again to escape the mesmerizing results.

The Physic Materials package that we just imported includes a number of useful prebuilt
physic materials. These special materials change what happens when a collider hits
another collider. We chose the one called Bouncy, and lo and behold, when the Ball game
object's Sphere Collider hits the Cube Collider of the Paddle, it reacts like a bouncy ball
should. At our current phase of human technological progress, this is as close to a Make
Game button as you're going to get!

[90]

Chapter 3

Unity's Standard Assets package provided us with a Bouncy physic material to use, but we

could just as easily have created our own. If you want to create your own physic material from

scratch, right-click/alternate-click on a blank area of the Project panel, and choose
Create | Physic Material. Alternatively, you can click-and-hold the mouse button on
the Create button at the top of the Project panel and choose Physic Material:

A new Physic Material called (appropriately enough) New Physic Material appears in the
Project panel. You can rename it the same way you renamed the Ball and Paddle
game objects. Call it BouncyBall.

Click to select the Physic Material in the Project panel. Its parameters are listed in the
Inspector. If you're desperate to know what everything does, click on the blue book icon with

the question mark on it, and prepare to be bored to tears by talk of anisotropic friction. Yawn!

What you really want to do is change the Bounciness to 1, and set the Bounce Combine to

Maximum. Or choose your own settings if you just want to see what they do:

Select the Ball again. Find where the Sphere Collider component's Material parameter is set
to that built-in Bouncy Physic Material. Drag-and-drop your BouncyBall physic material into
the slot where the built-in Bouncy one is. Alternatively, you can choose your BouncyBall
physic material from the menu. The Bouncy physic material is swapped out for your own
custom-created BouncyBall physic material.

[91]

Game #1 – Ticker Taker

What a drag!
We'll be pulling that same drag-and-drop maneuver again and again as
we use Unity. If you weren't feeling up to trying those last steps, don't
worry; you'll get plenty of chances to drag stuff around the interface
as we build more games.

Test the game by clicking the Play button. The paddle is flat, the ball is bouncy, and
everything seems right with the world! We haven't programmed any interactivity yet, but
try moving and rotating the paddle around while the game is running using the Unity tools
to get a sense of how the ball might react when we rig up mouse control in the next
chapter. (You'll have to deselect Maximize on Play to gain access to your tools to try this
out in the Scene view.) While any changes you make to GameObjects in the Hierarchy don't
"stick" while the game is playing, changes you make to elements in the Project panel do get
saved. This feature allows you to adjust things such as the BouncyBall material's bounciness
live while you play.

Summary

In this chapter, we started to put the Unity 3D engine through its paces. We learned how to:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Add built-in GameObjects to our Scene

Position, rotate, and scale those game objects

Add lighting to the Scene to brighten things up

Add Rigidbody components to our GameObjects to tie into Unity's
physics calculations

Create Physic Materials

Customize Collider components to make GameObjects become bouncy

We took an impossibly complex game idea and hacked it down to its fun, naked essentials.
We explored the origin point—the center of our game's universe. We learned about the
building blocks of 3D construction: vertices, edges, and faces. We talked about how
polygon counts can affect game performance. We laughed, we cried. It was profound.

[92]

Chapter 3

Following the script

What we have so far is not a game, but a very dull movie about the best keep-up player
in the world who never, ever drops the ball. One key thing that distinguishes movies
from games is popcorn. Also, games are interactive. We need to introduce interactivity
to our game so that the player can move that paddle around.

We do this by writing a Script. Just like in the movies where everyone follows a list of
stage cues, lines, and notes to put the finished product together, GameObjects in Unity
can follow scripts to determine what to do. Scripts are essentially lists of instructions
for people, or GameObjects, to follow. In the next chapter, we'll learn how to add
scripts to our GameObjects to add interactivity to our game.

[93]

4

Code Comfort

We've reached the precipice: we're staring at a game that doesn't do much and

won't do much more unless we write some code. If you're brand new to this

stuff, code is scary—or, rather, the idea of code is scary. Will you have to type a

bunch of ones and zeroes or cryptic punctuation along thousands of monotonous

line numbers? If you've ever tried developing a game or if you've ever been

taught to program using some ancient language in a high school computer

course, code might have been the thing to undo you. But, here you are giving it

one more crack at the bat. The world needs a three-dimensional keep-up game,

by gum! It's time to show the world what you're made of.

What is code?

Code is just a series of instructions that you give to Unity to make it do stuff. We write
lines (sentences) of code describing what we want to accomplish; these lines are called
statements. Unity reads these statements and carries out our instructions. In Unity,
you usually take a set of instructions and "stick" it to a GameObject. From now on,
we'll use Unity's terminology Script to describe a collection of code statements.

Code Comfort

Let's open our keep-up game project from the previous chapter, if it's not already open.
We'll write a really simple Script and stick it to our Ball GameObject.

1. In the Project panel, right-click/alternate-click on an empty chunk of space
and navigate to Create | JavaScript as shown in the following screenshot:

2. Alternatively, you can navigate to Assets | Create | JavaScript in the menu at the
top of the screen, or use the Create button at the top of the Project panel. A new
Script is added to the Project panel, inviting you to type a name for it. Call the
script DisappearMe. It's also a good idea to use the same Create menu to make
a folder and name it Scripts, then drag your new DisappearMe script into it to
keep your Project panel organized.

[96]

Chapter 4

3. When you double-click to edit your new DisappearMe Script, a brand new
window opens up. This is Unity's default Script editor (or Integrated Development
Environment (IDE)), called MonoDevelop. Its main panel looks a lot like a basic
text editor, because that's all that Scripts really are—plain old boring text.

Rolling your own
If you have your own favorite Script editor/IDE, you can configure Unity
to launch it instead. But, for the remainder of the book, we'll use the
default MonoDevelop editor.

A leap of faith

The first piece of code (the first line of our Script) looks like this:

#pragma strict

What on Earth does that mean? We've been hit with confusing nerd talk right out of the
gate. The simple explanation for this line is that it makes writing your code more fussy,
but your code runs faster. We'll learn what that's all about later; for now, turn your
attention further down to the Start function:

function Start () {
}

[97]

Code Comfort

Click to place your cursor after the first curly brace, and press the Enter key to make some
space between the top and bottom curly braces. Press the Tab key to indent, to make
your code look pretty, if the editor doesn't automatically do it for you. Then, type a single
line of code so that your Script looks like this:

function Start () {

renderer.enabled = false;
}

You'll notice that as you type each word in this line of code, entire drop-down lists pop
open with a dizzying list of strange-looking options. This is called Code Hinting, and while it
may seem annoying when you first encounter it, you'll be erecting a shrine to it by the time
you finish this book. Code Hinting brings a programming language's entire dictionary to
your fingertips, saving you the hassle of looking things up or misspelling special keywords.

You may also notice that the word false lights up after you type it in.
MonoDevelop highlights special reserved code words (keywords) to signify that they
have special meaning to Unity.

A little asterisk ("star") appears next to your Script's name in the menu bar of
MonoDevelop whenever you have unsaved changes, as shown in the following figure. Save
your Script by pressing Ctrl + S or command + S on the keyboard, or by navigating to File |
Save from the menu. For the remainder of this book, we'll assume that you've saved any
modifications that you've made to your Scripts before trying them out.

The Sound of One Hand Clapping
Careless coders often wind up banging their heads against their desks
when they test their code and nothing new happens—usually
because they've forgotten to save their code files! Even though
you've typed a bunch of code, nothing new will happen when you run
your program unless your files are saved, so don't forget!

[98]

Chapter 4

Lick it and stick it

Return to Unity. You should still see your DisappearMe Script in the Project panel. To attach it

to the ball, drag-and-drop the file over the Ball GameObject in the Hierarchy panel.

If drag-and-drop isn't your thing, you can also select the Ball GameObject, and navigate to

Component | Scripts | Disappear Me from the menu. You could also click on Add
Component in Inspector, click on Scripts, and then choose the DisappearMe script from the
resulting list. Once you do this, it may not look as if anything happened. To confirm that you
did it correctly, click on the Ball in the Hierarchy. At the bottom of the Inspector panel
where components of the Ball are listed, you should see your DisappearMe Script .

Disappear me!

Uncheck the Maximize on Play button in the Game view to experience the full effect of your
script. (Cue circus music) And now, ladies and gentlemen, thrill to the astounding spectacle
that you have created with a single line of code! Press the Play button to test your game,
and watch with amazement as your Ball disappears!

What just happened?

A good magician never reveals his tricks, but let's break down that piece of code we wrote
to see what's going on behind the scenes.

[99]

Code Comfort

It's all Greek to me

First, we created a JavaScript Script. Unity Scripts are written in three languages that are
somewhat like English: JavaScript, C#, and Boo. Of these, JavaScript and C# are the two
most commonly used languages in Unity. You may have already dabbled in JavaScript if
you've tried your hand at web development. Unity's version of JavaScript (called
"UnityScript") is a bit different because it talks about Unity-related things and runs much
faster than your father's JavaScript.

In this book, we'll use JavaScript because it's the simplest of the three languages to
learn. For this reason, many of the online Unity scripting tutorials you'll find are
also written in JavaScript.

Look Sharp
One major difference between JavaScript and C# is that C# is more
formal, more rigidly structured, and more "strictly" typed. It's a bit like
the difference between grabbing a milkshake at a greasy spoon with
your best friend, and having high tea with the Queen of England; expect
C# to constantly correct you on your table manners.
Among the advantages of a strictly-typed and structured language like C#
is that it may be better suited to much larger projects, and with C# you
tend to see fewer run-time errors—that is, problems that crop up while
your game is running.
JavaScript is an excellent choice for beginner programmers, but many readers

of previous editions have asked if this book could also include C# examples.

From this point on, wherever you use JavaScript code, you'll find the

completed and commented C# translation at the end of the chapter.

The first thing that we did was to write a line of code between two curly braces. I like to
think of curly braces as delicious sandwich buns that group code together. The single lines
of code are like the thin layers of salami or tomato in the sandwich. Above the curly braces
is the description, or declaration, of the sandwich. It's like saying: We are now going to
make a hoagie—top sandwich bun, yummy ingredients, bottom sandwich bun.

[100]

Chapter 4

In more technical, less sandwich terms, the area grouped by the buns is called a
statement block. The layers between the buns are called statements. And the type of
sandwich we're making, the Update sandwich, is known as a function.

You'll never go hungry again

A function is a piece of the Script that can be executed, or called, over and over again.
It's like having a sandwich that you can eat as many times as you want. We use functions
to organize our code, and to house lines of code that we may need more than once.

The function we used is called Update. Just as there's an ongoing physics process in the
background of our game that we can tap into to make our ball move and bounce, there's
an ongoing Update loop as well. Update is eaten (or called) again and again and again
while our game runs. Any Script lines, or statements, that we put inside the Update
function tap into that loop.

[101]

Code Comfort

Notice the way the Update function is declared. On a restaurant menu, we might declare
that our Street-Fightin' Hoagie is a scrumptious offering of mile-high pastrami with lettuce,
tomatoes, bacon, and cucumbers, topped with a fried egg, and slathered with mustard. We
can declare a function much more simply. It starts with the word function, and adds the
function name and a pair of round brackets. If our hoagie was a JavaScript function, it
might look like this:

function Hoagie() {
}

Certain functions, like Start() and Update(), are special functions that are inherent
to Unity. At the time of writing, Unity 3D does not have a built-in Hoagie() function,
which means it's a custom function.

With great sandwich comes great responsibility

There are a few rules and best practices to follow when declaring functions. They

are as follows:

‹

‹

‹

‹

‹

‹

Your function name should start with a capital letter.

You must never start a function with a number or some weirdo character like the
Rod of Asclepius or you will get an error. An error is a written notice that Unity
sends you when something you typed doesn't work or doesn't make sense.
You can press the Enter key to drop the top sandwich bun down a line. Some
programmers (like me) prefer writing code this way so that they can see the open
or closed sandwich buns lined up, but other programmers prefer code that
doesn't spread out too much.

In this book, we'll use both approaches just to keep you on your toes.

[102]

Chapter 4

Examining the code

Let's look closely at the line of code that we wrote:

renderer.enabled = false;

The semicolon at the end of the line is like the period at the end of a sentence. Nearly all
single-line statements must end in a semicolon or the code might break. When code
breaks, Unity uses a special pop-up window called the console to tell us about it. When you
have code that throws an error, we say there is a bug in your code.

Semi-confusing
So why doesn't the function declaration have a semicolon? Why don't the
curly braces each have one? It's because they're a different beast. They're
not a single line of code—they're more like a house where code lives. If you
start seeing the declaration and statement block as one complete thing
instead of three different things, you'll be well on your way to getting past
the confusing bracket hurdle that many new programmers face.

In order to understand the rest of that line, you need to realize that there is a lot of code
going on behind the scenes that you can't see. It looks like a bunch of pretty pictures to you
and me, but the Unity team had to write code to make it look that way. Behind each
instance of your GameObject, and behind the Unity program itself, there are thousands of
lines of code telling your computer what to show you.

Renderer is one such piece of code. When you set the enabled property of your Ball's
renderer to false, you're saying that you don't want Unity to draw the triangles in
the mesh that makes up your ball.

Does "renderer" sound familiar to you? We already saw a component called Mesh Renderer

when we created our Paddle and Ball GameObjects. If you don't remember, have a look:

1. Select the Ball, if you haven't already.
2. Look in the list of the components of the Ball in the Inspector panel. There

should be one component there called Mesh Renderer.
3. If you see only the name of the component, click on the gray arrow next to

the component name to expand the component.

[103]

Code Comfort

Aha! What do we have here? Something called Mesh Renderer—it has a checkmark next
to it. What happens if you click on it to uncheck that checkbox?

Go on—try it!

The ball disappeared. No surprises there. We saw something similar happen when we

clicked on the checkmark beside an entire GameObject in the previous chapter.

But, I wonder, does this Mesh Renderer component have anything to do with the "renderer" we

talked about in our DisappearMe Script? Checking that checkbox certainly seemed to have the

same effect as running a Script that said renderer.enabled = false;.

Let's be bold here. We need to figure this out. We'll leave the checkbox unchecked
and modify our Script to get a solid answer.

1. Double-click on the DisappearMe Script. MonoDevelop will open up and
display the Script.

2. Change the word false to true.
3. Save the Script.
4. Click on the Play button to test your game.

[104]

Chapter 4

Your Script should look like this:

function Update () {

renderer.enabled = true;
}

Bingo! The Ball started out invisible and then magically appeared. That means that the
Mesh Renderer component and the renderer that we referred to in our Script are the same
thing. And the checkbox in the Inspector panel is actually the enabled property in
checkbox form—instead of true and false, it shows us checked and unchecked states! In
fact, you can even keep an eye on the checkbox when you click on Play and see it change
states. That tingling sensation means it's working.

Ding!

Hopefully, a little lightbulb has appeared above your head at this point. You may be wondering

what else you see in that Inspector panel that you can get your grubby mitts on through code.

Let's take a quick glance at what else is in that Mesh Renderer component:

‹

‹

‹

‹

‹

‹

A checkbox labeled Cast Shadows (this is a Unity Pro feature)

Another checkbox labeled Receive Shadows

Something a little more complicated involving Materials

Unless you're some kind of whiz kid, it's unlikely that you'll figure out how to fiddle with
this stuff on your own. Let's take a trip to the Unity Script Reference to see what it tells us
about the Renderer class.

The Unity Script Reference is like a dictionary that contains every single word of Unity
JavaScript we'll ever need. It's organized extremely well, is searchable, and has
hyperlinks to related sections. Look that up in your Funk and Wagnalls.

1. Make sure that the Ball is still selected.
2. Find the Mesh Renderer component of the Ball in the Inspector panel.
3. Click on the blue book icon with the question mark on it to open the manual.

[105]

Code Comfort

Your default browser should open, and the Mesh Renderer page of the Unity manual will load.

Note that you're not viewing this information online. These are HTML files stored locally on

your computer that Unity displays in your browser. You can find this same Unity manual online

at the following URL: http://unity3d.com/support/documentation/
Manual/index.html

[106]

Chapter 4

The manual tells you how to work with the things that you see in the Unity interface. The
page you're looking at now tells you everything you always wanted to know about the
Mesh Renderer component. Click on one of the Scripting links at the top-left or top-right of
the page; the Unity Script Reference should appear.

As we want to explore the Renderer class, type the word
Renderer into the search field at the top-left of the page. Click on
the link to the Renderer class at the top of the resulting list.

The Renderer class

The Renderer class lists a bunch of stuff that might look like so much gibberish to you.
It has these lists:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Variables

Messages sent

Inherited variables

Inherited functions

Inherited class functions

From that list, the only familiar word might be "functions", which we just learned are
reusable bundles of code (or endlessly eatable sandwiches, if you prefer). As we write
more code in this chapter, we'll come to understand what variables are. For now,
focus on the things listed under the Variables section.

[107]

Code Comfort

One of the variables is called enabled. Do you remember when you wrote renderer.
enabled = false;? You've already used a variable, perhaps without knowing it. And,
check it out—some of the other things that we noticed in the Mesh Renderer component
are listed here. There are variables called castShadows and receiveShadows, which we
saw as checkboxes in the Inspector panel. There are also some material-related variables.
At the bottom of the list, there's a variable called isVisible, which appears to do
something different compared to the enabled variable.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
Each project in the book is intended to be built from the "ground up",
beginning with an new project file. The downloadable .unitypackage files
for this book contain the assets (sounds, images, and models) you need to
build the projects. You may also download completed, working versions of
each project for your reference, though these are not intended to be your
"first stop" – they're more like the answer sheet at the back of a text book.

[108]

Chapter 4

If you were the type of kid who disassembled your parents' clock radio, or got up close and

personal with the insects in your backyard to see what made them tick, this is your time to

shine. The Script Reference is your gateway to every special reserved word ("keyword") in the

Unity language. Try clicking on the enabled variable in that list. The resulting page not only

repeats the explanation of the variable, but it also provides an example of how you might use

that variable in code. You can even use the drop-down lists on the right to see the C# and Boo

translations. (Go ahead—check them out! Fortune favors the bold).

If you're wired a certain way, you've already thrown this book down and are eagerly
scouring the Script Reference looking for code you can mess around with. That's okay. We'll
be here when you get back. If you are still a little wary of this foreign language and would
like a little more guidance using it, read on.

[109]

Code Comfort

What's another word for "huh"?

Perhaps the most challenging thing about using a language reference as a beginner is that
you don't know what you don't know. The language is searchable to the tiniest detail, but if
you don't know Unity's particular word for something, you'll still be lost. It's like not
knowing how to spell a certain word. You can look it up in a dictionary, but if you don't
know how to spell it, you might have trouble looking it up!

If you can't find what you're looking for, your best plan of attack is to bust out the
synonyms. Try typing in any word you can think of that's related to what you want to do. If
you want to hide or show something, try searching words like visible, visibility, visual, see,
show, appearance, draw, render, hide, disappear, and vanish! Even if it's a long shot, try
"POOF!" You never know.

[110]

Chapter 4

If you've exhausted your vocabulary and you still come up short, you can randomly click on

words in the documentation and read about what they do. Another approach is to start

scouring the Internet for Unity tutorials. Many developers like to share their code to help
beginners like you learn new things. You might not understand what all this code does, but
in grazing through it, you could find a line of code that looks like it might do what you're
trying to do. Copy it, paste it into your own Script, and start playing around. If it breaks your
game, then good! You might think that you're not learning anything, but you are: you're
learning how to not break your game. One final resource is chat channels, which you can
find by using an Internet Relay Chat client, but as a Unity n00b (new user), you have to be
careful and respectful of the way you speak to real people who know far more than you do.
In most chat channels, there's very little love for new users who don't exhaust existing
online resources before asking a question.

Be sure to also check the Appendix at the back of this book for a great list of Unity resources.

It's been fun

Our first attempt at scripting has been a laugh and a half, but we're no closer to making that
paddle work in our keep-up game than when we started. Let's undo some of the work we
did and get started on a Script that's crucial to our game.

Let's remove the Script from the Ball and recheck the Mesh Renderer component to

make sure everything's back to normal:

1. Make sure that the Ball is still selected.
2. Find the Mesh Renderer component of the Ball in the Inspector panel, and make

sure that the component is checked. The Ball should reappear in your Scene view.
3. Find the DisappearMe Script at the bottom of the Inspector panel.

[111]

Code Comfort

4. Right-click/alternate-click on the name of the component, and click on Remove
Component. On a Mac, you can command + click, or click the little black gear icon
and choose Remove Component from the drop-down menu. Now, the Script is
no longer associated with your GameObject.

Gone, but not forgotten

It's just as important to learn how to remove a Script from a GameObject as it is to learn
about adding one. Note that we could also have unchecked the checkbox in the

DisappearMe Script component to temporarily disable it. The DisappearMe Script is no
longer acting on Ball, but we haven't deleted it. You should still be able to see it in the
Project panel. To delete it, click on the Script and press the Delete key on your keyboard,
or command + delete if you're on a Mac. If you want to keep the Script around to

remember what you did in this chapter, leave it be.

A Script for all seasons
You may already have guessed that the DisappearMe Script is not
exclusive to the Ball GameObject. You can drag-and-drop the Script on
top of the Ball, the Paddle, or any other GameObject in your Scene. As
long as that GameObject has a renderer component, the Script will work.

[112]

Chapter 4

Why code?

We'll write our next Script armed with some juicy knowledge. We know that GameObjects
are backed by code. Some of that code is invisible to us, and we can tap into it only through
scripting. Other code is exposed to us in the Inspector panel in the form of components
with a GUI (like checkboxes and drop-down menus) on top.

You may already wonder why, when Unity gives us such a friendly and easy-to-use
checkbox to click, we would ever want to bother writing code to do something? It's
because the controls you fiddle with while you build your game are no good to you while
your game is actually running.

Imagine you want a GameObject to suddenly appear in response to something your player does

while playing your game. What if your player can grab a power-up that displays a second paddle

on the screen? In that case, that checkbox is useless to you. Your player isn't going to enjoy your

game inside the Unity 3D authoring tool, and it's silly to suggest that you'll be there sitting on his

lap to click that checkbox whenever he collects the Double Paddle power-up. You need to write

code to tell Unity what to do when you're not there anymore. It's like equipping a baby bird with

all the skills it needs to survive in the world, and then booting it out of the nest. No one's going to

be around to click that checkbox for you, baby bird.

Equip your baby bird

Let's teach Unity what to do when we're not around, and the player wants to move the

paddle to bounce the ball. Make sure that the Mesh Renderer component of your Ball is

enabled (checked). We're going to create a brand new Script and attach it to the paddle.

1. In the Project panel, right-click/alternate-click on an empty chunk of space and
navigate to Create | JavaScript. Alternatively, you can navigate to Assets | Create |
JavaScript in the menu at the top of the screen, or use the Create button at the
top of the Project panel.

2. A new Script is added to the Project panel. Name it MouseFollow.
3. Drag-and-drop your new MouseFollow Script onto your Paddle GameObject.
4. Double-click to open the Script in MonoDevelop. Just as before, we're going to add

a single, simple line of code inside the curly braces (sandwich buns) of the Update
function (sandwich):

function Update () {

transform.position.x = 2;
}

[113]

Code Comfort

5. Add a Rigidbody component to Paddle by navigating to Component | Physics
| Rigidbody.

6. In the Inspector panel, find the Rigidbody component and check box next to Is
Kinematic. The Unity manual warns against moving colliders around through code
without adding a Rigidbody component because it could add a lot of overhead
(unnecessary calculation processing), so we've added Rigidbody. The Is Kinematic

option excludes the Paddle GameObject from Unity's physics simulation.
7. Save the Script and press Play to test your game. Like pulling the chair out

from beneath someone when he tries to sit down, your Paddle should act like
a total jerk, and pop out of the way to let your Ball plummet to its doom. Not
cool, Paddle. Not cool.

What just happened?

Just as we saw with the Mesh Renderer component, Transform is also a component
of your GameObject. It's the first attached component on the list in the Inspector panel

when you select your Paddle. As we learned in Chapter 3, Game #1 – Ticker Taker, the
Transform component decides how the GameObject is positioned, rotated, and
scaled (made larger or smaller).

In the Unity environment, the Transform component of our Paddle was set to position 0 in
the X-axis. But, we changed this with our line of code, setting the x property of the
paddle's transform to 2. The result is that the first time the Update function is called,
the paddle appears to jump out of the way to two units along the X-axis.

[114]

Chapter 4

The thought may have already struck you: if you can control the x position of the Paddle, you

can probably also control its y and z positions just as easily. And if position is available to you,

rotation and scale can't be far behind! But, which keywords should you use to change these

properties? rotation and scale are two good guesses, but we'd rather be sure.

To satisfy your curiosity, let's hit the Unity Script Reference again; this time, we'll take a
shortcut. Highlight the word transform in your Script and press Ctrl + ' on your
keyboard, or command + ' on a Mac (that's the apostrophe character). You'll zip directly
to the Script Reference with a list of hits as if you'd searched for transform in the search
field. What wonders await you within?

A capital idea

The Transform component is listed as Transform with an uppercase T. When we refer
to it in code, we use a lowercase t. In the Script Reference, it has an uppercase T again.
But, if you've already made the mistake of using an uppercase T in your code, Unity

threw you an error in the console window. What gives?

Unity's language is case sensitive, which means that a word with a capital letter is treated
as a completely different thing than the same word with a small letter. So, transform
and Transform are as different from each other as the words night and day.

[115]

Code Comfort

Transform is a class. A class is like a blueprint that you use to make other things. You
might implement power-ups in your keep-up game. Your capital-P Powerup class
describes what a power-up should look like and how it should behave. You might create a
new power-up using your Powerup class, and label it powerup with a small p. The capital-P
Powerup class contains the instructions for building something, and lowercase-p powerup
is the name you gave to the thing you've built with that blueprint.

_Powerup class

_powerup instance

So, in this case, capital-T Transform is the class, or blueprint, that describes how a
transform works. Small-t transform is the name our GameObject gives to its own
transform instance, which was built using the Transform blueprint. This upper-case
class/ lower-case instance is a coding convention, and so is not shouting at the dinner
table; let's follow the convention to keep things civil.

Here are a few more examples to help you understand:

‹‹ Car is the class (blueprint). We use it to make a new car instance, which we call
car (small c).

‹‹ House is the class (blueprint). We use it to build a new house instance, which

we call house (small h).

We can use these classes to create multiple copies, or instances, of a thing. The Car class
could stamp out many things, which we could call car1, car2, and car3. We could also call
those things sedan, convertible, and suv. In Unity-land, the developers decided to call
the thing that was created with the Transform class transform. It could just as easily
have been called pinkElephant, but transform makes more sense.

Animating with code

We talked about how the Update function is called again and again by Unity. We're about
to see what that really means by making a slight adjustment to our code.

[116]

Chapter 4

1. Jump back into your MouseFollow Script if you're not there already
by double-clicking on it in the Project panel.

2. Change the line of code in the Update function ever so slightly so that
it reads as follows:

function Update () {

transform.position.x += 0.2;
}

The changes are very subtle. We added a plus sign (+) before the equals to sign (=), and
we made the number smaller by adding a zero and a decimal place in front of it, changing
it from 2 to 0.2.

Save the Script and test your game. The Paddle should scoot out the way, and fly straight
off the right-edge of the screen!

What just happened – what witchcraft is this?

We made the 2 smaller, because the Paddle would have just rocketed off the screen in a

twinkling and we may not have seen it. But, there's a tiny bit of code magic going on in that
+= bit.

By changing the transform.position.x property with += instead of =, we're saying that
we want to add 0.2 to the x property on every update. The special built-in Update
function automatically gets called again and again by Unity as your game plays. While this
happens, the x position constantly increases. Let's follow the following logic:

‹ ‹ The first time Update is called, x is 0. We add 0.2, and the Paddle moves to 0.2.

‹ ‹ The second time Update is called, x is 0.2. We add 0.2, and the Paddle moves
to 0.4.

‹ ‹ Every time Update is called, the Paddle's x position increases. We get a real sense of

how often the Update function is called by how quickly the Paddle moves across
the screen in tiny 0.2 increments.

[117]

Code Comfort

Any excuse to work less
+= is a bit of programmer shorthand. It's the same as typing:

transform.position.x = transform.position.x + 0.2;
But that's way more typing, and the less you have to type the better. Excessive

typing kills 80 percent of computer programmers before their 40th birthdays. I

just made that stat up, so it's probably off by a few percentage points.

Why didn't the Paddle animate before?

When we wrote the line transform.x = 2, the Paddle just jumped into

position; it didn't go anywhere, like it does now. Why is that?

The Update function is still getting called multiple times. But each time, it's putting the
Paddle at two units on the X-axis. The value of x changes on every Update, but it
changes to the same thing. So, once Paddle is in position, it doesn't appear to move.

With our new modified line of code, the x position of the Paddle is changing by 0.2

every time the Update function is called, so Paddle moves across the screen.

An important part of being a beginner programmer is keeping a positive attitude. You should

start with the assumption that what you want to do can be done—anything is possible. We now

know how to set the position of the paddle. With your positive, can-do attitude, you might

imagine that to get the paddle moving around with the mouse, you could find the position of

the mouse, and set the transform.position.x property to match.

But, what words do you need to use to get the position of the mouse? For the answer,

let's dive back into the Unity Script Reference.

Pick a word – (almost) any word

We're going to put the Script Reference through some serious stress testing here. We're

going to arm ourselves with every synonym of mouse we can think of. Here's a list that I

painstakingly brainstormed: mouse, screen position, cursor, pointer, input device, small

rodent, two-button, aim, and point. One of those has to do the trick. And, if we come up

empty-handed, we're going to hit those online tutorials hard until we find our answer.

Go ahead, fire up the Unity Script Reference and type mouse into the Search field. Scour the

resulting list. We will not back down. We will not take "no" for an… oh, hello, what's this?

Midway down the list, there's this entry, as highlighted in the following screenshot:

Input.mousePosition

[118]

Chapter 4

The current mouse position in pixel coordinates.

Well, uh… ahem. That was easy. I guess we won't be needing this synonyms list then.

Screen coordinates versus World coordinates

Click on the Input.mousePosition entry and check out the resulting page. The Script
Reference tells us that we have a new origin to deal with. Unity treats our screen like a
flat, 2D plane, with (0, 0)—the origin—in the bottom-left corner of the screen like a bar
graph from fourth grade.

[119]

Code Comfort

We have a code example here, but it looks a little hairy. What's a Physics.Raycast? I
have no idea. And how do we get the x, y, and z values for Input.mousePosition?

The answer is a tiny bit sneaky. Look at the top of the screen where it tells us that
Input. mousePosition is a Vector3. What's a Vector3? I dunno. Click on it. Ah,
the resulting page tells us that a Vector3 has x, y, and z properties along with a slew of
other useful stuff. That shall do nicely.

Move the Paddle

We are ready to rock. If we just set the x position of Paddle to the mouse's screen position
by using Input.mousePosition, we should be able to use the mouse to move the
paddle. Change your line of code so that it looks like this:

transform.position.x = Input.mousePosition.x;

Save your Script and try it out.

[120]

Chapter 4

Worst. Game. Ever.

It may look like nothing actually happened. Your paddle is gone. Super. Obviously,
controlling the paddle with the mouse isn't so simple.

But don't despair. Try placing your mouse at the left edge of the screen, and then move it
very, very slowly. You should see your paddle pass rapidly across the screen. You'll notice
that even the tiniest horizontal movement of your mouse sends the paddle rocketing off
into Never Neverland. This will not do.

See the matrix

We need to figure out what kind of numbers our mouse is throwing out. We can do this
by using the Debug.Log() function. Whatever information we ask Debug.Log() to
display will show up at the bottom of the screen while we test our game.

1. Add this line of code beneath the existing line of code:

Debug.Log(Input.mousePosition.x);

2.

3.

Your entire Script should look like this:

function Update () {
transform.position.x = Input.mousePosition.x;

Debug.Log(Input.mousePosition.x);
}

Save and test your game.

Look at the very bottom of the screen for the results of your Debug.Log()
statement. If nothing shows up, follow these steps to enable Console statements:

1. Navigate to Window | Console in the menu.
2. This is an important window! Dock it to your layout by clicking and dragging

it beneath your Game view.

[121]

Code Comfort

3. Ensure that Console messages are enabled by clicking on the little button
with the comic book speech bubble.

As you move the mouse cursor left and right, you'll see this number changing. It goes from
0 when your mouse is at the left edge, and rapidly increases. The upper limit depends on
your monitor resolution; on my screen, Input.mousePosition.x maxes out at 1279!
Earlier, a value of 2 put the paddle nearly all the way off the screen. With Debug.Log()
reporting these crazy big numbers, we can see why our code behaves the way it does.

A tiny bit o' math

This code's not going to work. Our paddle moves only to the right, along the positive X-
axis, because we're working only with positive numbers. We need some negative numbers
in there so that the paddle will move to the left at some point. But, at what point?

Hmm… what if we take half of the screen's width and subtract it from

Input. mousePosition.x? What does that do for us?

A quick trip to Unity Script Reference tells us how to find the width of the screen in pixels.
Let's divide that number by 2 and subtract it from the mouse position.

[122]

Chapter 4

Change the Debug.Log() function call to look like this:

Debug.Log(Input.mousePosition.x - Screen.width/2);

Save and test. Watch the bottom of the screen for the result.

Tracking the numbers

When the mouse cursor is near the left edge of the screen, you get negative numbers. When it's

closer to the right edge, you get positive numbers. And, if you try to position your cursor at

exactly the halfway point, you get zero. This makes sense. We know that when the mouse is at

the left edge, Input.mousePosition.x is zero. If we subtract half of the screen width from

zero (on my monitor, that's 640 pixels), we get -640 at the left edge instead.

My screen is 1280 pixels wide, so I'm using 640 to represent half of its width. Your
mileage may vary! Common screen widths are 800, 1024, 1152, 1280, 1600, or 1920.

When the mouse is in the middle of the screen, Input.mousePosition.x is 640. It's at
the halfway point. If we subtract half the screen width (640 in my case), we get zero.

When the mouse position is at the right edge of the screen, Input.mousePosition.x
is almost at 1280 on my 1280-pixel-wide display (again, your mileage may vary). Subtract
half the Screen.width and we get 640. -640 at the left edge, 0 in the middle, and 640
at the right edge.

[123]

Code Comfort

Futzing with the numbers

This is promising, but we already know that these numbers are still too big. If we move
the paddle to 640 units along the X-axis, it's going to wind up in Timbuktu. We've got a
good positive or negative number scale going—we just need to shrink that number
down somehow. Let's try dividing our number by half of the screen's width.

1. Change your Debug.Log() call so that it looks like this:

Debug.Log((Input.mousePosition.x -Screen.width/2) /
(Screen.width/2));

Ack! So many brackets! We use those brackets because we want the division and
subtraction stuff to happen in the right sequence. You may remember order of operations
rules from algebra class. BEDMAS: evaluate the Brackets first, then the Exponents, then
Division, Multiplication, Addition, and finally Subtraction.

To wrap your brain around it, here's what we're doing, in pseudocode:

(first thing)/(second thing)

We're dividing something by something else. The first thing is the -640 to 640 number
range that we cooked up. The second thing is Screen.width/2 (the screen's midpoint).
We wrap all of that in a tasty Debug.Log() shell:

Debug.Log((first thing)/(second thing));

Pseudocode is fake code that will not work if you type it into a Script.
We're just using it to better understand the real code that we're writing.
Some programmers use pseudocode to type their thoughts out with
English words to help them puzzle through a problem. Then, they go
back over the pseudocode and translate it into a language that the
computer will understand—JavaScript, C#, and so on.

Now, we really have something. If you save and test and move the mouse cursor around,
you'll see that as you get closer to the left edge of the screen, you get closer to -1. And,
as you get closer to the right edge, you approach 1. In the middle, it's zero.

[124]

Chapter 4

Copy or rewrite the chunk of code from the Debug.Log() statement to the line above it
so that it now reads:

transform.position.x = (Input.mousePosition.x -Screen.width/2) /

(Screen.width/2);

Save and test your file.

She's a-work!

That's what we're after. The paddle moves at a reasonable rate along with the mouse, and
now we can actually bounce the ball around a little. Success! To get more than just a
straight vertical bounce, try clipping the ball with the edge of the paddle. The ball should
bounce off the screen at an erratic angle. Game over!

Press the Play button again to stop testing your game.

Somebody get me a bucket

A common programmer mantra is "duplication is evil". The idea is that any time you type the

same thing twice, you could be wasting time and effort. Remember that the less typing we do,

the less likely we are to drop dead from the programmer illness I totally fabricated.
The less duplication we do, the less "maintenance" we have to do if something goes wrong
later—correcting one chunk of code is easier than correcting multiple duplicated chunks.
But the rule for beginners is this: make it work first—then make it elegant.

Notice that we have some duplication in this line:

transform.position.x = Input.mousePosition.x –

Screen.width/2)/ (Screen.width/2);

We've typed Screen.width/2 twice. That won't do! For starters, typing makes my hands
tired. What's more, we're forcing the computer to do that complicated math calculation
twice. Why not do the calculation once and ask the computer to remember the result?
Then, any time we want to talk about the screen's midpoint, we can ask the computer to
retrieve the result.

We do this by creating a variable. A variable is a reserved storage locker in memory. I like
to think of it as a bucket that can hold one thing. Just as we saw with functions, variables
are created by declaring them.

[125]

Code Comfort

(To be totally honest, an extra division operation isn't going to bring your game to its
knees. But, there are more "costly" operations we could ask Unity to perform, and learning
to put things in variable buckets now is good practice to prepare us for the heavy lifting
that we'll do later).

1. Modify your Script so that it looks like this (you can get rid of the
Debug.Log() function call):

function Update () {

var halfW : float = Screen.width/2;
transform.position.x = (Input.mousePosition.x -halfW)/halfW;

}

That code looks a lot cleaner. Not only is it easier to read, but we've knocked out
some of those confusing brackets in the second line.

What just happened – we've gone too var

We've used the special var keyword to declare our variable (bucket). I chose the name
halfW, which is short for "half width"—half the width of the screen. You can choose any
name you like for a variable as long as it isn't a reserved Unity keyword, and it doesn't
break any of the naming rules that we discussed when we looked at naming functions. For
example, 1myvar funfun will not work, because it begins with a number and has a
space in the middle. Also, it sounds ridiculous and doesn't make any sense. Try your best
to keep your variable names logical.

[126]

Chapter 4

F is for function
The biggest difference between naming a function and naming a
variable in Unity is that a function name should start with a capital
letter, while a variable name should not. This is not a hard and fast rule,
but it's called a "best practice", which means that everyone else does it,
so you should too. Jump off a bridge with us!

We stuck a colon and the word float at the end of our variable name. Why? By using a colon,

we're telling Unity what type of variable we're using. This lets the program know how big of a

bucket in memory to create. Giving a variable a type speeds up our game because
Unity doesn't have to keep guessing what type of bucket halfW is.

float is short for a single-precision floating point. To you and me, that's a number
with a decimal point in it. Here are a few more data types that Unity uses:

‹‹ String: An alphanumeric bunch of characters such as "Hello, my name is Herb"
or "123 Fake St"

‹‹ Boolean: Like a light switch, a Boolean can be only one of two states—

true or false

‹‹ int: An integer, such as 28 or -7

Our halfW variable is typed as float because we need that decimal place. But we're
not splitting the atom or anything, so we don't need to make it a double, which is a
more accurate numerical data type that can store a number with many more digits in it.

Save the Script and test your game to make sure everything is working correctly.

[127]

Code Comfort

Using all three dees

Now that we know how to track the mouse left and right with the paddle, it's not a huge
leap of logic to make our paddle track the y position of the mouse, and translate it into
z coordinates. Remember that we're working with two different planes here:

‹ ‹ The flat, two-dimensional plane of the computer screen

‰‰ Horizontal X-axis

‰

‰

‰

‰

Vertical Y-axis

Origin point (0, 0) at the bottom-left of the screen

‹ ‹ The deep, three-dimensional intersecting planes of our game world

‰

‰

‰

‰

‰

‰

‰

‰

Horizontal X-axis

Vertical Y-axis

Deep Z-axis

Origin point (0, 0, 0) in the middle of the world where the
three planes meet

[128]

Chapter 4

We're going to track the y movement of the mouse, and map it onto the z movement of
the paddle to make it move toward and away from the player. If instead we map the y
position of the mouse to the y position of the Paddle, the Paddle will move up and down
from the ground to the sky, which is not quite what we're after.

1. Modify your code to add a few familiar-looking lines:

function Update ()
{
var halfW:float = Screen.width/2;
transform.position.x = (Input.mousePosition.x -

halfW)/halfW; var halfH:float = Screen.height/2;
transform.position.z = (Input.mousePosition.y - halfH)/halfH;

}

The two new lines of code are almost identical to the first two lines. We've created a new
variable and called it halfH (half height) instead of halfW. We're changing the z
property of Input.mousePosition instead of x. When you save the Script and test
your game, you'll have a fully movable paddle to bounce your ball on.

Math effect
I actually put a little cheat into my code. I wanted the paddle to travel
deeper and farther along the Z-axis with less mouse movement, so I changed
my halfH variable declaration to this:

var halfH:float = Screen.height/3;
That's a third of the screen, not a half. Really, I should change the name of
my variable to something like thirdH. You can rip through all of your code
easily and make this change by navigating to Search | Replace, typing halfH
in the top field, thirdH in the bottom field, and clicking the All button to
replace all instances in the code.

A keep-up game for robots

After all this effort for getting our paddle to move, the game still doesn't have much oomph to

it. It's very easy to keep the ball bouncing because there's nothing to send it spinning off in any

crazy directions. At least in Breakout or Arkanoid, you had interesting angles to work with. Our

game doesn't have any walls to angle off, but we do have that paddle.

What if we angled the paddle as the player moved it around? An angled paddle would

make the ball bounce in different directions and keep the player on her toes.

[129]

Code Comfort

Once more into the breach

How do we make the paddle angle? Let's consult the Script Reference, armed with words
that describe what we want to do: angle, rotation, rotate, spin, turn, bank, tilt, yaw, or
roll. Our second idea, rotation, holds the secret.

1. Type rotation into your Script. It lights up. It's one of the magic keywords!
2. Double-click to select the rotation keyword.
3. Press Ctrl + ' or command + ' to warp to the Unity Script Reference. You could also

type rotation into the Search field of the reference if you already have it open.

A quick look at the resulting list turns up Transform.rotation. We've already been
using Transform.position to move our paddle around—it's not such a stretch to figure
out that this is what we need. Click on the link!

[130]

Chapter 4

Our work here is done

Well, would you look at that—while we were sleeping, some kind programmer elves
cobbled together some shoes for us! The Transform.rotation page of the Script
Reference has a chunk of code that "smoothly tilts a transform towards a target rotation".
That sounds a lot like what we're trying to do.

Hey, I have an idea: I'll keep an eye on the door. You copy and paste this code into your game.
If anyone asks, tell them "the book made me do it".

1. Add the new code to your existing game code. You'll need to shuffle a few
lines around. Here is the code with the new stuff highlighted:

var smooth : float = 2.0; var

tiltAngle : float = 30.0;

function Update ()
{

var halfW:float = Screen.width/2;
transform.position.x = (Input.mousePosition.x - halfW)/halfW;

var halfH:float = Screen.height/3;
transform.position.z = (Input.mousePosition.y - halfH)/halfH;

// Smoothly tilts a transform towards a target rotation.

var tiltAroundZ : float = Input.GetAxis("Horizontal") *
tiltAngle;

var tiltAroundX : float = Input.GetAxis("Vertical")

* tiltAngle;
var target : Quaternion = Quaternion.Euler (tiltAroundX, 0,

tiltAroundZ);
// Dampen towards the target rotation
transform.rotation = Quaternion.Slerp(transform.rotation,

target,Time.deltaTime * smooth);
}

Nobody's perfect
In my version of the Script Reference, there's a typo. The last line
ends with two semicolons instead of one. If your version has the same
typo, just delete the extra semicolon.

Note that two variables, smooth and tiltAngle, are outside the Update function at
the top of the Script. We'll discover why in a moment.

[131]

Code Comfort

If you save the Script and run the game now, the new rotation code won't work. We have to

make a few adjustments. I've highlighted what you need to change in the following code:

var smooth : float = 5.0;
var tiltAngle : float = 60.0;

function Update ()
{

var halfW:float = Screen.width/2;
transform.position.x = (Input.mousePosition.x - halfW)/halfW;

var halfH:float = Screen.height/3;
transform.position.z = (Input.mousePosition.y - halfH)/halfH;

// Smoothly tilts a transform towards a target rotation.
var tiltAroundZ : float = Input.GetAxis("Mouse X") * tiltAngle;

var tiltAroundX : float = Input.GetAxis("Mouse Y") * tiltAngle;

var target : Quaternion = Quaternion.Euler (tiltAroundX, 0,
tiltAroundZ);

// Dampen towards the target rotation
transform.rotation = Quaternion.Slerp(transform.rotation,

target, Time.deltaTime * smooth);
}

Here's what's new:

‹ ‹ We bumped up the smooth variable from 2.0 to 5.0 to make the motion more…
well, quick.

‹ ‹ We asked Unity for Mouse X and Mouse Y instead of Horizontal and Vertical.

Horizontal and Vertical are, by default, mapped to the arrow keys and the

WASD keys on your keyboard. Mouse X and Mouse Y will report mouse movement.

Available for comment
Notice the line in the code that says "Smoothly tilts a transform towards a

target rotation," and the one a bit farther down that says "Dampen towards

the target rotation." That sounds like plain English—not code at all. The

double-slashes before these two lines make them comments. Comments are

ignored by Unity when we run our game. Comments enable you to type

whatever you want in your code as long as you've got those two slashes in

front. Many programmers use comments to explain to other programmers
(or to themselves, in the future) what a piece of code is supposed to do.
While you learn Unity, you can use comments to take notes on the new

code concepts that you're learning.

Save the Script and test your game. The paddle should tilt as you move your mouse around.

[132]

Chapter 4

It sort of works, but the way it tilts around the Z-axis makes the paddle fire the ball into
crazy town. Stop testing your game. We're close—very close.

One final tweak

One small adjustment stands between you and a fun keep-up game mechanic. We want
the paddle to angle in the opposite direction to keep the ball bouncing inside the play area.
We can multiply by -1 to flip the effect:

var tiltAroundX : float = Input.GetAxis("Mouse Y") * tiltAngle * -1;

Save and test. Hooray! The paddle tilts around the play area inclusively, keeping the ball
more or less within our reach—unless we get twitchy, and then we drop the ball. But
that's the fun of keep-up—moving the paddle just so as to keep the ball in play.

What's a quaternion?

Well, that was lots of fun! We've got a working keep-up game mechanic. Now let's go and
do something else.

Wait, what's a quaternion?

Oh, that? Don't worry about it. We have bigger fish to fry! In the next chapter, we'll…

WHAT THE HECK IS A QUATERNION??

Gosh, you're persistent. Can't you just leave it well enough alone?

I'm not going to sugarcoat it: 3D math is complex. A quaternion (like the one we used in our
rotation code just now) is a beast of a mathematical concept. According to my Mathematics

Dictionary (which I often pull out for light reads in the bathroom), "a quaternion forms
a four-dimensional normed division algebra over the real numbers". There. Now do

you understand?

Quaternions are clearly outside the scope of a beginner book. But, we can't just go swiping
code from the Script Reference without even partially understanding it, so let's give it the
old college try.

[133]

Code Comfort

Educated guesses

These are the two lines from our code we'd like to understand better:

var target : Quaternion = Quaternion.Euler (tiltAroundX, 0,

tiltAroundZ);
// Dampen towards the target rotation
transform.rotation = Quaternion.Slerp(transform.rotation,

target,Time.deltaTime * smooth);

Let's actually start from the bottom up.

In the final line of code, we're setting transform.rotation to something, which will
turn the paddle somehow. That much, we get. We can probably also guess that
Quaternion is one of those built-in classes that we looked at, like Input—both
Quaternion and Input start with a capital letter, and light up when we type them.

Slerp sounds weird, but it starts with a capital letter and has round brackets next to it.
We've seen that same structure when we called functions earlier in our code, like
Input. GetAxis() and Debug.Log(). And, just like those two functions, Slerp()
needs some extra information to do what it does. These are called arguments, and
we've used them a few times already. We stuck something inside the brackets of
Debug.Log() to make it appear at the bottom of the Unity window. Giving data to a
function to make it do what it does is called passing arguments.

So, what do we have? A class (or blueprint) called Quaternion, with a function called
Slerp() that asks for three pieces of information—three arguments. For a better idea
of which arguments Slerp() needs, type Quaternion.Slerp(into the Script, and read
the code hinting that pops up). Slerp() needs these three arguments to do what it does:

‹‹ From, which needs to be of type UnityEngine.Quaternion

‹‹ to, which needs to be of type UnityEngine.Quaternion

‹‹ t, which needs to be of type float

We can already see that we're passing in the transform.rotation value of the Paddle as

the from argument, which means that transform.rotation must be of type
Quaternion.

For the to argument, we're passing target, which is a variable of type Quaternion.
We defined it one line earlier.

Finally, for the t argument, we're passing Time.deltaTime and multiplying it by the
value of our smooth variable, which we defined way up at the top of our Script as 5.0.

[134]

Chapter 4

Time.deltaTime
You'll see Time.deltaTime very often in your Unity travels. deltaTime
is a property of the Time class; it represents the amount of time that
elapsed between this frame and the last. You usually use it to make your
game move according to time rather than according to the frame rate. Frame
rates can change depending on how powerful a player's computer is, but
time remains consistent.
Think back to when we were moving the paddle 2 units on each Update
call. If you were running a fast computer that ran your game at 100 frames
per second, then in one second the paddle will travel 200 units. If you were
running your game on a slower computer that ran at only 50 fps, the
Paddle would only travel 100 units in 1 second.
Time.deltaTime, conversely, is the great equalizer. Using Time.
deltaTime, the amount that you want to move your GameObject is
calculated and spread out across 1 second. By switching from a frame-
based model to a time-based model, your game will run more consistently
on both the slow computer and the fast computer, because 1 second is 1
second, no matter how zippy the computer may be.

More on Slerp

We've used our brains to try to figure out what this code is doing, so now it's time to fill
in our knowledge gaps a little more.

Slerp is a frankenword meaning Spherical linear interpretation. You might already have
guessed that it lets us move from one Quaternion rotation to another. The
interpolation (or spread-outedness of the motion) happens across t, or time.

If we were to pseudocode this statement:

transform.rotation = Quaternion.Slerp(transform.rotation,

target,Time.deltaTime * smooth);

It might go something like this:

On every frame, rotate the paddle, starting at the paddle's current rotation. Rotate
towards our target rotation. Use the amount of time that's elapsed between frames to
stretch out (interpolate) the motion. Reduce the jerkiness of the motion by constantly
supplying the paddle's updated rotation value.

[135]

Code Comfort

Right on target

Last but not least, let's look at how we get that target Quaternion. We know why
we need it: because we have to feed a to Quaternion to the Slerp() function. To
better understand the penultimate line, let's break it down like we did before.

var target : Quaternion = Quaternion.Euler (tiltAroundX, 0,

tiltAroundZ);

We're creating a variable called target, which is a bucket. Then, we're putting
something in that bucket that we know is going to be of type Quaternion. We're calling
the Euler function of the Quaternion class and passing to it, three arguments.

Try typing Quaternion.Euler(into your Script, and reading the tooltip that pops up. The

Euler function needs three arguments of type float. Notice also that there's a little page

1/2 indicator in the tooltip. If you press the down arrow on your keyboard, you'll see that this

method will also take one argument of type Vector3. We've seen the Vector3 class before

(earlier in this chapter). A quick trip to the Script Reference reminds us that Vector3 is made

up of three different parts: x, y, and z, which are all of float type. Hmm!

Quaternion.Euler is what's called an overloaded method. That means it

has more than one function signature, so that it can accept two different sets of

arguments. You want to pass it Vector3? You pass it Vector3. You wanna

pass it three floats? You pass it three floats. You wanna pass it seven ints and a

boolean? TOUGH NUTS! That's not one of the overloaded options.

The rest is history. We're using our TiltAroundX and TiltAroundZ variables in the x
and z slots, and because there's no change in the y rotation, we're passing zero. The
Euler function gives us a return value, which is like putting money into a vending
machine and getting change. We feed it values for x, y, and z (or a single Vector3), and it
spits out a crazy-complex Quaternion for us that we probably couldn't have constructed
on our own. With any luck, we'll get a candy bar too!

We take the resulting Quaternion, store it in a variable (bucket) called target, and
use that as the to argument in the Slerp() function of the last line.

But don't take my word for it. If you're still confused about what does what or you want
to put this sample code through its paces, go for it. Here are a few things to try:

‹ ‹ Change the values for the smooth and/or tiltAngle variables, and test your game
(make sure that whatever value you try still has a decimal point). What effect do
the new numbers have on the movement of the paddle?

[136]

Chapter 4

‹ ‹ Reverse any number in the code by putting a minus sign (-) in front of it.

‹ ‹ Divide instead of multiplying.

‹ ‹ Subtract instead of adding.

‹ ‹ Try creating separate variables called tiltAngleX and tiltAngleZ to control
the x and z tilt amounts independently.

‹ ‹ Try creating a new variable of type Vector3 using the tiltAroundX, 0, and

tiltAroundZ values. Then, pass the resulting Vector3 as a single
argument to the Quaternion.Euler function. Does your code still work?

Keep it up

That was some heavy-duty book-learnin'! Feel free to leave the room for a moment if
you need to empty your brain. In this chapter, we:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Wrote our first Unity JavaScript
Applied the Script to a GameObject
Learned how to modify components through

code Removed a Script from a GameObject

Moved a GameObject with code
Hooked the position and rotation of a GameObject up to the mouse's
position and movement
Dove into the Unity Script Reference and Component Reference to

understand and to "borrow" some code
Took a crash course in programming to learn about:

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

functions and statement

blocks classes

data types

arguments

comments

logging

If you're still not grasping every little detail about programming, don't fret. Certain people
are wired to just immediately get it, and some of us have to keep trying, failing, and trying
again until that little light turns on. I tried and failed at programming my whole life, from

the time I was about ten years old, until I gradually understood it. For me, it was less of a
sudden light turning on, and more of a slow, steady burn, as the light bulb filament steadily
heated up as if on a dimmer switch. If you want to learn programming in Unity, you're not
bound by your intelligence—only by your determination and drive.

[137]

Code Comfort

Beyond the game mechanic

We've added code to our keep-up game to control the paddle, and the game mechanic is
amusing, but it's not a game! There's so much more to game development than just the
core mechanic. Our game needs a proper starting point. It needs an ending. It needs a cue
telling the player that he's failed when the ball falls on the ground... it needs a ground!
Currently, you have to shut down and restart the game every time you drop the ball. We
need some kind of Play Again button. And wouldn't it be nice to have a score counter on
the screen telling the player how many bounces he got before dropping the ball? What
about sound effects and music? And the box art! We have to have nice box art!

We may not get as far as shipping our game out to the shopping mall, but there's still a lot more

we can do to make our game more gamey. We're going to come back to this game mechanic in

a bit because there's definitely something promising here. But, first, we should learn how to put

some of those crucial buttons and score counters on the screen. While we figure that out, we're

going to use our new-found programming skillz to build a whole other game. Are you ready?

Then journey with me to the laboratory of Professor Wrecker…

C# Addendum

The C# version of the DisappearMe script is nearly identical to the JavaScript version. There are

just a few differences between the way in which JavaScript and C# scripts are set up.

using UnityEngine;
using System.Collections;

public class DisappearMeCSharp : MonoBehaviour {

// Use this for initialization

void Start () {

}

// Update is called once per

frame void Update () {
renderer.enabled = false;

}
}

Notice that the C# script has two using statements at the top. This is because there
are thousands of collections of code and keywords that you can tap into with C#, and
if we assume that every project needs to have access to every nook and cranny of the
C# language, we'll wind up with a massive final file! The using keyword tells Unity
which specific sections of the C# language this script needs to access.

[138]

Chapter 4

Another difference is the "class" declaration beneath the using statements. Every C#
script is its own class (like the Renderer class we discussed earlier).

The word class is prefaced with the word public. Public is an access modifier that
determines which bits of this script other scripts can "see" and futz around with. The
four different access modifiers in C# are public, private, protected, and internal. We'll
deal exclusively with the public and private access modifiers throughout this book.

There are some more salient changes in the C# version of the MouseFollow script:

using UnityEngine;
using System.Collections;

public class MouseFollowCSharp : MonoBehaviour {

private float smooth = 5.0f;

private float tiltAngle = 30.0f;

// Use this for initialization

void Start () {

}

// Update is called once per

frame void Update () {
float halfW = Screen.width / 2;

float halfH = Screen.height/2;
transform.position = new Vector3 ((Input.mousePosition.x -

halfW) / halfW, transform.position.y, (Input.mousePosition.y
- halfH)/ halfH);

// Smoothly tilts a transform towards a target rotation.

float tiltAroundZ = Input.GetAxis("Mouse X") * tiltAngle * 2;

float tiltAroundX = Input.GetAxis("Mouse Y") * tiltAngle * -

2; Quaternion target = Quaternion.Euler (tiltAroundX, 0,
tiltAroundZ);

// Dampen towards the target rotation
transform.rotation = Quaternion.Slerp(transform.rotation,

target,Time.deltaTime * smooth);
}

}

[139]

Code Comfort

Note, first of all, that the member variables—the ones we declared up top, outside of any

functions, have private access modifiers next to them. Technically speaking, these access

modifiers aren't required, and indeed, we could have added them to our member variables in

our JavaScript code. Including them here is good form. (Remember—the Queen is watching).

Another change is the way we type variables in C#. In JavaScript, the format is
variableName : datatype. In C#, the format is datatype variableName (note: no colon
required). C# also does away with the var keyword when declaring variables. Finally, when
a float definition has a decimal place in it, you need to append the lowercase letter f.

Here are the differences, side by side:

var someNumber : float = 3.5; // JavaScript member variable

declaration
private float someNumber = 3.5f; // C# member variable declaration

A little further down in the C# code, there's another change. Whereas with JavaScript, we
were able to set the transform.position.x and transform.position.z values of
the paddle individually, C# is a little less kind and friendly. C# wants us to change the
entire transform.position all at once, which means passing it a newly-minted
Vector3 with all three of the float values it requires.

So while in the JavaScript code, we were allowed to set the x and z parameters like so:

transform.position.x = whateverX;

transform.position.z = whateverZ;

In a C# script, we have to knock it all out in one shot, like this:

transform.position = new Vector3(whateverX, whateverY, whateverZ);

The new keyword is how we stamp out an instance using the industrial Class mold, as we

discussed earlier in the chapter. Vector3 is the template, and the new keyword is how we use it

to crank out an instance of that template. To put it another way, the Vector3 class is our

cookie cutter, and the new keyword is how we cut new gingerbread men out of the dough.

It's interesting, because in the case of this script, we know what the whateverX and
whateverZ values are, but there should be no change to the paddle's transform.
position.y value. So what do we put in there that means "no change"? Your first
instinct might be to leave it blank, but Unity will surely throw an error if we try to feed the
Vector3 class an non-existent value. Your second instinct might be to pass a value of zero,
but that's not quite what we're after either. What if the paddle's initial y value isn't zero?

[140]

Chapter 4

The way to pass a value that means "no change" is to simply pass the current transform
value of GameObject for a given axis. This line of code, for example, will not change the
position of GameObject at all:

transform.position = new Vector3(transform.position.x,

transform.position.y, transform.position.z);

To change the paddle's x and z transform.position values, then, without changing its
y transform.position value, the code (as above) looks like this:

transform.position = new Vector3 ((Input.mousePosition.x -halfW)

/ halfW, transform.position.y, (Input.mousePosition.y -
halfH)/ halfH);

You may have already sniffed out the fact that C# requires you to write more code
than JavaScript does. Nobody said high tea with the Queen was going to be easy.

[141]

5

Game #2 – Robot Repair

One of the secret aspects of game development is that getting a mechanic

working is often less challenging than getting an entire GAME working. Our

keep-up game has a working mechanic, but it's clearly nothing like
a finished game.

In this chapter, we'll take a break from our keep-up game to add an important

tool to our Unity game development tool belt: Graphical User Interface

programming. Graphical User Interfaces, or GUIs for short, include all of
the buttons, sliders, dropdowns, arrows, and on-screen text that help players

understand and move through your game. Unity has a whole separate GUI

(pronounced "gooey") system that we'll start digging around in to flesh out our

games a bit better. To get a good grasp on what the GUI system can do, we're

going to program an entire working 2D flip n' match memory game
in that system!

A language by any other name
There's nothing particularly Unity-centric about what we're going to
learn in this chapter. The techniques you learn here can generally be
applied to other scripting languages to build the same game.
Programming a memory game in Unity GUI is not much different from
building one in VB6, Flash, XNA, or OBJ-C for iOS.

Game #2 – Robot Repair

In this chapter, we'll:

‹

‹

‹

‹

‹

‹

‹

‹

Start building a working memory game called Robot Repair using only
the Unity GUI controls

Learn how to add buttons and images to the

screen Connect multiple scenes with buttons

Practice our programming, including one-dimensional and two-
dimensional Collections

All set? Then let's get GUI!

You'll totally flip

Let's make sure we're on the same page when I say "flip n' match memory game". That's the

kind of game where you take a deck of playing cards and lay them out in a grid on the table.
Then, two or more players take turns flipping over a set of two cards. If the pair of cards
matches (that is, two 10s, two queens, and so on), then that player clears the matching pair
from the table and gets to flip again. Otherwise, the cards are turned back facedown and
the next player gets a turn. The game ends when the grid is cleared. The winning player is
the one who collects the most matching cards.

To start, we're going to build the basic solitaire (one-player) flip n' match game in the Unity
GUI, using robots on the cards. Here's how it will look when you're finished:

[144]

Chapter 5

There are lots of things that make flip n' match memory an ideal learning game for new
developers. It's extremely versatile! The pictures on the cards can be anything you like—
you can skin the game in endless ways. You can build it for any number of players; a
solitaire version just needs a few extra goodies, like a timer, to make it more compelling.
You can quite easily crank the difficulty up and down by tweaking the number of cards on
the table, the timer length, and the types of allowable matches.

I can't wait to start! Let's go!

A blank slate

Start a new Unity project by navigating to File | New Project…. Create a new folder called

robotRepair on your computer's operating system. Follow the same steps as before to

choose a folder for the new project, call the project robotRepair, and click Create.
You don't need to import any extra unityPackage files if you don't want to—we
won't be using anything from them in this project.

When Unity has finished building your project, you should see that big, wide-open, empty 3D

world. We're going to completely ignore the 3D world for this project and focus instead on the

invisible 2D plane sitting in front of it. Imagine that your 3D world sits behind a sheet of glass.

That sheet of glass is where the Unity GUI controls exist. We'll tack up buttons and images to

that sheet of glass as if they're stickers that the player can interact with.

[145]

Game #2 – Robot Repair

You're making a scene

Until now, we've only been working with one Scene. Unity lets you create multiple scenes,
and then daisy-chain them together. You can think of a scene as a level or area in your
game. In our case, we're going to create a scene for the title screen of our game and
another scene for the game itself.

The new project you just created automatically starts with a single scene. Let's
rename it title.

1. Navigate to File | Save Scene As and choose title for the name of the scene.
You'll notice that the title bar in Unity now says title.unity – robotRepair. There's
also a new scene in the Project panel called title. You can tell that it's a Scene
because it has a little black-and-white Unity logo next to it.

2. Create a second scene by navigating to File | New Scene.
3. Navigate to File | Save Scene As... and call this new scene game.

4. To keep things more organized, create a folder to hold your two scenes. Click on
the Create button in the Project panel and choose Folder. A new folder called
New Folder appears in the Project panel.

5. Rename the folder Scenes.

[146]

Chapter 5

6. Click-and-drag your game and title scenes into the Scenes folder in the
Project panel. All tidy!

7. Click on the little gray arrow to expand the Scenes folder. Double-click on the
title scene to make it the active scene. You'll know that you've done it correctly if
the Unity title bar says Unity – title.unity – robotRepair.

Now, we have a scene to hold our title screen, and a scene to hold all of our game logic.
Let's get to work building that title screen!

No right answer

The more you explore Unity, the more you'll discover that there are many possible ways
to do one thing. Often, there's no right way to do something, it all depends on what
you're building and how you want it to look. There can, however, be better ways to do
things: as we saw earlier, programmers call these preferred methods "best practices".

You can build a title screen for your game in a number of different ways. If you have a 3D
world, maybe you want the camera to fly around the world as a piece of 2D title work fades
up over it? Maybe the title work should be in 3D, and you start the game by moving a
controllable character through a doorway? For this introduction to Unity GUI controls, we'll
take a flat 2D graphic of our game title work and add a Play button on top of it. This is how
it will look when we're finished:

[147]

Game #2 – Robot Repair

In Unity, GUIs are coded in Scripts, which are attached to GameObject. Let's create

an empty GameObject and then attach a new script to it:

1. Navigate to GameObject | Create Empty. A GameObject called
"GameObject" appears in the Hierarchy panel:

2. Click on the GameObject in the Hierarchy panel and press F2. Rename it
TitleScreen:

3. In the Inspector panel, position the TitleScreen GameObject at x:0 y:1 z:0.
4. Right-click /alternate-click on a blank space in the Project panel and navigate to

Create | JavaScript.
5. Rename the new script TitleGUI.
6. Click-and-drag the TitleGUI script from the Project panel to the TitleScreen

GameObject you just created in the Hierarchy panel. The TitleScreen
GameObject should light up blue before you release the mouse button.

7. To make sure the TitleGUI script is linked to the TitleScreen, click on the TitleScreen in
the Hierarchy panel. In the Inspector panel, you should see the TitleGUI script listed
beneath Transform as one of the components of the TitleScreen:

[148]

Chapter 5

Our script won't get executed unless it's hooked up to a GameObject. We've created an

empty GameObject called TitleScreen and connected our new TitleGUI script to it.
We're almost ready to start scripting!

GUICam
Some developers prefer to hook their GUI scripts up to the main camera in
the scene. If this makes more sense to you than hooking the script up to
an empty GameObject, don't let me hold you back. Go for it!

The beat of your own drum

We're going to take a few extra steps to ensure that our GUI looks different from the
standard built-in Unity GUI. If you visit the Unity game portals in Chapter 1, That's One
Fancy Hammer!, you may notice that the buttons and UI controls in many of the games look
the same or similar: dark, semi-transparent buttons with gently-rounded corners. This is
because those game developers haven't bothered to give their UI controls any unique flair.

[149]

Game #2 – Robot Repair

Custom styling your UI controls is definitely more work than sticking to the Unity default,
but the results are worth it! If you've ever worked with Cascading Style Sheets (CSS), you'll
have a better idea of what's going on here. CSS enables you to define the way a website
looks; how the images are displayed, the font and size of the text, and the spacing of
elements. All of the website's pages use that stylesheet to display their elements the same
way. So you've got the thing, and then you've got the way the thing looks. It's like putting a
costume on a kid at a birthday party. You can make the kid look like a pirate, a princess, a
superhero, or a giant walking cupcake, but the foundation of the kid doesn't change. It's still
little Billy under that foam cupcake suit. Two different websites can have the exact same
content, but their stylesheets could make them appear radically different.

When you custom style your UI, you create a new "costume" for it. You can apply different

costumes to the GUI, but the bones stay the same. You still have the same number of buttons at

the same size and in the same position on the screen. Those buttons and controls all behave the

same way as they did before—they're just wearing a different costume.

Let's take the first few steps towards setting up our game to use a custom UI—a
different costume (or "skin") for our controls:

1. Double-click on the TitleGUI script in the Project Panel to open the default
script editor, MonoDevelop.

2. At the top of the script, create a member variable to hold your custom GUI skin:

var customSkin:GUISkin;

function Start() {
}

function Update() {
}

3. Save and close the TitleGUI script.
4. Right-click or alternate-click any empty space in the Project panel, then navigate to

Create | GUI Skin. You can also click on the Create button at the top of the
Project panel.

[150]

Chapter 5

5. Rename the newly created GUI skin MyGUI.
6. Click on the TitleScreen GameObject in the Hierarchy panel.

7. Look for the TitleGUI script component in the Inspector panel. Notice that the

customSkin variable that we just created in code is now listed in the TitleGUI
script component! Strangely, Unity has decided to capitalize our variable name
and add a space between the words, but rest assured it's the same variable.

8. Click-and-drag the MyGUI GUI skin that you just created and drop it into the
customSkin variable in the Inspector panel. You can also choose MyGUI
from the drop-down list in that same variable field.

[151]

Game #2 – Robot Repair

What just happened?

We've created a skin for our GUI, which works like a costume on a kid at a birthday party.
Now, we're all set up to fiddle with the fonts, colors, and other parameters of our custom

MyGUI skin. We have the costume, now we just need to describe the kid underneath it. Let's

build ourselves a button, and then we'll see the difference that a custom GUI skin can make.

We're going to add a button to the title screen through code, using Unity's built-in
OnGUI function:

1. Double-click on the TitleGUI script, or switch over to the script editor if
it's already open.

2. We won't need the Update function any longer. Instead, we'll be using
the built-in OnGUI function. Change the word Update to OnGUI:

var customSkin:GUISkin;

function OnGUI() {
}

3. Add a chunk of code that creates a button inside the OnGUI function:

var customSkin:GUISkin;

function OnGUI() {
if(GUI.Button(Rect(0,0,100,50),"Play Game"))
{

print("You clicked me!");
}

}

4. Save the script and press the Unity Play button to test your game.

[152]

Chapter 5

A button labeled Play Game appears at the top-left of the screen. When you click on it, the
message You clicked me! appears in the status bar at the bottom of the Unity interface.
It will also appear in the Console window if you have it open.

Great! With a very tiny bit of code, we have a working, labeled button up on the screen!
It lights up when you roll over it. It goes back to normal when you roll off. Its
appearance changes when you press and hold the mouse button on it. The text label is
automatically centered inside the button. Somebody spent a bunch of time behind the
scenes programming this GUI stuff to save us time. Thanks, Unity Team!

Where it all begins
This Play Game button is a crucial element of our flip n' match memory game,

and every game you'll ever build with Unity, or any other game-building tool

for that matter! It's a part of the understood language of the video game

medium that games start in a paused state on a title screen and the player

takes an action to start the game. In a coin-operated arcade setup, that action

is inserting a quarter. In modern console gaming, that action is pressing a

button on the controller. In a web game like ours, that action is clicking on a

button that says Start, Play, or Play Game.

[153]

Game #2 – Robot Repair

What just happened?

If you've never programmed user interfaces before, this should all seem peachy. But, if you
have done some coding, you might be looking at the lines we just wrote with a completely
confused look on your face. This may not be like any interface programming that you've
ever seen before.

Unity uses what's called an immediate mode GUI. The term is borrowed from graphics
programming, and it requires you to program a little differently than you may be used
to. Let's break it down line by line.

if(GUI.Button(Rect(0,0,100,50),"Play Game"))

Like the Update function, the OnGUI function is called repeatedly as your game runs. This
line is called twice per frame: once to create the button, and once to see if the button has
been clicked. This code is stateless. On every frame, your entire interface is recreated
from scratch based on the code in your OnGUI function.

So, if you imagine this code as a split second in time, your if statement asks whether the button

that you're creating in this instant is being clicked on. It's kind of a strange thing to get used to,

but it makes sense the more you use it. The if statement in this case is like saying,
"if the button was clicked". Without that if, the button won't respond to input.

The rest of the line is a bit easier to understand. The GUI.Button method needs
two arguments: a rectangle defining the top-left corner and size of the button, and a
label for the button.

if(GUI.Button(Rect(0,0,100,50),"Play Game"))

Rect takes four inputs: x position, y position, width, and height. The origin of the two-

dimensional screen is at the top-left, so a value of 0,0 places the button at the top-left of

the screen. (Note that this is in opposition to the bottom-left origin we just learned about

when tracking mouse movement. This is the THIRD co-ordinate system we've encountered

so far!) The width and height values of 100 and 50 make the button
100 pixels wide and 50 pixels tall.

print("You clicked me!");

[154]

Chapter 5

This line is straightforward. When the button is clicked, the message we typed is printed to
the status bar and the Console window's log. Remember that the status bar is the skinny 20
pixel high gray bar at the bottom of the Unity interface. Let's check it out one more time
with a big fat arrow to help us out:

print is another way to throw messages to the console window or the status bar. I prefer
it to Debug.Log() because it's faster and easier to type, but be aware that it won't work
in all situations. If you ever find yourself tearing your hair out because your print()
statements aren't working, try switching back to Debug.Log().

Why stop there? To fully appreciate what this code is doing, try this:

‹ ‹ Change the button label, the button position, and the button width and height.

‹ ‹ Change the message that gets printed when you click on the button.

‹ ‹ Try taking the button creation code out of the if statement. What happens?

Fiddling with this code is a sure-fire way to better understand it.

[155]

Game #2 – Robot Repair

Want font?

As promised, we're going to try overriding the default look of the UI button control using
our custom GUI skin (or child's cupcake costume). At the top of the OnGUI function,
between the curly brackets, add this line:

GUI.skin = customSkin;

Save the script. Now, the custom GUI skin called MyGUI that we linked to this script will knock

out the default skin like putting on a different costume. Let's make a quick change to
MyGUI so that we can see the results.

Click on MyGUI in the Project panel. Now, check out the Inspector panel. There's a
loooong list of goodies and controls that we can customize. This is why many of the Unity
projects that you see use the default GUI—customizing all this stuff takes a long time!

[156]

Chapter 5

Click on the arrow next to Button to expand it, and then click on the arrow next to Normal.
There's a color swatch here labeled Text Color (it has an eye dropper icon next to it).
Click on the swatch and choose a new color—I chose light blue. Press the Play
button to test your game.

Voila! The text color on your button is blue! When you roll over the button, though, the
text reverts to white. There are separate colors and graphics for the hover, normal, and
pressed states of the button. Yikes! Fully customizing a GUI skin takes a while.

To change the font on your buttons, navigate to a directory on your computer where you keep

your fonts, and click-and-drag the font file into the Project panel. Now, you can choose that

font from the drop-down list labeled Font in the Inspector panel of your MyGUI skin.

Where my fonts is?
If you're running Windows, your fonts are likely to be in
the C:\Windows\Fonts directory. If you're a Mac
user, you should look in the /Library/Fonts/ folder.

[157]

Game #2 – Robot Repair

You could spend hours messing around with your custom GUI skin. Don't let me hold you
back! If you want to go nuts customizing MyGUI, be my guest. When you're ready to
come back, we'll build out the rest of the title screen.

Cover your assets

Download the Assets package for this chapter from the Packt Publishing website:

http://www.packtpub.com

To import the package, navigate to Assets | Import Package | Custom Package.... Navigate
to wherever you saved the package and double-click to open it, an Importing Package
dialog will open. All assets should be checked by default, so click on the Import button to
pull them into your Assets folder.

Open the Resources folder in the Project panel. All of the graphics that we need to build
the game are now in there, including the title screen graphic (it's the one called title). Click
on it, and you should see a preview of the Robot Repair title screen in the Inspector panel.

With the title screen graphic selected, navigate to GameObject | Create Other | GUI
Texture. Unity analyzes the width and height of our graphic and sets it up as the background
to our GUI. Press the Play button to test your game, you should now see the Play Game GUI
button superimposed over the Robot Repair title screen graphic (or floating off from the
top-left corner of the image, depending on your screen resolution).

[158]

Chapter 5

Don't forget to select the image
Unity does a few extra steps for us when we create a GUI texture with
an image selected. If you try to create a GUI texture and the image is
not selected, you'll have to manually hook up the image and set a few
parameters for it. Why bother? Make sure that the Robot Repair
image is selected first and you'll save a bit of time.
Beautify the background
Depending on your screen resolution, you may see the default blue
background color around the edges of the title screen GUI texture. To
change this color, click on the Main Camera in the Hierarchy panel.
Click on the color swatch labeled Background in the Inspector panel.
Change the color to white—it looks the best.

Time for

There's an unwanted sparkly effect that can occur when a 3D camera gets closer and
farther away from a 2D image. A technique called mip-mapping reduces this effect. Unity
creates a series of images from your texture that are each half the size of the previous
image, which allows the computer to figure out the best pixel colors to show to the player,
reducing the sparkle effect.

Because our title screen is presented as-is with no 3D camera movement, we're not
really concerned about sparkle. And, as you can imagine, with all those extra images,
mip-mapping requires a decent amount of extra memory for storage. As we don't
need mip-mapping—adding that extra bulk—let's disable it:

1. With the "title" texture image selected, find the Generate Mip Maps
checkbox in the Inspector panel.

2. Uncheck the box.
3. Click on Apply to save these changes.

[159]

Game #2 – Robot Repair

4. The rest of the images that you imported should not be mip-mapped, but there's
no harm in checking them for peace of mind.

Front and center

Our title screen is almost complete, but a glaring problem is that the Play Game button is
in a really goofy place, at the top-left of the screen. Let's change the code so that the
button is centered on the screen and sits just beneath the title work.

[160]

Chapter 5

In order to center the button on the screen, you need to adjust the TitleGUI script:

1. Double-click on the TitleGUI script in the Project panel, or switch over to
the script editor if it's already open.

2. Write a few new variables at the top of the script, and define them in
the Start function:

// button width:
var buttonW:int = 100;
// button height: var

buttonH:int = 50;

// half of the Screen width:

var halfScreenW:float;

// half of the button width:

var halfButtonW:float;

function Start()
{

halfScreenW = Screen.width/2;

halfButtonW = buttonW/2;
}

3. Modify the button creation line in the OnGUI function to incorporate

these new variables:

if(GUI.Button(Rect(halfScreenW-halfButtonW, 460,

buttonW, buttonH),"Play Game"))

What just happened – investigating the code

The code is just a touch hairier now, but those variable declarations help to clarify it.
First, we're storing the width and height of the button that we're going to create:

// button width
var buttonW:int = 100;

// button height
var buttonH:int = 50;

[161]

Game #2 – Robot Repair

Next, we're creating a variable that will hold the value of half the screen width, which we get

by dividing the Screen.width property by 2 later on in the Start function. Screen refers to

what Unity calls Screen Space, which is the resolution of the published player—the box or
window through which the player experiences your game. By referring to Screen Space, we can

center things on the screen regardless of the resolution our gamer's computer is running.

// half of the Screen width

var halfScreenW:float;

(and then later, in the Start function)

halfScreenW = Screen.width/2;

Below that, we're storing half of the button width by dividing our earlier stored
value, button, by 2:

// Half of the button width

var halfButtonW:float;

(and then later, in the Start function)

halfButtonW = buttonW/2;

The waiting game

The reason why we're declaring these variables at the top of the script, and defining them
(giving them their values) further down in the Start function, is partly stylistic, and
partly practical. There's a potential problem here: because Unity is superfast at
calculating the Screen.width property, it might do so before the game screen has
finished resizing and initializing, returning an incorrect value. By moving the variable
definition to the Start function, we're giving Unity a few CPU cycles to make itself
decent before we go barging in demanding screen properties.

Defining halfButtonW at the top of the class won't break anything, but some
programmers would prefer to see the definition separated from the declaration.

The easiest button to button

We're storing all of these values so that we can clarify the button creation
line, which looks like this:

if(GUI.Button(Rect(halfScreenW-halfButtonW,460, buttonW,

buttonH), "Play Game"))

[162]

Chapter 5

Note that if we didn't store these values ahead of time, the button creation line could
have been written as:

if(GUI.Button(Rect((Screen.width/2)-(100/2),460,100,50),"Play Game"))

There are too many brackets and mysterious numbers in there for my liking! The line
where we use variable names instead is a lot easier to read and understand.

Math will divide us
Computers are faster at multiplication than they are at division. If
you are a stickler for speed, you can amp up this code by multiplying
the values by 0.5 instead of dividing them by 2.
By declaring and defining these variables at the top of the script,
any of our script's functions can refer to them. They'll also show up
in the Inspector panel, where we can fiddle with their values
without having to open a script editor.

So, what we're doing here is putting the button halfway across the screen. Because the
button builds out from its top-left corner, we're bumping it back by half its own width
to make sure it's perfectly centered. The only other thing we're doing here is placing
the button at 460 pixels down the screen along the y axis. This puts the button just
beneath the title work.

Here's what your complete code should look like:

var customSkin:GUISkin;

// button width:
var buttonW:int = 100;
// button height: var

buttonH:int = 50;

// half of the Screen width:

var halfScreenW:float;

// half of the button width:

var halfButtonW:float;

function Start()
{

halfScreenW = Screen.width/2;

halfButtonW = buttonW/2;
}

[163]

Game #2 – Robot Repair

function OnGUI () {

GUI.skin = customSkin;
print("screenW = " + Screen.width);

print("halfScreenW = " + halfScreenW);
if(GUI.Button(Rect(halfScreenW-halfButtonW, 460, buttonW,

buttonH), "Play Game"))
{

print("You clicked me!");
}

}

Save your code. From the drop-down list of screen dimensions in the Game view, choose
Standalone (1024x768) instead of Free Aspect. Try out your game with Maximize on
Play selected. It's starting to look pretty good!

To the game!

The title screen is built and the button's in place. The only thing left to do is to link the
Play Game button up to take us to the game scene.

[164]

Chapter 5

Modify the line inside the button call where you're printing You clicked me!. Wipe
out the whole line (or comment it out using double-slashes if you want to save it for
later) and type this line:

Application.LoadLevel("game");

The Application.LoadLevel call moves us from this scene to whichever scene we
pass as an argument. We're passing the name of our game scene, so that's where we'll
end up when we click on the button.

There's just one last thing we need to do. Unity keeps a laundry list of scenes to bundle

together when we run the game called the Build List. If we call a scene that is not on the
Build List, Unity will throw an error and the game won't work. And we don't want that.

1. Navigate to File | Build Settings...; the Build Settings panel appears.
2. Click on the Add Current button to add the title scene to the Build Settings page.

[165]

Game #2 – Robot Repair

3. Close the Build Settings panel.
4. Navigate to File | Save Scene, to save the title scene.
5. In the Project panel, double-click on the game scene to switch to it.
6. Follow the same process to add the game scene to the Build Settings, and

then close the Build Settings window. Alternately, you can click-and-drag the
game scene from the Project panel into the Build Settings panel.

7. Press the Play button to test the game.

Order! Order!
The order in which you add scenes to the Build List matters. Scenes
appear from the top to down. If you put your title scene at the bottom of
the list, it won't appear first when you build or export your game. If you
added the scenes in the wrong order, you can easily reorder them by
clicking-and-dragging the scenes around in the Build Settings list.

Now that both of our scenes are on the Build List, the Application.LoadLevel call
will take us to the game scene when you click on the Play Game button. Save the game
scene, and switch back to the title scene. Run your game. When you click on the Play
button, you should see a blank screen. That's because we haven't actually built anything
in the game scene, but the button totally works! Huzzah!

Get Off My Case
Case sensitivity is in effect here, too! You need to make sure that the
scene name you pass into Application.LoadLevel is
consistent with the actual name of the scene, including its
capitalization, or else this command won't work.

Set the stage for robots

The excitement is palpable! We have a shiny-looking title screen promising something
about robots. There's a glistening Play Game button that, when clicked, takes us to a new
scene where our flip n' match memory game will live. It's time now to build that game.

Make sure your game's not still running—the Play button at the top of the screen should not be

lit up. Double-click on the game scene in the Project panel. Unity may ask you to save the title

scene if you haven't already—if that's the case, click on Save when you're prompted.

Just as we did with the title scene, we should change the camera background color to
white. Select the Main Camera from the Hierarchy panel, and change its view color by
clicking on the color swatch in the Inspector panel.

[166]

Chapter 5

We need to repeat a few steps that we followed in the title scene to set up our game scene.

1. Navigate to GameObject | Create Empty, and rename the new GameObject
GameScreen.

2. Create a new JavaScript file from the Project panel and name it GameScript.
3. If you'd like to stay tidy, create a folder in the Project panel and rename it Scripts.

Drag your TitleGUI and GameScript scripts into the new Scripts folder to keep
them organized.

4. Drag-and-drop the GameScript script from the Project panel onto the GameScreen
GameObject in the Hierarchy panel to link the script to a GameObject.

5. If you feel so inclined, you can set up a customSkin variable in the script, and link
up your MyGUI custom GUI skin to the script. This step is not necessary to
complete the rest of this chapter.

These steps are repetition of what we've already done on our title scene. For more
detailed instructions, just jump back a few pages!

The game plan

One of the best ways to learn game development is to build a learning project. Choose a
very basic game and recreate it on your own. Many programmers use Tetris as their
learning project. For a very basic introduction to a language or tool, I like to use Memory.

"But, wait!" you say: "Memory games are stupid and boring, and they're for babies, and
I'll positively die if I have to build one!" Of course, you're right. You're not going to be
lauded by critics and raved about by gamers for building a simple memory game. But, it's
a fun challenge to set for yourself: how can you take a game that everyone has played
before a million times, and put a simple twist on it to make it more interesting? How can
you work within those constraints to make it your own, and to showcase your creativity?

In Robot Repair, we'll lay out a 4 x 4 grid of 16 cards. There are four different robot types: a
yellow robot, a red robot, a blue robot, and a green robot. To make things interesting, we're
going to break these robots; rip off an arm here, tear off a leg there. The player has to
match each broken robot with its missing body part!

[167]

Game #2 – Robot Repair

Once the player wins, we'll give him the option to play again. The Play Again button will
link him back to the title screen.

Starting your game development career by building simple starter games like Memory is
like eating a big slice of humble pie. But this is all in the spirit of crawling before you walk.
While you're crawling, how can you make things interesting for yourself? And, if you can't
flex a little creative muscle in the confines of a simple game, how will you survive when
you're building your dream project?

Have some class!

To start building Robot Repair, we need to write a custom class in our GameScript script.
We've already seen some built-in Unity classes in the previous chapter: the Renderer
class, the Input class, and so on. We're going to create our own class called Card. You
guessed it, the Card class is going to represent the cards in the game.

1. Double-click to open the GameScript script.

2. Add the following code to the script, beneath (and outside) the Update function:

class Card extends System.Object
{

[168]

Chapter 5

var isFaceUp:boolean = false;

var isMatched:boolean =

false; var img:String;

function Card()
{

img = "robot";
}

}

Just like the keyword var declares a variable, we use the keyword class to declare a
class. Next comes the name of our class, Card. Finally, our Card class extends
System.Object, which means that it inherits all of its stuff from the built-in
System.Object class much the same way I inherited my fabulous good looks and my
withered left knee that smells like almond bark.

System.Object
What does it mean to inherit from System.Object? That class is like
Adam/Alpha/the Big Bang—it's the class from which (generally speaking)
everything in Unity is derived. It's about as nondescript as anything can get.

You can think of System.Object as being synonymous with
"thing" or "stuff". Every single other thing we build in Unity,
including our Memory game's Card class, derives from this

primordial ur-thing called System.Object.

In the next few lines, we will declare some variables that all Card instances must have.
isFaceUp determines whether or not the card has been flipped. isMatched is a true or
false (boolean) flag that we'll set to true when the card has been matched with its partner.
The img variable stores the name of the picture associated with this card.

The function called Card inside the class called Card is a special piece of code called the
constructor function. The constructor is the very first function that gets called,
automatically, when we create a new Card instance. Unity knows which function is the
constructor function because it has the same name as the class. The only thing that we're
doing in the constructor function is setting the img variable to robot.

Great! That's all we need in our Card class for now. Let's create some important
game variables off the top of the script.

[169]

Game #2 – Robot Repair

There are a few crucial values we need to remember throughout our game. Let's declare
some variables at the very top of the GameScript (remember that typing the comments
is optional, but the comments may help you understand the code).

import System.Collections.Generic;

var cols:int = 4; // the number of columns in the card grid

var rows:int = 4; // the number of rows in the card grid

var totalCards:int = 16;
var matchesNeededToWin:int = totalCards * 0.5; // If there are 16

cards, the player needs to find 8 matches to clear the board
var matchesMade:int = 0; // At the outset, the player has not

made any matches
var cardW:int = 100; // Each card's width and height is 100 pixels

var aCards:List.<Card>; // We'll store all the cards we create in
this List

var aGrid:Card[,]; // This 2d array will keep track of the

shuffled, dealt cards
var aCardsFlipped:List.<Card>; // This generic array list will

store the two cards that the player flips over
var playerCanClick:boolean; // We'll use this flag to prevent

the player from clicking buttons when we don't want him to
var playerHasWon:boolean = false; // Store whether or not the

player has won. This should probably start out false :)

Speed kills
Remember that this line:

var matchesNeededToWin:int = totalCards *

0.5; is exactly the same as this:

var matchesNeededToWin:int = totalCards / 2;
But, because the computer can multiply faster than it can divide, getting into the

habit of multiplying could speed up your more complicated games in the future.

[170]

Chapter 5

A matter of great import

That's a big list of variables! It all starts with an import statement. If you read through the code

addendum at the end of Chapter 4, Code Comfort, you'll remember that C# code requires using

declarations that tell Unity we'd like to certain chunks of the code base. The JavaScript keyword

import is identical to the C# keyword using. We use it to tell Unity that we're accessing

System.Collections.Generic chunk of code, which isn't normally available to us by

default. Try typing List<> into your code without the using declaration.
Then, add the using declaration and type List<> again. When we declare that we're
using System.Colletions.Generic, we get access to a whole new bunch of stuff.

Why do we need access anyway? Because the generic List object we declare a little

farther down requires it. But what the heck is a List? It's one in a family of datatypes

called Collections, which includes its (perhaps) more well-known cousin, array.

If a variable is a bucket that can hold one thing, then an array is a bucket that can
hold many things. Unity JavaScript has a class called Array that allows us to create
these handy buckets-of-stuff.

[171]

Game #2 – Robot Repair

In fact, the Collections family has many members, including Built-in Array, Generic List,
ArrayList, Hashtable, Generic Dictionary, and 2D Array. Knowing which family member to call on

for a given task is a matter of taste and experience. In this chapter, we'll be using two types of

Collections: the Generic List, and the 2D Array. Let's start by looking at that Generic List:

var aCards:List.<Card>; // We'll store all the cards we

create in this List

Just like the variables we've used previously, Generic Lists are typed. We can put any type
we want inside those pointy brackets. The aCards Generic List is typed Card, so we can
only ever put Card instances inside.

Generally speaking
If a Generic List takes a specific type, why do we call it a Generic List?
"Generic" refers to the parameter we pass to the Collection. It can
be (generically) anything we want it to be ... but once we declare it,
it can only ever contain that type of thing.

Building a better bucket

By typing a Collection, we're telling Unity which type of thing we'll put in there. That
speeds up Unity's calculations, because the software doesn't have to worry about sorting
through different types of things in the Collection.

Imagine if you brought home a bucket of mystery fried chicken, but were warned that it also

contained a tennis shoe, a wrench, 175 ball bearings, and a well-worn copy of Big Al's
Bathroom Reader. It would take you longer to sort out what was chicken and what was
scrap metal than if it was 100% chicken, and consequently, you wouldn't be able to eat
your way through the bucket quite as quickly. (Of course, if you made any dire
mistakes, that Bathroom Reader would probably come in handy.)

Typing the array (giving it a type) also speeds you up as a programmer, because when you

pull things out of a mystery bucket of fried chicken, you constantly have to tell Unity,
"this is a shoe. This is fried chicken. This is a ball bearing," using a technique called
casting via the as keyword:

var friedChicken:FriedChicken = aMysteryBucket[0] as FriedChicken;
// This is definitely not a shoe, Unity.

// Using the 'as' keyword, I'm explicitly telling you that what I've
// just pulled out of the bucket is absolutely a piece of

fried chicken.

[172]

Chapter 5

How big is your locker?

Some Collections, like Built-in Arrays, have a set size. You need to tell Unity how many
things you're putting inside, and that number can never change. Other Collections, like
Generic Lists, can take whatever we throw at them—their length is elastic, and they
don't have to have a set size. Which approach is better? As you'll see, there are
advantages and disadvantages to each.

You'll remember that when we define a variable (a bucket that can hold one thing), we're
actually carving out a storage locker in the computer's memory. By typing the variable
(giving it a type), we're telling the computer how big that storage locker needs to be. An
int variable needs a different amount of room in memory than a string variable or a
boolean variable, and so on.

It's the same idea with a Collection. If we tell Unity how many elements an array needs to
hold, Unity can reserve the right amount of space in memory and call it a day. Imagine if
you were moving house, and you had to rent a storage locker, but the amount of stuff you
needed to store was constantly changing. You'd need to rent more lockers, or bigger
lockers, and then get rid of them and consolidate your things, and then rent another few
lockers again. What a hassle! We reap the benefit of a fast Collection when we use a built-
in Array, and tell Unity exactly how many things it needs to hold.

This is what it might look like if we used one line of code to declare and define a 20-
piece bucket of fried chicken with absolutely no tennis shoes in it:

var aDefinitelyFriedChicken:FriedChicken[] = new FriedChicken[20];

So if you had the choice of using a sleek, speedy Built-In Array with its fixed size, why would we

ever want to use the slower Generic List class, with its flexible size? Well, one advantage of

the Generic List class is that it has a few methods that the stripped-down, no-nonsense
Built-in Array doesn't have. We're going to use one of those methods unique to the Generic

List class a little later in the code. And who the heck knows how much stuff they're going to

want to cram into their storage locker ahead of time? Flexible Collection size is a real advantage

in some situations. For now, let's keep on trucking. We have a game to build!

"A" is for Anal Retentive
Programmers develop their own naming conventions for things. My
own best practice when declaring Collections like Arrays and Lists is to
begin them with a lowercase letter "a". It's just a code organization
technique that helps me keep everything straight in my head.

[173]

Game #2 – Robot Repair

Start me up

Remember that we're building this game with Unity GUI controls. Just as we created a
clickable Play Game button on the title screen, we're going to build all of our clickable
game cards using the same button control. Our grid of cards will be a grid of GUI buttons
aligned on the screen.

Let's add some code to the default Start function to get the ball rolling. Start is another
one of those built-in Unity functions that gets called before Update or OnGUI, so it's a good
place to initialize some stuff. Type the following code near the top of your script, beneath
the list of variables we just declared:

function Start () {
playerCanClick = true; // We should let the player play, don't

you think?

// Initialize some empty Collections:
aCards = new List.<Card>(); // this Generic List is our deck

of cards. It can only ever hold instances of the Card class.
aGrid = new Card[rows,cols]; // The rows and cols variables help

us define the dimensions of this 2D array
aCardsFlipped = new List.<Card>(); // This List will store the

two cards the player flips over.
// Loop through the total number of rows in our aGrid

List: for(var i:int = 0; i<rows; i++)
{

// For each individual grid row, loop through the total

number of columns in the grid:
for(var j:int = 0; j<cols; j++)
{

aGrid[i,j] = new Card(); // stuff a new card instance

into the 2D array
}

}
}

In these first few lines, we're flagging playerCanClick to true so that the player can
start playing the game right away. Then, we're using the new keyword to create a new,
empty Generic List to hold our deck of cards (aCards). The new keyword is used again in
the next line to create an empty 2D Array to hold the grid of cards that gets dealt to the
table (aGrid), and we declare another Generic List that will store the two cards that the
player flips over (aCardsFlipped).

[174]

Chapter 5

Going loopy

The piece of code that follows is a touch trickier. We want to create 16 new cards and put
them into our deck, the aGrid array. To do that, we're using an "iterative loop" to
populate our two-dimensional array.

An iterative loop is a piece of code that repeats itself, with special instructions telling it
when to start and when to end. If a loop never ends, our game crashes, and we're flooded
with angry tech support calls.

This line begins an iterative loop:

for(var i:int=0; i<rows; i++)

The variable i is called the iterator. That's what we use to figure out how many times to loop,

and when to stop. You don't have to use the letter i, but you'll see it a lot in other people's code.

It's a best practice. And, as we'll see shortly, when you start putting loops inside other loops,

you'll actually have to start using other letters, or else your code will break.

The anatomy of a loop

An iterative loop always starts with the for keyword. It has three important sections:

‹

‹
‹

‹
‹

‹

Where to start

Where to end
What to do after every loop finishes

In this case, we start by declaring an iterator variable called i of type int
(integer), and set that iterator i to zero.

var i:int = 0

Next, we say that we're going to loop as long as the value of i is less than (<) the
value of rows. Because we've already set rows to 4, this code will loop four times.

i<rows

In the third section, we increase the value of i by one. Here's how the interpreter
chews through our loop:

1. Set an integer variable called i to 0.

2. Check to see if i is less than rows (4). 0 is less than 4, so let's go!

3. Run the code inside the loop.

4. When we're finished, increase i by one. (i++). i is now 1.
5. Check again to see if i is less than rows (4). 1 is less than 4, so let's keep going.

[175]

Game #2 – Robot Repair

6. Run the code inside the loop.
7. Repeat until we increase i to 4 on the fourth loop.
8. Because i is no longer less than rows (4), stop repeating the loop.

To nest is best

The structure that we've set up is called a "nested loop" because we have one

iterative loop running inside another.

Inside the second loop, we're using j as the iterator because i is already in use.
We're using the new keyword to create a new instance of the Card class, and we're
adding it to the array at index aGrid[i,j].

Talk it through and it's not too tricky to understand:

‹ ‹ The first time through the outside loop, we're at index 0 of our 2D Array.
‹ ‹ Then in the inner loop, we loop four times. Each time, we stuff a new card into

the 2D Array called aGrid.
‹ ‹ Next, we do the main loop again. The outer index value i increases to 1.
‹ ‹ On to the inner loop, we cram four new cards into the empty. Now, aGrid

contains 8 cards.
‹ ‹ We keep going until this whole thing plays out. At the end of the nested loop,

aGrid is an array containing four arrays, and each of those arrays has four
cards in it, for a total of 16 cards.

[176]

Chapter 5

The reason why 2D Arrays are so handy is that we can easily access stuff inside them using
grid coordinates, just like in that old board game Battleship. If we want to talk about the
card three slots over and one slot down, we call it using aGrid[1,2]. In fact, if we were
building a digital version of Battleship, we might use nested loops to build 2D arrays to build
that game as well.

Note that arrays are zero based. The card at aGrid[0,0] is the card at the top-left of the
grid. Next to that is the card in aGrid[0,1]. Next to that is the card in aGrid[0,2]. To
get the card one row down, we increase the first index: aGrid[1,2]. Here's what you
should try picturing in your head:

Hopefully, you're already seeing how a grid like this relates to a grid of cards laid out on
the table for a Memory game. If not, take it on faith and keep reading! It should
become clearer as we go.

Seeing is believing

So far, everything we've done has been theoretical. Our cards exist in some imaginary
code space, but we've done nothing to actually draw the cards to the screen. Let's build
our OnGUI function and put something on the screen to see where all this is leading.

[177]

Game #2 – Robot Repair

On the title screen, we used a Fixed Layout to position our Play Game button. We decided
exactly where on the screen to put the button, and how big it should be. We're going to
build our grid of cards using an Automatic Layout to illustrate the difference.

With an Automatic Layout, you define an area and place your GUI controls inside it.
You create your controls using the built-in GUILayout class, instead of the GUI class.
The controls that you create with GUILayout stretch to fill the layout area.

Let's create one of these Automatic Layout areas in our GameScript.

1. We don't need the Update function in this script. As we did earlier, change
Update to OnGUI to create an OnGUI function:

function OnGUI () {

6. Begin and end the automatic layout area inside the OnGUI function:

function OnGUI ()
{

GUILayout.BeginArea (Rect

(0,0,Screen.width,Screen.height)); GUILayout.EndArea();
}

The area will be the width and height of the screen, and it will start at the screen origin
at the top-left of the screen.

These two statements are like bookends or HTML tags. Any UI controls we build between
these bookends will be created within the area we defined. Each new control will
automatically stack vertically beneath the last. The controls will stretch to the width of
the area, which in this case is the entire screen.

If you'd like to stray off the beaten path and build a few buttons between the area statements to

see what happens, I won't hold you back! Use the code we learned earlier in the chapter to

create a button or two at different positions. You could also try adjusting the width, height, and

start values of the area to see how that affects your UI buttons' placement.

[178]

Chapter 5

Build that grid

Between the area statements, we want to build the grid of card buttons. But, to keep the
code from getting hard to understand, we could make a function call out to a separate
piece of code, just to keep things looking clean and easy to read. Modify your OnGUI code:

function OnGUI () {
GUILayout.BeginArea (Rect (0,0,Screen.width,Screen.height));

BuildGrid();
GUILayout.EndArea();

print("building grid!");
}

That building grid! line is just so that you can be sure something's happening. I like to add

statements like these so that I can see into the "mind" of my computer, and to make sure certain

functions are getting executed. Remember that your print statements show up in the status

bar at the bottom of the screen or in the console window if you have it open.

Note that if we actually try to run the code now, we'll get an error.
Unity has no idea what the BuildGrid function is, because
we haven't written it yet!

Let's write that BuildGrid function. Add this code to the bottom of the script, outside
and apart from the other chunks:

function BuildGrid()
{

GUILayout.BeginVertical();

for(var i:int=0; i<rows; i++)
{

GUILayout.BeginHorizontal();

for(var j:int=0; j<cols; j++)
{
var card:Card = aGrid[i,j];

[179]

Game #2 – Robot Repair

if(GUILayout.Button(Resources.Load(card.img),
GUILayout.Width(cardW)))

{
Debug.Log(card.img);

}
}
GUILayout.EndHorizontal();

}
GUILayout.EndVertical();

}

What just happened – grokking the code

We start by wrapping the whole thing in vertical layout tags. Controls are stacked
vertically by default within a layout area, but we're explicitly calling BeginVertical and
EndVertical because of some fancy layout gymnastics that we're going to perform a
few steps later.

Next, we build a nested loop. Just as before, we're looping through the columns and rows.
We wrap the inner loop in a horizontal layout area with the BeginHorizontal and
EndHorizontal calls. By doing this, each new card button we lay down will be
stacked horizontally instead of vertically.

Finally, inside the inner loop, we're using an unfamiliar statement to create a button:

if(GUILayout.Button(Resources.Load(card.img), GUILayout.Width(cardW)))

In that first parameter, we're passing Resources.Load to fill the button with a picture instead

of a piece of text. We pass the name of the picture we want to the Resources. Load call.

Because every card's img variable is set to robot, Unity pulls the picture labeled robot

from the Resources folder in the Assets library and sticks it on the button.

The second parameter is a sort of an override. We don't want our card buttons stretching
to fill the width of the layout area, so we pass the cardW (which is set to 100 pixels at the
top of the script) to the GUILayout.Width method.

The net result is that we loop four times, and on each loop we lay down a row of
four buttons, each with a picture of a robot.

[180]

Chapter 5

Save the script and test your game. You should see a 4 x 4 grid of buttons, each with a
yellow robot picture on it.

Now you're playing with power!

There's so much to learn about building Unity graphical user interfaces, and you've
just taken the first important steps. So far, you know how to:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Add button UI controls to the screen

Tool up a custom GUI skin

Create new scenes, add them to the Build List, and link them together using buttons

Declare and define three different types of collections: a built-in array, a 2D
Array and a Generic List

Populate a 2D Array using a nested loop

Lay out UI controls with both automatic and fixed positioning

[181]

Game #2 – Robot Repair

As we delve deeper into our Robot Repair game, we'll learn more about automatic positioning

so that we can center the game grid. We'll also figure out how to flip over cards, and add the

crucial game logic to make everything function properly. Join us, won't you?

C# addendum

Converting the TitleGUI JavaScript to C# was pretty painless:

using UnityEngine;
using System.Collections;

public class TitleGUICSharp : MonoBehaviour {

private float buttonW = 100; // button width

private float buttonH = 50; // button height
private float halfScreenW; // half of the Screen width

private float halfButtonW; // half of the button width

public GUISkin customSkin;

private void Start()
{

halfScreenW = Screen.width/2;

halfButtonW = buttonW/2;
}
private void OnGUI ()
{
GUI.skin = customSkin;
if(GUI.Button(new Rect(halfScreenW-halfButtonW, 460,

buttonW, buttonH), "Play Game"))
{

Application.LoadLevel("game");
}

}
}

Here are the changes:

We declared buttonW and buttonH as floats instead of ints, because the Rect
structure later in the code accepts float, and we can't be bothered converting the int
values to the float datatype. It's probably simpler and easier for them to begin their
lives as floats anyway.

Earlier in our JavaScript code, we separated the declaration and definition of a few
variables, but we didn't have to. We could have combined the declaration and definition in
a single line, like so:

var halfScreenW:float = Screen.width/2;

[182]

Chapter 5

We can't pull the same monkeyshines with C#. We're not allowed to simultaneously derive the

value of Screen.width, perform a calculation on it, and store it as the value of

halfScreenW. Just as we did with the JavaScript code, we've declared the variables at the

top of the class, and define the variables (give them their values) in the Start function.

Note that in order for the customSkin variable to show up in Unity's Inspector panel,
we need to use the public access modifier before declaring the variable. Try switching it
to private, and observe that the variable disappears from the Inspector panel.

The only other change to this script, aside from the usual changes mentioned in the
previous chapter, is that the Rect structure requires the new keyword in front of it in C#.

There are a few differences in the C# version of the GameScript script as well:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class GameScriptCSharp : MonoBehaviour {

private int cols = 4; // the number of columns in the card

grid private int rows = 4; // the number of rows in the card

grid private int totalCards = 16;
private int matchesNeededToWin;
private int matchesMade = 0; // At the outset, the player

has not made any matches
private int cardW = 100; // Each card's width and height is

100 pixels
private List<Card> aCards; // We'll store all the cards

we create in this array
private Card[,] aGrid; // This 2d array will keep track of

the shuffled, dealt cards
private List<Card> aCardsFlipped; // This generic array

list will store the two cards that the player flips over
private bool playerCanClick; // We'll use this flag to prevent

the player from clicking buttons when we don't want him to

private bool playerHasWon = false; // Store whether or not the
player has won. This should probably start out false :)

// Use this for initialization

private void Start () {
matchesNeededToWin = totalCards / 2; // If there are 16 cards,

the player needs to find 8 matches to clear the board
playerCanClick = true; // We should let the player play,

don't you think?

[183]

Game #2 – Robot Repair

// Initialize some empty Lists:
aCards = new List<Card>(); // this Generic List is our deck of

cards. It can only ever hold instances of the Card class.
aGrid = new Card[rows,cols]; // The rows and cols variables

help us define the dimensions of this 2D array
aCardsFlipped = new List<Card>(); // This List will

store the two cards the player flips over.

// Loop through the total number of rows in our aGrid

List: for(int i = 0; i<rows; i++)
{
// For each individual grid row, loop through the

total number of columns in the grid:
for(int j = 0; j<cols; j++)
{

aGrid[i,j] = new Card(); // stuff a new card instance

into the 2D array
}

}
private void OnGUI()
{
GUILayout.BeginArea (new Rect (0,0,Screen.width,

Screen.height));
BuildGrid();
GUILayout.EndArea();

print("building grid!");
}

private void BuildGrid()
{

GUILayout.BeginVertical();

for(int i = 0; i<rows; i++)
{

[184]

Chapter 5

GUILayout.BeginHorizontal();

for(int j = 0; j<cols; j++)
{

Card card = aGrid[i,j];

if(GUILayout.Button(Resources.Load(card.img) as Texture,

GUILayout.Width(cardW)))
{

Debug.Log(card.img);
}

}
GUILayout.EndHorizontal();

}
GUILayout.EndVertical();

print ("building grid!");
}

}

As with the TitleGUI script, we've moved the matchesNeededToWin declaration to the

Awake function, because we need to know the value of totalCards to define it.

Here's a subtle difference. When we define the aCardsFlipped Generic List, note
that JavaScript uses a dot, while C# does not:

aCardsFlipped = new List.<Card>(); // JavaScript

aCardsFlipped = new List<Card>(); // C#

The only other difference within this script is the GUILayout.Button call in the
BuildGrid function:

if(GUILayout.Button(Resources.Load(card.img) as

Texture, GUILayout.Width(cardW)))

The first parameter of GUILayout.Button should be Texture, but the Resources.Load

method gives us an Object. Since we know that we're actually loading a valid texture
(or pulling out a piece of chicken instead of a tennis shoe), we can explicitly tell
Unity that this is, indeed, the Texture it requires.

We do that with the help of the as keyword. By telling Unity that this Object is, in
fact, a valid Texture, we're said to be casting the Object to a Texture via as.

[185]

Game #2 – Robot Repair

Finally, we've moved the Card class declaration into its very own separate script file:

using UnityEngine;
using System.Collections;

public class Card {

public bool isFaceUp = false;

public bool isMatched =

false; public string img;

public Card()
{

img = "robot";
}

}

The sneaky bit here is that by default, C# classes in Unity inherit from a class called
MonoBehaviour. When they do that, they can't actually have a constructor function. We
can keep the constructor function (Card()) intact by simply removing the Monobehaviour
bit from the class declaration so that this class stands alone. Everything else in the Card
class is straightforward.

[186]

6

Game #2 – Robot Repair Part 2

As we've learned, building the game part of the game is only half the battle.
A lot of your sweat goes into creating what's around the game—the buttons,
menus, and prompts that lead the player in, around, and through your
game. We're right in the middle of learning how to display buttons and other
UI (user interface) controls on top of our Unity games. We'll take a break
from the 3D environment, adding game logic to the UI controls to produce a
fully functioning 2D game with the Unity GUI alone.

In this chapter, we'll:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Discover some code to help us better position our UI controls on the screen

Learn to control when the player can and can't interact with our game

Unleash the terrifyingly awesome power of random

numbers Hide and show UI controls

Detect winning conditions

Show a "Win" screen when the player finishes the game

From zero to game in one chapter

Let's make a quick list of the stuff we need to do to make this flip n' match memory game
functional. Break all of the missing pieces into little bite-sized tasks. For smaller game
projects, I like to put these steps in a list with checkboxes. Then, I can put a big 'X' in the
box when I'm finished. There is no more satisfying thing I can do in any given workday
than to put X's in boxes.

Game #2 – Robot Repair Part 2

Here's what we need to do to get this game working:

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

Center the grid on the screen.

Put different images on the cards. (It would be great if the cards could
be shuffled around every time you played!)

Figure out how to break the robots and distribute their body parts on
the cards properly.

Make the cards flip over from back to front when you click them.

Prevent the player from flipping over more than two cards in a turn.

Compare two flipped-over cards to see if they match (note: if they match,
we should remove the cards from the table. If they don't match, we
should flip them back over).

If all of the cards have been removed from the table, show a victory message
and a Play Again button. The Play Again button should restart the game
when you click on it.

Checkboxes are like ferocious dragons. Putting X's in boxes is like slaying those
dragons. With each dragon you slay, you've become stronger and wiser, and you're
getting closer to your goal. And sometimes, I like to pretend my desk chair is a pony.

Golly-GDD
The list we just created is a very simple example of a GDD, a Game Design

Document. GDDs can be as simple as checklists, or as complicated as

1,000-page Word documents. I like to write my GDDs online in a wiki

because it's easier to stay nimble and to change things.
My whole team can commit new artwork, ideas, and comments to a

living, breathing wiki GDD.
Putting a point on it
One interesting tip I've heard about writing GDDs is that you
should end each task with a period. This gives the task more
weight, as if you're saying, "It shall be so!" Periods, strangely, help
to make GDD tasks seem more final, crucial, and concrete.

With this to-do list, and our description of gameplay from the previous chapter, we
have our bare-bones GDD. Are you ready? Let's slay some dragons!

[188]

Chapter 6

Finding your center

We've got our game grid set up, but it's crammed up to the top-left of the screen. That'll be
the first thing we'll tackle. Advance warning: writing code isn't quite like writing a book.
You rarely begin at the beginning and end at the ending. We're going to be bouncing
around quite a bit from function to function. If it ever gets too hairy, don't worry: the
complete script is listed at the end of this chapter, and you can always download the final
working file from the Packt website.

We'll use the FlexibleSpace() method of the GUILayout class to center the grid on
the screen, first vertically and then horizontally.

1. Double-click on the gameScript script to open the code editor. Find the
BuildGrid() function.

2. Insert two GUILayout.FlexibleSpace() calls inside the GUILayout.
BeginVertical() and GUILayout.EndVertical() calls, like so:

function BuildGrid()
{
GUILayout.BeginVertical();
GUILayout.FlexibleSpace();

for(i=0; i<rows; i++)
{

// the rest of the code is in here, but we've

removed it for the sake of simplicity
}
GUILayout.FlexibleSpace();
GUILayout.EndVertical();

}

3. Save the script and test your game.

[189]

Game #2 – Robot Repair Part 2

The game grid is now centered vertically on the screen. There's an equal amount of
space above the grid as there is below it.

What just happened?

UI controls in an automatic layout like the one we're using want to fill all the space they're

given, much like a goldfish will grow to fill the size of the tank it's in. The goldfish thing is

actually a myth, but FlexibleSpace() is very, very real. Because we've given the grid the

entire screen to fill by defining the size of our area rectangle with Screen.width and

Screen.height, our UI controls want to spread out to fill all that space.

FlexibleSpace creates a kind of compactable spring that fills up any space that
the UI controls aren't using. To get a better sense of what this invisible element
does, try commenting the top GUILayout.FlexibleSpace(); function call:

// GUILayout.FlexibleSpace();

[190]

Chapter 6

Save the script and then test your game. There's no FlexibleSpace above the grid

anymore, so the FlexibleSpace below the grid stretches out to fill as much of the area as

possible. It automatically grabs any available space that's not filled by your UI controls.

Likewise, you can try commenting out only the bottom FlexibleSpace() function call
and leave the top FlexibleSpace uncommented. Predictably, the top
FlexibleSpace stretches its legs and pushes the grid to the bottom of the screen.
Make sure both the FlexibleSpace lines are uncommented, and let's forge ahead.

[191]

Game #2 – Robot Repair Part 2

By dropping two more FlexibleSpace function calls into your BuildGrid()
function, you can horizontally center the grid on the screen.

1. Add a GUILayout.FlexibleSpace(); function call between the GUILayout.
BeginHorizontal() and GUILayout.EndHorizontal() calls:

function BuildGrid()
{
GUILayout.BeginVertical();
GUILayout.FlexibleSpace();

for(i=0; i<rows; i++)
{

GUILayout.BeginHorizontal();
GUILayout.FlexibleSpace();

for(j=0; j<cols; j++)
{

// Again, the code here has been removed for the

sake of brevity
}
GUILayout.FlexibleSpace();
GUILayout.EndHorizontal();

}
GUILayout.FlexibleSpace();
GUILayout.EndVertical();

}

[192]

Chapter 6

2. Save the script and test your game. Hooray! The game grid is now centered on

the screen, both horizontally and vertically.

[193]

Game #2 – Robot Repair Part 2

What just happened – coding like a ninja

What we've done here is stuck two springy, compactible FlexibleSpace elements at either

end of each of our horizontal grid rows. At this point, we have ten FlexibleSpace elements:

one on the top, one on the bottom, and two on either side of our four grid rows.

As with any programming task, there are many different ways you could have approached

this problem. You could wrap your four grid rows in a single horizontal area, and stick two
FlexibleSpace elements inside that in order to have only four FlexibleSpace elements

in total instead of ten. Or, you could do away with FlexibleSpace elements and automatic

layouts altogether, and opt for a fixed layout. You could also put all of the buttons in an area

(GUILayout.BeginArea) and center the area. Or, you could turn off your computer and go

outside and play. It's up to you. This is just one solution available to you.

Any way you slice it, we've just knocked one item off our GDD task list:

_Center the grid on the screen

Take THAT, you fell beast! Giddy up, desk chair! Onward!

Down to the nitty griddy

Grids are a game development essential. As we saw in the previous chapter, a classic board
game like Battleship is set up in a grid. So are about 50 other board games I can think of off the

top of my head: Connect Four, Guess Who, Stratego, chess, tic-tac-toe, Clue, checkers, chutes n'

ladders, go, slider puzzles, and so on—it's an absolutely huge list. Add to that the slew of digital

games that use a grid layout: MineSweeper, Tetris, Bejewelled, Puzzle League,
Bomberman, Dr. Mario, Breakout. And lest you think that only 2D games use grids, consider
3D turn-based strategy games—the action takes place on a grid! Grids are used in inventory
screens, in image galleries, and on level select screens. A* (A-star), a popular method for
moving characters around obstacles on the screen ("pathfinding"), can also use grids. In
fact, your entire computer display is a grid of square pixels.

Mastering the grid is key to mastering game development. You'll use grids again and again,
from the main mechanic to the interface to perhaps even the high score table at the end of
the game. The 2D array method we learned in the last chapter is just one way of setting up
a grid, but it's a great one to start with.

[194]

Chapter 6

Do the random card shuffle

What fun is a flip n' match memory game if all the cards are face up, and they all have
the same image on them? Answer: no fun. No fun at all. What we want is to deal out a
bunch of different cards. And, as long as we're shooting for the moon here, why not deal
out a different bunch of cards every time we play?

We're going to define a List to represent our entire deck of cards. Then, we'll randomly
draw a card from that deck and put it on the table—just like we would in real life.

Let's set up a deck-building function called BuildDeck.

1. In the GameScript, create a new function called BuildDeck. Write this function
outside of and apart from your other functions—make sure it's not trapped
inside the curly brackets of one of your other functions.

function BuildDeck()
{
}

2. Call the BuildDeck function in the Start function, just after you define the

three card-related collections:

function Start()
{
playerCanClick = true; // We should let the player play,

don't you think?

// Initialize some empty Collections:
aCards = new List.<Card>(); // this Generic List is

our deck of cards. It can only ever hold instances

of the Card class.
aGrid = new Card[rows,cols]; // The rows and cols

variables help us define the dimensions of this

2D array
aCardsFlipped = new List.<Card>(); // This List

will store the two cards the player flips over.

BuildDeck();

// (the rest of this function has been omitted)

}

[195]

Game #2 – Robot Repair Part 2

The very first function that gets called in our script is the Start function. After we set our

playerCanClick flag and create a few empty arrays, BuildDeck() is the very first thing

the script will do. (If you've been reading the C# addenda, you'll know from the previous

chapter the special Awake function is called even earlier than the Start function.)

Let's break some robots

The way our game works, we have four different robots—a yellow one, a blue one, a red
one, and a green one. Each robot will be missing a body part. The player has to match
each robot to its missing body part. That accounts for eight cards—four robots and four
missing body parts. Because there are sixteen cards in our 4 x 4 grid, we need to use each
robot twice—two yellow robots with two missing yellow body parts, two blue robots with
two blue missing body parts, and so on: 2*8=16.

Each robot has three body parts that we can knock off: its head, its arm, or its leg. We
have to be careful when we build our deck that we don't repeat a robot and body part
combination of the same color. For example, our two green robots can't both be missing
a head. Our player won't know which head goes with which robot! It's also possible that
the player might flip over two green heads, and wonder why they aren't considered a
match. Let's do whatever we can to avoid that.

The strategy we'll use to build our deck is to create a list of possibilities,
randomly choose one of those possibilities, and then remove that possibility as
an option. Let's see how that works.

1. In the BuildDeck function, start off by declaring a few temporary variables:

function BuildDeck()
{

var totalRobots:int = 4; // we've got four robots to

work with
var card:Card; // this stores a reference to a card

}

2. Next, build a loop to step through each of the four colored robot types:

var card:Card; // this stores a reference to a card

for(var i:int=0; i<totalRobots; i++)
{
}

[196]

Chapter 6

That loop will run four times because totalRobots is set to 4. Next, create
a Generic List of type string called aRobotParts that will house the
names of the body parts we can knock off:

for(i=0; i<totalRobots; i++)
{

var aRobotParts:List.<String> = new List.<String>();

aRobotParts.Add("Head");
aRobotParts.Add("Arm");
aRobotParts.Add("Leg");

}

3. Now, we'll set up a nested loop to run twice. So, for all four robot types,

we'll create two busted robots (in order to fill our 16-card quota):

for(var i:int=0; i<totalRobots; i++)
{

var aRobotParts:List.<String> = new List.<String>();

aRobotParts.Add("Head");
aRobotParts.Add("Arm");
aRobotParts.Add("Leg");

for(var j:int=0; j<2; j++)
{
}

}

The meat of the BuildDeck code goes inside that inner loop:

for(var j:int=0; j<2; j++)
{

var someNum:int = Random.Range(0, aRobotParts.Count);

var theMissingPart:String = aRobotParts[someNum];

aRobotParts.RemoveAt(someNum);

card = new Card("robot" + (i+1) + "Missing" +

theMissingPart); aCards.Add(card);

card= new Card("robot" + (i+1) +

theMissingPart); aCards.Add(card);
}

[197]

Game #2 – Robot Repair Part 2

Here's how the BuildDeck function looks when you're finished:

function BuildDeck()
{
var totalRobots:int = 4; // we've got four robots to

work with
var card:Card; // this stores a reference to a card

for(var i:int=0; i<totalRobots; i++)
{
var aRobotParts:List.<String> = new List.<String>();

aRobotParts.Add("Head");
aRobotParts.Add("Arm");
aRobotParts.Add("Leg");

for(var j:int=0; j<2; j++)
{

var someNum:int = Random.Range(0, aRobotParts.Count);

var theMissingPart:String = aRobotParts[someNum];

aRobotParts.RemoveAt(someNum);

card = new Card("robot" + (i+1) + "Missing"

+ theMissingPart);
aCards.Add(card);

card= new Card("robot" + (i+1) + theMissingPart);

aCards.Add(card);
}

}
}

What just happened – dissecting the bits

Let's step through that last chunk of code and figure out what it does:

var someNum:int = Random.Range(0, aRobotParts.Count);

First, we're declaring a variable called someNum (short for "some crazy old random
number"), which will be an integer type. We're going to use this number to randomly refer
to one of the body parts in the aRobotParts Generic List. So we use the Range() method
of the Random class to pull that random number.

[198]

Chapter 6

We supply the minimum and maximum ends of the range to pull from—in this case, the
low end is 0 (because arrays are 0-based), and the high end is the length of the
aRobotParts Generic List. The first time through the loop, aRobotParts.length is 3
("Head", "Arm", and "Leg"). Our minimum and maximum values are 0 and 3. So, the first
time through this loop, someNum will be a random number from 0-2.

Exclusive to the max
When using Random.Range with int data types, note that the

minimum value is inclusive, while the maximum value is exclusive. That

means that unless you supply the same number for your minimum and

maximum values, Random.Range() will never pull your maximum

value. In the previous example, you'll never get 3 from Random.

Range(), even though we're supplying 3 as the maximum value.
Floats work a little differently than ints. When randomizing with

floats, the maximum value is inclusive.

Here, we use our random number to pull a body part out of the aRobotParts leneric list.

var theMissingPart:String = aRobotParts[someNum];

If someNum is 0, we get "Head". If someNum is 1, we get "Arm". If someNum is 2, we get "Leg".
We store this result in a String variable called theMissingPart.

aRobotParts.RemoveAt(someNum);

The RemoveAt() method of the Array class rips an element out of the List at the specified

index. We specify the someNum index we just used to grab a body part. This removes that body

part from the List, so that it's no longer an option to the next robot. This is how we avoid ever

having two green robots, each with a missing head—by the time we choose a missing body part

for the second robot, "Head" has been removed from our list of options. Note that because it's

declared and defined inside the loop, the aRobotParts array is "reborn" with each new robot

type, so the first of each pair of robots gets its pick of a new batch of body parts. The second

robot of each type always has one less option to choose from.

card = new Card("robot" + (i+1) + "Missing" + theMissingPart);

aCards.Add(card);
card= new Card("robot" + (i+1) + theMissingPart);

aCards.Add(card);

[199]

Game #2 – Robot Repair Part 2

With these final lines, we create two new instances of the Card class, and add references to

those cards to the aCards array using the Add method of the Generic List. The aCards
Generic List is the deck of cards we'll use to deal out the game.

Each time we create a new card instance, we're passing a new argument between
those round brackets—the name of the image we want displayed on the card. The first
time through the nested loop, for the first (yellow) robot type, let's say we randomly
choose to break its head.

This String:

"robot" + (i+1) + "Missing" + theMissingPart

resolves to:

"robot1MissingHead"

and

"robot" + (i+1) + theMissingPart

resolves to:

"robot1Head"

Take a quick look at the images in the Resources folder of the Project panel.
"robot1MissingHead" and "robot1Head" just so happen to be the
names of two of our images!

Because we're passing a new argument to the Card class, we have to modify the Card
class to accept it.

1. Change the Card class code from this:

class Card extends System.Object
{

// (variables omitted for

clarity) function Card()
{
img = "robot";

}
}

[200]

Chapter 6

to this:

class Card extends System.Object
{

// (variables omitted for clarity)

function Card(img:String)
{

this.img = img;
}

}

2. Now, find the nested loop in the Start function where we added all our new
cards to the aGrid array. Change it from this:

for(j=0; j<cols; j++)
{

aGrid[i,j] = new Card();
}

to this:

for(j=0; j<cols; j++)
{

var someNum:int = Random.Range(0,aCards.Count);

aGrid[i,j] = aCards[someNum];

aCards.RemoveAt(someNum);
}

What just happened?

This code should look familiar to you, because we're pulling a very similar trick as before.
We have a deck of cards—the aCards List. After the BuildDeck function is finished,
the aCards list is populated with all of the cards we need to deal out to the table.

We're grabbing a random number using Random.Range(), and we're supplying the
length of the aCards array as the maximum value. This gives us a value that stays within
the bounds of the total number of cards in aCards.

Then, we use that random number to pull a card out of the deck and stuff it in the aGrid 2D

array (it gets visually dealt to the table later on, in the BuildGrid() function). Finally, we

remove that card from the deck so that we don't accidentally deal it out in successive loops.
This prevents us from dealing duplicate cards to the table.

[201]

Game #2 – Robot Repair Part 2

Save the script and play your game! What you should see is an army of amputated androids.

Awesome! Because the cards are dealt randomly and the deck itself is being built randomly, any

pictures of the game that you see from here on may not match what you have on
your screen.

What exactly is "this"?

Did the this.img = img; line trip you up? Here's what's going on with that.

The Card class has an instance variable called img. We're also passing an argument to its
constructor function with the exact same name, img. If we simply wrote img = img;, that
means we'd be setting the value of the argument to the value of the argument. Hunh!
That's not quite what we're after.

[202]

Chapter 6

By specifying this.img = img;, we're saying that we want the img variable
attached to this, the Card class, to have the same value as the argument called img.

It's a smidge confusing, I'll admit. So, why not just call the argument something different?
You absolutely could! We did it this way because it's very common to see variables
passed to the constructor function with the same name as the instance variables in the
class. You may as well encounter it here with a full explanation, than come across it in
the wild and let it gnaw your leg off.

Here's one more look at another, completely imaginary class that does the same kind
of thing. Stare at it, absorb it, and be at peace with it:

class Dog extends System.Object
{

// Declare some instance

variables: var myName:String;
var breed:String

var age:int;

function Dog(myName:String,breed:String,age:int)
{

this.myName = myName; // set the value of the instance variable

"myName" to the value of the argument "myName"
this.breed = breed; // set the value of the instance

variable "breed" to the value of the argument "breed"
this.age = age; // set the value of the instance variable "age"

to the value of the argument "age"
}

}

It might help your understanding to know that those arguments that are passed into the
constructor function have a limited scope. They will disappear if we don't do something
with them in the function. The instance variables declared at the top of the class have a
broader scope—they exist outside of all the functions, and they persist no matter what
happens inside the functions. We take the values of the ephemeral, soon-to-disappear
arguments, and store them in the longer-term instance variables. We use the keyword this
to tell the difference between the two.

[203]

Game #2 – Robot Repair Part 2

As long as we're taking some time to let it all sink in, let's do another pass on this Random.
Range() method. If Random.Range() is not clear to you yet, try building a test loop at
the bottom of the Start() function and logging the results:

for(i=0; i<1000; i++)
{

Debug.Log(Random.Range(0,10));
}

Test and run. Make sure that the Console window is open (Window | Console), and make
sure that Collapse is unchecked—otherwise, you'll see only the last few log lines. You should
also ensure there are no other print() or Debug.Log() statements cluttering the
console. Use double-slashes // to comment those out for the time being.

[204]

Chapter 6

The number Unity spits out should never equal ten (provided you're using ints and
not floats). Play around with the minimum and maximum values until you're
completely confident, then delete your test loop and check out the rest of this code.

Random reigns supreme

Being able to pull and effectively use random numbers is another game development essential.

With random numbers, you can make sure every card deal is different, like you've just done

with your Robot Repair game. You can make enemies behave unpredictably, making it seem as

though they're acting intelligently (without having to bother with complicated Artificial

Intelligence programming! See Chapter 12, Game #5 –Kisses 'n' Hugs, for more on this

technique.) You can make spaceships attack from surprising angles. You can build an avatar

system with a Shuffle button that randomly dresses
up your player's character.

The best game developers use random numbers to make their games meatier, more visually

appealing, and more fun! The worst game developers use random numbers in all the wrong

ways. Imagine a game where, whenever you shot a gun, the bullet traveled in a completely

random direction! Random numbers can dramatically help or hinder your gameplay. Use them

wisely, and they're an incredibly effective weapon in your game design arsenal.

Second dragon down

We've got some card faces displaying in the game, and we randomized them. We just
totally stabbed another one of our GDD dragons in the face (or cuddled another kitten,
depending on the imagery you prefer). Well done!

_Put different images on the cards. (It would be great if the cards could be shuffled
around every time you played!)

Time to totally flip

Let's move on to the next item in our list. Robot Repair lacks a certain amount of mystery at
the moment. Let's add a bit of logic to make our cards two-sided, and to flip them over
when the player clicks on them.

[205]

Game #2 – Robot Repair Part 2

We'll write some logic so that the cards show one image or another depending on
whether or not they've been flipped over.

1. Find this line in your BuildGrid function:

if(GUILayout.Button(Resources.Load(card.img),
GUILayout.Width(cardW)))

2. Change card.img to img so that the line reads like this:

if(GUILayout.Button(Resources.Load(img),

GUILayout.Width(cardW)))

3. Just above that line, find the card variable definition:

var card:Object = aGrid[i,j];

4.

5.

Insert this line just after it:

var img:String;

Finally, after that line, write this conditional statement:

if(card.isFaceUp)
{

img = card.img;
} else {

img = "wrench";
}

The whole function should look like this when you're finished:

function BuildGrid()
{

GUILayout.BeginVertical();
GUILayout.FlexibleSpace();

for(var i:int=0; i<rows; i++)
{
GUILayout.BeginHorizontal();
GUILayout.FlexibleSpace();

for(var j:int=0; j<cols; j++)
{

var card:Card = aGrid[i,j];

var img:String;

if(card.isFaceUp)
{

[206]

Chapter 6

img = card.img;
} else {

img = "wrench";
}
if(GUILayout.Button(Resources.Load(img),

GUILayout.Width(cardW)))
{

Debug.Log(card.img);
}

}
GUILayout.FlexibleSpace();
GUILayout.EndHorizontal();

}
GUILayout.FlexibleSpace();
GUILayout.EndVertical();

//print ("building grid!");
}

So, instead of showing the card's image (card.img) when we draw each card button,
we're showing the name of a card that we're storing in a new variable called img. Note
that img and card.img are two different variables—card.img belongs to an instance of
our Card class, while img is just a temporary variable that we're declaring inside our loop,
with the line var img:String;.

Next, we have a conditional statement. If the isFaceUp Boolean flag on the card is true, we set

the value of our temporary img variable to match the card.img name. But, if the card is not

face up, we'll show a generic "wrench" picture. The wrench picture will be the standard reverse

image for all of our cards. You can find it in the Resources folder of the Project panel, if you're

the kind of person who likes to peek at presents before your birthday.

This card-flipping code looks pretty good, but there's no way to test it without adding
some way of flagging that isFaceUp variable to true. Let's build a new function to do
just that, and call it whenever a card button is clicked.

1. Create a new function called FlipCardFaceUp. As you did with the BuildDeck
function earlier, write this function outside of and apart from your other functions—
make sure it's not trapped inside the curly brackets of one of your other functions.

function FlipCardFaceUp()
{

}

[207]

Game #2 – Robot Repair Part 2

2. Call the FlipCardFaceUp function from inside the card creation code:

if(GUILayout.Button(Resources.Load(img),

GUILayout. Width(cardW)))
{

FlipCardFaceUp();
Debug.Log(card.img);

}

3. We need to tell the FlipCardFaceUp function which card has been flipped.

Modify the line to pass a reference to the clicked-on card as an argument:

FlipCardFaceUp(card);

4. Now, we need to accept that card as an argument in our function definition.

Modify your FlipCardFaceUp definition:

function FlipCardFaceUp(card:Card){

}

5. Now that we're passing a reference to the clicked-on card to our
FlipCardFaceUp function, and the function is receiving that reference as an
argument, we can do as we please with the card:

function FlipCardFaceUp(card:Card)
{

card.isFaceUp = true;
}

Mismatched arguments
The name of the variable that you pass as an argument to a function

does not need to match the name of the argument you receive in that

function. For example, we could pass a variable called monkeyNubs
(FlipCardFaceUp(monkeyNubs)) and we could name the argument
butterFig function (FlipCardFaceUp(butterFig:Card)). As
long as the type of the thing getting passed and received is the same (in this
case, an object of type Card), it'll work. We can't pass a String and receive
an int, no matter what the variable is called on either end.
Reference versus value
Another picky thing about many programming languages, including UnityScript, is

that some data types are passed to functions by reference, while some are passed

by value. Data types like classes and arrays are passed by reference, which means

that when we accept them as arguments in our functions and start fiddling around

with them, we're making changes to the actual structure that was passed in. But

when we pass something like an int, it gets passed by value. It's like we're getting

a copy of it, not the original. Any changes we make to something passed by value

does not affect the original variable.

[208]

Chapter 6

Save the script and test your game. Because all of the cards default to isFaceUp =
false, the grid is dealt "wrench side up". When you click on each of the cards, the
isFaceUp Boolean for each clicked-on card is flagged to true. The next time the
interface is redrawn OnGUI (which is fractions of seconds later), Unity sees that
isFaceUp=true for the clicked-on cards, and loads card.img instead of "wrench".

What's that I smell? Why, it's the stench of a dying dragon (or a cuddled kitten). We
figured out how to flip over the cards, so let's knock another item off our list:

_Make the cards flip over from back to front when you click them.

You'll notice, of course, that there's no way to flip the cards back over. Let's take
care of that now.

[209]

Game #2 – Robot Repair Part 2

The game will let the player flip over two cards. Then, it will pause for a brief
moment and flip the cards back over. We'll worry about detecting matches for our
grand finale in just a moment.

1. Add the following code to your FlipCardFaceUp function:

function FlipCardFaceUp(card:Card)
{

card.isFaceUp = true;

aCardsFlipped.Add(card);

if(aCardsFlipped.Count == 2)
{

playerCanClick = false;

yield WaitForSeconds(1);

aCardsFlipped[0].isFaceUp = false;

aCardsFlipped[1].isFaceUp = false;

aCardsFlipped = new List.<Card>();

playerCanClick = true;

}
}

2. Then, make a small change to one line in the BuildGrid function:

if(GUILayout.Button(Resources.Load(img),
GUILayout.Width(cardW)))

{
if(playerCanClick)
{

FlipCardFaceUp(card);
}
Debug.Log(card.img);

}

3. Save and test. You should be able to flip over two cards before your incessant
clicking falls on deaf ears. After a one-second pause, the cards flip back over.

[210]

Chapter 6

What just happened – dissecting the flip

Let's take a look at what we've just done:

aCardsFlipped.Add(card);

In this line, we're adding the card to our aCardsFlipped generic list.

if(aCardsFlipped.Count == 2)

Next, our conditional checks to see if the player has flipped over two cards—in that case, the
Count property should be 2. Remember that aCardsFlipped is from the Generic List

class, not the Array class, and the two are different beasts. To check the length of an Array, we

use Length. To check the length of Generic List, we use Count. The Count of our List goes up

when we use the Add() method, which throws additional items into the list.

playerCanClick = false;

Our playerCanClick flag comes in handy here—by setting it to false, we prevent
the fiendish player from flipping over more cards than he ought to.

yield WaitForSeconds(1);

This straightforward piece of code waits for one second before allowing the next lines
of code to execute.

aCardsFlipped[0].isFaceUp = false;

aCardsFlipped[1].isFaceUp = false;

These lines flag the two flipped-over cards back to their unflipped states. The next time
the OnGUI function runs, which will be very soon, the cards will be drawn wrench side up.
The first flipped card is at index 0 of the aCardsFlipped list, and the second flipped card
is at index 1.

aCardsFlipped = new List.<Card>();

By reinitializing the aCardsFlipped Generic List, we're emptying it out to hold two
brand new flipped-over cards later on.

playerCanClick = true;

Now that it's safe to start flipping cards again, we'll flag the playerCanClick
variable back to true.

if(playerCanClick)
{

FlipCardFaceUp(card);
}

[211]

Game #2 – Robot Repair Part 2

By adding this simple condition at the beginning of the FlipCardFaceUp()
function call, we can control whether or not the player is allowed to flip over the
card. If playerCanClick resolves to false, NO FLIPPY.

Pumpkin eater

If you hail from Cheaty-Pants land, you may have figured out that you can flip over the same

card twice. This isn't technically cheating, but when you break the game, you're only cheating

yourself. We also have to be careful because a click-happy player might accidentally double-click

the first card, and then think that the game is broken when he can't flip over
a second card. Let's wrap the FlipCardFaceUp in a conditional statement to prevent
this from happening:

function FlipCardFaceUp(card:Card)
{

card.isFaceUp = true;

if(aCardsFlipped.IndexOf(card) < 0)
{

aCardsFlipped.Add(card);
// (the rest of the code is omitted)

}
}

What just happened?

This is where we finally get some mileage out of our Generic List class. Generic
List has a method called IndexOf that searches itself for an element, and returns the
index point of that element.

Take a look at this example (the log's "answers" are commented at the end of each line):

var aShoppingList: List.<String> = new

List.<String>(); aShoppingList.Add("apples");

aShoppingList.Add("milk");

aShoppingList.Add("cheese");

aShoppingList.Add("chainsaw");

Debug.Log(aShoppingList.IndexOf("apples")); // 0

Debug.Log(aShoppingList.IndexOf("cheese")); // 2
Debug.Log(aShoppingList.IndexOf("bicarbonate of soda")); // -1

Since "apples" is the first element in the list, the method returns 0 when we test
IndexOf("apples"). Since "cheese" is the third element, IndexOf("cheese")

returns 2, and so on. Note that List returns -1 when the element can't be found.

[212]

Chapter 6

So, for our purposes, we do a quick check of the aCardsFlipped List to make sure it doesn't

already contain a reference to the card that was clicked. If the clicked card is already in

aCardsFlipped, that means that the player clicked on the same card twice. If we do detect a

double-flip, we simply don't execute the remainder of the card-flipping code. So there.

Even though its fixed-size feature makes the Built-in Array class faster, it
doesn't have this handy IndexOf() method—we would have had to write our own.
Thumbs up for less work!

Stabby McDragonpoker rides again

There's one more item off our checklist. Make an X, pat yourself on the back, and
steel your will against the next challenge!

_Prevent the player from flipping over more than two cards in a turn

Game and match

The last piece of crucial functionality in our flip n' match game is to detect, and react to, a
match. We currently have no way of knowing, through code, if two cards match, so we'll
fix that first. Then, we'll detect the match and remove the cards from the table. After that,
we just need to check for the endgame scenario (all matches found) before zipping it up
and calling it a game.

Let's revisit our card-creation code and give each card an ID number. We'll use that
number to detect matches.

1. In the BuildDeck function, add this line:

function BuildDeck()
{

var totalRobots:int = 4; // we've got four robots

to work with
var card:Object; // this stores a reference to a card

var id:int = 0;

2. Look a little further down the code. Pass the id value to the Card class with
each robot and missing body part card, and then increment the ID number:

card = new Card("robot" + (i+1) + "Missing" +

theMissingPart, id);

[213]

Game #2 – Robot Repair Part 2

aCards.Add(card);

card= new Card("robot" + (i+1) + theMissingPart,

id); aCards.Add(card);
id++;

3. Add id as a property of the Card class. Accept id as an argument in the Card

class constructor function, and set the card's id instance variable to that value:

class Card extends System.Object
{

var isFaceUp:boolean = false;

var isMatched:boolean =

false; var img:String;
var id:int;

function Card(img:String, id:int)
{

this.img = img;

this.id = id;
}

}

What just happened?

What you've done is given each matching set of cards its own ID number. A yellow robot with a

missing head, and its missing head, will each have an ID of 0. The next two cards added to the

deck might be a yellow robot with a missing arm, and its missing arm, which each get an
ID of 1. With this logic in place, it should be much easier to tell if two cards match—we'll
just compare their IDs!

To compare the IDs, we need to make some changes to the FlipCardFaceUp function.

1. Note that we're folding two existing lines of code inside a new conditional statement:

function FlipCardFaceUp(card:Card)
{

card.isFaceUp = true;

if(aCardsFlipped.IndexOf(card) < 0)
{

[214]

Chapter 6

aCardsFlipped.Add(card);

if(aCardsFlipped.Count == 2)
{

playerCanClick = false;

yield WaitForSeconds(1);

if(aCardsFlipped[0].id == aCardsFlipped[1].id)
{

// Match!

aCardsFlipped[0].isMatched = true;

aCardsFlipped[1].isMatched = true;

} else {

aCardsFlipped[0].isFaceUp = false;

aCardsFlipped[1].isFaceUp = false;
}

aCardsFlipped = new List.<Card>();

playerCanClick = true;

}
}

}

Here, we check to see if the two flipped-over cards have the same ID value. If they
do, we set each card's isMatched flag to true. If they don't match, we just flip
the cards back over as before.

2. We should add a little bit of logic to our BuildGrid function to make sure

the player can't flip over a card that's been matched:

function BuildGrid()
{

// (some stuff was omitted here for clarity)

var card:Object = aGrid[i][j];
var img:String

if(card.isMatched)
{

[215]

Game #2 – Robot Repair Part 2

img = "blank";
} else {

if(card.isFaceUp)
{

img = card.img;
}
else
{

img = "wrench";
}

}

GUI.enabled = !card.isMatched;

if(GUILayout.Button(Resources.Load(img), GUILayout.
Width(cardW)))

{
if(playerCanClick)
{

FlipCardFaceUp(card);
Debug.Log(card.img);

}
}
GUI.enabled = true;

What just happened?

We wrapped our first piece of logic in a conditional check that says "if the card is
matched, set its image to some blank white picture".

The next new lines are pretty interesting. We're setting GUI.enabled, which is a Boolean

value, to whatever card.isMatched is NOT. The exclamation mark operator means "is
not". So, if card.isMatched is true, then GUI.enabled is false. If card.isMatched
is false, then GUI.enabled is true. GUI.enabled, as you probably guessed, enables
or disables GUI control functionality.

When we're finished drawing our card button and setting its click behavior (which is ignored
if GUI.enabled is false), we need to remember to re-enable the GUI—otherwise, none
of our other cards will be clickable!

[216]

Chapter 6

Save the script and repair some robots. Just like the second Death Star, your game is
fully operational, baby!

On to the final boss

With that last step, we've slain or cuddled the penultimate dragon or kitten:

_Compare two flipped-over cards to see if they match (note: if they
match,we should remove the cards from the table. If they don't match,
we should flip them back over).

The last checkbox awaits: detecting victory and showing the endgame message with
a Play Again button. Onward, to victory!

[217]

Game #2 – Robot Repair Part 2

Endgame

With the amount of emotional and temporal engagement you're expecting from your
players with this game, it would be criminal to skimp on the endgame. Let's close the loop
by showing the player a congratulatory message with an option to play again when we
detect that all of the matches have been found.

Our matchesMade, matchesNeededToWin, and playerHasWon variables have
been standing at the ready this whole time. Let's finally make use of them.

1. Add these few lines to the FlipCardFaceUp function, where you're
detecting a match:

if(aCardsFlipped[0].id == aCardsFlipped[1].id)
{

// Match!

aCardsFlipped[0].isMatched = true;

aCardsFlipped[1].isMatched = true;

matchesMade ++;

if(matchesMade >= matchesNeededToWin)
{

playerHasWon = true;
}

2. Add a new function call to the OnGUI function:

function OnGUI () {
GUILayout.BeginArea (Rect

(0,0,Screen.width,Screen.height)); BuildGrid();
if(playerHasWon) BuildWinPrompt();
GUILayout.EndArea();

}

3. And, now, we'll use some GUILayout commands that we learned in the last chapter to
display a "win" prompt to the player. Write this new function apart from the other
functions, and make sure it's not wedged inside any other function's curlies:

function BuildWinPrompt()
{

var winPromptW:int = 120;

[218]

Chapter 6

var winPromptH:int = 90;

var halfScreenW:float = Screen.width/2;

var halfScreenH:float = Screen.height/2;

var halfPromptW:int = winPromptW/2;

var halfPromptH:int = winPromptH/2;

GUI.BeginGroup(Rect(halfScreenW-halfPromptW,

halfScreenH-halfPromptH, winPromptW, winPromptH));
GUI.Box (Rect (0,0,winPromptW,winPromptH), "A Winner

is You!!");

var buttonW:int = 80;

var buttonH:int = 20;

if(GUI.Button(Rect(halfPromptW-(buttonW/2),halfPromptH-

(buttonH/2),buttonW,buttonH),"Play Again"))
{

Application.LoadLevel("Title");
}

GUI.EndGroup();
}

What just happened?

This method uses 90 % recycled knowledge. We store a few variables to help
us remember where the middle of the screen is, store the half width and height of
the prompt we're about to draw, and then draw and position it using a fixed
layout (instead of an automatic layout, like our grid of cards).

The remaining unknown 10 % uses a wrapper called a Group, which helps us collect

UI controls together.

GUI.Box (Rect (0,0,winPromptW,winPromptH), "A Winner is You!!");

This draws a box at the origin point of the Group (which is centered on the screen).
Feel free to change the box label, "A Winner is You!", to something equally sarcastic.

[219]

Game #2 – Robot Repair Part 2

Inside that box, we draw a Button control with the label Play Again. When clicked, we link
the player to the Title Scene where the game starts all over again and much fun is
repeatedly had, until the player dies of old age and the Earth crashes into the sun.

As you now know how to create, label, and position buttons; create scenes, and link scenes to

each other with buttons; and draw text and graphics to the screen, here are a few challenges

for you that will give your already complete game even more bells and whistles:

‹ ‹ Create a Credits screen, and link to it from either the Title Scene or the Play Again
prompt. Be sure to credit yourself for absolutely everything, with perhaps a token
nod to Grandma. You've earned it!

[220]

Chapter 6

‹

‹

‹

‹

‹

‹

‹

‹

Create an Instructions screen. This is an excuse to throw some color into the
game, and church up what is really just a simple flip n' match Memory game.
Here's some copy for you to use and adapt:
"Professor Wrecker had a wild night and smashed up the robotics lab again! Can

you put the ruined robots back together while the Professor sleeps it off?"

Hilarious and kid-friendly.

Create some new elements near the edge of your grid—eight cards with silhouettes
of the robots on them. As the player finds matches and the clickable cards are
blanked out, swap the silhouettes for the repaired robots. This may give the player
a stronger sense of a goal.

Create a new set of graphics with four additional robots. Add them to your
Resources folder, name them properly, and see if you can adjust the code so that

all eight robots get dealt into the deck.

Explore the other UI controls Unity has to offer. Try expanding those game
instructions to a 30-page-long epic (NOT a good idea in real life, but we're just
practising here). Hook those monstrous instructions up to a scroll bar. Add a
checkbox for the player stating, "I have read and agreed to these instructions." Do
not let your player play the game until he has scrolled to the bottom of the
instructions. This is probably a terrible design decision, but we'll make some
concessions for the sake of your education. Just be sure to hide your home
address from the player so that you don't get any bricks through your window or
flaming bags of poo on your doorstep.

Endgame

You've created a fully working flip n' match Memory game that'll be a sure-fire hit with
Grandma, especially if she sees her shout-out in the credits. In this chapter, you:

‹ ‹ Used FlexibleSpace to center your automatic GUILayout

‹ ‹ Learned how to pull random numbers and bend them to your nefarious will

‹ ‹ Figured out how to disable the GUI, flip Boolean flags, pause code execution,
and prevent the player from clicking on stuff he's not supposed to

‹

‹

‹

‹

Built an entire functioning game using only the Unity GUI system

Learned how to break a game's design into smaller functional steps that
you can add to a to-do list

[221]

Game #2 – Robot Repair Part 2

Remember that any 3D game will likely require a decent amount of 2D programming. User
interfaces like shops, inventory screens, level select screens, and character creation tools
usually display items in grid layouts with selectable buttons, changing pictures, control-
limiting logic, and a lot of the same stuff we've covered off in this chapter. Consider these
past two chapters training for all the amazing user interfaces you'll build for your games.

Astronauts don't train in space—they train in simulators. And, just like an astronaut in
a NASA-constructed spinning thrill ride, this chapter may have left your head reeling!
We covered a lot of ground here, but the good news is that the pages in this book
aren't going anywhere. Meditate on them. Read them again and again. Take your time
to let it all sink in before charging on to the next chapter.

Bring. It. On.

Are you ready to continue? Then it's time to slather that wonderful brain of yours
with awesome sauce. With Unity UI mastery under your belt, you'll now learn how to
build a one-off GUI component that you could end up using in every game you'll ever
build. How's that for a cliffhanger ending? Turn that page!

Here is the completed GameScript for Robot Repair:

#pragma strict

import System.Collections.Generic;

var cols:int = 4; // the number of columns in the card grid

var rows:int = 4; // the number of rows in the card grid

var totalCards:int = 16;
var matchesNeededToWin:int = totalCards * 0.5; // If there are 16

cards, the player needs to find 8 matches to clear the board
var matchesMade:int = 0; // At the outset, the player has not

made any matches
var cardW:int = 100; // Each card's width and height is 100 pixels

var aCards:List.<Card>; // We'll store all the cards we create in
this List

var aGrid:Card[,]; // This 2d array will keep track of the

shuffled, dealt cards
var aCardsFlipped:List.<Card>; // This generic array list

will store the two cards that the player flips over
var playerCanClick:boolean; // We'll use this flag to prevent

the player from clicking buttons when we don't want him to
var playerHasWon:boolean = false; // Store whether or not the

player has won. This should probably start out false :)

[222]

Chapter 6

function Start () {

playerCanClick = true; // We should let the player play, don't

you think?

// Initialize some empty Collections:
aCards = new List.<Card>(); // this Generic List is our deck

of cards. It can only ever hold instances of the Card class.
aGrid = new Card[rows,cols]; // The rows and cols variables

help us define the dimensions of this 2D array
aCardsFlipped = new List.<Card>(); // This List will store

the two cards the player flips over.

BuildDeck();

// Loop through the total number of rows in our aGrid

List: for(var i:int = 0; i<rows; i++)
{
// For each individual grid row, loop through the total

number of columns in the grid:
for(var j:int = 0; j<cols; j++)
{
var someNum:int = Random.Range(0,aCards.Count);

aGrid[i,j] = aCards[someNum];

aCards.RemoveAt(someNum);

}

}

/*
// Uncomment this code to experiment with the Random.Range() method

for(i=0; i<1000; i++)
{

Debug.Log(Random.Range(0,10));
}
*/

}

[223]

Game #2 – Robot Repair Part 2

function OnGUI()
{

GUILayout.BeginArea (Rect

(0,0,Screen.width,Screen.height)); BuildGrid();
if(playerHasWon) BuildWinPrompt();

GUILayout.EndArea();

//print("building grid!");
}

function BuildWinPrompt()
{

var winPromptW:int = 120;

var winPromptH:int = 90;

var halfScreenW:float = Screen.width/2;

var halfScreenH:float = Screen.height/2;

var halfPromptW:int = winPromptW/2;

var halfPromptH:int = winPromptH/2;

GUI.BeginGroup(Rect(halfScreenW-halfPromptW,

halfScreenH-halfPromptH, winPromptW, winPromptH));
GUI.Box (Rect (0,0,winPromptW,winPromptH), "A Winner is You!!");

var buttonW:int = 80;

var buttonH:int = 20;

if(GUI.Button(Rect(halfPromptW-(buttonW/2),halfPromptH-

(buttonH/2), buttonW,buttonH),"Play Again"))
{

Application.LoadLevel("Title");
}
GUI.EndGroup();

}

function BuildGrid()
{

GUILayout.BeginVertical();
GUILayout.FlexibleSpace();

for(var i:int=0; i<rows; i++)
{

[224]

Chapter 6

GUILayout.BeginHorizontal();
GUILayout.FlexibleSpace();

for(var j:int=0; j<cols; j++)
{
var card:Card = aGrid[i,j];

var img:String;

if(card.isMatched)
{

img = "blank";
} else {

if(card.isFaceUp)
{

img = card.img;

} else {
img = "wrench";

}
}

GUI.enabled = !card.isMatched;

if(GUILayout.Button(Resources.Load(img),
GUILayout. Width(cardW)))

{
if(playerCanClick)
{

FlipCardFaceUp(card);
Debug.Log(card.img);

}
}
GUI.enabled = true;

}
GUILayout.FlexibleSpace();
GUILayout.EndHorizontal();

}
GUILayout.FlexibleSpace();
GUILayout.EndVertical();

//print ("building grid!");
}

function BuildDeck()
{

[225]

Game #2 – Robot Repair Part 2

var totalRobots:int = 4; // we've got four robots to work with

var card:Card; // this stores a reference to a card
var id:int = 0;

for(var i:int=0; i<totalRobots; i++)

{
var aRobotParts:List.<String> = new List.<String>();

aRobotParts.Add("Head");
aRobotParts.Add("Arm");
aRobotParts.Add("Leg");

for(var j:int=0; j<2; j++)
{
var someNum:int = Random.Range(0, aRobotParts.Count);

var theMissingPart:String = aRobotParts[someNum];

aRobotParts.RemoveAt(someNum);

card = new Card("robot" + (i+1) + "Missing" + theMissingPart,

id);
aCards.Add(card);

card= new Card("robot" + (i+1) + theMissingPart, id);

aCards.Add(card);
id++;

}
}

}

function FlipCardFaceUp(card:Card)
{

card.isFaceUp = true;

if(aCardsFlipped.IndexOf(card) < 0)
{
aCardsFlipped.Add(card);

if(aCardsFlipped.Count == 2)
{
playerCanClick = false;

yield WaitForSeconds(1);

[226]

Chapter 6

if(aCardsFlipped[0].id == aCardsFlipped[1].id)
{

// Match!

aCardsFlipped[0].isMatched = true;

aCardsFlipped[1].isMatched = true;

matchesMade ++;

if(matchesMade >= matchesNeededToWin)
{

playerHasWon = true;
}

} else {

aCardsFlipped[0].isFaceUp = false;

aCardsFlipped[1].isFaceUp = false;
}

aCardsFlipped = new List.<Card>();

playerCanClick = true;

}
}

}

class Card extends System.Object
{

var isFaceUp:boolean = false;

var isMatched:boolean =

false; var img:String;
var id:int;

function Card(img:String, id:int)
{

this.img = img;

this.id = id;
}

}

[227]

Game #2 – Robot Repair Part 2

C# Addendum

Let's see what it takes to convert this script from Unity JavaScript to C#. The complete
C# script is shown in the following code snippet:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class GameScriptCSharp : MonoBehaviour
{

private int cols = 4; // the number of columns in the card

grid private int rows = 4; // the number of rows in the card

grid private int totalCards = 16;
private int matchesNeededToWin;
private int matchesMade = 0; // At the outset, the player has

not made any matches
private int cardW = 100; // Each card's width and height is

100 pixels
private int cardH = 100;
private List<Card> aCards; // We'll store all the cards we

create in this array
private Card[,] aGrid; // This 2d array will keep track of

the shuffled, dealt cards
private List<Card> aCardsFlipped; // This generic array

list will store the two cards that the player flips over
private bool playerCanClick; // We'll use this flag to prevent

the player from clicking buttons when we don't want him to

private bool playerHasWon = false; // Store whether or not the
player has won. This should probably start out false :)

private void Start()
{
matchesNeededToWin = totalCards / 2; // If there are 16

cards, the player needs to find 8 matches to clear the board

playerCanClick = true; // We should let the player play,

don't you think?

// Initialize some empty Collections:
aCards = new List<Card>(); // this Generic List is our deck of

cards. It can only ever hold instances of the Card class.

[228]

Chapter 6

aGrid = new Card[rows,cols]; // The rows and cols variables

help us define the dimensions of this 2D array
aCardsFlipped = new List<Card>(); // This List will store the

two cards the player flips over.

BuildDeck();

// Loop through the total number of rows in our aGrid

List: for(int i = 0; i<rows; i++)
{
// For each individual grid row, loop through the

total number of columns in the grid:
for(int j = 0; j<cols; j++)
{

int someNum =

Random.Range(0,aCards.Count); aGrid[i,j] =

aCards[someNum]; aCards.RemoveAt(someNum);
}

}
}

private void OnGUI()
{

GUILayout.BeginArea (new Rect

(0,0,Screen.width,Screen.height)); BuildGrid();
if(playerHasWon) BuildWinPrompt();

GUILayout.EndArea();
}

private void BuildWinPrompt()
{

int winPromptW = 120;

int winPromptH = 90;

float halfScreenW = Screen.width/2;

float halfScreenH = Screen.height/2;

int halfPromptW = winPromptW/2;

int halfPromptH = winPromptH/2;

GUI.BeginGroup(new Rect(halfScreenW-halfPromptW, halfScreenH-

halfPromptH, winPromptW, winPromptH));

[229]

Game #2 – Robot Repair Part 2

GUI.Box (new Rect (0,0,winPromptW,winPromptH), "A Winner
is You!!");

int buttonW = 80;

int buttonH = 20;

if(GUI.Button(new Rect(halfPromptW-(buttonW/2), halfPromptH-

(buttonH/2),buttonW,buttonH),"Play Again"))
{
Application.LoadLevel("Title");

}
GUI.EndGroup();

}

private void BuildGrid()
{

GUILayout.BeginVertical();
GUILayout.FlexibleSpace();

for(int i = 0; i<rows; i++)
{
GUILayout.BeginHorizontal();
GUILayout.FlexibleSpace();

for(int j = 0; j<cols; j++)
{

Card card = aGrid[i,j];

string img;

if(card.isMatched)
{

img = "blank";
} else {

if(card.isFaceUp)
{

img = card.img;
} else {

img = "wrench";
}

}

GUI.enabled = !card.isMatched;

[230]

Chapter 6

if(GUILayout.Button((Texture2D)Resources.Load(img,

typeof(Texture2D)), GUILayout.Width(cardW)))
{

print ("playerCanClick = " +

playerCanClick); if(playerCanClick)
{

FlipCardFaceUp(card);
}

}
GUI.enabled = true;

}
GUILayout.FlexibleSpace();
GUILayout.EndHorizontal();

}
GUILayout.FlexibleSpace();
GUILayout.EndVertical();

}

private void BuildDeck()
{

int totalRobots = 4; // we've got four robots to work with

Card card; // this stores a reference to a card
int id = 0;

for(int i = 0; i<totalRobots; i++)
{
List<string> aRobotParts = new List<string>();

aRobotParts.Add("Head");
aRobotParts.Add("Arm");
aRobotParts.Add("Leg");

for(int j=0; j<2; j++)
{

int someNum = Random.Range(0, aRobotParts.Count);

string theMissingPart = aRobotParts[someNum];

aRobotParts.RemoveAt(someNum);

card = new Card("robot" + (i+1) + "Missing" + theMissingPart,

id);
aCards.Add(card);

[231]

Game #2 – Robot Repair Part 2

card= new Card("robot" + (i+1) + theMissingPart,

id); aCards.Add(card);
id++;

}
}

}

private void FlipCardFaceUp(Card card)
{

card.isFaceUp = true;

if(aCardsFlipped.IndexOf(card) < 0)
{
aCardsFlipped.Add(card);

if(aCardsFlipped.Count == 2)
{

playerCanClick = false;

Invoke("CheckCards", 1);

}
}

}

private void CheckCards()
{

if(aCardsFlipped[0].id == aCardsFlipped[1].id)
{
// Match!

aCardsFlipped[0].isMatched = true;

aCardsFlipped[1].isMatched = true;

matchesMade ++;

if(matchesMade >= matchesNeededToWin)
{

playerHasWon = true;
}

[232]

Chapter 6

} else {
aCardsFlipped[0].isFaceUp = false;

aCardsFlipped[1].isFaceUp = false;
}

aCardsFlipped = new List<Card>();

playerCanClick = true;

}

}

Most of the conversion work here is standard. You have to change the way variables are

declared by putting the type before the variable name, and deleting the colon. You should add

the private access modifier to your functions and variables. You should add void to most

functions, because they don't return a value. No problem! We've seen all this before.

The only significant change to the code is the way we're treating that yield command. In
JavaScript, it's a trifle. In C#, using yield is a little more complex, and it involves splitting
your code into a separate function and returning IEnumerator data types and all manner
of things that curl the hair of a Beginner's Guide author.

To make things simple, we've replaced yield with the simple and elegant Invoke
function. Here's how it works:

Invoke("CheckCards", 1);

This means that your code grinds to a halt for one second, after which it fires the
CheckCards function. So we've moved the function's remaining code into a new
function called CheckCards. When the player flips a second card, there's a 1
second pause, and then the CheckCards function runs.

The Invoke function is so simple and elegant; you could put it in a puffy dress and
take it to prom.

[233]

7

Don't Be a Clock Blocker

We've taken a baby game like Memory and made it slightly cooler by changing
the straight-up match mechanism and adding a twist: matching disembodied
robot parts to their bodies. Robot Repair is a tiny bit more interesting and
more challenging thanks to this simple modification.

There are lots of ways we could make the game even more difficult: we could
quadruple the number of robots, crank the game up to a 20x20 card grid, or
rig Unity up to some peripheral device that issues a low-grade electrical shock
to the player's fiddly bits every time he doesn't find a match. NOW who's
making a baby game?

These ideas could take a lot of time though, and the Return-On-Investment
(ROI) we see from these features may not be worth the effort. One cheap,
effective way of amping up the game experience is to add a clock. Games
have used clocks to make us nervous for time immemorial, and it's hard to
find a video game in existence that doesn't include some sort of time
pressure—from the increasing speed of falling Tetris pieces, to the countdown
clock in every Super Mario Bros. level, to the hourglass timers packaged with
many popular board games like Boggle, Taboo, and Scattergories.

Don’t Be a Clock Blocker

Apply pressure

What if the player only has x seconds to find all the matches in the Robot Repair game?
Or what if, in our keep-up game, the player has to bounce the ball without dropping
it until the timer runs out in order to advance to the next level? In this chapter, let's:

‹

‹

‹

‹

‹

‹

Program a text-based countdown clock to add a little pressure to our games

Modify the clock to make it graphical, with an ever-shrinking horizontal

bar Layer in some new code and graphics to create a pie chart-style clock

That's three different countdown clocks, all running from the same initial code, all ready
to be put to work in whatever Unity games you dream up. Roll up your sleeves—it's time
to start coding!

Open your Robot Repair game project and make sure you're in the game Scene. As we've

done in earlier chapters, we'll create an empty GameObject and glue some code to it.

1.
2.
3.
4.

Navigate to GameObject | Create Empty.

Rename the empty GameObject Clock.

Create a new JavaScript and name it ClockScript. Drag-

and-drop the ClockScript onto the Clock GameObject.

No problem! We know the drill by now—we've got a GameObject ready to go with an

empty script where we'll put all of our clock code.

[236]

Chapter 7

In order to display the numbers, we need to add a GUIText component to the Clock
GameObject, but there's one problem: GUIText defaults to white, which isn't so hot for

a game with a white background. Let's make a quick adjustment to the game

background color so that we can see what's going on. We can change it back later.

1. Select the Main Camera in the Hierarchy panel.
2. Find the Camera component in the Inspector panel.
3. Click on the color swatch labeled Background, and change it to something

darker so that our piece of white GUIText will show up against it. I chose a
"delightful" puce (R157 G99 B120).

4. Select the Clock GameObject from the Hierarchy panel. It's not a bad idea to
look in the Inspector panel and confirm that ClockScript was added as a
component in the preceding instruction.

5. With the Clock GameObject selected, navigate to Component | Rendering |
GUIText. This is the GUIText component that we'll use to display the
clock numbers on the screen.

6. In the Inspector panel, find the GUIText component and type whatever in
the blank Text property.

[237]

Don’t Be a Clock Blocker

7. In the Inspector panel, change the clock's Position to X: 0.8 Y: 0.9 Z: 0 to bring it
into view. You should see the word whatever in white, floating near the top-right
corner of the screen in the Game view.

8. Right, then! We have a GameObject with an empty script attached.
That GameObject has a GUIText component to display the clock numbers.

Our game background is certifiably hideous. Let's code us some clock.

Double-click on ClockScript. Your empty script, with the default the Start() and
Update() functions and the #pragma strict line, should appear in the code editor. The
very first thing we should consider is doing away with our puce background by changing the
GUIText color to black instead of white. Let's get at it:

1. Replace the Start function with the built-in Awake function and change the
GUIText color:

function Awake()
{

guiText.color = Color.black;
}
function Update() {
}

2. Save the script and test your game to see your new black text.

[238]

Chapter 7

As we've seen before, Awake is a built-in function just like Start, but it happens
even earlier. Awake is the first function that gets called when our script runs.

If you feel comfy, you can change the game background color back to white by clicking on the
Main Camera GameObject and finding the color swatch in the Inspector panel. The white
whatever GUIText will disappear against the white background in the Game view because
the color-changing code that we just wrote runs only when we test the game (try testing
the game to confirm this). You can change the text color to black by default by clicking on
the Color swatch in the GUIText component, but it's useful to prove that you can do the
same thing through code.

If you're happy with the crummy-looking default font, you can move on to the Prepare
the clock code section. But, if you want to put in a little extra elbow grease to see the text
in a font of your choosing, follow these next steps.

[239]

Don’t Be a Clock Blocker

Ha! I knew you couldn't resist. In order to change the font of this GUIText, we need
to import a font, hook it up to a Material, and apply that Material to the GUIText.

1. Find a font that you want to use for your game clock. I like the LOLCats standby
Impact. If you're running Windows, your fonts are likely to be in the C:\Windows\

Fonts directory. If you're a Mac user, you should look in the /Library/Fonts/

folder. Stick with a .ttf (TrueType Font) if you want to have the most success.
2. Drag the font into the Project panel in unity. The font will be added to your list of

Assets. (Remember to create a Fonts folder to store it, if you want to keep your
Project panel tidy).

3. Right-click (or alternate-click) on an empty area of the Project panel and navigate to
Create | Material. You can also click on the Create button at the top of the panel.

4. Rename the new Material to something useful. Because I'm using the Impact font,
and it's going to be black, I named mine BlackImpact (incidentally, "Black
Impact" is also the name of my favorite exploitation film from the 1970s). Again,
you can place the new Material in a folder that you create called Materials.

[240]

Chapter 7

5. Click on the Material you just created in the Project Panel.
6. In the Inspector panel, click on the color swatch labeled Main Color and

choose black (R0 G0 B0), then click on the little red X to close the color picker.

[241]

Don’t Be a Clock Blocker

7. In the empty square area labeled None (Texture 2D), click on the Select button, and
choose your font from the list of textures (mine was labeled impact - font texture).
If your font texture doesn't appear in the list, open the font in the Project panel,
and drag-and-drop the font texture into the None (Texture 2D) area.

8. At the top of the Inspector panel, there's a drop-down labeled Shader. Select
GUI/ Text Shader from the list.

9. Click on the Clock GameObject in the Hierarchy panel.
10. Find the GUIText component in the Inspector panel.
11. Click and drag your font—the one with the letter A icon—from the Project panel

into the parameter labeled Font in the GUIText component. You can also click on
the circular button next to the parameter labeled None (Font) and choose your
font from the pop-up list.

12. Similarly, click-and-drag your Material—the one with the gray sphere icon—from the
Project panel into the parameter labeled Material in the GUIText component.
You can also click on the circle button (the parameter should say None
(Material) initially) and choose your Material from the list.

[242]

Chapter 7

Just as you always dreamed about since childhood, the GUIText changes to a solid black
version of the fancy font you chose! Now, you can definitely get rid of that horrid puce
background and switch back to white for the remainder of the project. If you made it this
far and you're using a Material instead of the naked font option, or if you've changed the
Color swatch to black in the Inspector Panel, it's also safe to delete the
guiText.material. color = Color.black; line from the ClockScript.

[243]

Don’t Be a Clock Blocker

The Impact font, or any other font you choose, won't be very impactful at its default
size. Let's change the import settings to biggify it.

1. Click on your imported font—the one with the letter A icon—in the Project panel.
2. In the Inspector panel, you'll see the True Type Font Importer. Change the Font

Size to something respectable, like 32, and press the Enter key on your keyboard.

3. Click on the Apply button. Magically, your GUIText cranks up to 32 points (you'll only
see this happen if you still have a piece of text like "whatever" entered into the
Text parameter of the GUIText of the Clock GameObject component).

What just happened – was that seriously magic?

Of course, there's nothing magical about it. Here's what happened when you clicked
on that Apply button.

When you import a font into Unity, an entire set of raster images is created for you by the
True Type Font Importer. Raster images are the ones that look all pixelly and square
when you zoom in on them. Fonts are inherently vector instead of raster, which means
that they use math to describe their curves and angles. Vector images can be scaled up
any size without going all Rubik's Cube on you.

[244]

Chapter 7

But, Unity doesn't yet support vector fonts. For every font size that you want to support,
you need to import a new version of the font and change its import settings to a different
size. This means that you may have four copies of, say, the Impact font, at the four
different sizes you require.

When you click on the Apply button, Unity creates its set of raster images based on

the font that you're importing.

Let's rough in a few empty functions and three variables that we'll need to make
the clock work.

1. Open up the ClockScript by double-clicking on it. Update the code:

#pragma strict
var clockIsPaused : boolean = false;

var startTime : float; //(in seconds)
var timeRemaining : float; //(in

seconds) function Awake()
{
}

function Update() { if

(!clockIsPaused)
{

// make sure the timer is not

paused DoCountdown();
}

}

function DoCountdown() {
}

function PauseClock()
{

clockIsPaused = true;
}

[245]

Don’t Be a Clock Blocker

function UnpauseClock()
{

clockIsPaused = false;
}

function ShowTime()
{
}

function TimeIsUp()
{
}

What just happened – that's a whole lotta nothing

Here, we've created a list of functions that we'll probably need to get our clock working. The

functions are mostly empty, but that's okay—roughing them in like this is a really valid and

useful way to program. We have a DoCountdown() function that we call on every update, as
long as our clockIsPaused flag is false. We have PauseClock() and UnpauseClock()

functions—each of them needs only one simple line of code to change the clockIsPaused

flag, so we've included that. In the ShowTime() function, we'll display the time in the GUIText

component. Finally, we'll call the TimeIsUp() function when the clock reaches zero.

At the top of the script are three hopefully self-explanatory variables: a Boolean to hold the
clock's paused state, a floating point number to hold the start time, and another to hold
the remaining time.

Now that we have the skeleton of our clock code and we see the scope of work ahead of
us, we can dive in and flesh it out.

Let's set the startTime variable, and build the logic to handle the counting-
down functionality of our clock.

1. Set the startTime variable:

function Awake() {
startTime = Time.time + 5.0;

}

[246]

Chapter 7

Five seconds to beat the game is a bit ridiculous. We're just keeping

the time tight for testing. You can crank this variable up later.

2. Decrease the amount of time on the clock:

function DoCountdown()
{

timeRemaining = startTime - Time.time;
}

3. If the clock hits zero, pause the clock and call the TimeIsUp() function:

timeRemaining = startTime -

Time.time; if (timeRemaining < 0)
{

timeRemaining = 0;

clockIsPaused =

true; TimeIsUp();
}

4. Add some Debug statements so that you can see something happening:

function DoCountdown()
{

// (other lines omitted for clarity)
Debug.Log("time remaining = " + timeRemaining);

}

function TimeIsUp()
{

Debug.Log("Time is up!");
}

5. Save the script and test your game.

You should see the Debug statements in the information bar at the bottom of the screen.

When the clock finishes ticking down through five seconds, you'll see the Time is up!

message… if you're a mutant with super-speed vision. The Time is up! message gets wiped out

by the next "time remaining" message, which continues to be called whether the clock is at

zero or not. If you want to see it with normal-people vision, open the Console window

(Window | Console in the menu) and watch for it in the list of printed statements.

[247]

Don’t Be a Clock Blocker

If the building grid! print statement from the previous
chapters is cluttering up your console window, it's safe to
comment that line out with a double slash //.

We know from the Debug statements that the clock is working, so all we need to do is stick the

timeRemaining value into our GUIText to see it on the screen. But, it won't look very clock-

like unless we perform a tiny bit of math on that value to split it into minutes and seconds, so

that five seconds displays as 0:05, or 119 seconds displays as 1:59.

1. Call the ShowTime() function from within the DoCountdown() function (you
can delete or comment the Debug.Log() statement):

function DoCountdown()
{

timeRemaining = startTime - Time.time;

// (other lines omitted for clarity)
ShowTime();
//Debug.Log("time remaining = " + timeRemaining);

}

[248]

Chapter 7

2. Create some variables to store the minutes and seconds values in the ShowTime()
function, along with a variable to store the string (text) version of the time:

function ShowTime() {

var minutes : int;

var seconds : int;

var timeStr : String;
}

3. Just below that, divide the timeRemaining by 60 to get the number of

minutes that have elapsed:

var timeStr : String;

minutes = timeRemaining/60;

4. Store the remainder as the number of elapsed seconds:

minutes = timeRemaining/60;

seconds = timeRemaining % 60;

14. Set the text version of the time to the number of elapsed minutes, followed by
a colon:

seconds = timeRemaining % 60; timeStr

= minutes.ToString() + ":";

6. Append (add) the text version of the elapsed seconds:

timeStr = minutes.ToString() + ":";

timeStr += seconds.ToString("D2");

7. Finally, push the timeStr value to the GUIText component:

timeStr += seconds.ToString("D2");
guiText.text = timeStr; //display the time to the GUI

8. To gaze at your clock longingly as it counts down every delectable second, crank

up the startTime amount in the Awake function:

startTime = Time.time + 120.0;

9. Save and test.

Your beautiful new game clock whiles away the hours in your own chosen font at your
own chosen size, formatted with a colon like any self-respecting game clock should be.

[249]

Don’t Be a Clock Blocker

What just happened – what about that terrifying code?

There are a few kooky things going on in the code we just wrote. Let's home in on the
new and weird stuff.

minutes = timeRemaining/60;

We set the value of the minutes variable by dividing timeRemaining by 60. If there were
120 seconds left, dividing by 60 means there are two minutes on the clock. If there were
only 11 seconds left on the clock, dividing by 60 gives us 0.183 repeating.

The reason why we don't see 0.1833333 in the "minutes" portion of our clock is a sneaky
data type trick: timeRemaining is a float (floating point number), so it can remember
decimal places. Our minutes variable is an int (integer), which can't remember decimal
places. So, when we feed 0.183333 into an int variable, it just snips off everything after
the decimal. It can't remember that stuff, so why bother? The result is that minutes is set
to 0, which is what we see on the clock.

I know that earlier, we said it's slightly less processor intensive to multiply than to
divide. So why are we dividing by 60 to get our minutes count? Because the alternative
is to multiply by 0.01666666666666666666666666666667, which frightens me.

seconds = timeRemaining % 60;

This unnerving little percent-symbol beastie performs a modulo operation, which is like those

exercises you did in grade three math class when you were just about to learn long division. A

modulo operation is like a division, except it results in the remainder of your operation.
Here are a few examples:

‹

‹

‹

‹

‹

‹

4 % 2 = 0, because 2 goes into 4 twice with no remainder

11 % 10 = 1, because 10 goes into 11 once with 1 as the remainder (10+1 = 11)

28 % 5 = 3, because 5 goes into 28 five times (5*5=25), with a remainder of 3
(25+3 = 28)

timeStr = minutes.ToString() + ":";

The int.ToString() method works exactly as advertised, converting an integer to a
String. All data types have ToString() methods, though some are more helpful than
others. At the end of this line, we're tacking on a colon (:) to visually separate the
minutes from the seconds.

timeStr += seconds.ToString("D2");

[250]

Chapter 7

The += operator, you'll remember, takes what we've already got and adds something new to

it—in this case, it's seconds.ToString();. We're passing the special argument D2 to the
ToString() method to round to the nearest two decimal places so that the clock looks
like: 4:02 instead of 4:2.

Nifty!

Whatever is the problem?
If you still have whatever as your placeholder text, now's a good time
to consider ditching it. It shows up on-screen for a split-second before
the numbers appear. Yuck! Click on the Clock GameObject in the
Hierarchy panel, and clear out the value marked Text in the GUIText
component in the Inspector panel.

Picture it

Number clocks look alright, but graphical clocks really get me revved up and ready for
some pressurized pants-wetting. Nothing denotes white-knuckled urgency like a bar that's
slowly draining. We don't need to do much extra work to convert our number clock into a
picture clock, so let's go for it!

As per our agreement, all the pretty pictures are pre-drawn for you. Download the Unity assets

package for this chapter. When you're ready to import it, navigate to Assets | Import Package

| Custom Package… and find the .unitypackage file. Open it up, and there she be! If only

obtaining game graphics in a real production environment was this easy.

Let's get right to work by creating some code to make use of two of the graphics in the
package—a blue clock background bar, and a shiny yellow foreground bar that will
slowly shrink as time marches on.

[251]

Don’t Be a Clock Blocker

1. Let's go back to the top of the ClockScript and create a variable to store the
elapsed time as a percentage:

var clockIsPaused : boolean = false;

var startTime : float; //(in seconds)
var timeRemaining : float; //(in

seconds) var percent:float;

2. Create some variables to store the foreground (FG) and background (BG)

textures, as well as the initial width of the yellow foreground bar:

var percent:float; var

clockBG:Texture2D; var

clockFG:Texture2D;
var clockFGMaxWidth:float; // the starting width of

the foreground bar

3.
4.
5.

Save the script and go back to Unity.

Click on the Clock GameObject in the Hierarchy panel.

Find the ClockScript component in the Inspector Panel.

[252]

Chapter 7

6. The new clockBG and clockFG variables we just created are now listed there.
Click-and-drag the clockBG texture from the Project panel to the clockBG
slot, and then click-and-drag the clockFG texture into its slot.

What just happened – you can do that?

This is yet another example of Unity's drag-and-drop usefulness. We created the two
Texture2D variables, and the variables appeared on the Script component in the Inspector

panel. We dragged-and-dropped two textures into those slots, and now whenever we refer to

clockBG and clockFG in code, we'll be talking about those two texture images. Handy, yes?

Let's take a trip down memory lane to the previous chapter, where we became OnGUI
ninjas. We'll use the GUI techniques we already know to display the two bars, and
shrink the foreground bar as time runs out.

1. In the DoCountdown function of the ClockScript, calculate the percentage of
time elapsed by comparing the startTime and the timeRemaining values:

function DoCountdown()
{

timeRemaining = startTime - Time.time;

percent = timeRemaining/startTime *

100; if (timeRemaining < 0)
{

[253]

Don’t Be a Clock Blocker

timeRemaining = 0;

clockIsPaused =

true; TimeIsUp();
}
ShowTime();

}

2. Store the initial width of the clockFG graphic in a variable

called clockFGMaxWidth in the Awake function:

function Awake()
{

startTime = 120.0;

clockFGMaxWidth = clockFG.width;
}

3. Create the built-in OnGUI function somewhere apart from the other
functions in your script (make sure you don't create it inside the curly
brackets of some other function!)

function OnGUI()
{

var newBarWidth:float = (percent/100) * clockFGMaxWidth; //

this is the width that the foreground bar should be
var gap:int = 20; // a spacing variable to help us

position the clock
}

4. Create a new group to contain the clockBG texture. We'll position the
group so that the clockBG graphic appears 20 pixels down, and 20 away
from the right edge of the screen:

function OnGUI()
{

var newBarWidth:float = (percent/100) * clockFGMaxWidth; //

this is the width that the foreground bar should be
var gap:int = 20; // a spacing variable to help us

position the clock
GUI.BeginGroup (new Rect(Screen.width - clockBG.width -

gap, gap, clockBG.width, clockBG.height));
GUI.EndGroup ();

}

[254]

Chapter 7

5. Use the DrawTexture method to draw the clockBG texture inside the group:

GUI.BeginGroup (new Rect (Screen.width - clockBG.width -

gap, gap, clockBG.width, clockBG.height));
GUI.DrawTexture (Rect (0,0, clockBG.width,

clockBG.height), clockBG);
GUI.EndGroup ();

6. Nest another group inside the first group to hold the clockFG texture. Notice that

we're offsetting it by a few pixels (5,6) so that it appears inside the clockBG graphic:

GUI.BeginGroup (new Rect (Screen.width - clockBG.width -

gap, gap, clockBG.width, clockBG.height));
GUI.DrawTexture (Rect (0,0, clockBG.width,

clockBG.height), clockBG);
GUI.BeginGroup (new Rect (5, 6, newBarWidth,

clockFG.height)); GUI.EndGroup ();
GUI.EndGroup ();

Here, I've indented the second group to make the code easier to read.

7. Now, draw the clockFG texture inside that nested group:

GUI.BeginGroup (new Rect (5, 6, newBarWidth, clockFG.height));
GUI.DrawTexture (Rect (0,0, clockFG.width, clockFG.height),

clockFG);
GUI.EndGroup ();

Did you punch that in correctly? Here's what the entire function looks like
all at once:

function OnGUI()
{

var newBarWidth:float = (percent/100) * clockFGMaxWidth; //

this is the width that the foreground bar should be
var gap:int = 20; // a spacing variable to help us

position the clock
GUI.BeginGroup (new Rect (Screen.width - clockBG.width -

gap, gap, clockBG.width, clockBG.height));
GUI.DrawTexture (Rect (0,0, clockBG.width,

clockBG.height), clockBG);

[255]

Don’t Be a Clock Blocker

GUI.BeginGroup (new Rect (5, 6,

newBarWidth, clockFG.height));
GUI.DrawTexture (Rect (0,0, clockFG.width,

clockFG.height), clockFG);
GUI.EndGroup

(); GUI.EndGroup ();
}

Save the script and jump back into Unity. Let's turn off the old and busted number clock so
that we can marvel at the new hotness—our graphical clock. Select the Clock GameObject
in the Hierarchy panel. Locate the GUIText component in the Inspector panel, and uncheck
its check box to turn off its rendering.

.

Now, test your game. Fantastic! Your new graphical clock drains ominously as time
runs out. That'll really put the heat on, without compromising your player's
doubtless lust for eye candy.

What just happened – how does it work?

The math behind this magic is simple ratio stuff that I, for one, conveniently forgot the
moment I escaped the sixth grade and ran away to become a kid who enjoys watching
the circus. We converted the time elapsed into a percentage of the total time on the
clock. Then, we used that percentage to figure out how wide the clockFG graphic should
be. Percentage of time elapsed is to 100, as the width of the clockFG graphic is to its
original width. It's simple algebra from there.

[256]

Chapter 7

The only math you need to know
I often say that this dead-simple ratio stuff is the only math you need to know as

a game developer. I'm half-kidding, of course. Developers with a firm grasp of

trigonometry can create billiard and pinball games, while Developers who know

differential calculus can create a tank game where the enemy AI knows which

way to aim its turret, taking trajectory, wind, and gravity into account
(hey, kids! Stay in school).
But, when people ask sheepishly about programming and how difficult it is
to learn, it's usually because they think you can only create games by
using complex mathematical equations. We've hopefully debunked this
myth by creating two simple games so far with equally simple math. These
ratio calculations are used ALL THE TIME in gaming, from figuring out
health bars, to player positions on a mini-map, to level progress meters. If
you're arithmophobic like I am, and you relearn only one piece of math
from your long-forgotten elementary school days, make it this one.

The incredible shrinking clock

We've seen in earlier chapters that the GUI.BeginGroup() and GUI.EndGroup() functions

can wrap our fixed-position UI controls together so that we can move them around as a unit. In

the preceding code, we made one group to hold the background bar, and another inside it to

hold the foreground bar, offset slightly. The outer group is positioned near the right edge of the

screen, using the gap value of 20 pixels to set it back from the screen edges.

When we draw the foreground clock bar, we draw it at its normal size, but the group that
wraps it is drawn at the shrinking size, so it cuts the texture off. If you put a 500 x 500 pixel
texture inside a 20 x 20 pixel group, you'll only see a 20 x 20 pixel portion of the larger
image. We use this to our advantage to display an ever-decreasing section of our clock bar.

[257]

Don’t Be a Clock Blocker

Keep your fork – there's pie!

The third type of clock we'll build is a pie chart-style clock. Here's what it will look like
when it's counting down:

Pop quiz – how do we build it?

Before reading any further, stare at the picture of the pie clock and try to figure out how
you would build it if you didn't have this book in front of you. As a new game developer,
you'll spend a significant amount of time trying to mimic or emulate different effects you
see in the games you enjoy. It's almost like watching a magic show and trying to figure out
how they did it. So, how'd they do it?

(If you need a hint, take a look at the unused textures in the Project panel that you
imported earlier in the chapter).

How they did it

The pie clock involves a little sleight of hand. Here are the pieces that make up the clock:

It's a bit like a sandwich. We start by drawing the blue background. Then, we layer on the
two yellow half-moon pieces. To make the clock look pretty, we apply the lovely, shiny
gloss picture in front of all these pieces.

[258]

Chapter 7

We rotate the right half-moon piece halfway around the circle to make the slice of
yellow time appear to grow smaller and smaller.

At the halfway point, we slap a half-moon section of the blue background on top of
everything, on the right side of the clock. We're all done with the right half-circle,
so we don't draw it.

Now, we rotate the left half-moon piece, and it disappears behind the blocker
graphic, creating the illusion that the rest of the clock is depleting.

[259]

Don’t Be a Clock Blocker

When time is up, we slap the red clock graphic in front of everything.

A little flourish of the wrist, a puff of smoke, and the audience doesn't suspect a thing!

We know most of what we need to get started. There's just a little trick with rotating the
textures that we have to learn. But, first, let's set up our clock with the variables we'll
need to draw the textures to the screen.

1. Add variables for the new pie clock textures at the top of the ClockScript:

var clockFGMaxWidth:float; // the starting width of

the foreground bar
var rightSide:Texture2D;

var leftSide:Texture2D;

var back:Texture2D;
var blocker:Texture2D;

var shiny:Texture2D; var

finished:Texture2D;

2. In the Hierarchy panel, select the Clock GameObject.

[260]

Chapter 7

3. Just as we did with the bar clock, drag-and-drop the pie clock textures from
the Project panel into their respective slots in the ClockScript component in
the Inspector panel. When you're finished, it should look like this:

With these Texture2D variables defined, and the images stored in those variables, we can
control the images with our script. Let's lay down some code, and pick through the
aftermath when we're finished:

1. Because of the switcheroo we have to pull off with the two yellow half-moon
pieces, knowing when the clock has passed the halfway point is pretty important
with this clock. Let's create an isPastHalfway variable inside our OnGUI function:

function OnGUI ()
{

var isPastHalfway:boolean = percent < 50;

(Confused? Remember that our percent variable means "percent remaining", not

"percent elapsed". When percent is less than 50, we've passed the halfway mark).

[261]

Don’t Be a Clock Blocker

2. Define a rectangle in which to draw the textures:

var isPastHalfway:boolean = percent < 50;

var clockRect:Rect = Rect(0, 0, 128, 128);

3. On the next line, draw the background blue texture and the

foreground shiny texture:

var clockRect:Rect = Rect(0, 0, 128, 128);
GUI.DrawTexture(clockRect, back,

ScaleMode.StretchToFill, true, 0);
GUI.DrawTexture(clockRect, shiny,

ScaleMode.StretchToFill, true, 0);

4. Save the script and play the game. You should see your shiny blue clock

glimmering at you in the top-left corner of the screen:

5. Next, we'll add a condition check and draw the red "finished" graphic over the top
of everything when percent goes below zero (which means that time is up). Add
that bit just above the "shiny" texture draw so that the shiny picture still layers on
top of the red "finished" graphic:

GUI.DrawTexture(clockRect, back,

ScaleMode.StretchToFill, true, 0);
if(percent < 0)
{

[262]

Chapter 7

GUI.DrawTexture(clockRect, finished,

ScaleMode.StretchToFill, true, 0);
}
GUI.DrawTexture(clockRect, shiny,

ScaleMode.StretchToFill, true,
0);

6. Save the script and play the game again to confirm that it's working. When

time runs out, your blue clock should turn red:

7. Let's set up a rotation variable at the top of the OnGUI function. We'll use the
percent value to figure out how far along the 360 degree spectrum we should
be rotating those yellow half-circle pieces. Note that once again, we're using the
same ratio math that we used earlier with our bar clock:

var clockRect:Rect = Rect(0, 0,128,128);

var rot:float = (percent/100) * 360;

If you want to see it working, try adding a Debug.Log() or print()
statement underneath to track the value of rot. The value should hit 360 when
the clock times out.

8. We have to set two more variables before the fun begins—a

centerPoint and a startMatrix. We'll go over both in a moment:

var rot:float = (percent/100) * 360;
var centerPoint:Vector2 = Vector2(64, 64);

var startMatrix:Matrix4x4 = GUI.matrix;

[263]

Don’t Be a Clock Blocker

What just happened?

One important thing to know is that, unlike 3D GameObjects like the Paddle and Ball from our

keep-up game, GUI textures can't be rotated. Even if you apply them to a GameObject and

rotate the GameObject, the textures won't rotate (or will skew in a very strange way).
We know we need to rotate those two half-circle pieces to make the pie clock count
down, but because of this limitation, we'll have to find a creative workaround.

Here's the game plan: we're going to use a method of the GUIUtility class called
RotateAroundPivot. The centerPoint value we created defines the point around
which we'll rotate. RotateAroundPivot rotates the entire GUI. It's as if the GUI
controls were stickers on a sheet of glass, and instead of rotating the stickers, we're
rotating the sheet of glass.

So we're going to follow these steps to rotate those half-circles:

1. Draw the blue clock background.

2. Rotate the GUI using the rot (rotation) value we set.

3. Draw the yellow half-circle pieces in their rotated positions. This is like stamping
pictures on a piece of paper with a stamp pad. The background has already
been stamped. Then, we rotate the paper and stamp the half-circles on top of it.

4. Rotate the GUI back to its original position.

5. Draw or stamp the "finished" graphic (if the timer is finished) and the shiny image.

So, the background, the red "finished" image, and the shiny image all get drawn when the GUI

is in its normal orientation, while the half-circle pieces get drawn when the GUI is rotated.

Kinda neat, huh? That's what the startMatrix variable is all about. We're storing
the matrix transformation of the GUI so that we can rotate it back to its "start" position later.

Let's lay down some code to make those half-circle pieces rotate.

1. Set up a conditional statement so that we can draw different things before and
after the halfway point:

GUI.DrawTexture(clockRect, back, ScaleMode.StretchToFill, true,

0);
if(isPastHalfway)
{
} else {
}

[264]

Chapter 7

2. If we're not past halfway, rotate the GUI around the centerPoint. Draw the
right side half-circle piece on top of the rotated GUI. Then, rotate the GUI
back to its start position:

if(isPastHalfway)
{
} else {

GUIUtility.RotateAroundPivot(-rot, centerPoint);
GUI.DrawTexture(clockRect, rightSide,

ScaleMode.StretchToFill, true, 0);
GUI.matrix = startMatrix;

}

3. Save the script and test your game. You should see the right side half-circle piece
rotating around the clock. But, we know it's not really rotating—the entire GUI is
rotating, and we're stamping the image on the screen before resetting the rotation:

4. Draw the left half-circle once the GUI is back into position.

GUI.matrix = startMatrix;
GUI.DrawTexture(clockRect, leftSide,

ScaleMode.StretchToFill, true, 0);

5. You can save and test at this point, too. The right half-circle disappears behind

the left half-circle as it rotates, creating the illusion we're after:

[265]

Don’t Be a Clock Blocker

6. It all comes crashing down after the halfway point, though. Let's fix that:

if(isPastHalfway)
{

GUIUtility.RotateAroundPivot(-rot-180, centerPoint);

GUI.DrawTexture(clockRect, leftSide, ScaleMode.StretchToFill,
true, 0);

GUI.matrix = startMatrix;

7. Save and test. Once we're past the halfway point, the left half-circle does its thing,

but the illusion is ruined because we see it rotating into the right side of the clock:

We just need to draw that blue half-circle blocker graphic in front of it to
complete the illusion:

GUI.matrix = startMatrix;
GUI.DrawTexture(clockRect, blocker,

ScaleMode.StretchToFill, true, 0);

8. Save and test one last time. You should see your pie clock elapse exactly

as described in the sales brochure.

[266]

Chapter 7

What just happened – explaining away the loose ends

Hopefully, the code is straightforward. Notice that in this line:

GUIUtility.RotateAroundPivot(-rot, centerPoint);

We're sticking a minus sign on the rot value—that's like multiplying a number by negative

one. If we don't do this, the half-circle will rotate in the opposite direction (try it yourself!
Nix the minus sign and try out your game).

Similarly, in this line:

GUIUtility.RotateAroundPivot(-rot-180, centerPoint);

We're using the negative rot value, and we're subtracting 180 degrees. That's because
the left half-circle is on the other side of the clock. Again, try getting rid of the -180 and
see what effect that has on your clock.

Another thing that you may want to try is changing the centerPoint value. Our pie
clock graphics are 128x128 pixels, so the center point is at 64, 64. Mess around with that
value and check out the funky stuff the clock starts doing.

GUI.matrix = startMatrix;

It's worth mentioning that this line locks the GUI back into position, based on
the startMatrix value we stored.

GUI.DrawTexture(clockRect, leftSide,

ScaleMode.StretchToFill, true, 0);

Did I catch you wondering what ScaleMode.StretchToFill was all about? There are
three different settings you can apply here, all of which fill the supplied rectangle with
the texture in a different way. Try looking them up in the Script Reference to read about
what each one does.

The pie clock is pretty neat, but it's sadly stuck to the top-left corner of the screen.
It would be great if we could make it any size we wanted, and if we could move
it anywhere on the screen.

[267]

Don’t Be a Clock Blocker

We're not far off from that goal. Follow these steps to get a dynamically positioned
and scaled pie clock:

1. Create these variables at the top of the OnGUI function:

var pieClockX:int = 100;

var pieClockY:int = 50;

var pieClockW:int = 64; // clock width

var pieClockH:int = 64; // clock height

var pieClockHalfW:int = pieClockW * 0.5; // half the clock width

var pieClockHalfH:int = pieClockH * 0.5; // half the clock height

In this example, 100 and 50 are the X and Y values where I'd like the pie clock to
appear on the screen. The clock builds out from its top-left corner. 64 and 64
are the width and height values I'd like to make the clock—that's exactly half the
size of the original clock.

Scaling the clock will result in some ugly image artifacting, so I don't
really recommend it. In fact, plugging in non-uniform scale values like 57
x 64 will destroy the illusion completely! But, learning to make the clock's
size dynamic is still a worthwhile coding exercise, so let's keep going.

2. Modify the clockRect declaration to make use of the new x, y, width,
and height variables:

var clockRect:Rect = Rect(pieClockX, pieClockY,

pieClockW, pieClockH);

3. Modify the centerPoint variable to make sure we're still hitting the dead-
center of the clock:

var centerPoint:Vector2 = Vector2(pieClockX +

pieClockHalfW, pieClockY + pieClockHalfH);

4. Save the script and test your game. You should see a pint-sized clock
(with a few ugly pixels here and there) at x: 100 y: 50 on your screen.

[268]

Chapter 7

There's lots more you could add to your clock to juice it up. Here are a few ideas:

‹ ‹ Add some logic to the TimeIsUp() method. You could pop up a new GUI window that

says Time is up! with a Try Again button, or you could link to another Scene showing

your player's character perishing in a blazing inferno… whatever you like!
‹ ‹ Create a pause/unpause button that starts and stops the timer. The ClockScript

is already set up to do this—just toggle the clockIsPaused variable, create a
variable to keep track of how many seconds elapse while the game is paused, and
subtract that number from timeRemaining.

‹

‹

‹

‹

In a few chapters, we'll talk about how to add sound to your games. Bring that
knowledge back with you to this chapter to add some ticking and buzzer
sound effects to your clock.

Create a button that says More Time!. When you click on it, it should add more
time to the clock. When you get this working, you can use this logic to add power-
ups to your game that increase clock time.

‹ ‹ Use the skills that you've already acquired to tie this clock into any game that you

create in Unity, including the keep-up and robot games you've built with this book.

Unfinished business

With this chapter, you've taken an important step in your journey as a game developer.
Understanding how to build a game clock will serve you well in nearly all of the games you
venture off to build. Games without some kind of clock or timer are uncommon, so adding
this notch to your game developer tool belt is a real victory. Here are some skills you
learned in this chapter:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Creating a font material
Displaying values on-screen with

GUIText Converting numbers to strings

Formatting string data to two decimal places
Ratios: the only math you'll ever need (according to someone who

doesn't know math!)
Storing texture images in variables
Scaling or snipping graphics based on script data
Rotating, and then unrotating, the GUI
Converting hardcoded script values to dynamic script values

[269]

Don’t Be a Clock Blocker

With three chapters behind you on linking scenes with buttons, displaying title screens,

adding clocks and on-screen counters, the keep-up game that we started so long ago is

starting to seem a little weak. Let's return home like the mighty conquerors we are, and

jazz it up with some of the new things we've learned. Then, we'll go even further, and start

incorporating 3D models built in an actual 3D art package into our game Scenes.

C# Addendum

The ClockScript was fairly painless to convert to C#. These were the steps:

1. Copy/paste the JavaScript code into a new C# script (keeping the C# class
definition and omitting the #pragma strict line)

2. Add the appropriate access modifier to the variable definitions (note: any variables

that need to show up in the drag-n-drop Unity interface, like the ones that store
the textures, need the public modifier. Use private for all other variables)

3. Change the syntax of all the variable definitions (declare the type before the

variable name, and nix the colon)

4. Change the function declarations so that they start with the return type (void in all

cases for this script) and an access modifier (private for all of these functions)

5. Add the new keyword when defining a Rect or a Vector2 instance

6. Explicitly cast variables when you convert a float to an int. See this line for an example:

minutes = (int)(timeRemaining/60); // minutes is an

int, while timeRemaining is a float

Remember that if you remove the Javascript component and attach a C# script
instead, you'll have to re-drag-n-drop all of the textures into the variables, because
Unity loses track of them entirely.

A fun exercise (depending on your definition of "fun") would be to create a new C# script,
and to see if you can work through the errors one by one to completely convert this
script yourself. Give it a try! The answer key is below, in case you get into trouble.

using UnityEngine;
using System.Collections;

public class ClockScriptCSharp : MonoBehaviour {

private bool clockIsPaused = false;

[270]

Chapter 7

private float startTime; //(in seconds)

private float timeRemaining; //(in

seconds) private float percent;
public Texture2D clockBG;

public Texture2D clockFG;
private float clockFGMaxWidth; // the starting width of the

foreground bar
public Texture2D rightSide;
public Texture2D leftSide;
public Texture2D back;
public Texture2D blocker;
public Texture2D shiny;
public Texture2D finished;

private void Awake ()
{

startTime = Time.time + 120.0f;

clockFGMaxWidth = clockFG.width;
}

private void Update ()
{

if (!clockIsPaused)
{

// make sure the timer is not

paused DoCountdown();
}

}

private void DoCountdown()
{

timeRemaining = startTime - Time.time;

percent = timeRemaining/startTime *

100; if (timeRemaining < 0)
{
timeRemaining = 0;

clockIsPaused = true;

TimeIsUp();
}
ShowTime();
//Debug.Log("time remaining = " + timeRemaining);

}

[271]

Don’t Be a Clock Blocker

private void PauseClock()
{

clockIsPaused = true;
}

private void UnpauseClock()
{

clockIsPaused = false;
}

private void ShowTime()
{

int minutes;

int seconds;

string timeStr;
minutes = (int)(timeRemaining/60);

seconds = (int)(timeRemaining % 60);

timeStr = minutes.ToString() + ":";

timeStr += seconds.ToString("D2");
guiText.text = timeStr; //display the time to the GUI

}

private void TimeIsUp()
{

Debug.Log("Time is up!");
}

private void OnGUI()
{

int pieClockX = 100;

int pieClockY = 50;

int pieClockW = 64; // clock width

int pieClockH = 64; // clock height

int pieClockHalfW = (int)(pieClockW * 0.5); // half the clock width

int pieClockHalfH = (int)(pieClockH * 0.5); // half the clock
height

bool isPastHalfway = percent < 50;
Rect clockRect = new Rect(pieClockX, pieClockY, pieClockW,

pieClockH);
float rot = (percent/100) * 360;
Vector2 centerPoint = new Vector2(pieClockX + pieClockHalfW,

pieClockY + pieClockHalfH);

[272]

Chapter 7

Matrix4x4 startMatrix = GUI.matrix;

GUI.DrawTexture(clockRect, back,

ScaleMode.StretchToFill, true, 0);

if(isPastHalfway)
{
GUIUtility.RotateAroundPivot(-rot-180, centerPoint);

GUI.DrawTexture(clockRect, leftSide, ScaleMode.StretchToFill,
true, 0);

GUI.matrix = startMatrix;
GUI.DrawTexture(clockRect, blocker,

ScaleMode.StretchToFill, true, 0);
} else {
GUIUtility.RotateAroundPivot(-rot, centerPoint);

GUI.DrawTexture(clockRect, rightSide, ScaleMode.StretchToFill,
true, 0);

GUI.matrix = startMatrix;
GUI.DrawTexture(clockRect, leftSide, ScaleMode.StretchToFill,

true, 0);
}

if(percent < 0)
{
GUI.DrawTexture(clockRect, finished, ScaleMode.StretchToFill,

true, 0);
}

GUI.DrawTexture(clockRect, shiny, ScaleMode.StretchToFill,

true, 0);

float newBarWidth = (percent/100) * clockFGMaxWidth; // this is

the width that the foreground bar should be
int gap = 20; // a spacing variable to help us position the clock

GUI.BeginGroup (new Rect(Screen.width - clockBG.width - gap, gap,
clockBG.width, clockBG.height));

GUI.DrawTexture (new Rect (0,0, clockBG.width, clockBG.height),

clockBG);
GUI.BeginGroup (new Rect (5, 6, newBarWidth, clockFG.height));

GUI.DrawTexture (new Rect (0,0, clockFG.width, clockFG.
height), clockFG);

GUI.EndGroup ();
GUI.EndGroup ();

}

}

[273]

8

Hearty Har Har

Now that your veins are coursing with Unity GUI superpowers, the keep-up
game that you built a few chapters ago is looking pretty feeble. Get used to it:
as you grow your skills, you'll look at your earlier games and think, "Gee, I could
have done that a different way and wound up with a much better product," or
more likely, "MAN, that game is weak."

It's high time we revisit that keep-up game and add the stuff we said we will add

to make it play properly. Open up your keep-up game Unity Project by going to

File | Open Project.... If you don't have the file any more, you can download it

from the Packt website (http://www.packtpub.com/unity-4-x-game-

development-by-example/book). When the project finishes loading,

double-click on the Game Scene to see the ball and the paddle,
just as we left them.

In this chapter, we'll:

‹

‹

‹

‹

‹

‹

‹

‹

Replace our boring primitives with real 3D models

"Skin" the keep-up game to make it more awesome

Add a keep-up counter to the screen to keep track of our score

Detect when the player drops the ball, and then add a score recap and a
Play Again button

Hearty Har Har

Welcome to Snoozeville

Let's face it: the keep-up game is dull. You've got a ball and a paddle. We're going to add
a score counter, but that's just not going to cut it. We need a fun theme to hold the
player's interest, and to set our Unity game apart from the rest.

How's this? Let's call the game Ticker Taker. We'll replace the ball with a human heart,
and the paddle with a pair of hands holding a teevee dinner tray. We'll string these
bizarre elements together with a compelling story:

Mr. Feldman needs a heart transplant–stat–and there's no time to lose! Help Nurse

Slipperfoot rush a still-beating human heart through the hospital hallways to the ER,

while bouncing it on a dinner tray! Drop the heart, and it's lights out for Feldman!

With a simple story re-skin, we now have a time-limited life and death drama. Doesn't
that sound more exciting than "bounce the ball on the paddle"? Which game would
you rather play?

To pull this off, we need to import the assets package for this chapter. When the
Importing package dialog pops up, leave everything selected and click the Import button.

Model behavior

Let's take a look at what we just added to the Project folder: two items with mysterious
blue icons called handsAndTray and heart. These models were created in a free 3D
software package called Blender and exported to the .fbx file format.

[276]

Chapter 8

When things don't mesh

Remember that Unity doesn't actually ship with any 3D modeling tools. If
you want your game to contain more than just primitives—spheres,
boxes, cylinders, and so on—you'll need to get your hands on some 3D
models. You can buy them, create them yourself, or cozy up with a 3D
artist and bat your eyelashes at him.

Just as the 2D images for the Robot Repair game were created in a

drawing package and then imported, these 3D models were built in
Blender and brought into the project. All imported assets wind up in

the Assets folder behind the scenes which, you'll recall, is not to be
fiddled with outside of Unity. There is complex metadata keeping track
of everything in that folder, and monkeying around with it could break
your project. Check the Appendix of this book for different resources
you can use to create or buy assets for your own games.

Click on the little gray arrow next to the handsAndTray model. This model contains
two separate meshes—a pair of hands, and a hospital dinner tray. There seem to be
two instances of each, with two different icons next to them—a blue cube icon with a
little white page and a black meshy/spiderwebby-looking icon.

[277]

Hearty Har Har

Here's what's happening. The top-level handsAndTray parent is the .fbx file that Unity

imported. Before you can use this file inside the program, Unity runs it through an import

process to make sure that the models are the right size and orientation, along with a slew of

other settings. The routine that preps the models for use in Unity is the FBXImporter. You

can see it by clicking on the parent handsAndTray model in the Project panel.

There's a lot of fancy stuff going on with the FBXImporter. Thankfully, we don't have to touch

much of it. Our biggest concern is that the models are facing the right way, and are the right
size. Different models from different 3D software packages can import in funny ways, so this is

like our check-in counter to make sure everything's okay before we admit the model into our
Hotel de Game. At the very bottom of the FBXImporter, you can see what the model looks like.

[278]

Chapter 8

Rank and file

Unity has superpowers. It's true. Even better, it's like one of those superheroes that

can absorb other superheroes' powers. Unity doesn't have modeling or art tools

itself, but, as we've seen, it can import meshes and images from the outside world.

And if you have a supported 3D software package (like 3D Studio Max, Maya, or

Blender) or 2D software package (like Photoshop) installed on your computer,

Unity can import the native file format. That means your .max,
.ma, .blend, and .psd files will be sitting right there in the Assets folder. If you

double-click one of these assets, Unity is smart enough to launch the

corresponding program for you. And if you make a change to the file and save
it, the results are automatically updated right inside your project's Assets

folder. No need to re-import the file!

You can also tell Unity which program you'd like to launch when you double-
click a file with a format that can be read by many different programs, like
.fbx or .jpg. Here's a list of native 3D file formats and software packages
that Unity supported at the time of this writing:

‹ ‹ Maya .mb and .ma
‹ ‹ 3D Studio Max .max

‹ ‹ Cheetah 3D .jas ‹ ‹

Cinema 4D .c4f
‹ ‹ Blender .blend

‹ ‹ Carrara
‹ ‹ Lightwave

‹ ‹ XSI 5.x
‹ ‹ SketchUp Pro
‹ ‹ Wings 3D
‹ ‹ 3D Studio .3ds
‹ ‹ Wavefront .obj
‹ ‹ Drawing Interchange Files .dxf
‹ ‹ Autodesk FBX .fbx

The ability to handle native file formats for a number of major software

applications is one of the coolest things about Unity. If you work a lot with

Photoshop, you'll appreciate that you don't have to flatten your image and save it

out to another format—just hide or show your various layers, and save the file.

Unity automatically flattens the psd for you and updates the image.

[279]

Hearty Har Har

Let's get the hands and tray into our Scene!

1. Navigate to GameObject | Create Empty. This is the GameObject that
will contain the hands and tray models.

2. Rename the new GameObject HandsAndTray.
3. Click and drag the HandsAndTray model, which contains the Tray_mesh and

Hands_mesh models, from the Project panel to the new HandsAndTray
GameObject that you just created in the Hierarchy panel. You'll see the models
appear indented beneath the GameObject, which will gain a gray arrow to
indicate that it's now a parent.

4. Click on the top-level HandsAndTray Game Object in the Hierarchy panel,
and change its Position/Rotation/Scale settings in the Inspector panel:

Position X: -0.18 Y: -0.4 Z: -0.2

Rotation X: 8 Y: 180 Z: 0

Scale X: 1 Y: 1 Z: 1

[280]

Chapter 8

What just happened – size matters

When you change the Position and Rotation values, the HandsAndTray GameObject
swings into view near our old Paddle GameObject, but the meshes are disappointingly
tiny. Clearly, something went wrong during the FBX import process. We could scale the
models' transforms up inside Unity, but strange things have been known to happen when
you mess with a model's scale after it's been imported. Animations break, colliders stop
colliding properly, the sun turns blood-red… it's a bad scene.

Let's revisit the FBXImporter and crank up the scale to make our models the proper
size with no breakage.

1. Click on the blue HandsAndTray model in the Project panel. The
FBXImporter will appear in the Inspector panel.

2. Change the Scale factor near the top of the FBXImporter from 0.01 to 0.03.
3. Click on the Generate Colliders checkbox. (We'll find out what this

does very shortly.)
4. Click on the Apply button near the bottom of the FBXImporter. You may

have to scroll down, depending on your screen size.

[281]

Hearty Har Har

You should see the handsAndTray models scale up within the Game view to a
reasonable size. That's better!

Auto-generating colliders

The checkbox that we ticked in the FBXImporter tells Unity to put a collider

cage around our model once it's imported. You may remember that the

spherical Ball GameObject and the cubic Paddle GameObject both got their

own collider Components when we created them—a Sphere Collider for the
Ball, and a Cube Collider for the Paddle.

Unity uses an additional copy of the mesh as the collision "cage" around
the object. This is great if you have a strangely-shaped mesh, and you want
things to collide with it naturally. The trouble is that your game will take a
performance hit with a more complex collider (depending on the number
of polygons in the collider). If you can get away with adding your own
primitive (Cube/Sphere/Capsule) collider to your model to make things less
complicated for the physics engine, you should. Our Ticker Taker game has
very little complexity, so I think we can indulge ourselves with a fancier
collider on our tray model. Maybe later, we'll take a long soak in the tub
and paint our toenails?

Time for

Provided our mesh is made from fewer than 255 triangles, one thing that we can do to
make our Mesh Colliders behave better is to mark them as "convex". (You can see how
many triangles comprise a mesh by clicking the mesh and looking at the Preview section of
the "Inspector" panel.) GameObjects that are in motion (like our HandsAndTray soon will
be) tend to react better with other moving colliders if we make this small change.

1. In the Hierarchy panel, hold down the ALT key on your keyboard and click on the
grey arrow next to the HandsAndTray GameObject. Instead of just expanding the
top-level item, this expands the entire tree beneath the parent GameObject.

2. Select Hands_Mesh.

[282]

Chapter 8

3. In the Inspector panel, under the Mesh Collider Component, check the
box labeled Convex.

4. Do the same for Tray_Mesh.
5. As we did with the paddle before it, add a Rigidbody component to the

HandsAndTray GameObject, and check the Is Kinematic box in the Inspector
panel. As you'll remember, if a collider moves, it should have a Rigidbody to save
us from unduly taxing the processor.

Now we're all set up to put some motion in the ocean. Let's turn our eyes toward making this

imported mesh move around the same way our boring primitive paddle does.

[283]

Hearty Har Har

Any script that we create in Unity is reusable, and we can attach scripts to multiple

GameObjects. Let's attach our MouseFollow script to the HandsAndTray GameObject.

1. Find the MouseFollow script in the Project panel (I put mine inside a "Scripts"
folder), and drag it onto the HandsAndTray GameObject in the Hierarchy panel.
(Make sure to drop it on the parent HandsAndTray GameObject, not the

child handsAndTray model.)
2. Test your game by pressing the Play button.

The hands and tray should follow your mouse the very same way the paddle does.
Because we generated a collider on the tray in the FBXImporter settings, the Ball should
bounce on the tray just as it does with the Paddle.

The only trouble is that the hands and tray may be flipped backwards. That's because in

the MouseFollow script, we're telling the paddle to constantly tilt towards y=0. Our
HandsAndTray GameObject is rotated 180 degrees in the y axis. No worries—it's an easy fix.

Select the HandsAndTray GameObject and change its Y rotation to 0 (instead of 180). Then, open

up the GameObject and select the handsAndTray fbx prefab instance inside. Change its
Y rotation to 180. Now everything's aligned the way it should be.

What just happened – monkey see, monkey do

Because both the Paddle Game Object and the HandsAndTray Game Object have the
same script attached, they both do exactly the same thing. Imagine a game where you
have a number of enemies on-screen, all following the same Script:

1.
2.

Hunt the player.

Eat his face.

Reusable scripts make rampant face-eating possible, with just a single script.

Just as we did with the hands and tray models, we're going to create a new Heart
GameObject and parent it to our imported heart model, with a few adjustments in the
FBXImporter.

1. In the Project panel, click on the heart model.
2. Change the Scale factor of the heart model in the Inspector panel to 0.07.
3. Leave Generate Colliders unchecked.

[284]

Chapter 8

4. Click on the Apply button.
5. Drag the heart model from the Project panel into the Scene.
6. In the Inspector panel, change the heart's position values to X:0, Y:0, Z:0.
7. In the Hierarchy panel, click on the gray arrow on the heart GameObject to

reveal the Heart_Mesh inside.
8. Click to select the Heart_Mesh, and in the Inspector panel, change its

Transform position to X:0, Y:0, Z:0.
By setting everything to position 0, we ensure that the collider we're about to add
will appear at roughly the same spot where the heart model is. Now instead of
using a special Mesh Collider, let's add a more primitive Capsule Collider, and set
up the heart so that it bounces.

9. Select the parent heart GameObject in the Hierarchy panel, and navigate to Component
| Physics | Rigidbody to add a Rigidbody component to it. This includes the heart in the
physics simulation. The heart's Rigidbody component appears in the
Inspector Panel.

10. Navigate to Component | Physics | Capsule Collider to add a pill-shaped collider to
the heart. A green cage-like Collider mesh appears around the heart in the
Scene view.

[285]

Hearty Har Har

11. Change the settings on the Capsule Collider in the Inspector panel to:

Center

X: -0.05 Y: 0.05 Z: 0

Radius: 0.2

Height: 0.6

That should make the Capsule Collider fit snugly around the heart model.

12. Still in the Capsule Collider Component, click on the little circle button for the
field labeled Material, and choose the custom BouncyBall PhysicMaterial (which
we created in an earlier chapter). This is what will give the heart its bounce.

[286]

Chapter 8

13. Finally, adjust the heart GameObject's Transform position in the Inspector
panel to X: 0.5 Y: 2 Z: -0.05. This will place the heart right next to the Ball.

14. Save the Scene and test the game by clicking on the Play button. Paddles, trays,
hearts, and balls should all be bouncing around. In fact, it's a smidge confusing. Let's
take the old Paddle and Ball out of the equation and focus on the new stuff.

Click on the Paddle in the Hierarchy panel, and uncheck the checkbox next to its name in the
Inspector panel to make it disappear. Do the same for the Ball. Retest the game. The Ball
and Paddle are turned off; you should see only the heart bouncing on the tray.

What just happened – bypass the aorta

The reason we're using a Capsule Collider on the heart instead of a Mesh Collider is that
the heart model is pretty weird and irregular. It could catch its aorta on the corner of the
tray and go spinning unpredictably out of control. The Capsule Collider gives the heart a
little more predictability, and it won't be glaringly obvious that the heart isn't colliding
perfectly. (Of course, a capsule shape is a little wonkier than the Sphere Collider we were
using earlier. This capsule is kind of a compromise.)

[287]

Hearty Har Har

Currently, the models we're using are about as exciting as clipping your toenails over
the sink. All three models are a dull, default gray. Let's change that by creating some
custom Materials, and applying them to the models.

Out with the old

If you had eaten your Wheaties this morning, you may have noticed that

when we imported the models, their Materials were imported as well. The

Project panel has a folder called Materials in it, which includes the three

drab, boring Materials that we currently see on our models. Unity will import

the materials that we create for our models depending on the
3D software package we used. Since these three models were not given

Materials in Blender, they came in with default gray Materials. Now's a good

time to select the Materials folder in the Project panel and press the Delete key

(command + Delete if you're on a Mac) to get rid of it. After confirming this

action, the models turn pinky-purple. Don't worry—we'll fix that.

1. Right-click/alternate-click any empty area in the Project panel (or click on the
Create button at the top of the panel) and choose Create | Material. A New
Material appears in the Project panel.

2. Rename the new material Skin Material.
3. Select the Skin Material and click on the color swatch (next to the

eyedropper) in the Inspector panel.
4. Choose a skin color for Nurse Slipperfoot. I chose R: 251 G: 230 B: 178 for

a Caucasian nurse, but you feel free to make her whatever color you like.

[288]

Chapter 8

5. Close the color window by clicking on the X icon in the top-right corner
(top-left corner on a Mac).

[289]

Hearty Har Har

6. Click and drag the Skin Material from the Project panel to the Hands_Mesh in the
Hierarchy panel. You may have to click on the gray arrows to expand the parent/ child

tree beneath the HandsAndTray GameObject in order to see the Hands_Mesh. In a

twinkling, Nurse Slipperfoot's hands go from a hot fuschia to a rosy peach.

What just happened – understanding Materials

We've used Materials in a few other situations so far, for fonts and other goofy things, but
applying Materials to models is the classic example. If meshes are like chicken wire,
Materials are like the papier-mâché coating we lay over them to give them "skin". A
Material is a collection of Shaders and textures that affect how light bounces off our models.

[290]

Chapter 8

This diffuse, flat color is about as simple as a Material can get. If we wanted to go all-out,
we could draw a more realistic image of Nurse Slipperfoot's skin, complete with freckles,
beauty marks, and fingernails, in a program like Photoshop. Then we'd import the
texture into Unity as an image file, and drag-and-drop it into that Texture2D slot that
you see beneath the Material's color swatch. Suddenly, Nurse Slipperfoot's arms would
look far more realistic. (It should be obvious, though, that realism isn't exactly what
we're going for with this game.)

UV mapping

Any textures that we apply to our models this way may wind up
disappointingly misaligned. There's a process in 3D texturing called
UV mapping, which is where you adjust the position and
orientation of your textures in relation to your models. Most
textures that get wrapped around anything more complex than a
primitive shape require some monkeying around with the models'
UV settings, which happens in your 3D art package outside Unity.

You can use textures in combination with Shaders to pull off even more impressive effects.
One popular Shader called a Bump Map (Bumped Specular or Bumped Diffuse in Unity) lets

you paint the "high" and "low" areas that the light will hit. By creatively painting a flat 2D

texture with light and dark tones, you can indicate which parts of the image you want to

appear to be raised, and which ones should appear to recede. A bump map could give
Nurse Slipperfoot's thumbs the illusion that there are modeled fingernails on their ends.
The advantage is that you get this illusion without the cost of actually modeling these
extra details—the Shader is doing all the work, and is tricking the light into seeing more
complex geometry than we actually have. Remember that more polygons (mesh
geometry) require more computer power to draw and move around the screen, so faking
this complexity with a Shader is a great plan.

If you're so inclined, you can even program your own Shaders to pull off custom lighting and
texturing effects on your models. That topic is way outside the scope of a beginner book,
but if writing custom Shaders interests you, don't let me hold you back. Go forth and code!
You can find some good resources for learning about more complex stuff like custom
Shaders in the back of this book.

[291]

Hearty Har Har

Now that you know how to create your own Materials, create two more Materials for your
other models—one for the tray and one for the heart. I chose a bright red for the heart (R:
255 G: 0 B: 0), and made it revoltingly wet-looking and shiny by choosing Specular from
the Shader dropdown. Then I cranked the "Shininess" slider up. If you had the inclination,
you could draw a veiny texture in your favorite 2D program and import it into Unity, and
then drag it onto the Heart Material. Gross!

[292]

Chapter 8

When you're finished creating and adding new Materials to the tray and the heart,
and dropping them into a new folder called "Materials", let's continue.

This just in – this game blows

Despite all the work we've done to add a fun theme, there's still a fundamental problem with our

keep-up game. 2D is one thing, but because we're expecting the player to bounce the heart in

three dimensions, the game is nigh impossible. I can only get a few bounces in before the heart

goes flying off into Never-Neverland. But thanks to the miracle of cheating, we can actually fix

this problem, and the player will feel much better about playing our game.

We're going to erect four invisible walls around the play area to keep the heart reined in.

1.
2.
3.

Navigate to GameObject | Create Other | Cube.

Rename the new Cube GameObject Wall Back.

Give the Cube these transform settings in the Inspector panel:

Position X: -0.15 Y: 1.4 Z: 1.6

Rotation: X: 0 Y: 90 Z: 0

Scale: X: 0.15 Y: 12 Z: 6

[293]

Hearty Har Har

4. Uncheck the Mesh Renderer checkbox in the Inspector panel to make the back
wall invisible to the player.

5. Repeat these steps to create three more Cubes called Wall Front, Wall Left,
and Wall Right. The best way to do this is to duplicate the Front Wall three
times. Just right-click/alternate-click the Wall Front GameObject and choose
"Duplicate" from the context menu. These are the settings I used to place the other
walls, but feel free to tweak them to suit your taste:

Wall Front

Position X: -0.7 Y: 1.4 Z: -2.4

Rotation X: 0 Y: 90 Z: 0

Scale X: 0.15 Y: 12 Z: 6

Wall Left

Position X: - 2 Y: 1.4 Z: 0.56

Rotation X: 0 Y: 17.6 Z: 0

Scale X: 0.15 Y: 12 Z: 6

Wall Right

Position X: 1.6 Y: 1.4 Z: -0.06

Rotation X: 0 Y: 348 Z: 0

Scale X: 0.15 Y: 12 Z: 6

[294]

Chapter 8

6. Remember to turn off the Mesh Renderer settings for each wall. You can
turn them back on in case you need to fine-tune the positioning of each wall
and you want to see the object in the Scene view.

7. I made a slight tweak to the handsAndTray transform, nudging the X
rotation value to 16.

It's like TRON up in here! Save the Scene and test the game. To the player, it seems as if
the heart is bouncing off Nurse Slipperfoot's forehead, or the edges of the screen, but we
know better. We've actually cheated in favor of the player, to help him have more fun and
success with our game.

In defense of the Cube

If you've poked around Unity a little on your own, you may have wondered
why we placed four cubes instead of four planes. For starters, planes are one-
sided and they disappear when you look behind them, making it a little more
difficult to position them into place. And because they're one-sided, we risk
having the heart pass right through them if they're oriented the wrong way.

For the home stretch, we'll repeat a few of the steps we've already learned to display the
number of hits the player achieves while playing, and to add a Play Again button when
we detect that the heart has plummeted past the tray and into the abyss.

[295]

Hearty Har Har

First, let's create a custom font texture to display some GUIText showing the player

how many times he's bounced the heart.

1. Create a new GUIText object and call it Bounce Count. Follow the instructions in
Chapter 7, Don't Be a Clock Blocker (in the Creating Font Texture and Material
section) for creating a GUIText object and mapping a font material to it. This

time, I chose a font called "Cajun Boogie" because it's ridiculous.
2. Change the font size in the Font Exporter. I chose 45 pt for the font I chose—

your mileage may vary.
3. In the Inspector panel, set the Bounce Count transform position to X: 0.9 Y: 0.9 Z:

0 to place it in the upper-right corner of the screen.
4. Choose Anchor: Upper Right and Alignment: Right from the GUIText

component settings in the Inspector panel.

Now we have a fun on-screen GUIText GameObject to display the player's bounce score.

[296]

Chapter 8

We need to attach a new script to the heart. The script will respond to two important

situations: when the heart hits the tray, and when the heart misses the tray completely and

dive-bombs the Great Beyond. Let's create the script and add some simple code to it.

1. Right-click/alternate-click the Project panel (or use the Create button) and choose
Create | JavaScript.

2. Rename the new script HeartBounce.
3. Double-click to open the script in the script editor.
4. Add the following code to the top of the script above the Update function:

function OnCollisionEnter(col : Collision) {

if(col.gameObject.CompareTag("tray")) {
Debug.Log("yes! hit tray!");

}
}

What just happened – charting a collision course

There's some new code happening here. OnCollisionEnter is a built-in function
that gets called when the GameObject's collider touches (or collides with) another
GameObject's collider, as long as one of those colliders is attached to a GameObject
with a non-kinematic Rigidbody Component (like our heart). We use the variable
col (short for collision) to store the argument that gets passed in. That argument
contains a reference to whatever it was we hit.

When Worlds Collide

There's a handy matrix in the Unity documentation describing how different

colliders interact, and the messages they send when they collide.
Give it a look:

http://docs.unity3d.com/Documentation/Components/

class-MeshCollider.html

One of the ways we can find out exactly what we hit is to ask for its tag. Here we're
asking whether the Collision's GameObject is tagged tray. In order for this to work, we
need to learn how to tag things.

[297]

Hearty Har Har

Save and close the HeartBounce script—we'll come back to it in a jiffy. First, let's tag the tray
GameObject so that we can determine if the heart has collided with it.

1. Click on the HandsAndTray GameObject in the Hierarchy panel.
2. In the Inspector panel, just beneath the GameObject's name, is a dropdown

labeled Tag. Choose Add Tag from the bottom of this drop-down list. (By default,
all Game Objects are marked "Untagged")

3. We're taken to the Tag Manager. Click on the gray arrow beside the word Tags at
the top of the list.

[298]

Chapter 8

4. There's an invisible text field next to the line labeled Element 0. This takes a leap of
faith the first time you do it. Click on the blank area beneath the 1 on the Size line.
Then type the word tray. Press the Enter key to make it stick. Notice that Unity
adds a new blank tag for us, labeled Element 1.

'

5. Click to select the Tray_Mesh in the Hierarchy panel (you may need to click on the
gray arrows to expand the hierarchy beneath the HandsAndTray Game Object).
When we chose "Add Tag," you may have thought that we were adding a tag called
"tray" to the HandsAndTray GameObject. In fact, "Add Tag" actually means "add a
tag to the list of tags we can choose from". The new tag isn't automatically added
to any GameObject.

[299]

Hearty Har Har

6. Now that we've added the tray tag, we can select it from the drop-down
list. With the Tray_Mesh selected, choose tray from the Tags dropdown in
the Inspector panel to tag the Tray_Mesh.

7. Tag the Hands_Mesh with the tray tag as well.
8. Click and drag the HeartBounce script to the heart GameObject to attach it.

Save the Scene and test your game. Keep an eye on the message bar at the bottom
of the screen. When the heart hits the tray or hands models, you should see a
message saying yes! Hit tray!

Now that we can detect when the heart is hitting the tray, there's no end to the fun
we can have! While we're in the code, let's make a quick change to make the
gameplay slightly better.

1.
2.

Double-click to open the HeartBounce script.

Type the following at the top of the script:

#pragma strict
var velocityWasStored = false;

var storedVelocity : Vector3;
function OnCollisionEnter(col : Collision) {

if(col.gameObject.CompareTag("tray")) {
Debug.Log("yes! hit tray!");

[300]

Chapter 8

if (!velocityWasStored) {

storedVelocity = rigidbody.velocity;

velocityWasStored = true;
}
rigidbody.velocity.y = storedVelocity.y;

}
}

Save the script and test the game. You may not notice a difference at first, but we've made
a clear improvement to our mechanic.

What just happened – storing velocity

The trouble with Unity's physics simulation is that it's almost too good. Left to its own
devices, our heart will bounce less and less until it eventually runs out of steam and
comes to rest on the dinner tray. Realistically, this might actually be what a still-beating
human heart would do, given the circumstances. I'm too squeamish to find out for sure.

But this isn't realism—this is video games, baby! This is the land of gigantic guns and
anthropomorphic mushrooms! We want that heart to bounce forever, with no
degradation over time when the heart bounces against the tray and the walls.

That's what our little script does. The first time the heart bounces, we store its velocity
(distance over time) in a variable. Then we inject a little high-velocity serum into the heart
every time it hits the tray, overriding the slowly degrading velocity that the heart suffers
from hitting our invisible walls. We use the velocityWasStored flag to determine
whether the heart has bounced yet.

Let's introduce a few more variables to record how many times the player has
bounced the heart.

1.

2.
3.

Change the code to add these three variables at the top:

var hitCount:GUIText;

var numHits:int = 0;
var hasLost:boolean = false;

var velocityWasStored = false;

var storedVelocity : Vector3;

Save the script and return to Unity.

Select the Heart in the Hierarchy panel.

[301]

Hearty Har Har

4. We've created a variable (bucket) to hold a GUIText object. Drag the Bounce Count
GUIText GameObject from the Hierarchy panel into the GUIText slot of the heart
in the Inspector panel (or choose it from the pop-up menu). Now, whenever we
refer to hitCount in our script, we'll be talking about our GUIText GameObject.

5. Add the following code to the Update function:

function Update() { var

str:String = "";

if(!hasLost){

str = numHits.ToString();
} else {

str = "Hits:" + numHits.ToString() + "\nYour best:"

+ bestScore;

if(bestScore > lastBest) str += "\nNEW RECORD!";

}

hitCount.text = str;

}

What this script will do is check the hasLost flag on every Update, and change
the hitCount GUIText to show either just the bounce count, or a big score recap
at the end of the game that will look like this:

Hits: 32

Your Best: 12

NEW RECORD!

Note that we don't have any logic yet to flip the hasLost flag, nor do we have any code
to increment the numHits variable. Let's add those two things next.

\n

This code creates a line break. Whenever you see it, you can think of
it as if someone has hit the Enter key to space out some text. Be
aware that it only works inside Strings.

[302]

Chapter 8

The easiest way to figure out if the player has lost is to check the
transform.position.y value of the heart. If the heart has fallen through the floor, the
player obviously isn't bouncing it on the tray any longer.

1. Add the logic for incrementing the player's score (number of
hits/bounces before losing):

function OnCollisionEnter(col : Collision) {

if(col.gameObject.CompareTag("tray")) {
//Debug.Log("yes! hit tray!");

if (!velocityWasStored) {
storedVelocity = rigidbody.velocity;

velocityWasStored = true;
}
if(rigidbody.velocity.y > 1) {

numHits ++;
}

rigidbody.velocity.y = storedVelocity.y;
}

2. Add the "lose the game" check to the Update function:

function Update() { var

str:String = "";

if(!hasLost){

str = numHits.ToString();
} else {
str = "Hits:" + numHits.ToString() + "\nYour best:" +

bestScore;

if(bestScore > lastBest) str += "\nNEW RECORD!";

}
hitCount.text = str;

if(transform.position.y < -3){
if(!hasLost) {

hasLost = true;
lastBest = bestScore;

if(numHits > bestScore) {
bestScore = numHits;

}
}

}
}

[303]

Hearty Har Har

3. Add these variables to the top of the script:

var hitCount:GUIText;

var numHits:int = 0;
var hasLost:boolean = false;

var bestScore:int = 0;
var lastBest:int = 0;
var velocityWasStored = false;

var storedVelocity : Vector3;

What just happened – understanding the code

We start by incrementing numHits whenever the heart hits the tray:

if(rigidbody.velocity.y > 1)

{ numHits ++;
}

By checking if the heart's velocity is greater than 1, we're making sure it's on the upward part

of its bounce. We put this conditional check on the heart's velocity so that the player doesn't

score any points if he catches the heart on the tray and it just starts rolling around.
No bounce, no points.

if(transform.position.y < -

3){ if(!hasLost) {
hasLost = true;

This is like saying "if the heart is through the floor (transform.position.y is less
than negative 3), and the player hasn't lost yet, make the player lose".

Next, we record what the last high score was.

lastBest = bestScore;

If the number of hits the player pulled off in this round beats the player's best score,
reset the best score to the player's number of hits.

if(numHits > bestScore)

{ bestScore = numHits;
}

Save the script and test the game. The on-screen score counter updates with every hit
you get, and when you drop the heart, you get a recap of your last and best scores.

[304]

Chapter 8

The very last thing we need to do is to add a button to the end of the game so that the
player can play again. Let's revisit our good friend GUI from the last few chapters.

1. Add the OnGUI function to the HeartBounce script:

function OnGUI(){

if(hasLost){
var buttonW:int = 100; // button width

var buttonH:int = 50; // button height

var halfScreenW:float = Screen.width/2; // half of the

Screen width
var halfButtonW:float = buttonW/2; // Half of the

button width

if(GUI.Button(Rect(halfScreenW-halfButtonW,

Screen.height*.8, buttonW, buttonH), "Play Again"))
{

numHits = 0;

hasLost = false;
velocityWasStored = false;

transform.position = Vector3(0.5,2,-0.05);

rigidbody.velocity = Vector3(0,0,0);
}
}

}

What just happened?

For GUI pros like us, this script is a piece of cake.

The whole function is wrapped in a "has the player lost the game?" conditional statement.

We start by storing some values for half of the Screen's width and height, and the width
or height of the button.

var buttonW:int = 100; // button width

var buttonH:int = 50; // button height

var halfScreenW:float = Screen.width/2; // half of the Screen width

var halfButtonW:float = buttonW/2; // Half of the button width

[305]

Hearty Har Har

Next, we draw the button to the screen, and reset some game variables if the button is clicked:

if(GUI.Button(Rect(halfScreenW-halfButtonW,

Screen.height*.8, buttonW, buttonH),"Play Again")){
numHits = 0;

hasLost = false;
velocityWasStored = false;

transform.position = Vector3(0,2,0);

rigidbody.velocity = Vector3(0,0,0);
}

It's important that we reset the heart's starting position and the velocity of its Rigidbody

component. Try commenting either or both of these lines out and see what happens!

Save the script and try it out. Ticker Taker now uses 3D models and an on-screen score counter

to elevate a standard, dull keep-up game to a madcap emergency ward adventure.

[306]

Chapter 8

Ticker taken

Let's recap the mad skillz we picked up in this chapter. We:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Added 3D models to our game

Created some simple Materials

Learned how to tag GameObjects

Detected collisions between GameObjects Overrode

the physics simulation with our own code

Programmed an on-screen score counter and recap

We could still do a much better job of conveying the story and setting to the player in
Ticker Taker, so let's put another pin in this game and return to it in a later chapter. In the
next action-packed installment, we'll get a little more practice with GameObject collisions,
and we'll learn all about Prefabs. Prefabs will change the way you use Unity! I can't wait.

C# Addendum

When converting this script to C#, there was only one small change to the MouseFollow

script, which you can make quite easily.

There are no surprises whatsoever with the HeartBounce script. Here's how the script

looks translated to C#:

using UnityEngine;
using System.Collections;

public class HeartBounceCSharp : MonoBehaviour {

public GUIText hitCount;

private int numHits = 0;

private bool hasLost = false;

private int bestScore = 0;

private int lastBest = 0;
private bool velocityWasStored =

false; private Vector3 storedVelocity;

private void OnCollisionEnter(Collision col)
{

if(col.gameObjectCompareTag("tray"))
{

Debug.Log("yes! hit tray!");

[307]

Hearty Har Har

if (!velocityWasStored)
{

storedVelocity = rigidbody.velocity;

velocityWasStored = true;
}

if(rigidbody.velocity.y > 1)
{

numHits ++;
}

rigidbody.velocity = new Vector3(rigidbody.velocity.x,

storedVelocity.y, rigidbody.velocity.z);
}

}

void Update ()
{

string str = "";

if(!hasLost)
{
str = numHits.ToString();

} else {
str = "Hits:" + numHits.ToString() + "\nYour best:" + bestScore;

if(bestScore > lastBest) str += "\nNEW RECORD!";

}

hitCount.text = str;

if(transform.position.y < -3)
{
if(!hasLost)
{

hasLost = true; lastBest

= bestScore; if(numHits

> bestScore)
{

bestScore = numHits;
}

}
}

}

[308]

Chapter 8

void OnGUI()
{

if(hasLost)
{
float buttonW = 100; // button width

float buttonH = 50; // button height

float halfScreenW = Screen.width/2; // half of the Screen width

float halfButtonW = buttonW/2; // half of the button width

if(GUI.Button(new Rect(halfScreenW-halfButtonW,

Screen.height*.8f, buttonW, buttonH), "Play Again"))
{

numHits = 0;

hasLost = false;
velocityWasStored = false;
transform.position = new Vector3(0.5f,2,-0.05f);

rigidbody.velocity = new Vector3(0,0,0);
}

}
}

}

[309]

9

Game #3 – The Break-Up

We've been learning pieces of game development like Lego bricks. We've
chugged along merrily on two tracks simultaneously: learning about what
we need to build to have a complete game, and how we can use Unity to
build those pieces.

The Break-Up will be a simple catch game. Catch is in a genre of what we now
call mini-games—often, they are games within games. Catch, like keep-up, has
a very simple mechanic. The player controls a thing, (like a paddle, a character,
a bucket, or a trampoline), usually at the bottom of the screen, and other
things fall or move towards the player-controlled thing from the top of the
screen. In a catch game, the player has to connect his controllable thing with
the falling things (people jumping out of buildings, cherries falling from a tree,
and so on) to catch or collide with them. A common feature upgrade is to add
bad things that the player must avoid.

That's how the unskinned mechanic works. Of course, you can skin it in a million

different ways. One of the earliest catch games I ever played was called Kaboom!

on the Atari 2600. The player controlled a group of buckets, and had to catch

bombs dropped by the Mad Bomber villain at the top of the screen.

Game #3 – The Break-Up

The skin I've cooked up for the Break-Up puts you in the role of a guy who's been kicked
out of his apartment by his girlfriend. Your most prized possessions are your Beer Steins of
the World collection and your cartoon bomb collection, and your ex-girlfriend is throwing
both of them out of the window! The bombs, naturally, are lit. You have to catch the fragile
beer steins and avoid the bombs.

That skin is clearly just a little west of nuts, but it shows how far you can go with the
fictional wallpaper on a simple mechanic.

So what are we going to need? We should have some kind of backdrop to set the
scene, some beer stein and bomb models, and a character. Ideally, that character
should be animated. Oh, and we should probably learn how to blow stuff up too,
because blowing stuff up is awesome. In this chapter, let's learn:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

How to set up animations from external models

How to create particle effects like explosions and sparks

How to use Prefabs to handle multiple copies of the same

GameObject How to write one script to control multiple objects

How to make things appear on-screen out of thin air

As before, the first thing you should do is start a new Unity project for this chapter, and call it

TheBreakUp. Be sure to include the Particles.unityPackage file from the list. Once your

project starts up, save the default Scene and call it Game. Next, download and import the

assets package required for this chapter, and all of the goodies you need to build the game will

show up in the Project panel, in their own Materials and Models folders.

[312]

Chapter 9

Conversion perversion

As with the heart, hands, and tray models from our Ticker Taker project,

these particular goodies were created in Blender, a free 3D modeling

package. Then they were exported to the .fbx format, a common

format among different 3D software packages. The drawback in

converting your work to a common format is that certain things can be

lost in translation—pieces of the geometry can be flipped inside out,

textures can show up in the wrong place or not at all, and the model

might not look the way you want it to. Remember that
Unity can recognize a number of native 3D file formats. There are
advantages and disadvantages to working with native file formats
instead of common formats like .fbx, which you'll discover as
you gain more experience with Unity.

Time for

Let's cut right to the chase here: big round cartoon bombs are great. Real-life bombs aren't
quite as much fun, so let's keep it cartoony. We'll set up our cartoon bomb model and add
a special effect called a Particle System to make it look as though the fuse is lit.

1. In the Project panel, open the Models folder by clicking on the gray arrow
to expand it.

[313]

Game #3 – The Break-Up

2. Drag the bomb model into the Scene view.

3. In the Inspector panel, change the bomb's Transform Position values to 0, 0, 0 on
the X, Y, and Z axes to place the bomb at the origin of your 3D world. You can
also click on the gray gear icon and choose Reset Position from the dropdown.

4. Hover your mouse over the Scene view and press the F key. This places focus on
the bomb, which zooms into view.

5. Navigate to GameObject | Create Other | Particle System.

[314]

Chapter 9

6. In the Inspector panel, change the X, Y, Z position values of Particle System to 0, 3,
0. This places Particle System at the tip of the fuse.

7. In the Hierarchy panel, rename Particle Effect Sparks.

Particle systems give games their zest. They can be used to depict smoke, fire, water, sparks,

magic, jetstreams, plasma, and a pile of other natural and unnatural phenomena. Essentially,

they're a ton of tiny little flat images that turn to face the camera, in a common 3D technique

called billboarding. Each little picture can be textured, just like the Material on a 3D model. The

little pictures support transparency, so they don't have to look like squares. Particle systems have

an emitter, which is where the particles come from. The built-in particle system that ships with

Unity lets you control a dizzying array of additional parameters, such as the number, color,

frequency, direction, and randomness of the particles.

In pursuit of shiny objects

Many game developers use particle effects as a cheap trick to
reward their players. For many casual gamers, the best piece of
feedback in a puzzle game is a satisfying sound effect paired with an
explosion of particles. Games like Bejeweled and Peggle put particle
systems to work with great results.

Right now, our particle effect looks like spooky forest fairy magic, floating around our bomb.
We want something closer to the classic Warner Bros. Wile E. Coyote bomb, with
sparks shooting out of the fuse. Let's explore the wide range of settings that Unity's
particle systems offer.

Click on Sparks Particle System in the Hierarchy panel if it's not already selected.

[315]

Game #3 – The Break-Up

Check out the Inspector panel. There are a metric ton of settings and dials for tweaking
particle systems! We won't discuss them exhaustively because that's what software
manuals are for. Suffice it to say, the best way to get what you want out of particle systems
is to poke things until it looks right. Let's get poking!

1. Adjust the dials on your Particle System to match these values:
Top Section:

‰

‰

‰

‰

‰

‰

Start Lifetime: 0.1

Start Speed: 10

Start Size: 0.3

Emission:

‰‰ Rate: 50

Shape:

‰‰ Shape: HemiSphere

Keep all other settings in these sections at their default.

[316]

Chapter 9

Start Lifetime, the first value we tweaked, determines when the particles "die", or
disappear from the player's view. Sparks shooting out of a hissing fuse don't last very long,
so we've turned this value down quite a bit.

Start Speed is obviously-named. This value determines how fast the particles initially
shoot out of our emitter.

Start Size controls how large the particle images are. Toning this value down makes
the system look more sparky.

Under Emission, the Rate value controls the number of particles the emitter releases
over time. Increasing this value gives us more particles, and a busier system.

Under Shape, selecting HemiSphere instead of the default Cone makes the particles

shoot out more believably (or, if not more believably, more Looney Tunes-ably).

Move down to and check the Color Over Lifetime section. Here, we can make the
particles animate through a range of colors. With something fast and frenetic like a bunch
of sparks, we can choose a bunch of hot colors to give the particles a sparky kind of look.
Click on the swatch next to the Color label. The Gradient Editor pops up.

In computer graphics parlance, a gradient is a spectrum of colors that moves from one
color value to another, with 0 or more optional color values in between. The two little
monopoly house-shaped markers at either end of the white bar define the start and end
colors. Double-click each of them (or single-click and click on the resulting color swatch
that appears), and set their colors to red on the right, and white on the left.

Next, single-click in the empty space between these markers to create additional markers.
Create two new markers, and set their colors to orange and yellow, so that the gradient is
a smooth blend from "cool" red on the right, to hot white on the left. If you place too
many additional color markers, you can get rid of them simply by clicking and dragging
them off the spectrum. You can click-and-drag to move these markers around to control
how the colors on the spectrum blend.

[317]

Game #3 – The Break-Up

Here are the color values I used, from left to right:

255 / 255 / 255 (white)

249 / 220 / 0 (yellow)

246 / 141 / 0 (orange)

255 / 0 / 0 (red)

Great! That's looking more sparky already! The particles move through the color spectrum
as they travel through "life", before eventually expiring. It's ... *sniff* ... it's another
touching example of the circle of life.

It's looking pretty good, but in order to really pull off this spark effect, we should add a
material to the Particle System. This material will be applied to all of the little round
fuzzy particles in our system.

1. Create a new material by either right-clicking/secondary-clicking in the Project
panel and navigating to Create | Material, or by navigating to Assets | Create |
Material in the menu.

2. Name the new Material Spark. The sphere icon helps us remember that this is a
Material. Consider dragging this new material into the Materials folder to keep
your project organized.

[318]

Chapter 9

3. In the Inspector panel, choose Particles | Additive as the Shader type.
4. Click on the Select button in the square swatch labeled Particle Texture (it should say

None (Texture 2D) inside the square), and choose the texture labeled fire4 from the
list. If you don't see it in the list, you may have forgotten to import the Particles assets
package when you started your project. To rectify this, set your computer on fire, then
go outside and enjoy the fresh air and sunshine. (Or if you're bound and determined to
continue, import the Particles package under Assets | Import
Package | Particles).

5. In the Hierarchy panel, click again to select your Sparks Particle System.
6. In the Inspector panel, uncheck Cast Shadows and Receive Shadows in the

Renderer section. We're not exactly going for a realistic look here, so we can spare
Unity the chore of rendering fancy shadow effects that no one will notice. (Note
that real-time shadow casting is a Unity Pro feature. If you're not running Unity
Pro, fuhgeddaboudit!)

7. Still in the Renderer section in the Inspector panel, click on the circle next to the
Material label, which by default contains the default-particle material.

[319]

Game #3 – The Break-Up

8. In the resulting list, double-click to choose your newly created Spark Material.

There! Now it's looking even more sparky!

[320]

Chapter 9

Do you like fiddling with buttons and knobs? Maybe your eyes lit up when you saw all the
gory bits in Unity's Particle System? This is a great time to put the book down and fiddle
to your heart's content (with Unity, that is). Maybe you can find some settings that make
the sparks look even more sparky? You might try drawing your own texture that makes
the sparks look sharper or pointier than the comparatively smooth and fluffy fire texture
we're using. Or better yet, perhaps you could create another particle system and make a
thin trail of gray smoke to flow up from your fuse? Check out the velocity settings, which
give your particles direction, if you want to pull this off.

You can find a detailed explanation of every little Particle System setting in the Unity User
Guide at this address:

http://docs.unity3d.com/Documentation/Manual/ParticleSystems.html

Our game is going to contain not one bomb, but many. As with programming, doing
something more than once in Unity completely stinks, so we're going to take a shortcut.
We're going to create a built-in thing called a Prefab that will let us create a reusable bomb,
much the same way we created a programmatic function that we could call multiple times
in our script.

Follow these steps to create your first Prefab:

1. Right-click/secondary-click on the Project panel and navigate to Create |
Prefab, or navigate to Assets | Create | Prefab in the menu. A gray box icon
appears in your Project panel, labeled New Prefab. Because the box is gray, we
know this Prefab is empty.

2. Rename the Prefab Bomb. Just like Spark Material, the icon helps us to keep track
of what type of thing it is. For further clarity, consider adding the Bomb Prefab to
a new folder, which you should call Prefabs.

[321]

Game #3 – The Break-Up

3. In the Hierarchy panel, click-and-drag the Sparks Particle System to the
Bomb GameObject.

4. In the Hierarchy panel, click on the gray arrow next to the bomb model parent,
and you'll see the Bomb model and the Sparks Particle System nestled safely
inside. You've created a parent/child relationship between the two GameObjects.
Sparks will follow wherever Bomb leads.

5. In the Hierarchy panel, click-and-drag the parent bomb GameObject label, the one

that the Bomb model and the Sparks Particle System are nestled beneath, onto
the Bomb Prefab in the Project panel (remember, it has an empty gray cube icon
next to it). As a shortcut, you can also just drag-and-drop a GameObject into the
Project panel, and a Prefab will automatically be created for you.

When you pull the bomb GameObject into the empty Prefab, the gray Prefab icon
lights up blue. Filled Prefabs are blue, while empty Prefabs are gray. And 3D model
icons look suspiciously like filled Prefab icons, except that they have a little white page
on their blue boxes.

What just happened – what's a Prefab?

So what the heck is a Prefab, anyway? It's a container that holds stuff, and it's magically
reusable. Now that Sparks and Bomb are stowed safely inside a Prefab, we can populate
the Scene view with a whole pile of bombs. If you make any changes to the Prefab, all
other instances of the Prefab receive the same change. Let's see that in action:

[322]

Chapter 9

1. Click on the bomb parent in the Hierarchy panel and press the Delete key on your
keyboard (Command + Delete on a Mac) to get rid of it. It's okay. The Bomb
model and Sparks are tucked inside our new Prefab down in the Project panel.

2. Click-and-drag the Bomb Prefab out from the Project panel into Scene lots of

times. Populate your Scene with five or more Bomb Prefabs.

3. Move the bombs around Scene, so that they're not all stacked on top of each other.

18. In the Project panel, open up the Bomb Prefab by clicking on its gray arrow.

19. Click on the Sparks Particle System inside the Bomb Prefab.

20. In the Inspector panel, scroll down to the Renderer section.

21. Click on the Particle Texture swatch, where we originally chose the fire4
texture, and choose a different texture from the list. Choose something silly,
like the soapbubble texture.

22. All of the Bomb Prefabs in your Scene should update to display a soapbubble

texture on their particle systems! Test your game to see this in action.

23. Be sure to change the texture back to fire4 before continuing (unless you've got

a weird sense of humor).

You've just proven that what happens to the master Prefab happens to all Prefabs. We'll
come back to the bombs in a bit. For now, delete all of the Bomb Prefab instances from
the Hierarchy panel to get back to an empty Scene.

[323]

Game #3 – The Break-Up

Flashback

If you've ever used Flash, the concept of Prefabs may feel familiar.
Prefabs behave very much like Flash Movieclips.

Time for action

One of the models in the Models folder in the Project panel is called brownstone.
This is the brownstone apartment building from which our hapless hero has been ejected.
Let's set it up:

1. In the Project panel, click on the gray arrow to expand the Models folder.
2. Click-and-drag the brownstone model into Scene.
3. In the Inspector panel, set the apartment building's Transform

Position to X:0, Y:0, Z:0.
4. Our camera is not exactly pointed the right way.
5. Let's adjust the camera's Transform to get a nice low-angle view of

the brownstone building.
6. Click to select Main Camera in the Hierarchy panel.
7. In the Inspector panel, change its Transform Position to 35, 2.5, -38.

(Note: that's negative thirty-eight).
8. Change its Rotation values to 333, 355, 0.4.

9. The brownstone should swing into view in your Game view.
10. Change the camera's field of view to 51, to hide the fact that the brownstone

model is only two floors high. This place is rather dimly lit, so let's set up a light in
our scene to simulate daytime.

11. Navigate to GameObject | Create Other | Directional Light. Put the light at
the origin of your Scene (0,0,0) to make it easier to find.

[324]

Chapter 9

12. In the Inspector panel, change the light's Rotation values to X:45, Y:25, Z:0.

Now the building is illuminated rather nicely.

The biggest missing piece at this point is the player character. Let's get him into the Scene view.

1. Create an empty Prefab and name it Character. (Drop it into the Prefabs folder
if you'd like to keep your project organized.)

2. In the Project panel, click-and-drag the character model from the Models folder
into the Character Prefab.

3. Click-and-drag an instance of the Character Prefab from the Project panel into the
Scene view.

4. Use these settings to place the character:

Position: 24, 0, -16

Rotation: 0, 90, 0

[325]

Game #3 – The Break-Up

These settings place the character at the foot of the brownstone. He looks like he's about
to do some intensive aerobics with his arms out like that. This is called the "Christ pose" or
the "T-pose", and it's the preferred position for a character model because it makes it
easier to add a skeleton to the mesh, a process called rigging. A fully-rigged character is
called a character rig. A skeleton is a virtual set of "bones" that distorts the mesh so that
you can bend the limbs.

The character model that we're using has been pre-animated in Blender. It has
three animations: step, idle, and catch. Before we can play these animations using
Script, we have to tell Unity the frame ranges the model uses.

1. In the Project panel, click on the character model inside the Models folder.
2. At the top of the Inspector panel, click on the Animations tab.
3. Click on the little plus icon at the right edge of the Clips box two times, to list a

total of three animations.
4. Click on each animation in turn and, in the following section, name the

animations step, idle, and catch.
5. Use these settings for the Start, End, and Wrap Mode parameters:

‰

‰

‰

‰

‰

‰

step 1-12, Loop

idle 22-47, Loop

catch 12-20, Once

[326]

Chapter 9

6. When you are finished, click on the Apply button.

Now that these animations have been named and identified, we can call them up with code.

[327]

Game #3 – The Break-Up

Let's do exactly that! We'll create a new Script, and use what we already know about
following the mouse, to snap the player character to our mouse movement. Then we'll
tell the character which animation cycle to use when he's moving around.

1. Create a new JavaScript. Rename it Character. If you're keeping your project tidy,
consider creating a new folder called Scripts and dropping your new script into it.

2. Open the script and type in this code beneath the #pragma strict line:

var lastX:float; // this will store the last position

of the character
var isMoving:boolean = false; //flags whether or not

the player is in motion
function Start()
{

animation.Stop(); // this stops Unity from playing the

character's default animation.
}

function Update()
{

transform.position.x = (Input.mousePosition.x)/20;
}

So far, all this should look very familiar. We're using the same type of commands
we used with the keep-up game to make the GameObject follow the mouse
around, but this time the player is locked to the x axis, so he'll only be able to move
from side-to-side.

Now, we'll add a chunk of logic in the Update function to determine
whether or not the player is moving.

Note that the value 20 we've used here is a "magic number", which is

programming parlance for a bad practice where the utility of a number is not

explained. Your mileage with this number will vary based on your screen width.
Adjust this evil magic number to taste like paprika in your favorite stew recipe.

3. Add the following code to your Update function:

function Update()
{

var halfW:float = Screen.width / 2;

transform.position.x = (Input.mousePosition.x)/20;

[328]

Chapter 9

if(lastX != transform.position.x)
{
// x values between this Update cycle and the last one

// aren't the same! That means the player is moving the

// mouse.
if(!isMoving)
{
// the player was standing still.

// Let's flag him to "isMoving"

isMoving = true;

animation.CrossFade("step");

} else {
// The player's x position is the same this Update cycle

// as it was the last! The player has stopped moving the

// mouse.
if(isMoving)
{
// The player has stopped moving, so let's update the

flag
isMoving = false;

animation.CrossFade("idle");
}

}
lastX = transform.position.x;

}

4. Save the script. Now attach the script to your Character Prefab in the Project panel. I
find it tricky to master the click-and-drag process when it comes to Prefabs. Unity
always thinks I'm trying to drag my script above or below the Prefab. For a sure-fire way
to stick that script to your character, click on the Character Prefab in the Project panel.
Then, in the menu, navigate to Component | Scripts | Character. You should see the
Character script get added as a component in the Inspector panel.

5. Play your game to try it out. When you move the mouse, the character loops
through his "step" animation. When you stop moving the mouse, he
transitions back to his "idle" animation, looking for more stuff to catch.

Note: If your character doesn't animate and you get an
error reading, The animation state idle could not be
played because it couldn't be found!, you need to attach
the animation clips to the Prefab's animation class.

[329]

Game #3 – The Break-Up

1. Click on the Character Prefab in the Project window.
2. In the Inspector window, change the Animations Size to 3.
3. Attach each of the three animation clips we added to the model earlier.

What just happened – stepping through the "step" code

The comments should help clarify this code. This crucial line:

if(lastX != transform.position.x)

means "if the last x position of the character does not equal the character's current
x position...", We base the rest of the logic on that check.

If he was moving and he just stopped, flag him as "not moving" and crossfade to the "idle"
animation. If he was not moving and he just started moving since the last Update cycle,
flag him as "moving" and crossfade to the "step" animation.

I don't know about you, but I'm about ready to drop some bombs on this chump. We could do

what we've done before and add a Rigidbody Collider Component to the bomb, as we did with

the ball/heart in the keep-up game, and let Unity's physics take care of the rest.
But in this case, we might like a little more control over the velocity of the bombs. So
let's add Rigidbody and Collider Components to the bomb, but exclude it from Unity's
gravity calculations.

1. In the Project panel, click on the Bomb Prefab.
2. Navigate to Component | Physics | Rigidbody. You should see the new

Rigidbody Component appear in the Inspector panel.
3. In the Inspector panel, uncheck the Use Gravity checkbox. This will exempt

the bomb from Unity's gravitational pull. PROTIP: I kind of wish I had this
checkbox on my own body. That would be fun.

4. Navigate to Component | Physics | Sphere Collider. We don't need any
fancy poly-perfect Mesh Collider in this case because the bomb is
basically a sphere anyway.

5. In the Inspector panel, enter a value of 2 for the radius of Sphere Collider.
That should fit the bomb snugly. You can confirm this by placing a Bomb
Prefab in your Scene and checking it out, or you can take my word for it.

You'll remember from the keep-up game that the Rigidbody and Sphere
Collider/Capsule Collider Components work together to make code respond when
GameObjects touch each other.

[330]

Chapter 9

Now that the bomb is all rigged up, we'll be able to determine through code when it hits
the player character. However, the player character is missing its Collider Component too!
Let's fix that.

1. Click to select the Character Prefab in the Hierarchy panel.
2. Navigate to Component | Physics | Box Collider in the menu.
3. In the Inspector panel, update the Size and Center settings for your new

Box Collider with these values:

‰‰ Center: -1, 8, 1

‰‰ Size: 5, 16, 10

Just like we did with the bomb, we'll forego using a computationally complex Mesh
Collider in favor of a rough-hewn primitive. We've made a big, ugly green box around the
character. This will make less work for Unity, and for our game's purposes, anything fancier
would be overkill.

Add a Rigidbody component to the character, and mark it Is Kinematic, as we've done
before. Remember the rule: if it has a collider and it moves around, it needs a Rigidbody
(or else we'll make Unity do more work than it needs to).

[331]

Game #3 – The Break-Up

Enough prattle. It's bomb time!

1. Create a new JavaScript and name it Bomb. Drop it in the Scripts folder if
you're keeping things tidy.

2. Open up the script and type the following code:

function Update()
{

transform.position.y -= 50 * Time.deltaTime;

if(transform.position.y < 0)
{

transform.position.y = 50;

transform.position.x = Random.Range(0,60);

transform.position.z = -16;
}

}

We've seen these keywords before, so there should be no surprises here. On every
update cycle, move the bomb down in the y axis by 50 units per second:

transform.position.y -= 50 * Time.deltaTime;

If the bomb has fallen through the floor:

if(transform.position.y < 0) {

pop the bomb back up to the top of the apartment building:

transform.position.y = 50;

and use Random.Range to make it appear in a different spot along the top of the
building. This will create the illusion that there are multiple bombs falling from the sky.

Save this script. Just as we did with the Character Prefab, click on the Bomb Prefab in
the Project panel, and navigate to Component | Scripts | Bomb, to add the new script
to the bomb.

Drag the Bomb Prefab into your Scene, and give it the following Transform Position: X:-
9, Y:36, Z: -16. Now playtest your game.

Zut alors! There are sparky, lit bombs falling from the top of that apartment building! For
added amusement, try catching one on your character's face. We haven't done any
collision handling yet, so our ousted friend gets a grill full of bomb.

[332]

Chapter 9

I must say, there's a distinct missing element to our bomb-centric game to this
point. What could it be, what could it be? Ah, yes. ASSPLOSIONS. When they hit the
ground OR the player, those bombs need to blow up real good. Sounds like a
particle system would do just the trick.

1. Make sure you're no longer testing the game.
2. Navigate to GameObject | Create Other | Particle System. Rename it Explosion

(or Assplosion if you want to be awesome about it).
3. Create a new Prefab and name it Explosion. Drop it into your Prefabs

folder to keep the project organized.
4. From the Hierarchy panel, click-and-drag the Explosion Particle System into

the Explosion Prefab container.
5. Re-select the Explosion GameObject in the Hierarchy panel. Point your mouse at

the Scene view, and press the F key to bring the new Particle System into focus.
6. In the Inspector panel, adjust the Explosion settings thusly:

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

Duration: 0.1

Looping: Unchecked

Start Lifetime: 0.15

Start Speed: 60

Start Size: 5

Emission

‰‰ Rate: 1000

Shape

‰‰ Shape: Sphere

‰‰ Random Direction: Checked

[333

]

Game #3 – The Break-Up

7. By unchecking the Looping checkbox, we're creating a Particle System that will fire
once, and expire—a crucial characteristic of an explosion. The one drawback is
that you'll no longer get constant visual feedback. With the game stopped, click on
the Simulate button on the Particle Effect tool in the Scene view to view your
Particle System's playback.

[334]

Chapter 9

8. As before, check the Color over Lifetime circle. Click on the color swatch, and
modify the gradient to move from white on the left, through yellow and
orange, to red on the right, just as we did with the Spark system.

9. In the Renderer section, uncheck Cast Shadows and Receive Shadows.
(These matter only for Unity Pro users.) Drag the Spark material that

we used for our bomb fuse into the Material slot.

[335]

Game #3 – The Break-Up

10. You'll see from the Scene view that this explosion is a little too dramatic,
flowering violently in a fiery bloom. Yes, it will do nicely.

11. Change the Transform Position and Rotation values of Explosion to X:0 Y:0 Z:0.

An explosion like this can't be allowed to roam the streets, wreaking its flaming spite on
unsuspecting civilians. It must be stopped. And you, being a video game programmer,
are the only person who can stop it.

Write a quick script to determine when the last particle in the explosion has run its
course, and then destroy the explosion. It's the only way.

1. Create a new JavaScript called DestroyParticleSystem, and attach it as
a component to Explosion.

2. Modify the script thusly:

function LateUpdate ()
{

if (!particleSystem.IsAlive())
{

[336]

Chapter 9

Destroy (this.gameObject);
}

}

The built-in LateUpdate function fires after all Update function calls have finished.

3. At the moment, if you click to view the Explosion Prefab in the Project panel, you
may notice—to your horror—that all of the recent changes you made to your
Explosion Particle System have not "stuck" in the Prefab. To commit all of the
Hierarchy panel's Explosion changes to the Prefab mothership, click on the
Apply button at the top of the Inspector panel.

We're finished tweaking the explosion, so you should delete the instance of the
Explosion Prefab from the Scene view. The original stays safe and sound in the Prefab
container in your Project panel. Naturally, we want this explosion to appear whenever
we detect that the bomb has hit the ground. We've already put the logic in place to
detect a ground hit—remember that we're moving the bomb back up into the sky as
soon as it drops below ground level. So it should be a reasonable hop, skip, and jump
towards making that explosion happen. And luckily, it is!

1. Open up your Bomb Script and add the following variable at the very top:

var prefab:GameObject;

2. Then, just after the code where we detect a ground hit, add this line:

if(transform.position.y < 0)
{

Instantiate(prefab, transform.position,

Quaternion.identity);

We created a variable called prefab at the top of the script to store some sort of
GameObject. Note that small-p "prefab" is not a Unity keyword—we're calling it
that because calling it "monkeybutt" would make the code even more confusing.

[337]

Game #3 – The Break-Up

The Instantiate command does exactly what you suspect it does. We need to pass it a
reference to a GameObject (in our case, we've got one stored in the prefab variable),
along with arguments to determine the position and the rotation of the thing. Then Unity
goes looking for the GameObject we specified, and places it in the game at the
position/rotation we specify.

What do we pass for the position value? The bomb's own position, before we move the
bomb to the top of the apartment building. And what do we pass in for its rotation?
SCARY MATH! BLAH!!

Once again, I'm not even going to pretend that I understand Quaternion mathematics.
What I do know is that Quaternion.identity means "no rotation"—the object is
aligned perfectly with the world or parent axes.

"But wait," you say. How do we actually tell the Script what we want to instantiate? Ah,

there's the magic of Unity yet again. Save the Bomb Script, and follow these next steps:

1. In the Project panel, select the Bomb Prefab.
2. In the Inspector panel, find the Bomb (Script) Component. Notice that the variable

we called prefab is listed there. (If you actually did call your variable
"monkeybutt", you'll see that instead.)

3. Click-and-drag the Explosion Prefab from the Project panel into the Prefab variable
slot in the Inspector panel. You should see a little red green and blue icon appear in
the slot, with the label Explosion Prefab. I've got a good feeling about this!

[338]

Chapter 9

Test out your game. The bomb falls from the top of the building, "hits" the ground, and
calls in the Explosion Prefab before popping back up to the top of the building at some
random X position. The Explosion, because of its DestroyParticleSystem Script, does its
thing and then disappears from the scene. It's a beautiful thing.

Summary

So! Do we have a game yet? Not quite. Catching a bomb with your face sounds like a
great party trick, but our game is obviously missing a few things to make it playable.
We still need to handle the collision of the bomb against the player, and we need to
get those beer steins in there. They're apparently worth breaking up with your
girlfriend, so they sound pretty important.

In the next chapter, we'll do all these things and more. Buckle your seatbelt and turn that page!

C# addendum

Here are the C# translations you so richly deserve. Among the very few changes here is the
fact that you can't individually change the x/y/z transform.position values in C# as you can
in JavaScript—you have to change all three values at the same time by creating a new
instance of the Vector3 class.

BombCSharp

using UnityEngine;
using System.Collections;

[339]

Game #3 – The Break-Up

public class BombCSharp : MonoBehaviour {

public GameObject prefab;

void Update ()
{
transform.position = new Vector3(transform.position.x,

transform.position.y - 50 * Time.deltaTime,

transform.position.z);
if(transform.position.y < 0)
{
Instantiate(prefab, transform.position,

Quaternion.identity);
transform.position = new Vector3(Random.Range(0,60), 50,

-16);
}

}
}

DestroyParticleSystemCSharp

using UnityEngine;
using System.Collections;

public class DestroyParticleSystemCSharp : MonoBehaviour
{

void LateUpdate ()
{

if (!particleSystem.IsAlive())
{
Destroy (this.gameObject);

}
}

}

CharacterCSharp

using UnityEngine;
using System.Collections;

public class CharacterCSharp : MonoBehaviour {

private float lastX; // this will store the last position

of the character

[340]

Chapter 9

private bool isMoving = false; //flags whether or not the

player is in motion

void Start()
{
animation.Stop(); // this stops Unity from playing the

character's default animation.
}

void Update()
{

transform.position = new Vector3((Input.mousePosition.x)/20,

transform.position.y, transform.position.z);

if(lastX != transform.position.x)
{
// x values between this Update cycle and the last one

// aren't the same! That means the player is moving the mouse.

if(!isMoving)

{

// the player was standing still.

// Let's flag him to "isMoving"
isMoving = true;

animation.CrossFade("step");
}

} else {
// The player's x position is the same this Update cycle

// as it was the last! The player has stopped moving the mouse.

if(isMoving)

{

// The player has stopped moving, so let's update the flag
isMoving = false;

animation.CrossFade("idle");
}

}
lastX = transform.position.x;

}

}

[341]

10

Game #3 – The Break-Up Part 2

When last we left our put-upon protagonist, he had been kicked out of his

apartment by his girlfriend, who began throwing lit bombs at him from the fourth

floor. Luckily, our hero is bizarrely invulnerable to bombs, and what's more, he can

defy the laws of physics by balancing those bombs on his nose. Clearly, we've got

some work ahead of us if we want this game to make any sense.

As we continue to round out The Break-Up, we'll add the beer steins and their
smash animations. We'll write a collision detection script to make the
character react when he catches things. We'll learn how to save time by using
one script for two different objects. Then we'll add some sound effects to the
game, and we'll figure out how to throw a random number to play different
sounds for the same action. Let's get gaming.

If the whole point of the game is to catch mugs from the character's precious Beer Steins of
the World collection, then adding the steins should be our next step.

5. Create a new Prefab. Remember, you can either right-click/alternate-click in
the Project panel and choose Create | Prefab, or you can create one
through the menu by clicking on Assets | Create | Prefab.

6. Name the new Prefab Stein. Drop it into your Prefabs folder.

Game #3 – The Break-Up Part 2

3. Locate the Stein model in the Models folder of the Project panel.
4. Click-and-drag the Stein model into the empty Stein Prefab container. As we saw

before, the icon should light up blue to indicate that the Prefab has something in it.

We've learned these steps before—no surprises here. Now let's review how to
create a Particle System so that we can get a shattering glass effect for when our
steins hit the pavement:

1. Go to GameObject | Create Other | Particle System in the menu.
2. Rename the new Particle System as Glass Smash.
3. Hover the cursor over the Scene view and press the F key to focus the camera on

your Particle System. You may have to orbit the camera if the apartment
building gets in the way (hold down the Alt key and click/drag to do this).

4. In the Inspector panel, use the following settings (keep all other settings
at their default):

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

‰

Duration: 0.25

Looping: Unchecked

Start Lifetime: 0.2

Start Speed: 100

Start Size: 0.75

Gravity Multiplier: 50

In the Emission section:

‰‰ Rate: 100

[344]

Chapter 10

In the Shape section:

‰

‰

‰

‰

‰

‰

Shape: HemiSphere

Radius: 3

Emit from Shell: Checked

5. Finally, uncheck Cast Shadows and Receive Shadows in the Renderer section.

[345]

Game #3 – The Break-Up Part 2

What just happened – getting smashed

After punching in these settings, you should see a reasonable approximation of a shatter.
We get this splash effect by applying a gravitational force with the Gravity Multiplier
setting. The particles are then pulled back to Earth the moment they escape the emitter.
(You won't see this effect if you're in the top isometric view. Rotate your Scene into a
Perspective view to see what's happening.) Try increasing and decreasing this setting to see
what sort of effect it has on the Particle System.

The particles look a bit like snowflakes at the moment. We want something more like
sharp glass fragments, so let's set up a new Material with a sharper-edged texture on it to
make this effect look more convincing:

1. In the Project panel, right-click or alternate-click on an empty area and choose
Create | Material.

2. Name the Material Glass.
3. In the Inspector panel, choose Particles/Additive in the Shader dropdown.

[346]

Chapter 10

4. Click on the Select button in the texture swatch, and choose
glassShard.png from the list. (This image is in the assetsPackage file of
Chapter 10. Import the package if you haven't already.)

5. Select the Glass Smash Particle System from the Hierarchy panel.
6. In the Inspector Panel, scroll down to the Particle Renderer component.
7. In the Materials section, choose the Glass material from the pop-up menu.

[347]

Game #3 – The Break-Up Part 2

What just happened – I fall to pieces

Once we swap in these harder-edged textures, the effect is much improved! Now our
Glass Smash Particle System looks a little more like an explosion of glass chunks than a
violent headshot to Frosty the Snowman.

Let's place this Glass Smash Particle System into a Prefab so that it's ready to use with

our falling beer steins:

1. In the Project panel, right-click or alternate-click and choose Create | Prefab.
2. Rename the new Prefab as Glass Smash.
3. Click-and-drag the Glass Smash Particle System from the Hierarchy panel

into the empty Glass Smash Prefab. The icon lights up blue. That's how you
know it's working.

4. With the Particle System tucked safely away into the Prefab, delete the Glass Smash
Particle System from the Scene (select it in the Hierarchy panel, and press the
Delete key on your keyboard, or Command + Delete if you're using a Mac).

Clean up
I've kept my Project panel neat and tidy by putting all of my Prefabs into a
folder. I've done the same thing with my scripts, my materials, my models,
and my dirty sweat socks. Because there's not a lot going on in this
project, it may seem like wasted effort. Still, organizing assets into folders
is a good habit to get into. It can save your sanity on larger projects.

What just happened – duped?

We've almost duplicated the same process we followed to get the bomb working. Have
you noticed? With both the bomb and the stein, we put an imported model into a Prefab ,
and we created a particle system and put it in its own Prefab. Then we created a script to
move the bomb down the screen. We attached that script to the bomb. Then we dragged
the bomb's explosion particle system into the prefab variable of its Script component.

[348]

Chapter 10

This is all starting to sound familiar—too familiar. In fact, remember when we said earlier
that programmers are always finding ways to do less work? We saw that if you type the
same line of code twice, you may not be writing your code to be as maintenance-friendly
as possible. The same holds true for this bomb/beer mug situation. If the bomb and the
beer mug both need to do the exact same thing, why don't we make life easier for
ourselves and use the same script for both?

There's no need to create an entirely separate script for the stein. Follow these
steps to get more bang for your buck out of a single script:

1. Find the script you called Bomb Script in the Project panel, and rename it
FallingObject. Because we'll be using the script more generically, we

should give it a more generic name.

Renaming a Script in the Editor is fine for UnityScript, but you'll cause

problems if you rename a C# Script in this way, without also changing

the Class declaration at the top of the Script in MonoDevelop.

2. In the Project panel, select the Stein Prefab (not the Stein Model).
3. Choose Component | Scripts | FallingObject in the menu to attach the

script to the Prefab.
4. In the Inspector panel, you should see that the FallingObject has been

added as a Script component to the Stein Prefab.
5. As we did earlier with the Bomb Prefab, find the Glass Smash Prefab in the

Project panel. Click-and-drag it into the stein's prefab variable. By doing
this, you're telling the Script which thing you want to add to the screen when
the stein falls on the ground. In the bomb's case, it's the explosion. In the
stein's case, it's the glass smash.

6. Add a Capsule Collider component to the beer stein.

[349]

Game #3 – The Break-Up Part 2

7. Click to select the Cylinder child inside the Stein (click on the grey arrow to
expand the child list to see it). Change the Cylinder's X/Y/Z Position values to 0.

8. Jump back up to the parent Stein node. Change the parameters of
its capsule collider:

Radius: 2

Height: 5.5

9. Add a Rigidbody component to the beer stein.
10. Uncheck Use Gravity in the Rigidbody component settings. Recall that we're

handling the beer stein's movement programmatically in the FallingObject script.

[350]

Chapter 10

Two birds, one stone; or rather, two objects, one script. To test out the beer stein, drag the
Beer Stein Prefab into your Scene . Add the DestroyParticleSystem Script as a component
of the Glass Smash prefab to ensure the smash gets destroyed when it finishes playing. Hit
the Play button to try it all out.

What just happened – FallingObject: The PuppetMaster

Just like the bomb, the beer stein plummets from a random X position at the top of the
screen and explodes in a shower of particles when it hits the "ground". The bomb explodes
and the glass smashes, but both are controlled by an identical script. Unfortunately, they
both come to a gentle stop on top of the character's face when they collide, but that's
what we'll take a look at next.

Very variable?

You may already be sending up warning flags about this madcap plan to use one script
for two different objects. What if we wanted the bomb to travel at a different speed
than the beer stein? And don't we want two completely different reactions depending
on whether the player collides with the bomb or the stein?

We'll answer the collision question a little later in the chapter, and we'll tackle the variable
speed question now. But before we do, fire up your gray matter. How would you solve this
problem? How would you make the objects move at two different speeds, with two
different collision reactions, and still use the same script?

Terminal velocity is a myth – bombs fall faster

Ignoring the laws of physics for a second, let's look at how to make the two objects
fall at different speeds using the same script. One solution is to declare a variable
called speed at the top of the FallingObject script.

var speed:int;

Change the following line:

transform.position.y -= 50 * Time.deltaTime;

to:

transform.position.y -= speed * Time.deltaTime;

[351]

Game #3 – The Break-Up Part 2

Then for each object—the bomb and stein Prefabs—input a different number for the
speed value in the Inspector panel. Try 30 for the stein and 50 for the bomb. Two objects,
one script, and two different speeds. Awesome? Confirmed: awesome.

Know when to double down
At some point, objects become different enough that sharing a script is no longer

saving you time and effort, it's causing you grief. As a game developer, you need

to decide what sort of structure best suits your game-creating goal.
Programmers have all kinds of tricks to save themselves work and to logically

structure their code. The object-oriented programming pillar called inheritance
(which we've looked at briefly) is another way to get two objects to share

code, while ensuring that they function as two different things.
Wait till Sunday to take your code to church
When it comes down to just getting your game finished and playable, don't ever

feel foolish about making mistakes and writing your game the wrong way. A great

rule, especially when you're starting out, is to get the game working first, and then

go back to make the code elegant. Totally a fact—tuning up your code and making it

as organized and pretty as possible is called refactoring. When you're just starting

out, worry more about functional code than elegant code.

What just happened – when game objects collide?

Bombs plummet from the top floor of the apartment building and explode around our
character, as his beloved beer steins shatter on the pavement with every step he
takes. These are the origins of a competent catch game! Now, let's worry about what
happens when the player catches a stein or comes in contact with a bomb.

There are a few different ways we can go about this. We can write the collision detection code

into the FallingObject Script, but that might get complicated. We're using the same script for

both objects, and the objects need to do different things when they hit the player. It makes

more sense to me to put the collision detection on the player character. We'll check to see

when he gets hit by something, and then based on what hits him, he'll react in different ways.

[352]

Chapter 10

As we saw before with our bouncing heart, we can tag objects in the Scene, and then refer
to objects in code using their tag names. Let's tag the bomb and the stein so that the
player character can tell what hit him.

1. Select the Bomb Prefab in the Project panel. (You can actually select anything in this
step. We're not actually applying a tag—just creating one. But we need to select
something so that we see the tag interface show up in the Inspector panel. You can also
reach it by navigating to Edit | Project Settings | Tags in the Unity menu.)

2. At the top of the Inspector panel, press and hold on the drop-down labeled
Tag, and select Add Tag….

3. Click on the gray arrow to expand the Tags list near the top of the TagManager.
4. Click in the blank area beside the Element 0 label, and type the tag name bomb.

Then punch in a tag called stein.

5. Select the Bomb Prefab again in the Project panel. (This is when it counts.)
6. In the Inspector panel, choose your new bomb tag from the drop-down

list labeled Tag.
7. Follow the same process to tag the Stein Prefab.

With the bomb and stein properly tagged, we can write our collision detection code.

[353]

Game #3 – The Break-Up Part 2

Pop open the Character Script and let's get bizzay.

1. Type up the following function within the script. Be sure to follow the rules
we've learned about where to properly write a new function (that is, "outside"
of your other functions):

function OnCollisionEnter(col : Collision)
{

if(col.gameObject.CompareTag("bomb"))
{

// I got hit by a bomb!
} else if (col.gameObject.CompareTag("stein"))

{

animation.CrossFade("catch"); // Ima catch that stein!
}
col.gameObject.transform.position.y = 50;

col.gameObject.transform.position.z = -16;

col.gameObject.transform.position.x = Random.Range(0,60);
}

Once again, our prior knowledge of useful game code serves us well. This line
should already look familiar:

function OnCollisionEnter(col : Collision) {

We're declaring a function—in this case, a special built-in Unity function called OnCollisionEnter—

and accepting a variable called col as an argument. The value of col is a collision that Unity's

physics calculations detect whenever rigid bodies smack into each other.

if(col.gameObject.CompareTag("bomb"))

col.gameObject refers to whatever thing hits the GameObject to which this script is
attached (the Character). gameObject.CompareTag, naturally, checks the argument
against whatever tag that GameObject has stuck to it. We stuck bomb and stein tags on
the Bomb Prefab and Stein Prefab, so that's what we should get when they hit. We use
a branching conditional (if) statement to react to either the bomb or the stein.

animation.CrossFade("catch"); // Ima catch that stein!

[354]

Chapter 10

If the player gets hit by a beer stein, we'll play the "catch" animation stored in the
Character model.

col.gameObject.transform.position.y = 50;

col.gameObject.transform.position.z = -16;

col.gameObject.transform.position.x = Random.Range(0,60);

No matter what hits the player, we're going to throw the colliding object back up to the top
of the screen at some random X position and let it fall back down. This becomes
problematic if we end up having other stuff hit the player that doesn't need to respawn at
the top of the building, but let's get this script working simply for the time being.

But wait! Ees problem, señor. Save the script and try the game out. Then see if you
can spot the problem.

The trouble is that we're telling the character to play his "catch" animation when he

collides with a stein, but it's not happening. We see, at best, the first frame of that

animation, and then it's interrupted by either the "idle" or "step" animation:

1. Luckily, we can add a condition to the script to prevent these glory-hog animations
from playing if we're trying to catch a beer stein. Dip back into your
CharacterScript and make these changes:

if(lastX != transform.position.x)

{ if(!isMoving) {
isMoving = true;

if(!animation.IsPlaying("catch")){
animation.CrossFade("step");

}
}

} else {

if(isMoving) {
isMoving = false;

if(!animation.IsPlaying("catch")) {
animation.CrossFade("idle");

}
}

}

[355]

Game #3 – The Break-Up Part 2

By wrapping the animation.Play calls in these animation.isPlaying

conditionals, we can ensure that the character isn't busy playing his catch

animation when we determine it's time to step or idle. Remember that!

2. Save the script and try it out. Your player character should start catching
those steins like a champ!

What just happened – the impenetrable stare

The magical properties of our character's iron-clad bomb-catching face continue to
amaze—now, the bombs hit the character straight in the schnozz and wondrously
disappear! I don't know how many cartoons you watch, but the last time I saw
someone get hit in the face with a bomb, there was a satisfying explosion, along with
(possibly) a snickering mouse nearby.

How convenient. We just happen to have a reusable Prefab that contains a satisfying
bomb explosion. Wouldn't it be great if we could trigger that explosion to happen right on
top of the character's face? (The character might disagree with us, but I say let's go for it!)

Just as we did when our falling object hit the ground, we'll use the Instantiate command
to make a copy of a Prefab appear in the game world. This time around, when we
determine that the player has been hit in the face by a bomb, we'll instantiate the
Explosion Prefab on top of his head.

1. Add the following line to the top of the code:

var lastX:float;
var isMoving:boolean = false;

var explosion:GameObject;

2. Later on, in the conditional statement that determines when the player is
hit by a bomb, add the Instantiate command:

if(col.gameObject.CompareTag("bomb"))
{

// I got hit by a bomb!
Instantiate(explosion, col.gameObject.transform.position,

Quaternion.identity);
} else if (col.gameObject..CompareTag("stein")) {

3. Save the Script.

[356]

Chapter 10

4. In the Project panel, select the Character Prefab.
5. In the Inspector panel, locate the Explosion variable in the Script component.
6. Click-and-drag the Explosion Prefab into the Explosion variable slot.

What just happened – raindrops keep 'sploding on my head

We already know how the Instantiate command works, so we won't dissect it again.
Suffice it to say, when the bomb drops on the player's head, it appears to explode. The
explosion removes itself when it's finished, because it has the DestroyParticleSystem script
attached. Of course, we know what's really going on: we're just moving the bomb to the
top of the building and setting it to some random position along the X-axis so that the
player thinks it's a new bomb. Meanwhile, we're instantiating a new copy of the Explosion
Prefab at the exact spot where the bomb was when it collided with the player. Sneaky!

So far, the games we've made have been completely silent. I count this as a terrible

tragedy; audio in a game can account for half of the player's emotional experience.
In the case of games like Rock Band, there would be no game without audio (hilarious little
plastic instruments notwithstanding). Audio is so important to games that even crummy
little low-rent sounds effects (like the ones we're about to add to this game!) can increase
the game's awesomeness by a factor of WOW... to the power of GEE GOLLY—something
like that. It's all very scientific.

Let's rig up our Bomb and Stein Prefabs so that they can emit sounds.

1. In the Project panel, click on the Bomb Prefab.
2. In the menu, navigate to Component | Audio | Audio Source to add the

Audio Source component.

[357]

Game #3 – The Break-Up Part 2

3. Repeat those steps to add an Audio Source component to your Stein Prefab.

Now hear this
You may have noticed that Unity also offers an Audio Listener component.

What's the deal? Well, in the case of a 3D game, you don't necessarily want the

player to hear everything that's going on all the time. You want him to hear

audio fading in and out as he moves closer to or farther from the source
(the Audio Source, to be specific). By default, an Audio Listener component is

attached to the Main Camera in any Scene. In something like a first-person

perspective game, the Audio Listener will only pick up sounds from Audio
Source-enabled game objects if it's within range. If we tweak the settings just

right, the player won't hear a noisy washing machine GameObject from the other

side of the level. Each scene can only have one Audio Listener at a time.
Unity also offers a Unity Reverb Zone component. This is a spherical gizmo
that lets you define an area where the sound is "pure" and unaffected, with
a candy-coated craziness shell around it that lets you define echoes and
other potentially oddball effects.

With the Bomb and Stein Prefabs so enabled, we can add a few lines to the FallingObject

to make them play sounds when they hit the ground.

Let's drop a couple of lines into the FallingObject script to fire off a few sounds:

1.
2.

Open the FallingObject script.

Declare a clip1 variable at the top of the script:

var prefab:GameObject;

var speed:int;
var clip1:AudioClip;

3. Just after we determine that the falling object has hit the

ground, play the clip1 sound:

if(transform.position.y < 0)
{

audio.PlayOneShot(clip1);

[358]

Chapter 10

By now, you've probably guessed that there's one more step involved. The script really has
no idea what clip1 actually is—it's just a variable placeholder. Let's add some actual
sound files to the Bomb and Stein Prefabs to get this party started:

1. In the Project panel, click to open the SFX folder. Yay—sounds!!

2. Again in the Project panel, click to select the Bomb Prefab.
3. In the Inspector panel, locate the clip1 variable in the FallingObject component.
4. Click-and-drag the sound effect labeled explosion1 into the clip1 variable slot.
5. Repeat the previous steps for the Stein Prefab, but this time, choose the

smash1 sound effect.

Test your game. Whenever the bomb hits the dirt, there's a satisfying (if retro) sound
effect to accompany it. Likewise, there's an 8-bit approximation of glass smashing
whenever the beer stein shatters.

[359]

Game #3 – The Break-Up Part 2

Silent 'Splosion

Even in 8 lo-fi bits, these sound effects don't have nearly the impact we need them to.
Why are they so quiet? The answer is in the Import Settings, where both sound
effects have been marked as 3D Sound.

Since Unity thinks these are 3D sounds, the sounds will be quieter the further away the
camera is from the audio sources attached to our objects. You can test this by moving
the camera in closer to where the objects land.

To let Unity know we want these sounds to play at a consistent volume regardless of
their proximity to the camera, we have to uncheck 3D Sound in the Import Settings,
and then click on Apply to make sure the change was registered. Do this for all of
the sounds in the SFX folder.

After you make this change, test your game again. The sounds will be noticeably louder.

What's the catch?

Using the same method that you used earlier, you should be able to figure out how to add
that "catch" sound effect to the player character when he catches a beer stein. Likewise,
you want to enable the explosion1 sound effect if the player gets hit by a bomb. If you
can't figure it out on your own, take a deep breath, and then go nag someone else to figure
it out for you. That's called delegating, and it's a perfectly legit way to develop a game.

[360]

Chapter 10

Perfect for smashing
Unity has all kinds of complex sound controls for playing music and other effects.

The audio.PlayOneShot command is perfect for collision sound effects. If you'd

like to learn more about adding sounds and music to your game, look up
AudioSource class, AudioListener class, and AudioClip class in the Unity

Script Reference.
Lo-fi, high fun
The sound effects that we're using for our game were created with a freeware sound

effects generator called BFXR. The sounds are all free to use and adorable,

hearkening back to a time when dragons looked like ducks and heroes had big white

4-pixel squares for heads. Download a copy of BFXR to generate your own temporary

(or even final) game audio. Look for a download link for BFXR and scads of other

helpful resources in the Appendix at the back of this book.

Have a go

If you're not a big fan of the retro sounds, it's possible that you may have missed out on
the cavalcade of cheese we now know as the 1980s. Feel free to create and import your
own sound effects for the game. There are a few different ways you can go about this:

‹

‹

‹

‹

‹

‹

Get busy with a microphone and record your own effects. This is the only way
you can truly be happy with the results and get exactly what's in your head into
the game. The industry term for sound effect scores is called "foley". You could
use the method acting approach and actually smash glass and detonate high-
powered explosives next to your computer (not recommended), or you could say
"boom!" and "smash!" into the microphone. It's a style thing.

There are a number of companies that sell royalty-free sound effects for film,
television, and movies. I'll give you two warnings about using these—the first is
that royalty-free sound effects collections can be very expensive on a hobbyist's
budget. The second is that once you get enough experience with these popular
collections under your belt, movies and teevee shows will be forever ruined for
you. You'll hear these same sound effects everywhere! It's tough to stay immersed
in a tense film when all you're thinking is "Hey, that's track #58 from disc 2 of the
Explosive Ballistics Collection."

There are less expensive royalty-free sound effects websites online, but I've
found that a good number of them contain pirated sound effects from pricy
collections that are passed off as legit effects. Caveat emptor, which is Latin for
"You probably won't get sued, but do the right thing anyway."

[361]

Game #3 – The Break-Up Part 2

One of my personal beefs about sound design in games is when the sound effects are too samey.

In our game, hearing the same two sound effects over and over again is wearying. One of the

things I like to do is to create a bunch of slightly different sound effects for the same event, and

when the time comes to play a sound, I just choose one of them at random.
This can really vary the soundscape of the game and keep your player from overdosing
on the same sound effects.

You probably noticed that the SFX folder contained five versions of the smash and

explosion sound effects. Let's learn how to set them up to play randomly:

1. Open the FallingObject script.
2. Delete the line where you define the clip1 variable, and replace it with an

array declaration:

var prefab:GameObject;

var speed:int;
var audioClips : AudioClip[];

3. Modify the line where you play the sound:

audio.PlayOneShot(audioClips[Random.Range(0,audioClips.length)]
);

Let's take a closer look at this new code:

var audioClips : AudioClip[];

This is a special built-in array; it is statically typed, which means we're telling Unity what
kind of thing it's going to contain. In this case, it's going to be a list of AudioClip types. A
normal array (var myArray = new Array()) won't show up in the Inspector panel, but
a built-in array will.

audio.PlayOneShot(audioClips[Random.Range(0,audioClips.length)]);

What we're doing here is picking a random number from 0 to the built-in array's
length. We're using the resulting number as the index of the audioClip in the array
that we want to play.

The last step is to click-and-drag the explosion and smash sound effects into the

new built-in array in the Inspector panel:

1.
2.
3.

Select the Bomb Prefab in the Project panel.

In the Inspector panel, locate the FallingObject component.

Click on the gray arrow to expand the Audio Clips array.

[362]

Chapter 10

4. Enter a value of 5 in the Size label. The list expands even further to
accommodate five empty slots for Audio Clips objects.

5. Click-and-drag the five explosion sound effects into the various indices of the array.
6. Repeat these steps for the Stein Prefab using the smash sound effects.

7. Run the game.

Now the falling objects make different-ish noises when they hit the ground. Variety
is the spice of life. Paprika is also reasonably delicious.

Consider this the jumping-off point for your catch game. With the basics roughed in,
there are a number of finer elements missing from the experience:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Title screen with Play

button Instructions page

Credits screen

End game

Play Again button

On-screen scoring (counting the number of steins the player has collected)

Sounds for when the player gets hit by something bad

We already know how to do a lot of this stuff. We've built a Title screen with a Play
button for Robot Repair, and it's the same process to build in the other screens, like
Credits and Instructions. We've created an on-screen counter for Ticker Taker. We've
built a timer for use in our games as well.

[363]

Game #3 – The Break-Up Part 2

If you imagine all of these elements as ingredients in a cake, you should know how to bake
a pretty scrumptious dessert by now. There are a few different decisions you can make
about how the game plays:

Score points

Let the player catch beer steins. Count up each one he catches. End the game when he
gets hit by a bomb. Show the player his last and best scores, and add a message when he
beats his best score, exactly as we did with Ticker Taker.

Survive

Add the timer from Chapter 8, Hearty Har Har, to the screen. The player has to keep
collecting beer steins until the timer runs out. He's allowed to miss only three beer steins—
if he drops his third stein, or gets hit by a bomb, the game ends. This is different from the
last scenario because there's a definite win scenario, whereas the other method kept the
player playing until he inevitably lost. This win scenario doesn't lend itself as well to adding
a high score board, and it doesn't have as much replay value. But certain players (myself
included) just can't get excited about games they can't win.

Quota

Clocks are a great and frequently used gameplay tool, but sometimes they just give players
the jitters. Another way you can determine player's success is by defining a quota: "You
must catch x beer steins to finish the game."

Levels

One possibility that a "win" scenario opens up is a multilevel structure for your game. If the
player makes it through the first level, you increase the number of bombs (or the falling
speed of the objects). Maybe a bus periodically drives through the screen, and the player
has to jump down a manhole to avoid it? Maybe the mugs get smaller and harder to catch,
or the bombs get larger and harder to avoid? If you are using a timer for a survival mode,
increase the length of time the player has to spend to survive. If you're using a quota
system, increase the number of steins the player has to catch to finish the level.

In this way, you combine the best of both worlds—the game has finite successes because the

player can finish and feel accomplished. But the player is also guaranteed to lose, because the

quota keeps getting larger and more impossible to fill. You could even loop it right back around

and put a level cap on the game; after finishing level 10, the player wins once and for all. Perhaps

his high score is the lowest time it took him to complete all ten levels?

[364]

Chapter 10

Health points

You could create some The Legend of Zelda-style heart graphics and display them at the
top-right of the screen. Every time the player gets hit by a bomb, remove a heart. If the
player loses all his health, the game ends. This feature works with both the "score points"
and "survive" ideas, and helps to give the player much more of a fighting chance. The
player is usually more willing to play your game if he perceives that the rules are "fair" and
if he can own any mistakes he makes. He should never feel like the game "made him die".
Keep in mind that "fair" can sometimes mean "unfairly advantageous to the player"—as
long as the computer doesn't "cheat", it's fair in the player's eyes.

Catch unlit bombs

You could create another bomb Prefab that doesn't have the sparking fuse, and ask that the

player catch both beer steins AND unlit bombs. The objects would probably need to fall more

slowly (or you'd need to pull the camera back to reveal a larger play area), and you may need to

increase the size of the fuse sparks to help the player differentiate a lit bomb from an unlit one.

Better yet, to make it even more "fair", you could put a bright red texture on
the lit bombs.

Vary the landscape

Doesn't this guy have anything in his apartment other than cartoon bombs and
Oktoberfest souvenirs? In order to make the game more visually interesting, you could
import a few new models and chuck those out the window. Tighty whities, action figures,
and naughty magazines might make nice additions to the fiction.

Summary

The savings don't stop there! We've already been able to take a scant knowledge of
programming and a few simple Unity concepts and turn them into three capable beginner
games, with a lot of potential. In the next chapter, we'll actually milk even more mileage out
of our blossoming game development skills by applying a graphics re-skin to The Break-Up
to turn it into a completely different game! Join us, won't you?

C# Addendum

This was another very straightforward port to C#. The only thing that could potentially
trip you up is realizing that in C# version of the FallingObject script, the built-in array's
Length property starts with a capital L, while Unity JavaScript uses a lowercase l.

[365]

Game #3 – The Break-Up Part 2

Here's the code:

FallingObjectCSharp.cs

using UnityEngine;
using System.Collections;

public class FallingObjectCSharp : MonoBehaviour {

public GameObject prefab;

public int speed;
public AudioClip[] audioClips;

void Update ()
{
transform.position = new Vector3(transform.position.x,

transform.position.y - speed * Time.deltaTime,

transform.position.z);
if(transform.position.y < 0)
{
audio.PlayOneShot(audioClips[Random.Range(0,

audioClips.Length)]);
Instantiate(prefab, transform.position, Quaternion.identity);

transform.position = new Vector3(Random.Range(0,60), 50, -16);
}

}
}

CharacterCSharp.cs

using UnityEngine;
using System.Collections;

public class CharacterCSharp : MonoBehaviour {

private float lastX; // this will store the last position

of the character
private bool isMoving = false; //flags whether or not the player

is in motion
public GameObject explosion;

void Start()
{

[366]

Chapter 10

animation.Stop(); // this stops Unity from playing the

character's default animation.
}

void Update()
{

transform.position = new Vector3((Input.mousePosition.x)/20,

transform.position.y, transform.position.z);

if(lastX != transform.position.x)
{
// x values between this Update cycle and the last one

// aren't the same! That means the player is moving the mouse

if(!isMoving)

{

// the player was standing still.

// Let's flag him to "isMoving"
isMoving = true;

if(!animation.IsPlaying("catch")){
animation.CrossFade("step");

}
}

} else {
// The player's x position is the same this Update cycle

// as it was the last! The player has stopped moving the mouse

if(isMoving)

{

// The player has stopped moving, so let's update the

flag isMoving = false;

if(!animation.IsPlaying("catch")){

animation.CrossFade("idle");
}

}
}
lastX = transform.position.x;

}

void OnCollisionEnter(Collision col)
{

[367]

Game #3 – The Break-Up Part 2

if(col.gameObject.CompareTag("bomb"))
{
// I got hit by a bomb!
Instantiate(explosion, col.gameObject.transform.position,

Quaternion.identity);
} else if (col.gameObject.CompareTag("stein")) {

animation.CrossFade("catch"); // Ima catch that stein!
}
col.gameObject.transform.position = new

Vector3(Random.Range(0,60), 50, -16);
}

}

[368]

11

Game #4 – Shoot the Moon

Way back in Chapter 2, Let's Start with the Sky, we talked about the difference

between a game's mechanics and its skin. We've used Unity to create some very

simple games with funny, strange, or interesting skins. In this chapter, we'll

investigate the enormous difference a new skin can make to our games.

We're going to re-skin The Break-Up from the last few chapters as a completely

different game: a sci-fi space shooter (think Galaga, Space Invaders, Centipede,

and so on). We're going to leverage the work we've already done on The Break-Up

to create a game with a very different feel, but the guts will be the same.
In the industry, we call this getting more products for less effort, and it's a
very good plan. When you break it down, there's not much difference
between a catch game and a space shooter. In both games, you're moving
your character back and forth across the screen. In a catch game, you're
trying to collide with valuable objects, while in a space shooter, you're trying
to avoid dangerous objects—namely, enemy ships. Luckily, our catch game
includes both colliding with and avoiding objects, so we're all set. The only
other real difference is that a space shooter, by definition, requires shooting.
You may be surprised to see how easy it is to include a new shooting feature
based on techniques you've already learned!

Game #4 – Shoot the Moon

Here is a preview of the game we'll build in this chapter:

Unity does not provide us with a Save as option to duplicate a project. You have to do

it through your computer's operating system.

1. Close Unity.
2. Navigate to the folder where you saved your finished game, The Break-Up, from

the previous two chapters.
3. Copy the folder.
4. Paste the folder wherever you'd like your new Shoot the Moon game to live.
5. Rename the copied folder Shoot the Moon (or ShootTheMoon if you're

picky about spaces).

[370]

Chapter 11

Unity copies over our whole Assets folder and everything in it, so you should have an
exact duplicate of The Break-Up, with a different project name. Let's open the new project:

1. Open up Unity, and then go to File | Open Project….

Protip
If you hold down the Alt key on your keyboard after double-clicking on

the file to open Unity, the Project picker prompt will appear, enabling you
to choose a project without opening the most recent one.

2. Navigate to your new Shoot the Moon project folder and open it.
3. Your project may open on a blank scene. Find the Game Scene in the Project

panel and double-click on it. You should see the brownstone apartment
building, the bomb, the stein, and all the other game goodies as you left them at
the end of the last chapter.

4. Import the new assets package for this chapter, which includes two spaceship
models and their materials, a new sound effect, and a new background texture.
Tuck all of the new stuff into appropriate folders to keep everything organized.

I've never known a space shooter to take place in front of an apartment building, so let's
get rid of our old backdrop. Then we'll pull a fun trick with multiple cameras to add a
space backdrop to our game.

1. Click on the brownstone apartment building GameObject and delete it
from the Scene.

2. Go to GameObject | Create Other | Camera to add a second camera to the scene.
3. Rename the camera SpaceCam.
4. In the Project panel, select the starfield texture.
5. Go to GameObject | Create Other | GUI Texture.

[371]

Game #4 – Shoot the Moon

Suddenly, the starfield image appears in the Game view as shown in
the following screenshot:

Suddenly, the starfield image appears in the Game view, but it completely takes
over, blocking everything in the Scene! Let's fix this.

1. In the Hierarchy panel, click on the starfield GUITexture that you just created.

[372]

Chapter 11

2. In the Inspector panel, we'll create a new layer. Click on the Layer dropdown

and select Add Layer....

3. Look down the list, past all the built-in layers. The next available slot is going to be
User Layer 8. Click on the empty field beside that label and type starfield.
Press the Enter key when you're finished to commit the layer name.

[373]

Game #4 – Shoot the Moon

4. In the Hierarchy panel, click to select starfield GUITexture.
5. In the Inspector panel, click on the Layer dropdown and choose the new

starfield layer you just created.

With the starfield GUITexture placed in a layer, we'll modify the SpaceCam

camera so that it only ever "sees" that GUITexture.

1. In the Hierarchy panel, click to select SpaceCam.
2. In the Inspector panel, remove the Flare Layer and Audio Listener components

(right-click/secondary-click on the names of the Components and choose Remove

Component, or pick this option by clicking on the small black gear icon to the right of

the Component label, next to the blue book icon). We can have only one Audio
Listener in the Scene, so let's leave that job up to the Main Camera by getting rid
of this extraneous listener. Likewise, we don't need this secondary camera to
render any lens flare effects, which is why we're nixing the Flare Layer.

3. Find the Clear Flags drop-down at the top of the Camera component. It defaults
to Skybox. Instead, set it to Solid Color.

4. Change the Depth to -1.
5. In the Culling Mask dropdown, choose Nothing. This deselects all other options

in the list, and the little Camera Preview window in the Scene view is cleared.
6. Again in the Culling Mask dropdown, select the starfield layer.

[374]

Chapter 11

We've now told our SpaceCam component to only render (draw, look at) stuff that's on the
starfield layer. Currently, the only thing on the starfield layer is our starfield GUITexture.
We changed the SpaceCam depth to a low number, because we want whatever it sees to
appear behind everything our Main Camera sees. Let's make a few changes to the Main
Camera to blend the two cameras' views.

1. In the Hierarchy panel, select Main Camera.
2. In the Inspector panel, set its Clear Flags to Depth only.
3. In the Culling Mask dropdown, click to uncheck the starfield layer. When you do

this, you're deselecting the starfield layer so that the Main Camera sees
everything else. The value of Culling Mask changes to Mixed, and the character
model pops into view.

4. Ensure that the Depth value of the Main Camera is set to 1.

Because the Main Camera's depth is 1 and the SpaceCam's depth is -1, the Main
Camera's imagery gets layered in front of the SpaceCam's picture.. You should
now see the jilted lover character from The Break-Up floating in the vacuum of
space. As if the poor guy wasn't having a bad enough day already!

[375]

Game #4 – Shoot the Moon

Resizing a GUI Texture
If you're running a very high resolution on your monitor, the 1024 x 768
pixel starfield image may not be large enough to cover your screen's real
estate. You can always select the GUITexture in the Hierarchy panel, and
adjust its Width and Height properties under the Pixel Inset heading. Keep
in mind, though, that scaling up a bitmap image will lead to an increasingly
poorer-quality picture. The very best thing, as we've learned in other
chapters, is to choose your target resolution and to build all of your
texture assets to work with that resolution.
Clear Flags
The Clear Flags setting we just used determines what a camera renders in all

the empty space that isn't stuff (models, particle effects, and so on).
The default is to render the skybox, which is an inverted cube to which you
can map, among other things, a sky texture, to provide the illusion that
the open world continues on for miles in any direction (which it does not).
The Clear Flags dropdown lets us fill that empty space with a skybox, a solid

color, or depth only. With Depth Only, the camera just draws the stuff in its

Culling Mask list. Any empty areas are gaping holes that get filled with

whatever the camera at a lower depth is showing. The final Clear Flags option

is Don't Clear, which Unity doesn't recommend because
of the resulting "smear-looking effect".

Time for

Because the hero from our last game does a lot of the same stuff we want our spaceship
to do, we really only have to replace the dude with the ship for fast, fun results.

1. In the Project panel, find the Hero Ship model and drag it into the Scene.
2. In the Hierarchy panel, click on the gray arrow to expand the Character Prefab.
3. Delete the child object called Armature.
4. Click on Continue if Unity warns you about losing the connection to the

Prefab. Aaand... poof! No more dude.
5. In the Hierarchy panel, drag the heroShip model into the recently gutted Character

prefab. (Do this all within the Hierarchy panel—not in the Project panel.)

[376]

Chapter 11

6. In the Inspector panel, punch in all of the default transform values (or
choose Reset Position by clicking on the little black gear icon) for the
heroShip. Then tweak the rotation:

Position: X:0, Y:0, Z:0

Rotation: X:0, Y:-180, Z:-180

Scale: X:1, Y:1, Z:1

7. In the Hierarchy panel, click to select the parent, the Character prefab.
8. In the Inspector panel, position the Character Prefab thusly:

Position: X:25, Y:5, Z:0

9. Set all Rotation values to 0 and all Scale values to 1. The HeroShip model swings into

view near the bottom of the Game view. I changed the Field of View setting of
Main Camera to 60 to pull it back out a smidge.

The HeroShip GameObject becomes a child of the Character Prefab, instead of the human
model and armature bones. This means that it keeps all of the components we tacked
onto our character—the Box Collider, the Script, the Audio Source, and so on. This is way
faster than recreating this Prefab from the ground up!

Save the project and play the game. Some wacky things may be going on with the bomb
and stein, but notice that the spaceship controls beautifully.

[377]

Game #4 – Shoot the Moon

Now we'll do a little fiddling to bring the Character Prefab in line with its new, smaller

spaceship model. You remember when we added that gigantic green box collider to the

human character? Well it's still there, and it's not going to cut it for this game. We fix!

1. In the Hierarchy panel, click to select the Character Prefab.
2. Point your mouse cursor over the Scene view, and press the F key on your

keyboard to focus in on the ship.
3. In the Inspector panel, find the Box Collider component.
4. In the menu, go to Component | Physics | Mesh Collider. A prompt asks us

whether we want to Replace or Add the new collider. Click on Replace to knock out
the oversized collider and replace it with the new one.

5. In the Project panel, find the heroShipCollisionCage model.
6. Click on the gray arrow to expand the list of goodies inside heroShipCollisionCage.

One of these goodies should be a mesh called CollisionCage (remember that a
mesh has a black grid pattern icon beside its name).

[378]

Chapter 11

7. In the Hierarchy panel, click again to select the Character Prefab.
8. Click and drag the CollisionCage mesh into the Inspector panel, in the Mesh field

of the Mesh Collider component.

9. At the top of the Inspector panel, click on the Apply button to commit all of
these changes to the Prefab.

Instead of a coarse, bulky box collider around our ship, we've used a special, separate
model to determine its collision contours. Now, objects won't hit the empty space above
the wings, on either side of the nose cone, as they would if we kept using a box collider.

[379]

Game #4 – Shoot the Moon

Custom colliders
You may have guessed that we could have used the HeroShip's own mesh in its

Mesh Collider. The trouble with that plan is that the HeroShip mesh is too

complex. If you're making a game where you're trying to squeeze every last

ounce of performance out of Unity, you might consider modeling a separate,

simpler mesh to use as the Mesh Collider for your spaceship—one that roughly

approximates the ship's shape, but with less detail, which is what we've done

here. Unity can chew through its calculations faster if you use optimized mesh

colliders. If you want Unity to turn your Mesh Collider into a convex Mesh

Collider, like we did with the hands and tray models in
Ticker Taker, the mesh has to have fewer than 256 triangles. You'll recall
that convex mesh colliders give us better results when testing collisions
between moving objects. An unoptimized mesh, like a poorly constructed
wall, can actually let other colliders pass right through it, which is called
"tunneling". Be sure to optimize your collider meshes to prevent tunneling.
Thin, flimsy colliders are good candidates for unwanted tunneling.

[380]

Chapter 11

Unlike The Break-Up, where we had good items and bad items, we'll have only bad items in our

space shooter Shoot the Moon. Those bad items will be evil enemy spaceships that are hell-

bent on destroying the universe, or whatever. Let's nix the beer steins, and leverage the work

we've already done on our Bomb Prefab to swap them out for our enemy spacecraft.

1. In the Hierarchy panel, click on the Stein Prefab and delete it. So much for space beer.
You can get rid of the stein model and the stein GameObject while you're at it.

2. Drag the EnemyShip model from the Project panel into the Scene.

3. In the Hierarchy panel, click on the gray arrow to expand the contents of Bomb.
4. Delete the Bomb child. Click on Continue at the Losing Prefab prompt.
5. Delete the Sparks child in the same way.
6. Drag the EnemyShip GameObject into the Bomb GameObject (all

within the Hierarchy panel). As before, the EnemyShip becomes a child
of the Bomb GameObject.

[381]

Game #4 – Shoot the Moon

7. Ensure that the transform of EnemyShip is set to default (the Reset option
under the gear icon will handle this quickly):

Position: X:0, Y:0, Z:0

Rotation: X:0, Y:0, Z:0

Scale: X:1, Y:1, Z:1

8. In the Hierarchy panel, click on the Bomb GameObject. In the Inspector
panel, position it like so:

Position: X:25, Y:71, Z:0

9. In the Inspector panel, within the Rigidbody component, check the Freeze
Rotation boxes for X, Y, and Z under the Constraints fly-out. This will prevent the
enemy ship from spinning all over the place after a collision.

10. Click on the Apply button at the top of the Inspector panel to commit these
changes to the Prefab.

11. Try out the game.

Positions are still nutty, but check it out—we've got a "good" spaceship that we can
move across the screen, and a "bad" spaceship that uses the old FallingObject Script to
slither down the screen.

[382]

Chapter 11

We're most of the way to a brand new game, and we barely broke a sweat! Let's take
a moment to rename a few things before we make some script adjustments.

1. Rename the Bomb and Character Prefabs EnemyShip and HeroShip, respectively.
You should make this change in both the Hierarchy and Project panels.

2. In the Project panel, rename the Character Script to HeroShip.
3. Likewise, rename the FallingObject Script to EnemyShip.

If you've been working through the book using the C# examples,
you should also rename the class inside the script when you
rename the script file.

4. In the Hierarchy panel, click to select the EnemyShip Prefab (formerly
the Bomb Prefab).

5. Hover your mouse cursor over the Scene view and press the F key to focus in on the
EnemyShip. You may notice that the Sphere Collider is too large. Let's fix that.

6. In the Inspector panel, change the radius of the Sphere Collider to 1.7.
7. Click on the Apply button to apply these changes to the source Prefab when

you're finished. It's safe to delete the Bomb and Stein models from the
Project panel if you like.

[383]

Game #4 – Shoot the Moon

In The Break-Up, our falling objects were larger, and they fell through a smaller
vertical range. Now that there's no ground to hit and the sky's the limit, we should
tweak a few lines of code in our EnemyShip Script (formerly the FallingObject Script).
Double-click on the EnemyShip Script and roll up your sleeves:

Change:

if(transform.position.y < 0)

to:

if(transform.position.y < -4)

This allows the enemy ship to reposition itself when it moves off the bottom
edge of the screen, instead of when it hits the non-existent ground plane at y:0.

Change:

transform.position.y = 50;

to:

transform.position.y = 71;

When the EnemyShip is repositioned, cranking up its y value will start it just above the

top edge of the screen.

Change:

transform.position.x = Random.Range(0, 60);

to:

transform.position.x = Random.Range(-11, 68);

This gives the EnemyShip a corrected horizontal range at which to spawn—
somewhere between -11 and 68 along the X-axis. You can either delete or comment
out these two lines (remember, to turn a line into a comment, you just add a double
slash // to the beginning of the line):

// audio.PlayOneShot(audioClips[Random.Range(0,audioClips.length)]);

// Instantiate(prefab, transform.position, Quaternion.identity);

[384]

Chapter 11

We're commenting out/deleting these lines because we don't really want the EnemyShip
to explode and make a noise when it moves off the bottom of the screen. In space, no one
can hear you get all blowed up.

Change the value in this line:

transform.position.z = 0;

Just below the position.z line, add this line:

transform.position.z = 0;

rigidbody.velocity = Vector3.zero;

Here's how the complete Update function should look:

function Update(){
transform.position.y -= speed * Time.deltaTime;

if(transform.position.y < -4) {
//audio.PlayOneShot(audioClips[Random.Range(

0,audioClips.length)]);

//Instantiate(prefab, transform.position,
Quaternion.identity);

transform.position.y = 71;

transform.position.x = Random.Range(-11,68);

transform.position.z = 0; rigidbody.velocity

= Vector3.zero;
}

}

What's with that rigidbody.velocity reset? Well, when GameObjects smack into each
other, it's possible for them to get knocked out of orbit, or for the physics engine to apply
a velocity to the GameObject's rigidbody. We'll just use those two lines to flatten
everything to zero when the ship starts a new descent down the screen.

The EnemyShip looks like a pretty cool buzzsaw thing. In a single line, we can throw
a rotation on there that'll make the ship spin and look all scary-cool.

Add this line within the Update function:

function Update () {
transform.position.y -= speed * Time.deltaTime;

transform.Rotate(0,0,Time.deltaTime * -500); // buzzsaw!!

[385]

Game #4 – Shoot the Moon

You'll remember from earlier chapters that multiplying by Time.deltaTime sets things to
the tempo of time, rather than updates. This way, an enemy ship takes two seconds to
travel across the screen, regardless of how fast or slow the player's computer is. It's hardly
fair to give players with slow computers a twitch advantage.

Save the EnemyShip Script and play your game. The angry-looking enemy ship bent on
universal annihilation or some such now makes a complete trip from the top to the
bottom of the screen. It respawns properly at the top, at some random X position. And it
spins just like a sharp, pointy bad guy should.

There are a few changes we should make to the HeroShip Script (formerly the Character
Script) to suit our new game. Let's do it:

1. Open the HeroShip Script.
2. Delete the else if condition handling the steins. Get rid of everything in

this snippet in bold:

if(col.gameObject.tag == "bomb")
{

audio.PlayOneShot(explosionSound); Instantiate(explosion,

col.gameObject.transform.position,
Quaternion.identity);

} else if (col.gameObject.tag == "stein") {

animation.Play("catch"); // Ima catch that stein!
}

Shoot the Moon doesn't have beer steins, so we can safely kill this chunk.

3. Delete all of the code controlling the character model animation. Get rid of

this whole section in bold:

if(lastX != transform.position.x) {
// x values between this Update cycle and the last one
// aren't the same! That means the player is moving the
// mouse.
if(!isMoving) {
// the player was standing still.
// Let's flag him to "isMoving"

isMoving = true;

if(!animation.IsPlaying("catch")){

animation.Play("step");
}

}

[386]

Chapter 11

} else {
// The player's x position is the same this Update cycle

// as it was the last! The player has stopped moving the
// mouse.
if(isMoving) {

// The player has stopped moving, so let's update

the flag.
isMoving = false;

if(!animation.IsPlaying("catch")){

animation.Play("idle");
}

}
}
lastX = transform.position.x;

4. Delete the isMoving variable from the top of the script:

var isMoving:boolean = false; // flags whether or not

the player is in motion

5. Delete the lastX variable definition from the top of the script:

var lastX:float; // this will store the last position of the

character

6. Delete the entire Start function:

function Start() {
animation.Stop(); // this stops Unity from playing the

character's default animation.
}

The hero ship doesn't have any default animation, so this code is unnecessary.

Here's how the complete, freshly preened script should look:

var explosion:GameObject;

function Update() {

transform.position.x = (Input.mousePosition.x)/20;
}

function OnCollisionEnter(col : Collision) {

if(col.gameObject.tag == "bomb")
{

[387]

Game #4 – Shoot the Moon

// I got hit by a bomb!
Instantiate(explosion, col.gameObject.transform.position,

Quaternion.identity);
}
col.gameObject.transform.position.y = 50;

col.gameObject.transform.position.x = Random.Range(-11,68);

col.gameObject.transform.z = -16;
}

Our human character in The Break-Up had animation cycles that we tapped into, but
the HeroShip model doesn't. Unity will keep throwing complaints that it can't find
these animations unless we tidy up the code as described above.

What just happened – hooray for lazy!

Take a look at these three lines in our HeroShip Script:

col.gameObject.transform.position.y = 50;

col.gameObject.transform.position.x = Random.Range(-11,68);

col.gameObject.transform.z = -16;

Those are the lines we used to reposition the falling object when it hit the player. We have

similar lines in our EnemyShip Script that we just updated with new values. Should we do the

same thing here? What if the values have to change again later? Then we'll have to update

the code in two different scripts. And that, in professional parlance, is irritating.

It makes sense to fold this code into some kind of ResetPosition function that both
scripts can call, yes? Then we'll only ever have to update the values in one place. BUT
can you really call a function on one script from a completely different script? Yes,
Virginia, there is a Santa Claus.

Let's get that function set up in the EnemyShip Script first. Double-click to open the
EnemyShip Script, and get typing.

1. Write this new function outside of and apart from the other functions in the script:

function ResetPosition(){

transform.position.y = 71;
transform.position.x = Random.Range(-11,

68); transform.position.z = 0;
rigidbody.velocity = Vector3.zero;

}

[388]

Chapter 11

These are the very same repositioning lines we already have. You can even just
type the shell of the function, and copy/paste those lines right in there. Either way,
you need to go back and eradicate those lines from the Update function and
replace them with a ResetPosition() function call.

2. Erase these bolded lines:

if(transform.position.y < -4) {

transform.position.z = 0;

transform.position.y = 71;

transform.position.x = Random.Range(-11,

68); rigidbody.velocity = Vector3.zero;
}

And replace them with the ResetPosition() function call:

if(transform.position.y < -4) {

ResetPosition();
}

When the interpreter hits that ResetPosition() function call, it'll jump
into the ResetPosition function and run those repositioning lines.

Save the EnemyShip Script. Next, hop over to the HeroShip Script to

make some changes.

3. Get rid of those old repositioning lines from the HeroShip Script. Delete the

lines in bold:

function OnCollisionEnter(col : Collision) { //

(a few lines omitted here for clarity)

col.gameObject.transform.position.y = 50;

col.gameObject.transform.position.z = -16;
col.gameObject.transform.position.x = Random.Range(-11,68);

4. Replace those lines with these ones:

function OnCollisionEnter(col : Collision) {

// (a few lines omitted here for brevity)

if(col.gameObject.GetComponent(EnemyShip))
{

col.gameObject.GetComponent(EnemyShip).ResetPosition();
}

}

[389]

Game #4 – Shoot the Moon

Here's how the whole OnCollisionEnter function should look:

function OnCollisionEnter(col : Collision)

{ if(col.gameObject.tag == "bomb")
{
// I got hit by a bomb!
Instantiate(explosion, col.gameObject.transform.position,

Quaternion.identity);
}

if(col.gameObject.GetComponent(EnemyShip))
{

col.gameObject.GetComponent(EnemyShip).ResetPosition();
}

}

Let's break those new lines down.

if(col.gameObject.GetComponent(EnemyShip)){

The value of col is something of type Collision. The Collision class has a variable
called gameObject, which refers to the GameObject involved in the collision. The
Game Object class has a function called GetComponent. You can pass the name of
the script you want to access as an argument.

In this case, we're referring to the EnemyShip Script attached to whatever hit the HeroShip.
By wrapping it in an if statement, we're effectively saying "if whatever just hit the
HeroShip has a component called EnemyShip attached to it..."

col.gameObject.GetComponent(EnemyShip).ResetPosition();

… then call the ResetPosition() function on that script.

Our conditional check confirms that such a script even exists on the colliding object, by
returning (answering) true or false. (Recall that conditional if statements always
have to boil down to one of these two boolean states: true or false.)

Later, if a hypothetical FallingStar GameObject hits the ship, and it doesn't have a script
called EnemyShip attached to it, we would get an error when trying to refer to the
EnemyShip script. The conditional statement protects us from getting that error. We check
to see if that script exists on the colliding object before we go calling any functions on it.

[390]

Chapter 11

The end result of all this is that when the EnemyShip hits the bottom of the screen, it calls

the ResetPosition() function and pops back up to the top. When the EnemyShip (or any

GameObject with the EnemyShip Script component attached) hits the HeroShip, the

HeroShip Script calls the EnemyShip Script's ResetPosition() function, and the
EnemyShip pops back to the top of the screen.

Save the script and give your game a try! The enemy ship resets its position in both of
these cases. Success!

Optimization
Here's one example of how we could optimize our code to make it more
efficient. The GetComponent function is an "expensive" operation,
which means that it takes longer for the computer to execute than other
built-in functions. You'll notice that we're calling the function here twice.
We could store the results of the GetComponent function in a variable.
Then we'd have to call that function only once. Look here:

var other = col.gameObject.GetComponent(EnemyShip);

if (other) {

other.ResetPosition();
}

As with refactoring (making the code pretty), we should focus on getting

our code to work first. Then we can go back to make it faster and cleaner.

Time for

This is a whole lot of nerd-talk and not enough shooting. Let's build a bullet so that we
can take these alien bad boys down.

1. In the menu, navigate to GameObject | Create Other | Sphere. Rename
the resulting Sphere bullet.

2. In the Hierarchy panel, click to select your newly minted bullet.
3. In the Inspector panel, reset the bullet's Transform values, and then punch in

0.5 for all three Scale values:

Position: X:0, Y:0, Z:0

Rotation: X:0, Y:0, Z:0

Scale: X:0.5, Y:0.5, Z:0.5

4. Hover over the Scene view and press the F key to focus it within the Scene.

[391]

Game #4 – Shoot the Moon

A dull, gray bullet just won't cut it in a sci-fi game. Let's make a neon-green Material and
apply it to the bullet, because in the distant future, bullets are obviously neon-green. I
have this crazy hunch.

1. In the Project panel, create a new Material. Rename the new Material Bullet.
2. Click to select the new Bullet Material.
3. In the Inspector panel, click on the Material's color swatch and choose neon

space-bullet green. I chose these values:
R: 9

G: 255

B: 0

4. In the Hierarchy panel, select the Bullet GameObject.
5. In the Inspector panel, find the Mesh Renderer component.
6. Apply the Bullet Material to the Bullet. You can either do this by choosing the

Bullet Material in the Element 0 popup of the Materials section, or by clicking and
dragging the Bullet Material into the slot. (You may have to click on the gray arrow
to open the Material list first.) You can also drag the Material onto the
GameObject in either the Hierarchy or the Scene view.

7. Uncheck Cast Shadows and Receive Shadows in the Mesh Renderer component.

[392]

Chapter 11

OK, don't get too excited. We're not actually going to build Halo... we're going to

build a halo to make our bullet look all glowy and awesome.

1. Ensure that the Bullet GameObject is still selected.
2. In the menu, go to Component | Effects | Halo. This adds a cool halo

effect to the bullet.
3. In the Inspector panel, click on the color swatch for the Halo

Component. Enter the same neon-green color values as before:
R: 9

G: 255

B: 0

4. Change the halo's Size value to 0.5.

Now let's get the bullet ready to move around in the physics engine.

5. Make sure the Bullet GameObject is still selected.

[393]

Game #4 – Shoot the Moon

6. In the menu, go to Component | Physics | Rigidbody.
7. In the Inspector panel, uncheck Use gravity.
8. At the top of the Inspector panel, click on Add Tag... in the Tag dropdown.
9. Create a new tag called bullet. (If you want to keep your file tidy, you can

delete the old bomb and stein tags left over from the previous project, and shrink
the list size down to 2.)

10. Click again to select the bullet GameObject.
11. In the Inspector panel, choose the new bullet tag from the Tag dropdown to apply

it to the bullet GameObject.

We'll create a very simple Script and hook it up to the bullet.

12. In the Project panel, create a new JavaScript.
13. Rename the new Script Bullet.
14. Give the Bullet Script this Start function:

function Start() {

rigidbody.velocity.y = 100;
}

This gives the bullet some oomph to get it moving along the Y-axis.

15. Add the following lines to the Update function:

function Update () {

if(transform.position.y > 62) {
Destroy(gameObject);

}
}

16. In the Hierarchy panel, click to select the Bullet GameObject.

[394]

Chapter 11

17. Attach the Script to the bullet by either clicking and dragging the Script on top of the

Bullet GameObject or navigating to Component | Scripts | Bullet from the menu.

Finally, we'll create a new Prefab to house the Bullet GameObject.

24. In the Project panel, create a new Prefab and call it Bullet. (Remember to keep

your project organized by dropping your assets into their respective folders.)
25. Drag the Bullet GameObject from the Hierarchy panel into the empty Bullet

Prefab container. The gray icon lights up blue to indicate that the Prefab is full.
26. Select and delete the Bullet GameObject from the Hierarchy panel. It's safe

inside the Prefab now.

Put your toys away
If you've been keeping all of your assets organized into folders to this point,
things should be humming along nicely. If not, you may be facing a growing
mess of similarly named assets and disused pieces from the previous project.
Take some time to go through the Project panel and clean the house. We don't

need the bomb, brownstone, stein, or character models any more, and their

Materials can get chucked as well. A clean project is a happy project.

[395]

Game #4 – Shoot the Moon

In order to have something for the ship to fire, we have to create a variable at the top of the

script called bullet, and then click-and-drag the Bullet Prefab into the variable slot in the
Inspector panel. Otherwise, the script will have no idea what we're talking about when

we try to instantiate something called bullet.

Follow these steps:

1. Add the variable declaration at the top of the HeroShip Script:

var bullet:GameObject;

2.
3.
4.
5.

Save the script.

In the Hierarchy panel, select the HeroShip Prefab.

In the Inspector panel, find the HeroShip Script component.

Hook up the Bullet Prefab to the bullet variable.

Let's add a few lines of code to the HeroShip Script to make the bullet fire when you click
on the mouse button, because shooting is cool.

function Update ()
{

transform.position.x = (Input.mousePosition.x)/20;

if(Input.GetMouseButtonDown(0)){
Instantiate(bullet, transform.position + new Vector3(-3,2,0),

Quaternion.identity);
Instantiate(bullet, transform.position + new

Vector3(3,2,0), Quaternion.identity);
}

}

Let's review:

if(Input.GetMouseButtonDown(0)){

[396]

Chapter 11

This line returns true if the left (or primary) mouse button (which has an ID of 0) has
been pushed down within this Update cycle.

Instantiate(bullet, transform.position+new Vector3(-

3,2,0), Quaternion.identity);
Instantiate(bullet, transform.position+new

Vector3(3,2,0), Quaternion.identity);

We've used the Instantiate command before—this time, we're creating two new Bullet
Prefab instances in the same position as the HeroShip, with the same rotation. In the same
statement, we're moving the bullets two units along the Y-axis, which places them at the
wings of our hero ship. The left bullet gets nudged -3 units along the X-axis, while the
right bullet is nudged 3 units the other direction, which places the bullets right around the
ship's wing-mounted cannons. The bullets start moving up the screen because of
rigidbody. velocity we applied in the bullet script's Start function.

Now test your game. When you click on the left mouse button, two new instances of the
Bullet Prefab are added to the Scene. A force is applied to their Rigidbody components
that will eventually send them careening up to the top of the screen. Then they're
positioned at the wing cannons of the HeroShip. The script attached to each bullet detects
when the bullet has passed the top edge of the play area, and destroys the Bullet Prefab
instance and everything in it.

Put more simply: CLICK MOUSE. MAKE SHOOT.

Because the needs of our game have changed, we might reconsider how and where our code is

written. In The Break-Up, it made sense for the player character to detect all collisions. But in

Shoot the Moon, all the significant collisions actually happen on the enemy ship.
The enemy ship has to know when it hits the hero ship, and it needs to know when it hits a
bullet. So we can actually localize all of the collision code on the enemy ship. This makes a
lot of sense, so let's make that change by transplanting some code:

1. In the HeroShip Script, delete the OnCollisionEnter function.
2. Delete the explosion variable declaration from the top of the script.
3. Save the HeroShip Script.

As we did with the ResetPosition() function, let's build a reusable
Explode() function, and fold the explosion-related code into it.

[397]

Game #4 – Shoot the Moon

4. In the EnemyShip Script, create an Explode() function outside and apart from

the other functions:

function Explode()
{
audio.PlayOneShot(audioClips[Random.Range(0,audioClips.length)]);

Instantiate(prefab, transform.position, Quaternion.identity);
}

5. Give the EnemyShip an OnCollisionEnter function, and call the Explode and
ResetPosition functions. The enemy ship will explode regardless of what it hits:

function OnCollisionEnter(col : Collision)

{ Explode();
ResetPosition();

}

7. Next, we'll set up a conditional statement in the OnCollisionEnter function

to determine whether the enemy ship has hit a bullet, or the hero ship:

function OnCollisionEnter(col : Collision) {

Explode();
ResetPosition(); if(col.gameObject.tag

== "bullet") {
Destroy(col.gameObject);

} else if (col.gameObject.tag == "heroShip")

{ // This enemy ship hit the player!
}

}

7. At the very top of the EnemyShip Script, rename the prefab variable explosion:

var explosion:GameObject;

8. Change the Explode() function to call the new variable:

Instantiate(explosion, transform.position,
Quaternion.identity);

9. Save the script.
10. Since we changed the name of our prefab variable to explosion, we should

duck out to the Inspector panel and make sure that the Explosion Prefab is still set
as the proper value. Changing variable names like this can sometimes cause Unity
to lose track of things. Drag and drop the Explosion Prefab into the explosion
variable's slot to bring Unity back up to its speed.

[398]

Chapter 11

What just happened – eat lead

Try out the game. When the enemy ship hits either a bullet or the hero ship, it runs the
Explode() function and repositions itself at the top of the screen. Specifically, if it hits a

bullet, the bullet gets destroyed. If it hits the hero ship, it looks like it's behaving properly.

But if you try putting a print command inside the conditional that says //This enemy

ship hit the player!, you'll realize that the code isn't getting executed.

This is because we haven't tagged the HeroShip. Without that tag, our EnemyShip Script has no

idea that it hit the hero ship. It just knows that it's hit something, so it shows an explosion and

bounces back up to the top of the screen. You may notice a small but unwanted
side effect of our code. Because we're instantiating the explosion using the enemy ship's
transform.position, the explosion appears exactly where the enemy ship used to be.
This makes sense when a bullet hits the enemy ship, but it doesn't quite make sense when
the enemy ship hits the hero. It makes it seem as though the hero ship is impenetrable—
that anything that crashes into it will burst into flames. It's actually the HERO ship's position
that we need for that explosion.

Thankfully, this is a quick fix using the maaaagic of aaarguments.

To make the explosion happen on the thing that hits the enemy ship, rather than on

the enemy ship itself, we'll pass the position of the colliding GameObject to the
Explode() function.

1. Open the EnemyShip Script, and make these changes:
2. In the OnCollisionEnter function, pass the transform.position

of the colliding object's GameObject to the Explode() function:

Explode(col.gameObject.transform.position);

3. Now make sure that the Explode() function accepts this argument:

function Explode(pos:Vector3){

4. And finally, position the instantiated explosion to the pos variable that receives
the argument value:

function Explode(pos:Vector3){

audio.PlayOneShot(audioClips[Random.Range(0,
audioClips.length)]);

Instantiate(explosion, pos, Quaternion.identity);
}

[399]

Game #4 – Shoot the Moon

5. Save the script and try it out. The explosions go off at the site of the collision, and
it makes a lot more visual sense.

We're almost ready to close the book on the main functionality of our space shooter game.
We can fire bullets and explodify enemy ships. Although it may well defy the laws of
physics, a satisfying fiery explosion occurs in the oxygen-free vacuum of space. But there's
just something... missing, yes?

Numerous studies have been conducted to determine the most scientifically accurate
sound for a neon-green irradiated bullet being fired through space, and the results have
settled unanimously on the onomatopoeic "pew". Luckily, we have just such a sound effect
in our Assets folder, so let's get it going.

1. At the top of the HeroShip Script, declare a variable to hold the "pew" sound effect:

var pew:AudioClip;

[400]

Chapter 11

2. In the left-mouse button firing section of the code, play the "pew" sound effect:

if(Input.GetMouseButtonDown(0)){
audio.PlayOneShot(pew);

3. Save and close the script.
4. Find the "pew" sound effect in the Project panel.
5. In the Hierarchy panel, click to select the HeroShip.
6. Click and drag the "pew" sound effect into the HeroShip Script component in

the Inspector panel, in the slot labeled "pew".

7. Click on Apply to apply the changes to the source Prefab.

Now when you fire, the spaceship goes "pew". And lo, all became right
with the world!

[401]

Game #4 – Shoot the Moon

Last year's model

We've taken a game about a guy who gets kicked out of his apartment and turned it into a
game about destroying an onslaught of alien spacecraft. That's the difference a theme
makes. The underlying bones of both games are quite similar, and it wasn't an enormous
effort to make these changes. It's the rough equivalent of throwing a new coat of paint
and some seat warmers on last year's model and selling it as a brand new car.

And I say "why not"? The beautiful thing about game development is that you don't have
to reinvent the wheel every time. You should absolutely build things with a mind towards
reusing them in future projects. The momentum you build up will make you an
unstoppable game dev machine.

This game, like The Break-Up, has a number of missing elements that I'll let you fill in, based
on what you've learned in previous chapters. But in addition to the title screen, instructions,
credits, win/lose conditions, and player health that we discussed earlier, here are a few
ideas to strive for if you decide to develop Shoot the Moon further:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Build a couple of neat-looking jet trail particle systems and hook them up to
the exhaust pipes sticking out the back of your hero ship.
Make the ship angle as it moves left and right. You might try repurposing some
of your paddle code from the code of Chapter 8, Hearty Har Har, to do this.
Add some power-ups that appear randomly in the void of space. If the player
collides with them, you can give him awesome skillz... maybe he becomes
invincible for a short period of time? Or you could crank up the number of bullets
that he can fire, for a triple-shot effect. That's a very easy change to make based on
the code you've already written.
Duplicate and reupholster an enemy ship to paint it purple or something.
Give that type of ship some hit points so that it doesn't explode until it's
been hit by three bullets.
Mess around with the enemy ship's movement script. Using
mathemagic, can you make the ships travel diagonally, or even in spirals
or waves? Can you do it without math?
Make it so that when you hold down the mouse button, you charge up a super shot,

and when you let go, some crazy-huge bullet blasts out of your ship's nose cone.
Make the enemy ships fire back!
After the player has shot down x enemy ships, introduce the big boss: THE MOON.
Give the moon a big pile of hit points and some missiles. Then, and only then, will the

title of the game make sense... which I'm sure has been keeping you up at night.

[402]

Chapter 11

Summary

We've learned something today: the value of friendship, the importance of kayak
safety, and the dangers of eating mysterious red berries you find in the forest. But
most of all, we've learned how to:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Set up a 2-camera system to composite two different views

together Change existing Prefabs to use different models

Apply a mesh collider

Use the Halo

component Fire bullets

Completely re-skin a game in a single chapter

C# Addendum

The code in this chapter represents another straightforward C# port. Here it is:

HeroShipCSharp.cs

using UnityEngine;
using System.Collections;

public class HeroShipCSharp : MonoBehaviour {

public GameObject bullet;

public AudioClip pew;

private void Update()
{

transform.position = new Vector3(Input.mousePosition.x/20,

transform.position.y, transform.position.z);
if(Input.GetMouseButtonDown(0))
{

audio.PlayOneShot(pew);

Instantiate(bullet, transform.position +
new Vector3(-3,2,0), Quaternion.identity);

Instantiate(bullet, transform.position +
new Vector3(3,2,0), Quaternion.identity);

}
}

}

[403]

Game #4 – Shoot the Moon

EnemyShipCSharp.cs

using UnityEngine;
using System.Collections;

public class EnemyShipCSharp : MonoBehaviour {

public GameObject explosion;

public int speed;
public AudioClip[] audioClips;

private void Update ()
{

transform.position = new Vector3(transform.position.x,

transform.position.y - speed * Time.deltaTime,

transform.position.z);
transform.Rotate(new Vector3(0,0,Time.deltaTime * -500));

// buzzsaw!!
if(transform.position.y < -4)
{

ResetPosition();
}

}

private void ResetPosition()
{

transform.position = new Vector3

(Random.Range(-11, 68), 71, 0);

rigidbody.velocity = Vector3.zero;
}

private void Explode(Vector3 pos)
{

audio.PlayOneShot(audioClips[Random.Range(
0,audioClips.Length)]);

Instantiate(explosion, pos, Quaternion.identity);
}

[404]

Chapter 11

private void OnCollisionEnter(Collision col)
{

Explode(col.gameObject.transform.position);
ResetPosition();

if(col.gameObject.tag == "bullet") {
Destroy(col.gameObject);

} else if (col.gameObject.tag == "heroShip") {
// This enemy ship hit the player!

}

}

}

[405]

12

Game #5 – Kisses 'n' Hugs

Cast your memory back to the earliest chapters in this book. You were
younger then, and you probably still had all your hair. We were talking about
the amount of effort involved in creating games for a single player versus
multiple players, on one computer or many, turn-based or real-time.

The games we've created to this point have been single-player, with the player

playing against him or herself. The computer presented the player with obstacles

or challenges—cards to flip, bombs to avoid—but there really wasn't much

decision-making or "thinking" happening on the part of the computer. What if we

wanted our player to square off against an artificially intelligent
computer opponent? That would be way beyond the scope of a beginners

book, wouldn't it? As it turns out, maybe not!

Computers that think

Artificial Intelligence (AI) is the name computer scientists have given to their attempts at

simulating human-like thought, and sometimes learning, in one or more computers. AI has a

long history with games, with one of the most famous examples being the 1997 match

between chess world champion Garry Kasparov and IBM's Deep Blue chess-playing computer.

Deep Blue defeated Kasparov, while many of us re-watched Terminator 2:
Judgment Day and trembled.

Game #5 – Kisses 'n' Hugs

AI programming is a very complex and ever-evolving discipline. It's what makes first person

shooter enemies shoot at you from behind cover. It's the engine behind the parsers in text

adventure games. It's the driving force behind every non-human video game opponent you've

ever faced. In this chapter, you'll create a simple 2-player Tic Tac Toe (Noughts and Crosses, X's

and O's) game suitable for a pair of humans. In the following chapter, you'll program an

artificially intelligent computer opponent to square off against a human player.

Unity has everything we need to build a solid Tic Tac Toe game, without having to
import 3D models. We can build the whole game with primitives—cubes,
cylinders, and so on. Let's get to work.

[408]

Chapter 12

Launch Unity, and follow these standard steps to set up the project:

1.
2.
3.

Create a brand-spanking-new Unity project.

Navigate to File | Save Scene As, and call the Scene

"Game". Add a directional light to the Scene.

Fantastic! We're nearly there.

[409]

Game #5 – Kisses 'n' Hugs

We'll stretch some cube primitives to create the hashtable grid that houses the game.

1. Change to a top, isometric view in your Scene.
2. Navigate to GameObject | Create Other | Cube to create a cube

primitive on the screen.
3. Scale the cube up to z:15, and set Position to 0,0,0.

[410]

Chapter 12

4. Duplicate the cube with Ctrl/command + D, and move it 5 units to the right

along the X-axis.

5. Select both cubes by clicking on them while holding Ctrl or command.
Duplicate them as in the previous step.

[411]

Game #5 – Kisses 'n' Hugs

6. Press the E key to call up the Rotate gizmo. Click the tool handle above the Scene

view until it reads Center (not Pivot). Rotate the pair of duplicated cubes to y:90.
You can fine-tune the rotation by typing a value of 90 into the Rotation:Y
field in the Inspector panel after you begin the rotation.

7. Create an empty GameObject by navigating to GameObject | Create
Empty, and rename it Grid. Reset its position to the origin.

8. In the Hierarchy panel, click and drag the four elongated cubes into
the Grid GameObject to make them its children.

9. Position the Grid GameObject at 0,0,-25.
10. Set the camera to Position 2.5,15,-30 and its Rotation to 72,0,0. This

brings our grid nicely into view.

[412]

Chapter 12

One Script to rule them all

We're going to create a single script to do most of the heavy lifting in our Tic Tac Toe
game. Let's set it up.

1. Create an empty GameObject, and rename it GameLogic.

2. Create a new JavaScript and rename it GameLogic.

3. Drag the GameLogic script onto the GameLogic GameObject to add it
as a Component.

The GameLogic script will be the central control for the game.

The way that players interact with a Tic Tac Toe is to place an X or an O piece in the empty
spaces on the grid. If we create an invisible, clickable GameObject to sit in those spaces and
respond to clicks, we'll have nailed down most of the game's interactivity. Follow these
steps to create that clickable square:

2. Create a cube. Position it at -2.8,1,-19.7 with a scale of 4.2,1,4.2. This
puts the square in the top-left cell of the grid, sized appropriately.

[413]

Game #5 – Kisses 'n' Hugs

2.
3.
4.
5.

6.

Rename it Square.

Create a new Javascript and rename it Square.

Drag the Square script onto the Square

GameObject. Add this to the GameLogic script:

function ClickSquare(x:int, y:int)
{

print("Square " + x + "," + y + " was clicked");
}

Double-click to open the Square script and punch in this code:

#pragma strict

var x:int;
var y:int;

var gameLogic:GameObject;

function Start ()
{

gameLogic = GameObject.Find("GameLogic");
}

function OnMouseDown()
{

gameLogic.GetComponent(GameLogic).ClickSquare(x, y);
}

What just happened – find and click

Let's have a gander at that code.

gameLogic = GameObject.Find("GameLogic");

In the Start function of the Square script, we use the GameObject.Find() method to
get a reference to the GameLogic "mothership" GameObject. Unity searches through the
Hierarchy, looking for an element with a matching name. Since this is an "expensive" (read:
slow) operation, we only do it once at the beginning of the game, instead of, say,
repeatedly in the Update function, or every time the player clicks on the square.

function onMouseDown() The OnMouseDown function is called when the primary mouse

button (most often the left mouse button, unless the player has an unusual system

configuration) is pressed and the mouse cursor intersects this GameObject's Collider.

[414]

Chapter 12

Test the game. When you click on the square, the message is sent to the GameLogic
script, and we see a printout of the Square's x and y coordinates:

Try changing the x and y values of Square in the Inspector panel, then run the game
and click on the Square to see the results. Change the x and y values to 9,9 when
you're finished testing.

Why 9,9? The reason will become clear after a few more steps.

Squaring the Square

Now that we have one working Square, let's create eight more to fill in the remaining gaps.
But before we do that, we should encapsulate the Square in a Prefab, so that any

duplicates will share the changes we make.

1. Create a Prefab and rename it Square.

2. Drag the Square GameObject from the Hirearchy panel inside the Square Prefab
in the Project panel. The Prefab lights up that familiar shade of blue.

3. In the Scene view, duplicate the first square until you have a total of 9 squares in the

grid gaps. An easy way to do this is to duplicate the top-left square twice, and drag the

copies to the top-middle and top-right spaces to complete the first row. Then select all

3 squares and duplicate them. Move the three duplicates down to the middle row.

Duplicate again, and move the last three squares to the bottom row.

[415]

Game #5 – Kisses 'n' Hugs

4. Click on each square and, in the Inspector panel, its x and y values appropriately.
When the value is bold, that means it's overriding the Prefab's default value of 9,9
that we set earlier. Make sure that the top-left square in the Scene view is also the
top-left square in the camera view, by moving it around a little. If your Scene view
is disoriented, rotate the view until you're seeing things correctly.

The x and y values for the squares should be set like so:

Notice that when you change the default x and y values of 9,9, the values are
bold, indicating that this instance of the Prefab has overridden the default values.

Test the game and confirm that all the values work by clicking on each square in
turn and watching the message.

[416]

Chapter 12

Because the squares are visible, our Tic Tac Toe game looks more like an oversized
novelty calculator. We can fix that, so let's follow the listed steps:

1. Select the top left Square.
2. In the Inspector panel, uncheck the Mesh Renderer. The square disappears.
3. While you're at it, check the Is Trigger box in the Box Collider

component. We'll see why that's important shortly.
4. Click on the Apply button at the top of the Inspector panel. All of the squares

that are derived from the Square Prefab disappear from sight, as shown in
the following screenshot:

[417]

Game #5 – Kisses 'n' Hugs

Family values

The explanation for why we used 9,9 as the initial x / y values for the Square is a little
bit twisty, but here goes:

If we hadn't first set that initial x and y values of Square to 9,9 (say, for example, if the
initial values of Square were 0,0), then any Square that had an x value of 0 or a y value
of 0 would not be overridden. You wouldn't have seen the value turn bold in the Inspector
panel. Non-overridden values are not "protected"—they're at risk of being modified
whenever a change from another instance is applied to the Prefab.

Imagine yourself making the above changes to the bottom-right Square, which has its x and y

values set to 2,2. Once you click on Apply, x:2 y:2 become the default values for all squares

whose values were not overridden. That means that any Square matching the initial default

values of x:0 or y:0 would have those values replaced with x:2 or y:2. The
top-middle square, with its overridden value of X:1 and its default value of Y:0, would see
its unprotected Y value replaced with 2.

This is the reason that we set the default x and y values of the Prefab to 9,9 (any
value greater than 2,2 would also work). Because those values are not shared by any
of the squares, we overrode the X and Y values for each of the squares, and
protected them from being inadvertently changed. In this way, none of the squares'
values were overwritten when we clicked on Apply.

Just as we created the Tic Tac Toe grid from cube primitives, we can create the X player
piece in a similar way.

1.
2.
3.
4.

Create a Cube, and position it at 0,0,0.

Change the Cube's scale to 0.8,1,4.5.

Rotate it -45 degrees in the y-axis.

Duplicate it.

[418]

Chapter 12

5. Change the duplicate Cube's y rotation to 45. You should have an X shape, as

shown in the following screenshot:

6. Create an empty GameObject.
7. Rename it as X.
8. Position it at 0,0,0.
9. Drag both cubes inside it in the Hierarchy panel make them

children of the X GameObject.
10. Add a Rigidbody component to the X GameObject.
11. Create a Prefab and rename it X.
12. Drag the X GameObject from the Hierarchy panel into the X Prefab in the

Project panel.
13. Delete the X GameObject from the Hierarchy panel.

[419]

Game #5 – Kisses 'n' Hugs

Unity doesn't have a Tube primitive that we can use to create the O player piece, but
we can use the Cylinder primitive to create an "un-holey" approximation.

1.
2.
3.

Create a Cylinder.

Rename it as O.

Scale it to 3.5,0.5,3.5.

4. Add a Box Collider to the Cylinder (by navigating to Component | Physics |
Box Collider). Unity asks if you want to replace the existing Capsule
Collider with a Box Collider. Yes you do!

5. Add a Rigidbody Component.
6. Position the O at 0,0,0.
7. Create a Prefab and name it O.
8. Drag the O GameObject inside the O Prefab.
9. Delete the O GameObject from the Hierarchy panel.

[420]

Chapter 12

When the player clicks on the invisible Square GameObjects, the X and O pieces are
going to fall gently into place. The rigidbodies attached to each piece will include them
in the physics engine, and gravity will take over. However, the pieces will fall straight
into oblivion unless we build a "floor" beneath the grid to stop them.

Let's create a floor to keep the falling pieces contained

1.
2.
3.

Create a Plane.

Rename it as floor.

Scale it up so that it is larger than the Grid GameObject.

[421]

Game #5 – Kisses 'n' Hugs

4. Switch to a Right view in the Scene view and position the Floor so that it sits
just beneath the Grid GameObject.

5. In the Inspector panel, turn off the Mesh Renderer option for floor.

As with the Squares, the floor disappears when its Mesh Renderer option is
disabled, but its Collider stays active, which is all we care about.

Here comes the drop

With this groundwork literally laid, we're ready to add some code so that the X and O

pieces fall into the Grid when the Squares are clicked.

Declare the following variables at the top of the GameLogic script, beneath the
#pragma strict line:

‹

‹

‹

‹

var XPiece:GameObject;

var OPiece:GameObject;

[422]

Chapter 12

Click on the GameLogic GameObject. Drag the X and O pieces into the Inspector in
those variable slots.

Add this line to the ClickSquare function:

print("Square " + x + "," + y + " was clicked");
Instantiate(XPiece, new Vector3(-2.8,1,-19.7), Quaternion.identity);

This line creates a new instance of the XPiece Prefab at a hard-coded position on the screen.

What just happened – to collide or not to collide?

Test the game and click on any of the invisible Squares. The X settles nicely into the top-left slot

on the grid, as shown in the following screenshot. (If this doesn't happen, it's possible that you

forgot to set the X or its Cube children's positions to 0,0,0 while you were creating the piece).

[423]

Game #5 – Kisses 'n' Hugs

The X does not collide with the Box Collider of the Square because the Box Collider
component is marked as "Is Trigger". Try unchecking that option on the Prefab to see the
difference that option makes. Is Trigger enables a GameObject's Collider component
to respond to things like mouse clicks and collision events in code, but it is removed from
the physics simulation and doesn't hinder the movement of the pieces that collide with it.

The X piece does collide reliably with the invisible floor. However, you can click to place many

X's, and they start erupting like popcorn and falling over the edge of the invisible floor, making

our Tic Tac Toe game look more like a game of Perfection™ (as played by wombats).

Let's change the code a little so that we can put the X at the same place as the square
that was clicked.

Change this line in the Square script:

gameLogic.GetComponent(GameLogic).ClickSquare(gameObject);

[424]

Chapter 12

Modify the following ClickSquare function in the GameLogic script:

function ClickSquare(square:GameObject)
{

Instantiate(XPiece, square.transform.position,

Quaternion.identity);
}

Delete the print statement we had in there earlier.

Instead of passing the x and y values of Square to the ClickSquare function,
we're passing a reference to the entire Square GameObject itself, with the
reference name lowercase-s square. (Remember that Unity JavaScript is case-
sensitive, so Square is not the same animal as square).

Test the game, and click on the Squares. Now the X's are all falling in their proper
places as you click on the different Squares, as shown in the following screenshot:

[425]

Game #5 – Kisses 'n' Hugs

The problem remains that if you click too many times, you still get too many X's.
Let's fix that.

In the Square script, add the following code:

var x:int;

var y:int;
var isUsed:boolean;

function OnMouseDown()
{

if(!isUsed)
{

gameLogic.GetComponent(GameLogic).ClickSquare(gameObject);

isUsed = true;
}

}

What just happened – lockdown

Now you can't place an X in a square more than once, because the isUsed boolean locks
it. isUsed is false by default, and it gets set to true as soon as you click on a square.
When you click the square again, the code checks the isUsed boolean, finds that it's
true, and skips over the line inside the conditional statement.

A one-playerTic Tac Toe game sounds like a recipe for a bad time. Let's get the O's in
there to liven things up.

Add this line to the GameLogic script:

var XPiece:GameObject; var

OPiece:GameObject; var

currentPlayer:int = 1;

And later:

function ClickSquare(square:GameObject)
{

var piece:GameObject;

[426]

Chapter 12

if(currentPlayer == 1)
{

piece = XPiece;
} else {

piece = OPiece;
}

Instantiate(piece, square.transform.position, Quaternion.identity);

currentPlayer ++;
if(currentPlayer > 2) currentPlayer = 1;

}

Try it out. Now when you click, the game alternates between X's and O's.  

[427]

Game #5 – Kisses 'n' Hugs

What just happened – alternating between players

Let's take a closer look at that code.

var currentPlayer:int = 1;

We begin the game with currentPlayer set to 1.

var piece:GameObject;

if(currentPlayer == 1)
{

piece = XPiece;
} else {

piece = OPiece;
}

This chunk of code defines a variable called piece. If currentPlayer is 1, it gets set to
XPiece (which is defined at the top of the script, and currently contains a reference to
our X Prefab). If currentPlayer is 2, we store a reference to the OPiece value,
which in turn refers to our O Prefab.

Instantiate(piece, square.transform.position, Quaternion.identity);

Instead of explicitly instantiating XPiece or OPiece, we instantiate whichever piece
is stored in the piece variable.

currentPlayer ++;
if(currentPlayer > 2) currentPlayer = 1;

After a piece is played, we increment the currentPlayer variable, so that 1 becomes
2, and 2 becomes 3. In the next line, if we reach 3, then we bust the value back down to
1. In this way, with each move, currentPlayer toggles between 1 and 2.

Most people over the age of zero know how to play Tic Tac Toe, but just to be safe, let's

rig up a down-and-dirty onscreen prompt to let the players know whose turn it is.

1.
2.

Create a new GUI Text.

Position it at 0,1,0 with a font size of 36.

[428]

Chapter 12

3. Rename it as Prompt.

4. Store a reference to it in the GameLogic script:

var XPiece:GameObject;

var OPiece:GameObject;
var currentPlayer:int =

1; var prompt:GUIText;

5. Save the script.
6. Select the GameLogic GameObject.
7. Drag the Prompt GUIText GameObject into the prompt variable of

GameLogic in the Inspector panel.

[429]

Game #5 – Kisses 'n' Hugs

8. Back in the GameLogic script, create a function, as follows, to show
the players whose /turn it is:

function ShowPlayerPrompt()
{

if(currentPlayer == 1)
{

prompt.text = "Player 1, place an X.";
} else {

prompt.text = "Player 2, place an O.";
}

}

9. Call this function at the beginning of the game, and again after a move is made.

function Start ()
{

ShowPlayerPrompt();
}

and later:

function ClickSquare(square:GameObject)
{

// (prior code omitted for brevity)
ShowPlayerPrompt();

}

10. Test the game.

What just happened – prompt service

Hopefully, the new code is easy to parse. The ShowPlayerPrompt does a condition check
on the currentPlayer variable. If it's player 1's turn, the GUIText text is set to say
"Player 1, place an X." Otherwise, the prompt says "Player 2, place an O."

ShowPlayerPrompt();

The new function gets called from two different places: right at the beginning of the game
in the built-in Start function, and on an ongoing basis after a piece has been played.

[430]

Chapter 12

Slowly building to a climax

What we very nearly have now is a functional Tic Tac Toe game for two players. Why
waste money on a paper and pencil, when you can spend hundreds or thousands of
dollars on a computer to play Tic Tac Toe?

Two human players can see for themselves whenever X or O gets 3-in-a-row and wins the
game, but ideally, the game will be able to check for a win through code. We don't quite
have the right elements in place to detect a win state, but we're going to spend the rest
of the chapter getting there.

Ask yourself: what does the code need to know in order to determine when a player has
won? How would you go about figuring that out? Put the book down for a moment and
puzzle through this question, because it's exactly the type of problem you'll face when
you begin building your own games.

I strongly urge you not to keep reading at this point. This isn't like one of those kids' shows
where the little Mexican girl says "flap your arms like a chicken, everybody!", and you just
sit on your couch eating snacks like a slug. Actually sit down and work out what it might
take to determine a win condition in this game. When you've given it an honest shot
(whether you think your solution is successful or not), come back to the book and work
through the solution I devised, which is one of many possible solutions.

Read after thinking

One of the crucial pieces of information we're missing is which player's piece is inside each
square. Thanks to the isUsed boolean, we know when a square has a piece in it, but we
have no idea which piece it is. Keeping better track of which piece occupies which square
is the first step to detecting a win condition.

isUsed isn't a very information-packed variable. By replacing it with an int, we can use it
to store more valuable data.

In the Square script, replace this:

var isUsed:boolean;

with this:

var player:int;

[431]

Game #5 – Kisses 'n' Hugs

In the logic check, change this:

if(!isUsed)

to this:

if(player == 0)

and remove this line from the OnMouseDown function:

isUsed = true;

Altogether, the Square script should look like this:

#pragma strict

var x:int;
var y:int;
var player:int;

var gameLogic:GameObject;

function Start ()
{

gameLogic = GameObject.Find("GameLogic");
}

function OnMouseDown()
{

if(player == 0)
{

gameLogic.GetComponent(GameLogic).ClickSquare(gameObject);
}

}

What just happened – building a more complex lock

Read that code over one more time. Being an int, the player variable defaults to 0. So
an unused Square has a player value of 0. If a Square's player value is 0, we know it's safe
to place a piece there. But how does the value get changed to 1 or 2?

[432]

Chapter 12

In the game logic script, add this just after the Instantiate line:

Instantiate(piece, square.transform.position, Quaternion.identity);

square.GetComponent.<Square>().player = currentPlayer;

We've used the familiar GetComponent command to get a reference to the Square
script attached to the Square GameObject that the player clicked on (a reference to
which is passed into this function with the variable name lower-case s square). This line
sets the player variable on the clicked square to the value of the currentPlayer
variable, which toggles between 1 and 2.

If it's player 1's turn, the clicked square's player variable is set to 1. If it's player 2's turn the

clicked square's player variable is set to 2. A value of 0 indicates that the square is empty.

Test out the game again. There should be no outward change, but behind the scenes,
there's a whole lot more knowledge flying around.

On deaf ears

Now that all the Squares know which piece is inside them, we can theoretically poll any
square and ask its status. The trouble is that the GameLogic script is only set up to be
reactive. The ClickSquare function responds to the player's action of clicking on a
square. We need to actively ask a square what's up.

Currently, there's no real way for us to do that, since we haven't created any references to our

squares. As we did with the Robot Repair game, it would be really handy to create a two-

dimensional array, so that we can refer to Squares by their coordinate addresses. So let's!

We're going to create a 2D array referencing our squares in an interesting way. Follow along.

1. Create a standard one-dimensional array to hold the squares by adding
this declaration to the GameLogic script:

var XPiece:GameObject;

var OPiece:GameObject;
var currentPlayer:int =

1; var prompt:GUIText;
var aSquares:GameObject[];

[433]

Game #5 – Kisses 'n' Hugs

2. Select the GameLogic GameObject. Set the Size of the aSquares array to 9 in the
Inspector panel.

3. One by one, making sure you get all 9 unique squares with no repeats, click and drag
the 9 Square GameObjects from the Hierarchy panel into the array slots in the
Inspector panel. Another way to accomplish this in a single shot is to leave the array
size at 0, and then select the GameLogic GameObject and lock the Inspector
(click the little lock icon at the top right of the panel). With the GameLogic
Inspector locked, you can select all the Squares and drag them en masse
onto the array in the Inspector panel.

[434]

Chapter 12

4. We're part of the way there. The aSquares array gives us references in code to
the Squares, but it would be difficult to access the squares by their coordinate
values with this flat, 1-dimensional array.

5. Off the top of the game, we can pick through the list of Squares and place them in
a second two-dimensional array, based on their X and Y values.

6. Modify the GameLogic scrip:

var aSquares:GameObject[];

var aGrid:GameObject[,];

function Start ()
{

currentPlayer = 1;
ShowPlayerPrompt();

aGrid = new GameObject[3,3];

var theSquare:GameObject;

var theScript:Square;

for(var i:int =0; i < aSquares.Length; i++)
{

theSquare = aSquares[i];
theScript = theSquare.GetComponent.<Square>();

aGrid[theScript.x,theScript.y] = theSquare;
}

}

What just happened – order!

The new code parcels the Squares into an easily-accessible 2D array, much like the one
we used in Robot Repair to store our Card instances.

var aGrid:GameObject[,];

This following line of code defines a 2D array:

aGrid = new GameObject[3,3];

This line in the Start function defines that 2D array as having 3 elements, each of
which contain 3 elements. The net result is, essentially, a matrix of columns and rows.

var theSquare:GameObject;

var theScript:Square;

[435]

Game #5 – Kisses 'n' Hugs

We declare these two variables above the for loop instead of inside the for loop, so that
Unity doesn't have to recreate them on every iteration. This will really only matter with a
very performance-intensive loop (which this isn't) and Unity's compiler takes care of any
inefficiencies from declaring the variables inside the loop anyway, but it helps to know these
tips in case you need them down the road in other languages. Declaring the variables
outside the loop in Unity can be argued as a stylistic decision.

theSquare will hold a reference to the Square GameObject that we pull out of the
aSquares array, while theScript is a reference to the Square script attached to
that Square GameObject.

for(var i:int =0; i < aSquares.Length; i++)
{

theSquare = aSquares[i];
theScript = theSquare.GetComponent.<Square>();

aGrid[theScript.x,theScript.y] = theSquare;
}

This for loop has us iterating through all 9 elements of the aSquares array, which
contains references to each Square in the grid. For each Square, we store a reference to its
attached Square script. Then we insert a reference to the Square into the 2D array, using
the x and y values found in the Square script attached to it.

Regardless of the order in which the Squares appear in the aSquares array, we wind up
with a 2D array with all the squares sorted by their x and y values for easy reference:

aGrid[x,y]

There actually is a formula for treating a 1-dimensional array like a 2-

dimensional array:
x + width * y
Picture a Tic Tac Toe grid laid out like this:

A B C
D E F
G H I

The 1D array would look like this:
[A, B, C, D, E, F, G, H, I]

The coordinate address of square H is x:1 y:2. The width of the grid is 3 cells.
So the equation becomes:
1 + 3 * 2
The result is 7. If we count along the 1D array, starting at the 0th element with A,
the seventh element is H. It works!

[436]

Chapter 12

Winner is coming

We now have all the information we need to check the Squares, to determine which
piece they contain, and to call the match if we find 3-in-a-row. In the GameLogic script,
scaffold the mighty hard-fought CheckForWin function:

function CheckForWin(square:GameObject):boolean
{

}

Did you notice something different about this function declaration? It's got a big,
ugly boolean stuck to the side of its face. (Gee—it should really get that looked at).

This function declares a return type. We've already called numerous functions that have a
return value, but this is the first time we've set one up in our own custom code. All it
means is that somewhere along the way, this function will spit out a boolean value. In fact,
it must spit out a boolean value, or else we'll get script error.

To spit out a value, we'll use the return keyword. This CheckForWin function must, at

some point, return either true or false, or a statement that resolves to true or false,
such as (2+2)==4 (true!) or beeStings=="awesome" (false!).

The function is ready. Please fasten your seatbelt, because coding it is going to be turbulent.

Codesplosion

In earlier chapters, I've said that it's more important to get your code working than to
make it elegant. However in some situations, like the one you're about to experience, the
code is so preposterously inelegant that it cries out to be refactored on the spot.

Just like in math class where they make you add numbers up a million times before
teaching multiplication, let's start by doing this the long way. Don't bother writing any of
this code down. Just follow along, and look for ways in which it can be cleaned up.

We can look for 3-in-a-row as follows:

// Check the first row:

if(aGrid[0,0].GetComponent.<Square>().player == currentPlayer &&
aGrid[1,0].GetComponent.<Square>().player == currentPlayer &&

aGrid[2,0].GetComponent.<Square>().player == currentPlayer)

return true;

[437]

Game #5 – Kisses 'n' Hugs

// Check the second row:

if(aGrid[0,1].GetComponent.<Square>().player == currentPlayer &&
aGrid[1,1].GetComponent.<Square>().player == currentPlayer &&

aGrid[2,1].GetComponent.<Square>().player == currentPlayer)

return true;

... and so on. That will give us 8 gigantic statements: 3 for the rows, 3 for the
columns, and 2 for the diagonals.

In this example, we're returning a value of true in two
places. That's okay. As soon as the interpreter hits the first
return statement, it auto-ejects out of the function and skips
the rest of the code like a pilot with his mech on fire.

Need-to-know basis

By writing the line in this long-winded way, we're checking all of the possible win
scenarios by searching the whole grid, when we should really only be concerned about
the square where the current player just finished placing a piece.

Given any square's x and y values, we can just check the squares in the same row and
column, instead of checking every single win scenario. Here's what a line of code looks
like if we only check the square's row:

if(aGrid[0,square.GetComponent.<Square>().y].GetComponent.<Square>().

player == currentPlayer && aGrid[1,

square.GetComponent.<Square>().y].GetComponent.<Square>().player ==

currentPlayer && aGrid[2,

square.GetComponent.<Square>().y].GetComponent.<Square>().player ==

currentPlayer) return true;

Need-to-know basis

It's an improvement, but that line is still monstrous! Notice the repeated element square.
GetComponent.<Square>().y. Why say it three separate times, when we can say it
once and store it in a variable?

[438]

Chapter 12

We'll probably need to know square.GetComponent.<Square>().x as well to check
the columns. So let's just store the first part, square.GetComponent.<Square>(), in
a variable as follows:

function CheckForWin(square:GameObject):boolean
{

var theScript:Square = square.GetComponent.<Square>();

So now the code for checking the square's column becomes:

if(aGrid[0,theScript.y].GetComponent.<Square>().player ==

currentPlayer && aGrid[1, theScript.y].GetComponent.

<Square>().player == currentPlayer && aGrid[2,

theScript.y].GetComponent.<Square>().player ==

currentPlayer) return true;

Clean-up on aisle code

It's more succinct than it was, but this code is still a nightmare to read and update.
Let's try to refactor it a little more.

There's a lot of GetComponent.<Square>().player happening throughout the line.
What if we made one function that would do that job, just to shorten up our code
and make it a little more readable?

By setting up a function that accepts x and y as arguments, and spits out the value of
a square's player variable, we'll have a handy and reusable piece of code for all kinds
of situations. You should start writing the code into your project again.

function GetPlayer(x:int, y:int):int
{

return aGrid[x,y].GetComponent.<Square>().player;
}

What just happened – vending machine

Just like our vending machine analogy from an earlier chapter, the GetPlayer function accepts

two integers called x and y as inputs (these are like quarters and nickels). It uses these values to

look up a Square in the grid and, using the return keyword, the function spits out an int

referring to the value of the square's player variable (this is like a bag of corn chips).

This function allows us to easily poll any Square by its grid coordinates to find out
which piece has been played on it.

[439]

Game #5 – Kisses 'n' Hugs

Shave and a haircut

Thanks to the GetPlayer function, we can shorten up our monstro code quite nicely.
Add the following lines to the CheckForWin function:

var theScript:Square = square.GetComponent.<Square>();
//Check the squares in the same column:

if(GetPlayer(theScript.x,0) == currentPlayer &&
GetPlayer(theScript.x,1) == currentPlayer &&

GetPlayer(theScript.x,2) == currentPlayer) return true;
// Check the squares in the same row:

if(GetPlayer(0,theScript.y) == currentPlayer &&
GetPlayer(1,theScript.y) == currentPlayer &&

GetPlayer(2,theScript.y) == currentPlayer) return true;

That reduces our column and row checks to two somewhat long, but still much
more manageable lines.

Finally, we'll hard-code the values in two more statements to check the diagonals, because

checking the diagonals in some pithy, clever loop is a more trouble than it's worth:

function CheckForWin(square:GameObject):boolean
{

var theScript:Square = square.GetComponent.<Square>();

//Check the squares in the same column:

if(GetPlayer(theScript.x,0) == currentPlayer &&
GetPlayer(theScript.x,1) == currentPlayer &&

GetPlayer(theScript.x,2) == currentPlayer) return true;
// Check the squares in the same row:

if(GetPlayer(0,theScript.y) == currentPlayer &&

GetPlayer(1,theScript.y) == currentPlayer &&

GetPlayer(2,theScript.y) == currentPlayer) return true;

// Check the diagonals:
if(GetPlayer(0,0) == currentPlayer && GetPlayer(1,1) ==

currentPlayer && GetPlayer(2,2) == currentPlayer) return true;
if(GetPlayer(2,0) == currentPlayer && GetPlayer(1,1) ==

currentPlayer && GetPlayer(0,2) == currentPlayer) return true;
return false; // If we get this far without finding a win,

return false to signify "no win".
}

[440]

Chapter 12

What just happened – hunting for a win

The CheckForWin function accepts square as its only argument. That square happens to

the be Square the current player just clicked on to place a piece. Hand-in-hand with the
GetPlayer function, CheckForWin first searches for the three Squares in the same
column as the Square that was just clicked on.

If all of the pieces in those Squares are the same, that makes three-in-a-row. The return

keyword spits the good news back to whichever part of the code called this function.

Failing that, the function checks the three Squares in the same row as the Square that was
just clicked on. If it finds three-in-a-row, it returns a value of true and the rest of the code
is similarly skipped.

We repeat the same process to check the two diagonals, regardless of whether the
recently-clicked Square was on a diagonal, because to do otherwise is a pain in the butt and
requires extraneous code.

If no wins are found on the diagonals, the function returns a value of false.

The CheckForWin function is ready to start cranking out the hits! Add a win check to the
ClickSquare function:

square.GetComponent.<Square>().player = currentPlayer;

if(CheckForWin(square)) print("player " + currentPlayer + "
wins!!!");

Smashed into a single succinct line, this code runs the CheckForWin function, passing it a

reference to the Square that was just clicked. If that function call resolves to true (because
CheckForWin returns true), then Unity should print a statement saying that the
current player has won.

Here is the long form version of that same code:

if(CheckForWin(square) == true)
{

print("player " + currentPlayer + " wins!!!");
}

[441]

Game #5 – Kisses 'n' Hugs

Test the game. Try letting either X or O win the game. It works, and the message
is displayed to the bottom of the Unity interface, and to the Console window:

Sore loser

You've no doubt noticed that when one player wins, the game obliviously prompts the
next player to make a move.

We need to create a boolean flag that we can flip when a player wins, and show the players
a different message when the game is over.

[442]

Chapter 12

Add this following boolean to the GameLogic script:

var aGrid:GameObject[,];

var gameIsOver:boolean;

Expand the CheckForWin() conditional statement:

if(CheckForWin(square))
{

gameIsOver = true;

ShowWinnerPrompt();

return;
}

We can use the return statement like that, too. A naked return statement just bails us
out of running the rest of the code in a function, without even returning a value. If the
game is truly over, there's no need to bother with the rest of the function. Let's just get the
heck out of here.

Let's create that ShowWinnerPrompt function we just called:

function ShowWinnerPrompt()
{

if(currentPlayer == 1)
{

prompt.text = "X gets 3 in a row. Player 1 wins!";

} else {
prompt.text = "O gets 3 in a row. Player 2 wins!";

}
}

Hopefully, this code is straightforward, but since I'm contractually obligated to explain it,
I will offer that this conditional statement evaluates the currentPlayer value, and
shows one message or another depending on the result.

[443]

Game #5 – Kisses 'n' Hugs

Test the game, and play until one player wins.

We get the right message, but the game doesn't do anything after that. Let's build in a bit
of a pause, and then reload the Game Scene after a win occurs.

At the bottom of the ShowWinnerPrompt function, add these two lines:

yield WaitForSeconds(3);

Application.LoadLevel(0);

We pause for 3 seconds so the players can read the "win" message and grasp the full
weight of the situation, and then we automatically reload the level for a new game.

The remaining problem with the game is that if we arrive at a stalemate where neither
player wins and there are no more moves to make, the game doesn't know it, and prompts
the next player to place a piece anyway. The game should somehow be able to figure out
when the game is a draw, and react to that situation.

[444]

Chapter 12

Just as you did earlier in the chapter, take a moment to flap your arms like a chicken.
Then think about how you would determine that the game is a draw. Compare your
solution(s) with the one you're about to implement.

Nice moves

It seems simple enough to create an int variable to keep track of the number of moves that
have been made, which we'll increment every time a player places a piece. If we're up to the
ninth move with no winner, that means all of the squares have been filled and we've
reached a stalemate.

At the top of the script, declare a moves variable:

var gameIsOver:boolean;

var moves:int;

Just above the Instantiate command in the ClickSquare function, increment moves:

moves ++;
Instantiate(piece, square.transform.position, Quaternion.identity);

Tack on an else to the CheckForWin condition check that ends the game if we've
reached 9 moves with no winner:

if(CheckForWin(square))
{

gameIsOver = true;

ShowWinnerPrompt();

return;
} else if(moves >= 9) {

gameIsOver = true;

ShowStalematePrompt();
return;

}

Why are we checking if moves is equal to or greater than 9? Isn't that impossible?
Yes it is, but I've adopted the habit of being abundantly confident in my condition
checks to cover possible and impossible scenarios. It's that extra layer of security that
makes programmers so cuddly.

[445]

Game #5 – Kisses 'n' Hugs

Since we call it, we need to make sure the ShowStalematePrompt function exists.
Drop this into the GameLogic script:

function ShowStalematePrompt()
{

prompt.text = "Stalemate! Neither player wins.";

yield WaitForSeconds(3);

Application.LoadLevel(0);
}

The last bug in the game is that in the pause between someone winning and the game
reloading, players can still click on spaces to place their pieces. Let's add a quick
condition check to the top of the ClickSpace function. If the game is won, prevent the
rest of the code from executing:

function ClickSquare(square:GameObject)
{

if(gameIsOver) return;

Push the red return button! Eject! Eject!

All done but for the shouting

We have succeeded in creating a fully functional local multiplayer turn-based strategy
game for a couple of flesh-and-blood players, entirely out of things we found around the
house (and Primitives we found in Unity's GameObject menu). We could stop right there,
but you were promised AI programming, and AI programming you shall have.

Before we charge into the next chapter, let's take a look back on some of the
concepts covered in the warm-up.

You have learned how to:

‹ ‹ Build a working game in Unity with no imported assets

‹ ‹ Prevent GameObjects from colliding using the Is Trigger checkbox

‹ ‹ Refactor code for improved readability and maintenance

‹ ‹ Create a custom function that returns a value

‹ ‹ Use the return keyword to spit out a value from within a function

‹ ‹ Return no value in order to escape the rest of a function

[446]

Chapter 12

Don't go away! The fun continues one page from now. If you want to have a few games
of digital Tic Tac Toe before moving on, indulge yourself!

C# addendum

The full C# code translation for the Tic Tac Toe game awaits you at the end of the
next chapter! Standing in for it in this chapter is a Japanese ASCII emoticon of an
adorable Himalayan kitty. Feast your eyes!

ㅇㅅㅇ

D'awwwww.

[447]

13

AI Programming and World

Domination

In the previous chapter, we left off with a working 2-player Tic Tac Toe game. We

could easily hang up our hats and call it a day. The sad truth is that for many,

playing video games is a solitary activity, and we, as game programmers, need
to devise computer-controlled "friends" to challenge our human players. As game

budgets and networking capabilities improve, games are increasingly returning to

their social, multiplayer roots. Despite this, there will always be a call for "smart"

computer opponents in case—God forbid—the Internet goes down.

Artificial Intelligence is so-called because it's an attempt at making a computer

seem like it's thinking, when in reality, it's just robotically following instructions

like it always has. Through careful design, we can create the illusion that the

computer is strategizing, and even making mistakes, just like a human being

would. By the end of this chapter, you will have written your own AI routine to

"teach" the computer to mercilessly dominate your Tic Tac Toe game.

Take it away, computer

Currently, the Tic Tac Toe game has one function, ClickSquare, that enables human
players to play their pieces. The computer player doesn't actually have to click anything, and
since the AI routine is going to contain special, computer player-specific instructions, it
makes sense to build a special function to govern the computer's turn-taking.

AI Programming and World Domination

Let's build a function so that the computer can take a turn. Add a
ComputerTakeATurn function to the GameLogic script:

function ComputerTakeATurn()
{
}

When do we want the computer to take a turn? After player 1, the human, has taken a
turn, and the currentPlayer variable updates to 2.

Therefore in the ClickSquare function, after we show the player prompt, let's let
the computer take a turn:

ShowPlayerPrompt();
ComputerTakeATurn();

Herpa derp derp

Just to get this up and running, we'll make the artificial intelligence as dumb as possible. The

computer will scan the grid for empty Squares, choose one at random, and place an O there.

We'll accomplish this by looping through our 1-dimensional array of Square references, adding

any empty Squares to a separate list, and then choosing a Square at random from that list.

Add this code to the ComputerTakeATurn function:

function ComputerTakeATurn()
{

var square:GameObject;
var aEmptySquares:List.<GameObject> = new List.<GameObject>();

for(var i:int = 0; i < aSquares.Length; i++)
{

square = aSquares[i];

if(square.GetComponent.<Square>().player == 0)
aEmptySquares.Add(square);

}
square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];

}

Add this line to the top of the script:

#pragma strict
import System.Collections.Generic;

[450]

Chapter 13

What just happened – making a list, checking it twice

Let's break this code down.

var square:GameObject;

This variable will store a reference to a square that we pull from the array. As
before, we declare this variable outside the upcoming for loop.

var aEmptySquares:List.<GameObject> = new List.<GameObject>();

We're going to get a lot of use out of the Generic Array collection type in this chapter.
Here, we declare an aEmptySquares array to store all of the Square GameObjects
that do not have a player piece in them. (The import statement we added to the top
of the script makes it possible for us to use Generic Arrays).

for(var i:int = 0; i < aSquares.Length; i++)

We use a for loop to pick through the squares in the 1-dimensional aSquares array.

square = aSquares[i];

Inside the loop, we store a reference to the square in the ith position of the array.

if(square.GetComponent.<Square>().player ==

0) aEmptySquares.Add(square);

If the square has a player value of 0, that means it's empty, so we add it to our list
of empty squares.

square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];

Outside the loop, after we've picked through all of the squares, we randomly
choose one of the empty squares from the list.

Unpacking the code

If you saw a similar line of code in the previous chapter and were a little mystified by
it, here is a clearer, longer-form breakdown of what's happening (do not add this
code to your script):

var someRandomIndex:int = Random.Range(0,aEmptySquares.Count);

Choose a random number between 0 and the length of the aEmptySquares array
minus one. For example, if the aEmptySquares array has 5 squares in it, we'll get a
number between 0 and 4.

square = aEmptySquares[someRandomIndex];

[451]

AI Programming and World Domination

Retrieve a square from the aEmptySquares array at the index point we randomly
chose. For example, if the randomly chosen number between 0 and 5 was 2, then
retrieve the element at index 2 of the aEmptySquares array.

The line we actually used in our script is just those two lines above, condensed into
a single line:

square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];

Why go through all this trouble to compose a list of empty squares, and then randomly
choose one from the list? Why don't we just stop at the first empty square we find,
and play the computer's piece there?

This is the first lesson in artificial intelligence: randomness creates the illusion of thought.

Let's say the Squares are listed in the array in order, and the first square in the array is the
top-left square. If we always stop our search at the first empty square we find, then the
computer will always play its piece in the top-left square (unless player 1 takes that
square, and then the computer will always play its piece in the next square in the array).

If you were playing Tic Tac Toe against someone who always, always placed his or her piece in

the same squares, and in always in the same order, would you consider that player
intelligent? No! You would probably start looking around for a helmet and gloves to
prevent your opponent from hurting himself.

By having the computer choose a random square, we can improve the illusion that the

computer is "thinking". But as you'll soon see, that illusion breaks down pretty quickly.

We've chosen the square that the computer player will take. What are the next steps?
Well, we need to increment the moves variable. We need to instantiate a piece
Prefab. We need to update the Square with the player who claimed it. We need to
check for a win or a stalemate, and update the player number.

By golly, all these steps are identical to the steps we already take when the human
player places a piece! We should encapsulate those steps in a function that both the
human and computer player can call.

Take all of the lines that are bolded below in the ClickSquare function, and move
them into a new function called PlacePiece():

function ClickSquare(square:GameObject)
{

if(gameIsOver) return;

[452]

Chapter 13

var piece:GameObject;

if(currentPlayer == 1)
{

piece = XPiece;
} else {

piece = OPiece;
}

moves ++;

Instantiate(piece, square.transform.position, Quaternion.identity);

square.GetComponent.<Square>().player = currentPlayer;

if(CheckForWin(square))
{

gameIsOver = true;

ShowWinnerPrompt();

return;
} else if(moves >= 9) {

gameIsOver = true;

ShowStalematePrompt();
return;

}

currentPlayer ++;
if(currentPlayer > 2) currentPlayer = 1;

ShowPlayerPrompt();

ComputerTakeATurn();

}

In place of the lines highlighted above, call the PlacePiece() function. The new
ClickSquare function should look like the following:

function ClickSquare(square:GameObject)
{

if(gameIsOver) return;

PlacePiece();

ComputerTakeATurn();

}

[453]

AI Programming and World Domination

The PlacePiece function should look like the following:

function PlacePiece()
{

var piece:GameObject;

if(currentPlayer == 1)
{

piece = XPiece;
} else {

piece = OPiece;
}
moves ++;
Instantiate(piece, square.transform.position, Quaternion.identity);

square.GetComponent.<Square>().player = currentPlayer;

if(CheckForWin(square))
{

gameIsOver = true;

ShowWinnerPrompt();

return;
} else if(moves >= 9) {

gameIsOver = true;

ShowStalematePrompt();
return;

}
currentPlayer ++;
if(currentPlayer > 2) currentPlayer =

1; ShowPlayerPrompt();
}

At the top of the PlacePiece function, we have a conditional check to determine
whether we should place an X or an O depending on the currentPlayer variable. Now
that we're discretely calling this function, we can actually pass in the piece we want
placed, and omit the conditional check.

Change the PlacePiece() function call in the ClickSquare function, so that
you're explicitly passing a reference to the XPiece Prefab:

PlacePiece(XPiece);

In the PlacePiece function, accept piece as a parameter:

function PlacePiece(piece:GameObject)

[454]

Chapter 13

Delete the whole currentPlayer-checking conditional from the PlacePiece
function, bolded below:

var piece:GameObject;

if(currentPlayer == 1)
{

piece = XPiece;
} else {

piece = OPiece;
}

The Instantiate command still refers to a GameObject called piece, which is
now coming from the parameter, instead of being defined in the conditional
statement. Here's how the PlacePiece function should look when you're finished:

function PlacePiece(piece:GameObject)
{

moves ++;
Instantiate(piece, square.transform.position, Quaternion.identity);

square.GetComponent.<Square>().player = currentPlayer;

if(CheckForWin(square))
{

gameIsOver = true;

ShowWinnerPrompt();

return;
} else if(moves >= 9) {

ShowStalematePrompt();

return;
}
currentPlayer ++;
if(currentPlayer > 2) currentPlayer =

1; ShowPlayerPrompt();
}

In moving this code into the PlacePiece function, we may not have noticed that the

PlacePiece code now has no idea what square is, since it's no longer defined inside the

function. Let's also pass that in when we call PlacePiece. Modify the function signature:

function PlacePiece(piece:GameObject, square:GameObject)

From the ClickSquare function, pass in the clicked square when you call PlacePiece:

PlacePiece(XPiece, square);

[455]

AI Programming and World Domination

Down in the ComputerTakeATurn function, call the PlacePiece function and pass it
the computer player-specific piece and square references:

square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];
PlacePiece(OPiece, square);

Let's test the game and look for bugs.

Tic Tac Toe at the speed of light

Whoa... okay. The computer player plays a piece, but it does so instantly after the human clicks

to place a piece. This is what happens when you play a game against a superior intellect!

To dull the game down to human-comprehensible speed, let's build in a brief pause before the

computer makes a move just before the function call in the ClickSquare function.

yield WaitForSeconds(2);

ComputerTakeATurn();

Try the game again. There is now a nice 2-second pause before the computer makes a
move, providing the illusion that the computer is "thinking" (when really, it's just
randomly throwing darts at the wall). This Artificial Intelligence stuff is looking more and
more like a magic trick, isn't it?

Sore loser

You may notice, however, that the computer cheats. If the human gets three Xs in a row,
the computer will place an O even after the game is won. That's because our code is
telling the computer to do this. We always call ComputerTakeATurn after the human's
move, with no conditions.

Let's wrap our ComputerTakeATurn call in a conditional statement to check whether
the game is won:

if(!gameIsOver)
{

yield WaitForSeconds(2);

ComputerTakeATurn();
}

That should prevent the computer from getting in a cheater-pants cheap shot after the
game has ended.

[456]

Chapter 13

Click-spamming for fun and profit

The human player can also cheat, and place an X during the pause while the computer
is "thinking". Try "click-spamming" the grid to place more Xs than you ought to. If
you're very quick, you can fill the grid with Xs before the computer places a single O.

By adding a conditional check to the ClickSquare function, we can make sure the
human can only place a piece when it's his or her turn:

function ClickSquare(square:GameObject)
{

if(gameIsOver || currentPlayer == 2) return;

The double-pipe means "OR". If either of the statements separated by || in the
conditional check resolve to true, then the code within the conditional is executed.

So if the human clicks to place a piece, if either the game is over or it's the computer's
turn, we use the return statement to eject out of the function and prevent the rest of the
code from executing.

Test the game again. Now, neither player can cheat.

Artificial stupidity

Once again, we can end the project here. We now have a 2-player turn-based strategy

game with a computer opponent. The human player can win and, with a little luck (and

some rotten playing on the human's part), the computer player can win.

Try playing a few rounds of the worst Tic Tac Toe of your life. The computer player
can win, but it's almost a challenge to play so badly that you lose to your
artificially "intelligent" opponent.

Randomly choosing an empty Square isn't going to cut it. We need to make the computer

opponent smarter. To do that, we have to sit down and study Tic Tac Toe until we understand

what makes it ... ahem ... tick. We need to be experts at how to play, and win, Tic Tac Toe.
The computer scientists who programmed Big Blue to defeat Kasparov had to go through
the same process with a considerably more complicated game, studying the intricacies of
chess so they could teach a computer how to strategize.

[457]

AI Programming and World Domination

Tic Tac Toe is what ludologists (people who study games) call a "solved game". A solved
game is one where you can reliably predict the outcome of a match from any point, as long
as both players play "perfectly", or optimally, without making any strategic errors. The
process of solving a game can involve mapping out all of the game's possible states in a
flowchart-like "game tree", and from that chart, deriving a set of steps to follow that will
produce the best possible outcome for either player.

The game tree for Tic Tac Toe terminates in 138 different end states, as long as you don't include

symmetries or board rotations. If you're feeling plucky, why not grab a pencil and a piece of

paper and map out the game tree for Tic Tac Toe? Here's a nudge to get you started.

At first glance, it seems like player 1 has nine different options for placing an X—after
all, there are nine empty squares in the grid. Consider, though, that an X placed in the
top left-hand corner is identical to an X placed in the bottom right-hand corner, if you
rotate the board. It's the same story with the sides.

In reality, at the beginning of a Tic Tac Toe game, there are only three unique moves a
player can make: a corner, a side, or the center.

Consequently, the top of our game tree looks like this:

x
x

x

[458]

Chapter 13

Pursue the first branch of the diagram where X takes a corner. O can respond with
five possible moves: an adjacent side, an opposite side, an adjacent corner, an
opposite corner, or the center.

 x

x

 x

x x x x x

0
0 0

 0

 0

The Tic Tac Toe game tree begins to look more like a maniacal football coach's playbook.

From those five options, you can keep branching out until you find the inevitable conclusion for

each one. Then go back, and doodle the possibilities for the remaining unexplored paths.

If drawing this game tree scratches a ludological (or obsessive-compulsive) itch for you,
keep going until you find all the 138 terminal board positions. Finishing the game tree is
not crucial to completing this chapter, but it will give you a good feel for the lengths to
which some computer scientists will go to find the answers to burning questions, like "how
do you win at Tic Tac Toe?".

To determine the best course of action for the computer opponent, we need to create a
prioritized list of rules for the computer to follow when deciding how to place a piece,
which changes depending on the situation on the board. Let's pretend we are the
computer, and we see this situation:

x

0

x 0

[459]

AI Programming and World Domination

It wouldn't make sense to place an O anywhere but in X's way—otherwise, the
computer loses. So we have our first rule:

‹ ‹ Block opponent from winning

Now let's look at this situation:

x 0

x

x 0

Sure, X is about to win, but O also has an opportunity to win. Which is more important: for
O to keep X from winning, or for O to win? Clearly, it's more important for O to claim victory
and win the game. So we have our second rule:

‹ ‹ Win

We just said that it's more important for O to claim victory than to block X, so we've

also established a preferred order for these two rules:

‹

‹

‹

‹

Win

Block

Notice that our two statements are already written in pseudocode. Win() and Block() could

just as easily be written as function calls. If we keep this up, we can just convert our plain

English statements into Unity JavaScript and, theoretically, our code will work in-game.

It's a trap!

What are the most powerful ways in which to play this game? Tic Tac Toe neophytes
suppose that the most powerful square on the grid is the middle. After all, doesn't the most
high-profile washed-up celebrity get the center square on Hollywood Squares?

x

[460]

Chapter 13

However, as any discerning Tic Tac Toe player knows, playing the corners is perhaps a
wiser move, because it facilitates a trap, where scoring 3-in-a-row is possible in two
different places. Blocking one path simply allows the player to win with the second path.

 x 0

 0

 x x

x 0 x
0

0

0 0

x x

x x 0

x 0 x 0

0 0 x 0

x x x x 0 x

So in this situation, blocking is not an option. The only viable options are to win, if
possible, or to have prevented the opponent from creating a trap to begin with. So that
gives us one more rule for our AI player:

‹ ‹ Prevent a trap

And really, if it's possible to set a trap for the opponent, we want our artificially
intelligent computer player to try to do that. So we have:

‹

‹

‹

‹

Prevent a trap

Create a trap

Where do these two things fit in our existing prioritized list of rules?

‹

‹

‹

‹

Win

Block

Since a player's victory is more important than an opponent's victory, setting one's
own trap is of higher priority than blocking the opponent's trap. Our prioritized list of
rules then becomes:

‹

‹

‹

‹

‹

‹

‹

‹

Win

Block Prevent

a trap Create

a trap

[461]

AI Programming and World Domination

The leftovers

From there, the computer player can either take the center, a corner, or a side. Which
of these three positions is the most powerful, and therefore of the highest priority?

If you had mapped out all of the possible board positions in a game tree, you would already
know the answer. Or, you could save a boatload of time by just reading the Tic Tac Toe
article on Wikipedia. At the time of this writing, it was an excellent primer on the thinking
that goes into determining the best strategy for this game, and others of its kind. Since
Wikipedia is editable by anyone, it's possible that by the time you read the article, it will be
full of cat pictures. Let's hope not.

We'll stand on the shoulders of giants and crib the rest of our notes from Wikipedia. According

to the article, taking a corner position provides more opportunities for your opponent to make a

mistake, but this only matters if 1. it's the first move and 2. your opponent actually makes a

mistake. Otherwise, the preferred order of play is center, corner, side.

Since we're not planning on allowing our computer player to make a mistake (yet),
our prioritized list then becomes:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Win
Block Prevent

a trap Create

a trap
Play the center

Play a corner

Play a side

To put this in more pseudocode terms, we might say:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Try to win

If you can't win, try to block

If you can't block, try to set a trap

If you can't set a trap, try to prevent the opponent from setting a

trap If there's no trap to prevent, play the center

If the center is taken, play a corner

If there's no free corner, play a side

Doesn't it matter which corner or side we play? Possibly. We won't know unless we map out
that gigantic game tree and strap on our taped-up specs for some right nerdy analysis, or
just try this code and see if it works. I vote for the latter.

[462]

Chapter 13

To translate our prioritized peudocode strategy list into actual code, I propose that we turn
each attempt at playing a piece into its own function. If we find a valid move, the function
will return the square where the computer should play a piece. If there's no valid move,
the function will return null, which is the computer code equivalent of "does not
exist/totally isn't a thing".

In the ComputerTakeATurn function, let's get rid of (or comment out) the code
that randomly chooses a square, which is bolded in the following code:

function ComputerTakeATurn()
{

var square:GameObject;

var aEmptySquares:List.<GameObject> = new List.<GameObject>();

for(var i:int = 0; i < aSquares.Length; i++)
{

square = aSquares[i];

if(square.GetComponent.<Square>().player == 0)
aEmptySquares.Add(square);

}
square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];

PlacePiece(OPiece, square);

}

We'll replace it with our pseudocode-turned-real-code list of attempted moves:

var square:GameObject;

square = Win();
if(square == null) square = Block(); if(square

== null) square = CreateTrap(); if(square ==

null) square = PreventTrap(); if(square ==

null) square = GetCentre(); if(square == null)

square = GetEmptyCorner(); if(square == null)

square = GetEmptySide();
if(square == null) square = GetRandomEmptySquare();
PlacePiece(OPiece, square);

[463]

AI Programming and World Domination

What just happened – stepping through the strategy

Each of the items in our prioritized strategy list is represented by a (currently non-
existent) function. Each function will attempt to find a valid square for the computer
player to place its piece, by returning a reference to a square GameObject.

square = Win();

By writing this, we're setting the value of the square variable to whatever gets spit out of
the Win function vending machine. If the Win function finds a winning square, the
returned item will be a square GameObject. If the Win function fails to find a winning
square, it will return a value of null.

if(square == null) square = Block();

In the next lines, we check to see if the value of square is null. If it is, then we'll try the next
strategic move, and the next, in decreasing order of preference, until the computer just
plays a random empty square, which is the weakest move it can make.

There's no shame in starting simple. Let's start writing these functions from the bottom
up, until we reach the most complex ones at the top.

The GetRandomEmptySquare() function does what our stupidest possible
computer player does: finds any empty square and marks it with no thought to
strategy. We can just reuse code we've already written:

function GetRandomEmptySquare():GameObject
{

var square:GameObject
var aEmptySquares:List.<GameObject> = new List.<GameObject>();

for(var i:int = 0; i < aSquares.Length; i++)
{

square = aSquares[i];

if(square.GetComponent.<Square>().player == 0)
aEmptySquares.Add(square);

}
square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];

return square;
}

[464]

Chapter 13

This will be our fall-through code. If all else fails and none of the
other functions manage to return a square, we can count on this line
to just grab an empty space in the grid.

The GetEmptySide function needs to look at all four of the side squares, and return an
empty one (if one exists). We could just return the first one we find, but as we saw earlier,
that might break the illusion that the computer is "thinking" intelligently. A better
approach is to make a list of all the empty sides, and choose one at random, just as we did
with the empty squares in the unintelligent version of our computer player.

We know we'll need a list. We'll add any empty side we find to that list. Then, if the
list has at least one empty side in it, we'll return a random side from the list.
Otherwise, we'll return null.

In pseudocode, it looks like this:

The GetEmptySide function returns a GameObject.

1. Create an empty list.

2. If the top side is empty, add it to the list.

3. If the left side is empty, add it to the list.

4. If the right side is empty, add it to the list.

5. If the bottom side is empty, add it to the list.

6. If the list has at least one thing in it, choose a thing at random and return it.

7. Otherwise, return null.

In UnityScript, it looks like this:

function GetEmptySide():GameObject
{
var aEmptySides:List.<GameObject> =

new List.<GameObject>();
if(GetPlayer(1,0) == 0) aEmptySides.Add(aGrid[1,0]);

if(GetPlayer(0,1) == 0) aEmptySides.Add(aGrid[0,1]);

if(GetPlayer(2,1) == 0) aEmptySides.Add(aGrid[2,1]);

if(GetPlayer(1,2) == 0) aEmptySides.Add(aGrid[1,2]);

if(aEmptySides.Count > 0) return
aEmptySides[Random.Range(0,aEmptySides.Count)];

return null;
}

[465]

AI Programming and World Domination

It's a nearly identical process to return an empty corner. Add this function to your code:

function GetEmptyCorner():GameObject
{

var aEmptyCorners:List.<GameObject> = new List.<GameObject>();

if(GetPlayer(0,0) == 0) aEmptyCorners.Add(aGrid[0,0]);

if(GetPlayer(2,0) == 0) aEmptyCorners.Add(aGrid[2,0]);

if(GetPlayer(0,2) == 0) aEmptyCorners.Add(aGrid[0,2]);

if(GetPlayer(2,2) == 0) aEmptyCorners.Add(aGrid[2,2]);

if(aEmptyCorners.Count > 0) return aEmptyCorners

[Random.Range(0,aEmptyCorners.Count)];

return null;
}

It's an even simpler task to get the status of the center square and return it if it's empty.
Tack on this function to your code:

function GetCentre():GameObject
{

if(GetPlayer(1,1) == 0) return

aGrid[1,1]; return null;
}

Keep in mind throughout these three functions that a return statement prevents all
other code in the function from executing. In the GetCentre function, for example, if the
code finds an empty square in the center, it returns the square and bounces back out of
the function, so that the return null line is never executed.

That leaves us with four more functions to write: Win(), Block(), CreateTrap(),
and PreventTrap(). Note that for the remainder of the chapter, we'll be using the
word "row" to refer both to a horizontal line, and to three squares in a line regardless
of their orientation, as in "in-a-row".

A very interesting thing happens if we carefully work out what needs to happen in each
of these functions. Take the Win and Block functions first.

[466]

Chapter 13

To determine whether we can win, we need to look at three spaces in a row. If two of
the spaces in a row contain our piece, and the third is empty, we can win the game.

To determine whether we can block, we need to look at three spaces in a row. If two of

the spaces contain the opponent's piece, and the third is empty, we can block.

Code one, get one free

I don't know about you, but I'm seeing double. The pseudocode to determine a chance to win

and a chance to block looks exactly the same. That means we can probably combine the
Win and Block checks into one efficient function. Let's give it a shot.

Start by combining the two ComputerTakeATurn lines from this:

square = Win();
if(square == null) square = Block();

if(square == null) square = CreateTrap();

if(square == null) square = PreventTrap();

Into this:

square = WinOrBlock();
if(square == null) square = CreateTrap();

if(square == null) square = PreventTrap();

I'll confess that it took quite a bit of trial and error to write a working WinOrBlock()

function. As with any code, there may be better ways to accomplish the same goal, but this

is the solution I painstakingly arrived at. I will step through the conclusions I reached in

building this function. As you read, picture the mountains of crumpled-up paper and torn-

out hair that led to this amazing breakthrough in computer programming.

Before you hear my solution, puzzle through it yourself and see if you can devise a good
way to determine whether the computer can win or block. Full disclosure: the solution
we're going to build actually uses two functions!

[467]

AI Programming and World Domination

The actual intelligence behind artificial intelligence

The function needs to check all eight opportunities to score: 3 columns, 3 rows, and 2
diagonals. The big "aha" moment came when I realized that I couldn't just eject out of the
function with a return statement the moment I discovered a chance to block, because
(according to our handy prioritized strategy list), winning is of higher priority than
blocking. By immediately returning the first opportunity to block I came across, I might be
leaving an unsearched opportunity to win on the table.

x 0

x

x 0

It became clear that I would need to store a list of opportunities to block, and a list of
opportunities to win. Once I search through all eight scoring scenarios, the function
should return a random opportunity to win from the list (if any exist). If not, the function
should return a random opportunity to block from the second list (if any existed). If there
are no opportunities to block or win, the function should return null.

For example, in the preceding image, the search will find one opportunity to win (by playing
the square on the right side), and one opportunity to block (by playing the square on the
left side). Those options will each go into a different list. Since winning is a higher priority
than blocking, the code will pull a random item out of the list of opportunities to win
(there's only one in the list), and the rest of the function will be skipped over.

x

0

x 0

[468]

Chapter 13

In the preceding situation, the search will only find one opportunity to block in the left side

square. The code will check the list of opportunities to win, and since that list is empty, it will

choose a random square from the list of opportunities to block (there's only one on the list).

x

In this example, there are no opportunities to win or block, so the two lists will be empty

after the search is conducted. Since that's the case, the function will return null.

The second important breakthrough was parceling out the actual search steps into a
separate function, and accepting three individual squares as inputs. It's tough to write a
concise loop to pick through the rows, columns, and particularly diagonals in a Tic Tac
Toe game, so defining a function that takes three discrete squares as inputs seems like a
great way to keep the code simple and concise.

Because the solution requires two functions that each need to access the lists of win
and block opportunities, those lists need to be defined at the top of the code as
member variables that any function can access:

var aGrid:GameObject[,];

var gameIsOver:boolean;

var moves:int;
var aBlockOpportunities:List.<GameObject>;

var aWinOpportunities:List.<GameObject>;

This is the combined WinOrBlock function:

function WinOrBlock():GameObject
{

aBlockOpportunities = new List.<GameObject>();

aWinOpportunities = new List.<GameObject>();
// Empty out these lists before we start searching.

// Check the rows for 2 in a row:

CheckFor2InARow([Vector2(0,0), Vector2(1,0), Vector2(2,0)]);

[469]

AI Programming and World Domination

CheckFor2InARow([Vector2(0,1), Vector2(1,1), Vector2(2,1)]);
CheckFor2InARow([Vector2(0,2), Vector2(1,2), Vector2(2,2)]);
// Check the columns for 2 in a row:

CheckFor2InARow([Vector2(0,0), Vector2(0,1), Vector2(0,2)]);

CheckFor2InARow([Vector2(1,0), Vector2(1,1), Vector2(1,2)]);

CheckFor2InARow([Vector2(2,0), Vector2(2,1), Vector2(2,2)]);

// Check the diagonals for 2 in a row:

CheckFor2InARow([Vector2(0,0), Vector2(1,1), Vector2(2,2)]);

CheckFor2InARow([Vector2(0,2), Vector2(1,1), Vector2(2,0)]);

// If there are any opportunities to win, return one at

random: if(aWinOpportunities.Count > 0) return
aWinOpportunities[Random.Range(0, aWinOpportunities.Count)];

// If there are any opportunities to block, return one at random:

if(aBlockOpportunities.Count > 0) return

aBlockOpportunities[Random.Range(0, aBlockOpportunities.Count)];

// There are no opportunities to win or block, so return null:
return null;

}

Each CheckFor2InARow call updates the aWinOpportunities and

aBlockOpportunities lists if the function finds two X's or O's in a row.  
Finally, here is the CheckFor2InARow companion function:

function CheckFor2InARow(coords:Vector2[])
{

var p1InThisRow:int = 0; // the number of X's in this row

var p2InThisRow:int = 0; // the number of O's in this row

var player:int;
var square:GameObject =

null; var coord:Vector2;
// Step through each of the 3 Square

coordinates that were passed in:
for (var i:int = 0; i<3; i++)
{

coord = coords[i];
player = GetPlayer(coord.x,coord.y);

// Find the piece in this Square

if(player == 1)
{
p1InThisRow ++; // Tally up an X

} else if(player == 2) {

p2InThisRow ++; // Tally up an O
} else {

[470]

Chapter 13

square = aGrid[coord.x,coord.y];
// This Square is empty. Store it for later.

}
}

if(square != null)
{

// We found an empty Square in this

row. if(p2InThisRow == 2)
{
// There are two O's in a row with an empty Square.
aWinOpportunities.Add(square);

// Add a win opportunity to the

list. } else if (p1InThisRow == 2) {

// There are two X's in a row with an empty Square.

aBlockOpportunities.Add(square);

// Add a block opportunity to the list.
}

}
}

What just happened – the search is on

The WinOrBlock function kicks off by emptying out the
aBlockOpportunities and aWinOpportunities arrays.

aBlockOpportunities = new List.<GameObject>();

aWinOpportunities = new List.<GameObject>();
// Empty out these lists before we start searching.

By doing this, we ensure that any results leftover from earlier searches are swept
out, and we start fresh.

The next eight lines are nearly identical. They all pass a different set of three
squares to the CheckFor2InARow function.

CheckFor2InARow([Vector2(1,0), Vector2(1,1), Vector2(1,2)]);

This call, for example, passes in the three squares in the column that runs straight
down the middle of the grid.

if(aWinOpportunities.Count > 0) return aWinOpportunities

[Random.Range(0, aWinOpportunities.Count)];

[471]

AI Programming and World Domination

This line, like the one that follows it, determines whether there's at least one element
in the aWinOpportunities array. If there is, it grabs one at random and returns it.

Let's take a closer look at the CheckFor2InARow function.

var p1InThisRow:int = 0; // the number of X's in this row

var p2InThisRow:int = 0; // the number of O's in this row

var player:int;
var square:GameObject =

null; var coord:Vector2;

These variable declarations at the top are all used inside the loop, as we've seen before.

for (var i:int = 0; i<3; i++)

We loop through the three coordinates that were passed in through the coords array
in the function definition.

coord = coords[i];

First, we pull out a pair of coordinates at the ith index and store it in the coord variable.

player = GetPlayer(coord.x,coord.y);

// Find the piece in this Square

Next, we use our prebuilt GetPlayer function to return the value of the player variable
on the square at the specified coordinates.

if(player == 1)
{

p1InThisRow ++; // Tally up an X

If the square's player value is set to 1, we increment the value of the p1InThisRow variable.

} else if(player == 2) {

p2InThisRow ++; // Tally up an O

Otherwise, if the square's player value is 2, we increment the p2InThisRow variable.

} else {
square = aGrid[coord.x,coord.y]; // This Square is

empty. Store it for later.
}

If the player value is neither 1 nor 2, then the square is empty. Store a reference to it in
the square variable for safekeeping.

if(square != null)

[472]

Chapter 13

If we really did find an empty square somewhere in that row, it's possible that
there's a win or block opportunity here.

if(p2InThisRow == 2)

More specifically, if there was an empty square and there were two Os in the
row, this is a win opportunity.

aWinOpportunities.Add(square);

We want to add this square to the list of win opportunities.

} else if (p1InThisRow == 2) {

Likewise, if there was an empty square and there are two Xs in the row.

aBlockOpportunities.Add(square);

we'll keep track of this square as a block possibility.

Shut your trap

We're closing in on a completed AI routine. The last check we have to make is to set a

trap if an opportunity exists, or to prevent a trap if the opponent has that chance.
If you're getting antsy, you can test the game now by using double slashes to
comment out these two lines of code:

// if(square == null) square = CreateTrap();

// if(square == null) square = PreventTrap();

You'll figure out pretty quickly how important trap-blocking intelligence is.
Just place an X in a corner.

[473]

AI Programming and World Domination

The artificial intelligence steps through its logic as follows:

‹

‹

‹

‹

‹

‹

‹

‹

Try to win or block (fail)

If you can't block, try to set a trap (this step is commented out)

If you can't set a trap, try to prevent the opponent from setting a
trap (this step is commented out)

If there's no trap to prevent, play the center (done!)

The computer plays the center. Then you play the opposite corner.

[474]

Chapter 13

The computer steps through its logic again, from the top:

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Try to win or block (fail)

If you can't block, try to set a trap (this step is commented out)

If you can't set a trap, try to prevent the opponent from setting a
trap (this step is commented out)

If there's no trap to prevent, play the center

(fail) If the center is taken, play a corner (done!)

This leaves you to take that third corner, and to set an unwinnable trap for the computer.
In this way, you can reliably win against the computer every single time.

[475]

AI Programming and World Domination

Detecting the tri-corner trap

As John Rambo once said, "to win Tic Tac Toe, you gotta become Tic Tac Toe". Before we

can prevent or set a trap, we need to understand what constitutes a trap.

There are four possible trap scenarios in Tic Tac Toe:

x

 x

 x

x x

x

x

 x x x x x x

 x x x x x x x

INTERIOR-L EXTERIOR-L STAGGERED ROW TRI-CORNER

Because our artificial intelligence does what it does, the only possible trap scenario we can

manage against the computer is the Tri-Corner. Try it yourself. You won't be able to set up
Interior-L, Exterior-L, or Staggered Row traps, because of the steps the computer
already takes. That's good news! That means that the Tri-Corner trap is the only one we
have to worry about.

Just as we did with the Win() and Block() functions, let's look at what it will take
to detect a Tri-Corner trap for both the player and the opponent:

‹

‹

‹

‹

To create a trap, count up the number of corners I control. If I control two
corners and a third corner is available, take it.

To prevent a trap, count up the number of corners the opponent controls. If the
opponent controls two corners, take a side to force him to defend (thus
preventing him from grabbing that third corner).

As before, it looks like there's considerable overlap between these two functions. We can

probably combine them into a single function like we did with the Win and Block functions.

Combine these two separate function calls:

square = Win();
if(square == null) square = Block();

if(square == null) square = CreateTrap();

if(square == null) square = PreventTrap();

[476]

Chapter 13

into this unified call:

square = Win();
if(square == null) square = Block();
if(square == null) square = PreventOrCreateTrap();

The PreventOrCreateTrap function is very straightforward:

function PreventOrCreateTrap():GameObject
{

var aP1Corners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store X-controlled corners
var aP2Corners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store O-controlled corners
var aOpenCorners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store unoccupied corners

var aCorners:GameObject[] =

[aGrid[0,0],aGrid[2,0],aGrid[0,2], aGrid[2,2]];
// Create an array to store the corner coordinates

var player:int;
var square:GameObject;

// Loop through the corner

coordinates: var i:int;
for(i = 0; i < 4; i++)
{

square = aCorners[i];
player = square.GetComponent.<Square>().player;

// Find the piece that's in this corner
if(player == 1)
{
aP1Corners.Add(square);

// If it's an X, add it to the X-controlled corners

lists } else if (player == 2) {

aP2Corners.Add(square);
// If it's an O, add it to the X-controlled corners

lists } else {

aOpenCorners.Add(square);
// If it's empty, add it to the empty corners list

}
}

[477]

AI Programming and World Domination

// Set a trap!

// If O has two corners and there's at least one empty corner,
// randomly return an empty corner from the empty corners list:
if(aP2Corners.Count == 2 && aOpenCorners.Count > 0) return

aOpenCorners[Random.Range(0,aOpenCorners.Count)];

// Prevent a trap!

// If X has two corners, take a side to force him to

defend: if(aP1Corners.Count == 2) return GetEmptySide();

// If there's no trap to set or prevent, return

null: return null;
}

What just happened – I'm running out of trap puns

Let's zero in on what's happening in that code.

var aP1Corners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store X-controlled corners
var aP2Corners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store O-controlled corners
var aOpenCorners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store unoccupied corners

We kick off the PreventOrCreateTrap function by creating three empty Generic Lists to

store references to the corner squares player 1 has claimed, references to the corner

squares player 2 has claimed, and the list of corner squares neither player has claimed.

var aCorners:GameObject[] =

[aGrid[0,0],aGrid[2,0],aGrid[0,2],aGrid[2,2]];
// Create an array to store the corner coordinates

Then, we define a Generic List of the corner squares, pulling them from the aGrid
array by their coordinates. We can loop through this List later (and, in fact, we do!).

var player:int;
var square:GameObject;

These two variables are needed in the loop:

var i:int;
for(i = 0; i < 4; i++)

[478]

Chapter 13

This is a standard iterative loop setup that we've used numerous times before. The i iterator

variable is declared outside the loop, allowing us to reuse the iterator in other loops throughout

this function, if need be. (In this situation, i is only used in one iterative loop.)

square = aCorners[i];

Grab a reference to the ith square in the aCorners List, and assign it to the lowercase-
s variable square.

player = square.GetComponent.<Square>().player;

// Find the piece that's in this corner

Store a reference to the Square's player value (which will be 0, 1, or 2).

if(player == 1)
{

aP1Corners.Add(square);
// If it's an X, add it to the X-controlled corners

lists } else if (player == 2) {

aP2Corners.Add(square);
// If it's an O, add it to the X-controlled corners

lists } else {

aOpenCorners.Add(square);
// If it's empty, add it to the empty corners list

}

If player 1 controls this Square, add the Square to the aP1Corners List. If player 2
controls it, add the Square to the aP2Corners List. If neither player controls the Square,
add its reference to the aOpenCorners List.

if(aP2Corners.Count == 2 && aOpenCorners.Count > 0) return

aOpenCorners[Random.Range(0,aOpenCorners.Count)];

If player 2 (the computer player) has claimed two corners and there's at least one empty

corner in the aOpenCorners List, this Square represents a chance for the computer to set a

Tri-Corner trap! Spit out a randomly-chosen empty corner from the aOpenCorners List.

if(aP1Corners.Count == 2) return GetEmptySide();

If player 1, the human player, has claimed two corners, the computer can't allow him to

claim a third corner and set a trap. Playing an O in one of the side Squares will force the

human into a defensive position, so pull a random empty side Square using the existing
GetEmptySide function and return it.

[479]

AI Programming and World Domination

Perfection Horrible, horrible perfection.

With your computer player's "brain" completely programmed, test your game.

Egad! We've created the Deep Blue of Tic Tac Toe-playing computers! The computer plays
so well that every single game ends in either a win for the computer, or a draw. There's no
possible way to win. We've created a monster! It won't be long before Skynet starts
sending Terminators back in time. What have we wrought??

As we've discovered in the other games we've built, if the human player ain't happy, ain't
nobody happy. We need to tweak the code so that our hideously perfect computer
intellect makes mistakes every so often. But how do you program fallibility, an
excruciatingly human trait, into the cold, unerring calculations of an unfeeling computer?

Well, you just throw some dice around.

By grabbing a random number as a success condition at each step of the computer's

"thinking", we can simulate an error in judgment where the computer makes a "mistake".

[480]

Chapter 13

Set the square variable to null off the top of the ComputerTakeATurn
function, and then add in a few dice throws:

function ComputerTakeATurn()
{

var square:GameObject = null;
if(Random.value > 0.5f) square = WinOrBlock();

if(square == null && Random.value > 0.5f) square =
PreventOrCreateTrap();

if(square == null && Random.value > 0.5f) square = GetCentre();

if(square == null && Random.value > 0.5f) square =

GetEmptyCorner(); if(square == null && Random.value >0.5f) square =

GetEmptySide(); if(square == null) square = GetRandomEmptySquare();

PlacePiece(OPiece, square);
}

What just happened – roll for initiative

At each step of the computer's "thought" process, we're pulling a random number.
If there's no valid move from the previous step and the computer passes a
Dungeons and Dragons-style "roll for initiative", the computer is allowed to
complete the next (and most desirable) check for a move.

If the computer fails the random number roll, the logic falls through to the next prioritized

strategic move, where the computer player must again survive a random number check.
The result is that by failing a "die roll" (when the random number is, randomly, less than 0.5f,

about half the time), the computer makes a mistake and misses an important strategic step.

When you play the game, you'll see that it's now much more possible to defeat the
computer player, because we've used random numbers to simulate errors in
judgment (or, to put it in more human terms, "brain farts").

Failing a dice roll on the WinOrBlock() function makes the

computer seem especially stupid. When given the chance, who

wouldn't spot a chance to win the game or block the opponent?
You might consider removing the conditional statement before
the WinOrBlock() function call to prevent your human player
from catching on that you're deliberately dumbing down your AI.

[481]

AI Programming and World Domination

Turning it up to "Smart"

Interestingly, this 0.5f float value handily represents the computer's level of intellect. If we
crank that number up, it becomes less likely that the computer will fail a random number
check, and the computer becomes "smarter" by messing up less often. By tuning the
number down, the computer becomes more prone to error. Simply put, we can create a
dumber computer with the turn of a dial, by replacing all those instances of 0.5f with a
variable called difficulty, and setting that variable off the top of the game.

Having a master knob to mess around with the computer's artificial intellect is very useful,
because it enables us to create different difficulty levels. We can allow the player to
choose easy, medium, or hard, or a number from 1 to 10 at the beginning of the game,
and tweak the float value behind the scenes to react accordingly. We can even adjust the
variable up or down depending on how often the human player is winning or losing!

Code encore

In case your own intellect was dialed down to 0.2f and you goofed somewhere along
the way, here's the complete GameLogic code for the Tic Tac Toe game all in one shot:

#pragma strict

import System.Collections.Generic;

var XPiece:GameObject;

var OPiece:GameObject;

var currentPlayer:int =

1; var prompt:GUIText;
var aSquares:GameObject[];

var aGrid:GameObject[,];

var gameIsOver:boolean; var

moves:int;
var aBlockOpportunities:List.<GameObject>;

var aWinOpportunities:List.<GameObject>;

function Start ()
{

ShowPlayerPrompt();

aGrid = new GameObject[3,3];

var theSquare:GameObject;

var theScript:Square;

[482]

Chapter 13

for(var i:int =0; i < aSquares.Length; i++)
{

theSquare = aSquares[i];
theScript = theSquare.GetComponent.<Square>();

aGrid[theScript.x,theScript.y] = theSquare;
}

}

function ClickSquare(square:GameObject)
{

if(gameIsOver) return;

PlacePiece(XPiece,square);

if(!gameIsOver)
{

yield WaitForSeconds(2);

ComputerTakeATurn();
}

}

function PlacePiece(piece:GameObject,square:GameObject)
{

moves ++;
Instantiate(piece, square.transform.position, Quaternion.identity);

square.GetComponent.<Square>().player = currentPlayer;

if(CheckForWin(square))
{

gameIsOver = true;

ShowWinnerPrompt();

return;
} else if(moves >= 9)

{ gameIsOver = true;
ShowStalematePrompt();
return;

}

[483]

AI Programming and World Domination

currentPlayer ++;
if(currentPlayer > 2) currentPlayer = 1;

ShowPlayerPrompt();

}

function ComputerTakeATurn()
{

var square:GameObject = null;

if(Random.value > 0.5f) square = WinOrBlock();

if(square == null && Random.value > 0.5f)
square = PreventOrCreateTrap();

if(square == null && Random.value > 0.5f) square =

GetCentre(); if(square == null && Random.value > 0.5f)
square = GetEmptyCorner();

if(square == null && Random.value > 0.5f) square = GetEmptySide();

PlacePiece(OPiece, square);

}

function GetRandomEmptySquare():GameObject
{

var square:GameObject
var aEmptySquares:List.<GameObject> = new List.<GameObject>();

for(var i:int = 0; i < aSquares.Length; i++)
{

square = aSquares[i];

if(square.GetComponent.<Square>().player == 0)
aEmptySquares.Add(square);

}
square = aEmptySquares[Random.Range(0,aEmptySquares.Count)];

return square;
}

function WinOrBlock():GameObject
{

aBlockOpportunities = new List.<GameObject>();

aWinOpportunities = new List.<GameObject>();
// Empty out these lists before we start searching.

[484]

Chapter 13

// Check the rows for 2 in a row:

CheckFor2InARow([Vector2(0,0), Vector2(1,0), Vector2(2,0)]);

CheckFor2InARow([Vector2(0,1), Vector2(1,1), Vector2(2,1)]);

CheckFor2InARow([Vector2(0,2), Vector2(1,2), Vector2(2,2)]);

// Check the columns for 2 in a row:

CheckFor2InARow([Vector2(0,0), Vector2(0,1), Vector2(0,2)]);

CheckFor2InARow([Vector2(1,0), Vector2(1,1), Vector2(1,2)]);

CheckFor2InARow([Vector2(2,0), Vector2(2,1), Vector2(2,2)]);

// Check the diagonals for 2 in a row:

CheckFor2InARow([Vector2(0,0), Vector2(1,1), Vector2(2,2)]);

CheckFor2InARow([Vector2(0,2), Vector2(1,1), Vector2(2,0)]);

// If there are any opportunities to win, return one at

random: if(aWinOpportunities.Count > 0)

return aWinOpportunities[Random.Range(0,

aWinOpportunities.Count)];

// If there are any opportunities to block, return one at

random: if(aBlockOpportunities.Count > 0)

return aBlockOpportunities[Random.Range(0,

aBlockOpportunities.Count)];

// There are no opportunities to win or block, so return null:

return null;
}

function PreventOrCreateTrap():GameObject
{

var aP1Corners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store X-controlled corners
var aP2Corners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store O-controlled corners
var aOpenCorners:List.<GameObject> = new List.<GameObject>(); //

Create an empty list to store unoccupied corners

var aCorners:GameObject[] =

[aGrid[0,0],aGrid[2,0],aGrid[0,2],aGrid[2,2]];
// Create an array to store the corner coordinates

var player:int;
var square:GameObject;

// Loop through the corner

coordinates: var i:int;

[485]

AI Programming and World Domination

for(i = 0; i < 4; i++)
{

square = aCorners[i];
player = square.GetComponent.<Square>().player;

// Find the piece that's in this corner
if(player == 1)
{
aP1Corners.Add(square);

// If it's an X, add it to the X-controlled corners

lists } else if (player == 2) {

aP2Corners.Add(square);
// If it's an O, add it to the X-controlled corners

lists } else {

aOpenCorners.Add(square);
// If it's empty, add it to the empty corners list

}
}

// Set a trap!

// If O has two corners and there's at least one empty corner,
//randomly return an empty corner from the empty corners list:
if(aP2Corners.Count == 2 && aOpenCorners.Count > 0) return

aOpenCorners[Random.Range(0,aOpenCorners.Count)];

// Prevent a trap!

// If X has two corners, take a side to force him to

defend: if(aP1Corners.Count == 2) return GetEmptySide();

// If there's no trap to set or prevent, return

null: return null;
}

function CheckFor2InARow(coords:Vector2[])
{

var p1InThisRow:int = 0; // the number of X's in this row

var p2InThisRow:int = 0; // the number of O's in this row

var player:int;
var square:GameObject =

null; var coord:Vector2;
// Step through each of the 3 Square coordinates
// that were passed in:

[486]

Chapter 13

for (var i:int = 0; i<3; i++)
{

coord = coords[i];
player = GetPlayer(coord.x,coord.y);

// Find the piece in this Square
if(player == 1)
{
p1InThisRow ++; // Tally up an X

} else if(player == 2) {

p2InThisRow ++; // Tally up an O
} else {
square = aGrid[coord.x,coord.y]; // This Square is empty.

//Store it for later.
}

}

if(square != null)
{

// We found an empty Square in this

row. if(p2InThisRow == 2)
{

// There are two O's in a row with an empty

Square. aWinOpportunities.Add(square);
// Add a win opportunity to the

list. } else if (p1InThisRow == 2) {
// There are two X's in a row with an empty

Square. aBlockOpportunities.Add(square);
// Add a block opportunity to the list.

}
}

}

function GetEmptySide():GameObject
{

var aEmptySides:List.<GameObject> = new

List.<GameObject>(); if(GetPlayer(1,0) == 0)

aEmptySides.Add(aGrid[1,0]); if(GetPlayer(0,1) == 0)

aEmptySides.Add(aGrid[0,1]); if(GetPlayer(2,1) == 0)

aEmptySides.Add(aGrid[2,1]); if(GetPlayer(1,2) == 0)

aEmptySides.Add(aGrid[1,2]); if(aEmptySides.Count > 0)
return aEmptySides[Random.Range(0,aEmptySides.Count)];

return null;
}

[487]

AI Programming and World Domination

function GetEmptyCorner():GameObject
{

var aEmptyCorners:List.<GameObject> = new List.<GameObject>();

if(GetPlayer(0,0) == 0) aEmptyCorners.Add(aGrid[0,0]);

if(GetPlayer(2,0) == 0) aEmptyCorners.Add(aGrid[2,0]);

if(GetPlayer(0,2) == 0) aEmptyCorners.Add(aGrid[0,2]);

if(GetPlayer(2,2) == 0) aEmptyCorners.Add(aGrid[2,2]);

if(aEmptyCorners.Count > 0)
return aEmptyCorners[Random.Range(0,aEmptyCorners.Count)];

return null;

}

function GetCentre():GameObject
{

if(GetPlayer(1,1) == 0) return

aGrid[1,1]; return null;
}

function ShowPlayerPrompt()
{

if(currentPlayer == 1)
{

prompt.text = "Player 1, place an X.";
} else {

prompt.text = "Player 2, place an O.";
}

}

function ShowWinnerPrompt()
{

if(currentPlayer == 1)
{

prompt.text = "X gets 3 in a row. Player 1 wins!";
} else {

prompt.text = "O gets 3 in a row. Player 2 wins!";
}

yield WaitForSeconds(3);

Application.LoadLevel(0);

}

[488]

Chapter 13

function ShowStalematePrompt()
{

prompt.text = "Stalemate! Neither player wins.";

yield WaitForSeconds(3);

Application.LoadLevel(0);
}

function CheckForWin(square:GameObject):boolean
{

var theScript:Square = square.GetComponent.<Square>();

//Check the squares in the same column:

if(GetPlayer(theScript.x,0) == currentPlayer &&
GetPlayer(theScript.x,1) == currentPlayer &&

GetPlayer(theScript.x,2) == currentPlayer) return true;

// Check the squares in the same row:

if(GetPlayer(0,theScript.y) == currentPlayer &&

GetPlayer(1,theScript.y) == currentPlayer &&

GetPlayer(2,theScript.y) == currentPlayer) return true;

// Check the diagonals:
if(GetPlayer(0,0) == currentPlayer &&

GetPlayer(1,1) == currentPlayer &&

GetPlayer(2,2) == currentPlayer) return true;
if(GetPlayer(2,0) == currentPlayer &&

GetPlayer(1,1) == currentPlayer &&

GetPlayer(0,2) == currentPlayer) return true;

return false; // If we get this far without finding a

win, return false to signify "no win".

}

function GetPlayer(x:int, y:int):int
{

return aGrid[x,y].GetComponent.<Square>().player;
}

[489]

AI Programming and World Domination

Summary

If you're the kind of reader who's in it for the pictures, you may have found this chapter
challenging. An important skill of a computer programmer is to describe nonvisual things,
like thought, in concrete steps that a computer can easily digest. But first you, as a
human, have to properly digest them!

By using the example of a fairly simple game like Tic Tac Toe, you've walked half a block in
the shoes of the computer scientists who programmed a computer to defeat the world's
best chess player at his, and humankind's, own game.

In this chapter, you:

‹

‹

‹

‹

Learned to break a strategy game down into its core elements

Explored game trees, and how they can be used to map out all of the
branching positions possible in a strategy game

‹ ‹ Prioritized a list of strategic options to create a preferred plan of attack.

‹ ‹ Used the || (or) operator to build more sophisticated conditional statements

‹ ‹ Discovered how to create the illusion of thought by adding pauses in the computer's

actions, and by choosing randomly from a list of preferred moves

‹ ‹ Taught a computer to simulate mistakes by testing against a random number

More hospitality

The last chapter is nigh! In our final hurrah, we'll leverage our dual-camera technique from
Shoot the Moon to add environmental ambience to the Ticker Taker game. Then we'll explore

the animation tools, and learn how to publish our games so that anyone can play them.

C# addendum

As promised, the complete translated C# code for the Tic Tac Toe game follows. There were
a few tricky spots in the code that required a bit of tap dancing:

When a function returns a value, the value type needs to be declared in the function

signature before the function name. So this function declaration in Unity Javascript:

function CheckForWin(square:GameObject):boolean

is translated like this in C#:

private bool CheckForWin(GameObject square)

[490]

Chapter 13

In an earlier chapter, we dodged the requirements of the waitForSeconds method
and used a different function entirely. Now that we've had more experience with
return statements, we can discuss what's required.

In C#, this line:

yield WaitForSeconds(3);

becomes:

yield return new WaitForSeconds(3);

The WaitForSeconds method returns a result of type IEnumerator. Therefore, any

C# function that uses WaitForSeconds must return IEnumerator. The
ShowStalematePrompt declaration, for example, which uses the
WaitForSeconds method, translates from this:

function ShowStalematePrompt()

to this:

private IEnumerator ShowStalematePrompt()

Remember that any variable that you want to access in the Inspector panel needs the
public access modifier. The x and y variables in the C# SquareCSharp script are
a good example:

public int x;

public int y;

Because the SquareCSharp script accesses the ClickSquare method in the

GameLogicCSharp script, the ClickSquare method also has to be set to public:

public IEnumerator ClickSquare(GameObject square)

Note that the ClickSquare method also uses WaitForSeconds, so it needs to return
a value of type IEnumerator. This poses a problem, because this line:

if(gameIsOver) return;

Since the function is expecting us to return a value of type IEnumerator, we can't use a
naked return keyword, because it doesn't return anything. We can get around the issue
by replacing return with this:

yield break;

Here, then, are the two Tic Tac Toe scripts completely translated into C#:

[491]

AI Programming and World Domination

SquareCSharp.cs

using UnityEngine;
using System.Collections;

public class SquareCSharp : MonoBehaviour {

public int x;

public int y;
public int player = 0; private

GameObject gameLogic;

private void Start ()
{

gameLogic = GameObject.Find("GameLogic");
}

private void OnMouseDown()
{

print ("player = " +

player); if(player == 0)
{
print ("let's do this");

gameLogic.GetComponent<GameLogicCSharp>().
ClickSquare(gameObject);

}
}

}

GameLogicCSharp.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class GameLogicCSharp : MonoBehaviour
{

public GameObject XPiece;

public GameObject OPiece;

private int currentPlayer =

1; public GUIText prompt;
public GameObject[] aSquares;

[492]

Chapter 13

private GameObject[,] aGrid;

private bool gameIsOver;

private int moves;

private List<GameObject> aBlockOpportunities;

private List<GameObject> aWinOpportunities;

private void Start()
{

ShowPlayerPrompt();

aGrid = new GameObject[3,3];

GameObject theSquare;
SquareCSharp theScript;

for(int i = 0; i < aSquares.Length; i++)
{
theSquare = aSquares[i];
theScript = theSquare.GetComponent<SquareCSharp>();

aGrid[theScript.x,theScript.y] = theSquare;
}

}

public IEnumerator ClickSquare(GameObject square)
{

print ("click square!");
if(gameIsOver || currentPlayer == 2) yield break;

PlacePiece(XPiece, square);

print ("keep going");

if(!gameIsOver)
{
yield return new WaitForSeconds(0.5f);

ComputerTakeATurn();
}

}

[493]

AI Programming and World Domination

private void ComputerTakeATurn()
{

GameObject square = null;

if(Random.value > 0.5f) square = WinOrBlock();

if(square == null && Random.value > 0.5f)
square = PreventOrCreateTrap();

if(square == null && Random.value > 0.5f) square =

GetCentre(); if(square == null && Random.value > 0.5f)
square = GetEmptyCorner();

if(square == null) square = GetEmptySide();

PlacePiece(OPiece, square);

}

private GameObject GetEmptySide()
{

List<GameObject> aEmptySides = new List<GameObject>();

if(GetPlayer(1,0) == 0) aEmptySides.Add(aGrid[1,0]);

if(GetPlayer(0,1) == 0) aEmptySides.Add(aGrid[0,1]);

if(GetPlayer(2,1) == 0) aEmptySides.Add(aGrid[2,1]);

if(GetPlayer(1,2) == 0) aEmptySides.Add(aGrid[1,2]);

if(aEmptySides.Count > 0) return

aEmptySides[Random.Range(0,aEmptySides.Count)];

return null;
}

private GameObject GetEmptyCorner()
{

List<GameObject> aEmptyCorners = new List<GameObject>();

if(GetPlayer(0,0) == 0) aEmptyCorners.Add(aGrid[0,0]);

if(GetPlayer(2,0) == 0) aEmptyCorners.Add(aGrid[2,0]);

if(GetPlayer(0,2) == 0) aEmptyCorners.Add(aGrid[0,2]);

if(GetPlayer(2,2) == 0) aEmptyCorners.Add(aGrid[2,2]);

if(aEmptyCorners.Count > 0) return

aEmptyCorners[Random.Range(0,aEmptyCorners.Count)];

return null;
}

[494]

Chapter 13

private GameObject GetCentre()
{

if(GetPlayer(1,1) == 0) return

aGrid[1,1]; return null;
}
private GameObject WinOrBlock()
{

aBlockOpportunities = new List<GameObject>();

aWinOpportunities = new List<GameObject>();
// Empty out these lists before we start searching.

// Check the rows for 2 in a row:
CheckFor2InARow(new Vector2[] {new Vector2(0,0),

new Vector2(1,0), new Vector2(2,0)});
CheckFor2InARow(new Vector2[] {new Vector2(0,1),

new Vector2(1,1), new Vector2(2,1)});
CheckFor2InARow(new Vector2[] {new Vector2(0,2),

new Vector2(1,2), new Vector2(2,2)});

// Check the columns for 2 in a row:

CheckFor2InARow(new Vector2[] {new Vector2(0,0),
new Vector2(0,1), new Vector2(0,2)});

CheckFor2InARow(new Vector2[] {new Vector2(1,0),
new Vector2(1,1), new Vector2(1,2)});

CheckFor2InARow(new Vector2[] {new Vector2(2,0),
new Vector2(2,1), new Vector2(2,2)});

// Check the diagonals for 2 in a row:

CheckFor2InARow(new Vector2[] {new Vector2(0,0),
new Vector2(1,1), new Vector2(2,2)});

CheckFor2InARow(new Vector2[] {new Vector2(0,2),
new Vector2(1,1), new Vector2(2,0)});

// If there are any opportunities to win, return one at random:

if(aWinOpportunities.Count > 0) return

aWinOpportunities[Random.Range(0, aWinOpportunities.Count)];

// If there are any opportunities to block, return one at random:

if(aBlockOpportunities.Count > 0) return

aBlockOpportunities[Random.Range(0,

aBlockOpportunities.Count)];

// There are no opportunities to win or block, so return

null: return null;
}

[495]

AI Programming and World Domination

private void CheckFor2InARow(Vector2[] coords)
{

int p1InThisRow = 0; // the number of X's in this

row int p2InThisRow = 0; // the number of O's in

this row int player;
GameObject square =

null; Vector2 coord;

// Step through each of the 3 Square coordinates that

were passed in:
for (int i = 0; i<3; i++)
{
coord = coords[i];
player = GetPlayer((int)coord.x, (int)coord.y);

// Find the piece in this Square
if(player == 1)
{

p1InThisRow ++; // Tally up an X
} else if(player == 2) {

p2InThisRow ++; // Tally up an O
} else {

square = aGrid[(int)coord.x, (int)coord.y];
// This Square is empty. Store it for later.

}
}

if(square != null)
{
// We found an empty Square in this

row. if(p2InThisRow == 2)
{

// There are two O's in a row with an empty Square.
aWinOpportunities.Add(square);
// Add a win opportunity to the list.

} else if (p1InThisRow == 2) {

// There are two X's in a row with an empty Square.
aBlockOpportunities.Add(square);
// Add a block opportunity to the list.

}

[496]

Chapter 13

}
}

private GameObject PreventOrCreateTrap()
{

List<GameObject> aP1Corners = new List<GameObject>();
// Create an empty list to store X-controlled corners

List<GameObject> aP2Corners = new List<GameObject>();

// Create an empty list to store O-controlled corners
List<GameObject> aOpenCorners = new List<GameObject>();

// Create an empty list to store unoccupied corners

GameObject[] aCorners = new GameObject[]

{aGrid[0,0],aGrid[2,0],aGrid[0,2],aGrid[2,2]};
// Create an array to store the corner coordinates

int player;

GameObject square;

// Loop through the corner

coordinates: int i;
for(i = 0; i < 4; i++)
{
square = aCorners[i];
player = square.GetComponent<SquareCSharp>().player; //

Find the piece that's in this corner
if(player == 1)
{

aP1Corners.Add(square);
// If it's an X, add it to the X-controlled corners lists

} else if (player == 2) {

aP2Corners.Add(square);
// If it's an O, add it to the X-controlled corners lists

} else {

aOpenCorners.Add(square);
// If it's empty, add it to the empty corners list

}
}

// Set a trap!

// If O has two corners and there's at least one empty corner,

randomly return an empty corner from the empty corners list:

[497]

AI Programming and World Domination

if(aP2Corners.Count == 2 && aOpenCorners.Count > 0)

return aOpenCorners[Random.Range(0,aOpenCorners.Count)];

// Prevent a trap!

// If X has two corners, take a side to force him to

defend: if(aP1Corners.Count == 2) return GetEmptySide();

// If there's no trap to set or prevent, return null:
return null;

}

private void PlacePiece(GameObject piece, GameObject square)
{

moves ++;

Instantiate(piece, square.transform.position,

Quaternion.identity);
square.GetComponent<SquareCSharp>().player = currentPlayer;

if(CheckForWin(square))
{
gameIsOver = true;

ShowWinnerPrompt();

return;
} else if(moves >= 9) {

gameIsOver = true;

ShowStalematePrompt();

return;
}

currentPlayer ++;
if(currentPlayer > 2) currentPlayer = 1;

ShowPlayerPrompt();

}

[498]

Chapter 13

private void ShowPlayerPrompt()
{

if(currentPlayer == 1)
{
prompt.text = "Player 1, place an X.";

} else {
prompt.text = "Player 2, place an O.";

}

}

private IEnumerator ShowWinnerPrompt()
{

if(currentPlayer == 1)
{
prompt.text = "X gets 3 in a row. Player 1

wins!"; } else {
prompt.text = "O gets 3 in a row. Player 2 wins!";

}

yield return new WaitForSeconds(3);

Application.LoadLevel(0);
}

private IEnumerator ShowStalematePrompt()
{

prompt.text = "Stalemate! Neither player wins.";

yield return new WaitForSeconds(3);

Application.LoadLevel(0);
}

private bool CheckForWin(GameObject square)
{

SquareCSharp theScript = square.GetComponent<SquareCSharp>();

//Check the squares in the same column:

if(GetPlayer(theScript.x,0) == currentPlayer &&
GetPlayer(theScript.x,1) == currentPlayer &&

GetPlayer(theScript.x,2) == currentPlayer) return true;

[499]

AI Programming and World Domination

// Check the squares in the same row:

if(GetPlayer(0,theScript.y) == currentPlayer &&

GetPlayer(1,theScript.y) == currentPlayer &&

GetPlayer(2,theScript.y) == currentPlayer) return true;

// Check the diagonals:
if(GetPlayer(0,0) == currentPlayer &&

GetPlayer(1,1) == currentPlayer &&

GetPlayer(2,2) == currentPlayer) return true;
if(GetPlayer(2,0) == currentPlayer &&

GetPlayer(1,1) == currentPlayer &&

GetPlayer(0,2) == currentPlayer) return true;

return false; // If we get this far without finding a win,

return false to signify "no win".

}

private int GetPlayer(int x, int y)
{

return aGrid[x,y].GetComponent<SquareCSharp>().player;
}

}

[500]

14

Action!

When last we left Ticker Taker, our slightly demented hospital-themed keep-
up game, we had two hands bouncing a heart on a dinner tray. The game's
mechanics were pretty functional, but we hadn't fully delivered on the skin. If
Ticker Taker is about a nurse rushing a heart to the transplant ward, then
where is the hospital?

In this final chapter, we'll:

‹

‹

‹

‹

‹

‹

‹

‹

Use the dual-camera technique from Shoot the Moon to render a fully-

3D environment

Set up a movable lighting rig for our Scene

Dive into Unity's animation tools to animate GameObjects

Publish a Unity game so that we can unleash our masterpiece on
an unsuspecting public

Open heart surgery

To get started, open the last version of the Ticker Taker game. You can also copy the
game files to another folder, as we did with The Break-Up and Shoot the Moon.

Once the project is open, find the Game Scene in the Project panel and double-click to
open it (if it doesn't open by default). You should see the Scene just as we left it:
heart, hands, and tray.

Action!

I took the time to organize the different assets into folders to tidy up the project.
Neatness saves sanity.

Once that's all in order, download and import the assets package for this chapter.
Now we're ready to dig in.

The assets package contains a hallway model. Created in the free 3D software package
Blender, it's essentially a square donut with the normals flipped so that it appears inside out.

What's a normal? Usually, only one side of a 3D object's faces is
"painted" (which is why you can zoom into the inside of a 3D object and
it seems to disappear). Normals determine which side of each individual
mesh polygon is painted.

We're going to set up one camera to bounce up and down, as if the character is running,
and send it flying through the hallway. Then we'll set that view as the background for our
Main Camera, which is aimed at the heart-and-tray action. By using Depth as our Clear
Flags setting on the foreground camera, the background camera will show through the
empty space to make it appear as though the player is running through the hallway.

1. Find the hallway model in the Project panel. It's the one with the blue cubic
"model" icon next to it—not to be confused with the model texture, which uses a
little image thumbnail as its icon.(I placed my models in the folder called Models,
and dropped my textures into a Textures folder to keep them sorted.)

[502]

Chapter 14

2. Drag the hallway model into the Scene.
3. Adjust the hallway's Transform properties in the Inspector panel:

Position: X:0, Y:2, Z:-25

Rotation: X:0, Y:0, Z:180

These settings place the hallway behind the Main Camera in our Scene so that
it's out of the way while we work with it. In the Hierarchy panel, select the
hallway GameObject and press F to frame the selected object.

[503]

Action!

4. In the Inspector panel, add a new layer called hallway, as we did when we created the
starfield layer in our Shoot the Moon project. Be sure that you're adding a new
Layer, not a new Tag.

5. In the Hierarchy panel, select hallway. Choose the new hallway layer in the Layer
dropdown. Unity will pop up a dialog asking you whether you want to put the child
objects of hallway in the hallway layer as well. Answer with Yes, change children.

In order to pull off this foreground/background effect, we'll need two cameras. Let's
create the second camera and set it up to look at the hallway.

1.
2.
3.

In the menu, navigate to GameObject | Create Other |

Camera. Rename the new camera hallwayCam.

Change the Transform settings of hallwayCam to:

Position: X:6.5, Y:1.2, Z: -31.5

Set the Scene view to Top, and you'll see that the hallwayCam is now
positioned at one corner of the hallway model.

[504]

Chapter 14

4.
5.

Select the hallwayCam in the Hierarchy panel.

In the Inspector panel, adjust the following settings:

‰‰ Clear Flags: Solid Color

‰‰ Culling Mask: nothing (This deselects everything in the culling mask list.)

‰‰ Culling Mask: hallway (This selects only the hallway layer, which contains
our hallway model.)

‰‰ Depth: -1

‰‰ Flare Layer: unchecked/removed

‰‰ Audio Listener: unchecked

No surprises here—these are the very same settings we used for the background camera in
Shoot the Moon.

[505]

Action!

As before, we'll nudge a few settings on the Main Camera in order to composite the

two views together.

1.
2.

In the Hierarchy panel, select Main Camera.

In the Inspector panel, adjust the following settings:

‰‰ Clear Flags: Depth only

‰‰ Culling Mask—uncheck hallway (it now says Mixed...)

‰‰ Depth: 1

The two cameras' views are now layered together in the Game view. That's a good start!

[506]

Chapter 14

This bland gray hallway model looks less like a hospital and more like the white
light patients see when they shuffle off their mortal coil. Luckily, there's a quick fix:
the Project panel contains a texture that we'll apply to the model to make it look
more—you know—hospitable.

1. In the Hierarchy panel, click on the gray arrow next to the hallway to
expand its list of children.

2. The hallway contains one child, also called Hallway, which contains the
Mesh Renderer and Mesh Filter components. Select the Hallway child.

3. Find the hallway texture in the Project panel, and click-and-drag it into
the texture swatch in the Inspector panel, under the hallway's Material.

[507]

Action!

Wonderfully, the hallway texture wraps itself around the hallway model. In a twinkling,
we're inside a hospital!

This hospital texture is great and all, but our level looks like something straight out of
a survival horror game. Every hospital that I've ever visited has been bright and shiny.
Let's add some lights to the level to perk it up some.

1. Click on the green Y-axis cone in the axis gizmo at the top-right of the Scene
view. This swings us around to a Top view, looking down on our Scene.

[508]

Chapter 14

2. Pan and zoom the Scene view to center the hallway model.

3. In the menu, navigate to GameObject | Create Other | Point Light.
4. Create a new Prefab and call it hallwayLight.
5. In the Hierarchy panel, click to select Point Light, and reset its

Transform in the Inspector panel.
6. Drag Point Light into the hallwayLight Prefab.
7. Delete Point Light from the Hierarchy panel.
8. Drag an instance of the hallwayLight Prefab from the Project panel

into your Scene. Position it at the top-right corner of the hallway—
around x: 6.3 y:1 z:-19.7.

[509]

Action!

Note: We could have kept the Point Light in the Scene, as it's
connected to the hallwayLight Prefab, but I think it's easier to
work with the project when Prefab instances are named consistently.

9. Create an empty GameObject and call it LightingRig. This GameObject
will hold all of our lights, so we can keep them organized. Move the
lighting rig to x:0 y:0 z:-25.

10. In the Hierarchy panel, click-and-drag the hallwayLight instance onto the
LightingRig GameObject. This makes the light a child of the rig, and we see
that familiar gray arrow appear indicating a parent/child relationship.

[510]

Chapter 14

11. Select and then duplicate the hallwayLight instance by pressing Ctrl + D
(command + D on a Mac). Notice that the second light is also a child of the
LightingRig GameObject.

12. Move the duplicated light to the top-middle of the hallway model.
13. Duplicate a third light, and move it to the top-left corner of the level.

[511]

Action!

14. Hold down the Shift key on your keyboard and click on the other two lights, until
all three lights are selected at once. (It may be easier to shift-select the three lights
in the Hierarchy panel instead of the Scene view.)

15. Duplicate the trio of lights, and move them down across the middle of the level.
You may need to zoom out slightly to see the transformed gizmo handles.

[512]

Chapter 14

16. Duplicate the set of three lights again, and move them down to the bottom of

the level. You should now have an array of nine lights.

17. Click on a blank area in the Scene view to deselect all the lights.

[513]

Action!

18. Click to select the light in the middle of the level and delete it. Now there's a light

in each corner, and a light in the middle of each hallway section.

Unity 3D supports "expensive" pixel lighting, and less "expensive" vertex lighting.
Pixel lighting is more taxing on the player's computer, but it's more believable and it
can pull off fancier tricks like cookies (think of the "bat symbol" from the Batman
comics) and normal-mapping, which creates the illusion of detail on a flat polygon.
In trying to preserve performance, Unity only lets us have two active pixel lights and
drops the other lights down to vertex quality, which interpolates (makes a
calculated guess) at the light levels on a triangle by calculating light levels at its
vertices. The result is a really rough guess that can make your scene look like junk.

In order for our lighting rig to light the hallway well, we need to tell Unity that it
can use all of our lights as pixel lights. This is sort of a lazy solution, but we can
get away with it because our geometry is so simple. In more complex games, you
may need to employ real ingenuity to present your scene in the best possible
"light" with minimal performance trade-off.

[514]

Chapter 14

Follow these steps to increase the number of pixel lights that Unity will allow:

1. In the menu, navigate to Edit | Project Settings | Quality. Unity allows
us to create different quality profiles, and to apply those profiles to
different scenarios: playing a game standalone, using the web player,
deploying to mobile, and viewing a game in the editor. Note that all of
these scenarios default to using the Good profile.

2. With the Good profile selected, punch in 8 to increase the number
of pixel lights Unity will allow.

[515]

Action!

Once you make this change, you should see the light levels in your scene
punch up. Now Unity is rendering proper lighting effects for every pixel
on the screen based on all eight lights, rather than calculating only two
lights and fudging the others.

The light! It bliiiiiiiinds! Luckily, these eight lights are all instances of the
same Prefab, so by adjusting one of them, we'll affect the rest.

19. Click to select the hallwayLight Prefab in the Project panel.
20. In the Inspector panel, change the intensity to 0.5 and the range to 20.

That should mute all the lights to the point where they look like they belong in
a hospital, and not like a hospital built on the surface of the sun.

[516]

Chapter 14

When you rotate your Scene view, you should see all eight lights nestled within
the hallway model. If they ended up far above or below the level, just move
the LightingRig GameObject around to move all eight lights as a single unit.

We want to depict the player running through these hallways. There are at least two ways
we can handle the animation of HallwayCam. We can use a Script to control the camera
motion, or we can use Unity's built-in animation tools to record some camera motion that
we'll play back during gameplay. We've already done a bunch of scripting, so let's see
what the Unity IDE can do to help us pull off our running-through-the-hallway effect
without writing any code.

We're going to build a camera rig, where the camera is a child of a GameObject
that bounces up and down, and that GameObject is a child of another GameObject
that runs through the hallways.

[517]

Action!

1.
2.

Order of operations
Because of the way Unity's built-in animations work, it's super important to
set up your objects' parent-child relationships before you animate. The
values we set in our animation clips become relative to an object's parent. In
short, that means "bad news" if you animate first before setting up your rig.
Existing animations can swing wildly out of position. Because redoing work is
for chumps, let's get it right the first time.

Create an empty GameObject and name it bouncer.

Set its Transform using these values:

‰‰ Position: X: 6.5, Y:1.2, Z:-31.5

These are the same values as for the hallwayCam.

3. Duplicate the bouncer GameObject and call it runner.
4. In the Hierarchy panel, make the hallwayCam a child of bouncer by

clicking and dragging hallwayCam onto bouncer.
5. Make bouncer a child of runner by clicking and dragging bouncer onto runner.

[518]

Chapter 14

We'll use the Unity Animation tool to create an animation clip for our bouncer GameObject.

1. In the Hierarchy panel, click to select the bouncer GameObject.
2. In the menu, navigate to Window | Animation to bring up the Animation window.

If you so choose, you can dock it within the interface like the Hierarchy and
Project panels. I prefer not to because I like having a lot of space for this window. I
resize the window so that it covers most of the right half of my screen. You can
drag the middle line that splits the Animation window (dividing the dark and light
parts of the window) to give more or less real estate to the key view (dark side).

3. Press the round reddish-pink Record button near the top-left of the window.
4. Unity asks you to name your new Animation clip. Save it as animBounce.

[519]

Action!

What just happened – red and raging

When you save your Animation clip, two things happen: the clip becomes a
tangible, reusable asset in your Project panel, and the Record, Play, Pause, and Step
buttons all light up red to notify you that you're in animation mode.

Why make such a big, noticeable deal out of it? Because whenever you move your
recorded GameObject around, Unity is going to remember its position, rotation, and
scale in a keyframe. Keyframe is a term borrowed from classical animation. Animation
software packages store the position, rotation, and scale values of objects in keyframes,
and use interpolation to figure out how to animate an object between those keys. In
classical animation, this is called in-betweening.

If you create a keyframe for a GameObject on frame 1 and another on frame 10 where
the GameObject has moved across the screen, Unity will interpolate between those two
keyframes, filling in the blanks to make the GameObject move from one side of the
screen to the other.

[520]

Chapter 14

In the case of our bouncer GameObject, we'll set up three keyframes: one for the up

position, one for the down position, and a third to bring it back to the top of the bounce.

1. Click on the red X cone in the Scene view's axis gizmo to view the level from the side.

[521]

Action!

2. In the Animation view, enter an initial value of -0.5 for the Position.y value of
bouncer. A little diamond-shaped keyframe symbol appears on frame 1 at the top of
the Animation view. This means that Unity is remembering the position, rotation, or
scale of the GameObject on that frame. The colored diamond next to any given value
means that Unity is storing a value on this frame for that specific parameter.

3. Click-and-drag the vertical red line (not the keyframe diamond) to frame 10,
or enter the number 10 into the frame field at the top of the Animation
window (next to the playback controls). It's very important not to mistake
frame 10 with the 10:00 second mark!

4. On frame 10, punch in a Position.y value of -0.1. A second keyframe is
created for us on frame 10, storing the new values.

5. Go to frame 20.
6. Enter the initial Position.y value of -0.5 to bring the bouncer back to the

top of its bounce. A third diamond keyframe icon appears.
7. At the bottom of the Animation view, click the drop down labeled Default

and choose Loop instead.

[522]

Chapter 14

8. The animation arc between keyframes for the bouncer's y position spans into infinity to

indicate that the animation loops. (You may have to pan and zoom around the
Animation view to see this using the same controls that you use to pan and
zoom around your 3D Scene.)

9.
10.

Click on the Record button to stop recording.

Test the game.

Now, Nurse Slipperfoot bounces the heart on the tray while running on the spot! That's

great for her personal calisthenics routine, but not so hot for her poor transplant patient.

Note: If it doesn't work, check to make sure that the animBounce

animation Component is attached to the bouncer GameObject.

You can click-and-drag animations onto any GameObject you like. Try removing the

animBounce animation from the bounce GameObject and applying it to hallway.

When you test your game, you should see the hallway snap to the X and Z position defined
in our animBounce animation keyframes. The entire hallway model bounces up and
down just like our bounce GameObject did. You can apply the same animation to the heart
or the tray. Just as you can apply one script to many different GameObjects, a single
animation can go a long way.

[523]

Action!

Let's get that RN RuNning!

1. Click on the green Y-axis cone to switch into Top view. Pan and zoom so that the
hallway fills the Scene view, like it did when we were building our lighting rig.

2. In the Hierarchy panel, select the runner GameObject.
3. In the Animation window, click on the Record button.
4. Name the new animation animRun. A new, reusable animation appears in the

Project panel.
5. Punch in the following values on frame 0:

Position.x: 6.5

Position.y: 1.2

Position.z: -31.5

If those values are already punched in when you create the animation,
click on one of them and press the Enter key to make sure Unity
registers a diamond-shaped keyframe to remember those settings.

[524]

Chapter 14

6. Click on the little gray dash symbol to the right of the Rotation.x value. You'll
find a small drop-down menu. Choose Add Curves from that list. We're adding
curves to the rotation values because we'll need to modify them later.

7. Go to frame 120.
8. Move runner up along the Z-axis to the top-right corner of the

building, or type in -19.4 for its Position.z value.

You'll have to press the Enter key on all three x, y and z values to
make them "stick" on this keyframe if you decide to key in the values
by hand. Watch to ensure that the little colored ovals are turning into
little colored diamonds.

9. Go to frame 240.
10. Move runner along the X-axis to the top-left corner of the level, or key in -6.5 for

Position.x.
11. Move to frame 360.
12. Move runner down in the Z-axis to -31.5 to the bottom-left corner of the hallway.
13. Go to frame 480.

[525]

Action!

15. Move runner along the X-axis back to the bottom-right corner where it started.
Position.x: 6.5

Position.y: 1.2

Position.z: -31.5

16. Set this Animation clip to Loop, just like the bounce.
17. Uncheck the pink round "Animate" button to stop recording, and then

test your game!

What just happened – holy hospital rampage, Batman!

At this point, it looks like Nurse Slipperfoot herself may be in serious need of medical attention.

True, we haven't rotated her to look down the hallways, but even so, she flies through the

emergency ward like a banshee, busting through walls and generally freaking me out.

That's because like other 3D programs, Unity gives us Bezier control over our
keyframe values. A Bezier is a line that you can bend with little handles, which can
either work separately or in tandem to create smooth motion. This enables us to ease
animations in and out so that they look less robotic (or not, depending on our needs).

You can mess around with each node's Bezier handles by clicking on the dots in the
Animation window, selecting a handle style from the right-click menu, and pulling the
little gray handles around, provided the keyframes are set to Flat, Broken, or Free
Smooth. To correct this animation simply, we're going to apply a boring straight line
between all of the key points.

1. In the Animation window, press Ctrl/command + A to select all of the
nodes in the animation.

2. Right-click/alternate-click on any one of the nodes.
3. Navigate to Both Tangents | Linear to flatten the curves between the nodes.

[526]

Chapter 14

4. Test your game.

That's better! Nurse Slipperfoot's still not facing the right direction as she runs, but at
least she's no longer in need of an exorcism.

Note: If Nurse Slipperfoot is still phasing through walls, you may need
to revisit your keyframes and make sure she's positioned correctly at
each corner of the hallway on frames 0 (bottom-right), 120 (top-right),
240 (top-left), 360 (bottom-left), and 480 (bottom-right). If she's not
ending up where you think she should be, you may have forgotten to
punch Enter to confirm all three position axes—x, y and z—on all of
the frames we just modified.

[527]

Action!

Let's correct that little issue of the nurse careening sideways and backwards
through the hallway by adding rotation values for the runner GameObject, to
make her face the proper direction.

1. In the Animation window, go to frame 100. This is 20 frames before
our second keyframe.

2. Click on the little button with the white diamond and plus symbol—the "add
keyframe" button—to tell Unity to remember the runner's
position/rotation/scale on this frame.

3. Go to frame 120.
4. Enter a Rotation.y value of -90 to face the camera down the next hallway.
5. Move the runner down the second hallway just a bit, maybe to Position.x

6.0, to make the motion slightly less robotic.
6. Go to frame 220 and add a new keyframe.
7. On frame 240, rotate the runner to Rotation.y:-180 to aim it down the

third hallway.
8. Keep repeating these steps through the rest of the animation. Set a keyframe 20

frames before the existing one, and then move to the corner keyframe and set the
Y rotation. Use -270 and -360 for the next two Y rotation values.

9. Select all of the keyframes and set their curves to linear.
10. Stop recording the animation, and test your game.

The runner tears down the hallways, turning the corners and facing the proper direction.
Having a hospital background cranks up the credibility and polish of this game so much!
It's like a doctor-prescribed injection of awesomeness.

Anticipating the turns
Are you wondering why we dropped a keyframe 20 frames before turning
the corner? If we had simply rotated the runner at each corner, Unity would
have tweened towards that new rotation the entire time the nurse was
running down the hallway. We want the rotation to stay constant almost to
the end of the hallway, so we set a keyframe as a sort of break point to tell
Unity "okay, you can start tweening the rotation right here".

[528]

Chapter 14

With straight Bezier curves connecting our nodes, our runner animation tends to look a
little artificial or robotic. Now that you've seen the right-click menu to adjust the
smoothness of those Beziers, why not spend some time fiddling with the handles to see if
you can eke out a more natural motion through the hallway? But first, a warning: adjusting
Bezier handles for 3D animation can be very time-consuming! If you get bogged down, or
lose heart, just select the nodes and slap "Linear" on them to be done with it. That's the
equivalent of blowing up a building and walking away in slow motion like a badass while a
giant fireball ignites the sky. Aww yeah.

Just as we did with our other games, let's whip up a quick list of modifications
and improvements we could make to Ticker Taker to make it a complete game.

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

Title Screen, Instructions, Credits—these all go without saying.

Sound Effects—you know how to hook these in, so why dontcha? Ticker Taker cries
out for a big wet *squish* whenever the heart hits the tray. You could also add the
frantic clippity-clop sounds of Nurse Slipperfoot's Doc Martens slapping the
linoleum as she makes her mad dash down the hallway.

Returning to the debate of creating an endless, player-always-loses game versus
one the player can finish, what if you built a GUI element that depicted a 2D nurse
icon running from point A to point B, like the progress meters you see in racing
games? All the player has to do is keep the heart aloft until the nurse icon reaches
the end of the progress bar to win.

To add a bit of difficulty, you could add a little ECG heart monitor to the corner of
the screen that beeps every time the player bounces the heart with enough force.
Add a timer so that if x seconds elapse without the player bouncing the heart hard
enough, the heart stops beating and the player loses the game. This will ensure
that the player doesn't simply let the heart roll around gently on the tray until the
nurse reaches the transplant ward.

The player's going to catch on pretty quickly that Nurse Slipperfoot is running in a
circle! How about building two connected hallways, and making her run a figure-
8 course for added visual variety?

The hallway is pretty flat and bland at the moment. Perhaps you could add spice to the

environment by placing gurneys, IV stands, and even other patients in the level.

[529]

Action!

You may be wondering why the section on deploying your game has been squeezed into a
tiny section at the very end of the book. That's because Unity makes it so darned simple
to package up your game, that we don't need any more space. Here's how to do it:

1. In the menu, navigate to File | Build Settings....
2. We need to add the Scenes to this list that we want bundled into our game file.

The first Scene we add to the list will be the first one Unity displays to our
player, so that's where our preloader or title screen should normally go.
Because we have only one Scene in this game so far, click on the Add Current button to

pop it into the list. In games with multiple Scenes, you can simply click-and-drag those

Scenes into the list to add them to the build. Be sure to choose Web Player as your

deployment preference if you'd like a file that can be played in a browser.

[530]

Chapter 14

3. Click on the Build And Run button.
4. Unity asks where you want to save the .unity3d game file. Choose a folder

and click on the Save button.
5. In the background, Unity cranks out a .unity3d file and an .html file to house

it. Then Unity throws us to our default web browser and opens the HTML file.
And there's our game, running beautifully within the browser.

6. To publish the game live to the world, just upload the .unity3d file and the .html file
to your web host, or pop it onto one of the Unity game portals we looked at off the top
of the book. Unity support grows on a daily basis, so there are bound to be many more
places hosting Unity games by the time you read this paragraph.

Note that you can also deploy your game as a standalone version to run on the Mac, PC
and Linux platforms. And if you spring for additional Unity licenses and development
kits, you can deploy your content to a growing list of platforms, including popular
consoles, phones and tablets.

[531]

Action!

Time to grow

The theme in all of this is "growth". Since its release, Unity has made a huge splash in
the game development world by offering a suite of tools that blew the lid off of 3D
browser-based gaming, while making it easier for people without serious C-based
programming knowledge to develop for once-unfathomable devices.

It's a complete cliché, but practice really is the one thin line separating you from developing

those big projects you put up in jars on the shelf at the beginning of the book. Start building a

game with what you know. With each project, set a new attainable challenge for yourself. This

book has taught you how to set lights in a flat-looking hallway environment. But you've heard

this term "lightmap" when reading about 3D games and models. What's that all about? Well,

why not build a new game using the skills you've already developed, and commit to

incorporating one lightmapped object in it? When you finish the game, you'll have added one

extra tool to your tool belt, and you'll have a new, finished game for your portfolio.

How do you make a skybox so that the corner seams are invisible? How do you make your
player take damage when he steps in lava? What's normal mapping? How do you program
an enemy to follow and shoot at the player? How do you create your own models, textures,
and animations? How do you put a different hat, gun, or pair of pants on a character model?
How do you detect when one GameObject is near another, without colliding?

With each new thing you want your game to do, you'll come up with a question. Too many
questions could discourage you and sink your ship before it even gets out to sea. Pick one
thing and lock onto it with your laser scope. Do whatever it takes to discover the answer to
your question, the solution to your problem, and build that solution into your game.
Problem solved. Dragon slain. Checkbox checked. You will slay many dragons/cuddle many
kittens in your journey as a game developer, but there's no need to take on the entire
dragon/kitten army all at once. Take it one step at a time.

Be sure to check out the resources listed at the end of the book for places to turn to when
you're stuck. You can also use that section to source new information when you're ready
to add new tools to your tool belt.

[532]

Chapter 14

Beyond the book

If you're starting from scratch and you made it this far, I hope you've found Unity to be well

within your ability to develop your own 3D and 2D games. If you're sidling over from another

development tool like Flash, GameMaker Pro, or Unreal Engine, I hope this book has provided

you a sampling of the slick pipeline and process that Unity makes possible. A book like this can

only ever scratch the surface of such an enormously powerful tool as Unity; if you've enjoyed

what you've done with Unity so far, a fantastically supportive community and a deliciously deep

development tool await you beyond the back cover of this book.

[533]

Appendix

As promised, here is a collection of resources that you can use as a launching point to your life

as a game developer. Remember to start small, and to claim small victories as you learn.

Online resources

Here's a list of websites where you can tap into the Unity development community to find
answers and to ask questions. Please remember to be courteous and respectful of more
experienced developers' time. As with any online forum, be sure to search existing
content for an answer before you ask a question.

Unity Manual: When you're new to a technology and you ask naive or poorly researched

questions, you may hear "RTFM" a lot, which stands for "would you please be so kind as to

review the product manual?" Well, here's the link to the product manual, which covers both

beginner and advanced topics, including examples on writing your own custom Shaders:

http://unity3d.com/support/documentation/Manual/index.html

Google: A search engine should be the first place you look for answers. If the solution
is plainly available with a simple query, you'll quickly exhaust the goodwill of the real-
life people you petition for help online:

http://lmgtfy.com/

Unity Answers: This Unity sub-domain bills itself as "The best place to ask and answer
questions about development with Unity", and it's not lying. Many of your Google
searches will lead you here:

http://answers.unity3d.com/

Appendix

Internet Relay Chat (IRC): This is an old-school chat system. You can download an IRC client
to reach one of its many servers. IRC users split themselves into channels by topic. The very
best channel available for Unity discussion is #unity3d on the server group
irc.freenode. net. Wikipedia hosts this list of IRC client programs:

http://en.wikipedia.org/wiki/Comparison_of_Internet_Relay_Chat_

clients

Unity 3D Tutorials: The creators of Unity host a growing number of tutorials on
the program's official site:

http://unity3d.com/learn/tutorials/modules

YouTube: The Internet's most popular video sharing site has tons of Unity 3D tutorials.
Just search "Unity 3D" to get started:

http://www.youtube.com

Twitter: The best place to get up-to-the-minute news and information about practically
everything is on Twitter. Follow as many Unity developers as you can find, and keep a
watch on the #unity3D hash tag to become the smartest kid on your block. Twitter: it's
not just about what your friends are having for lunch:

http://www.twitter.com

Unify Community Wiki: This is an excellent Unity resource where developers can help each

other out. I've linked specifically to an excellent page outlining the differences and uses of

various Collections (Arrays, Lists, Hashtables, among others), which was very helpful to me.

http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_

Collection_Should_I_Use?

Offline resources

Local User Groups: Lots of Unity developers are banding together to form user groups,
which usually meet monthly. If your town doesn't already have a user group, why
don't you start one?

Unite: This annual Unity 3D conference is the premiere Unity event. It's the best place to go
to meet the planet's top Unity developers and to hear exciting announcements about the
future of the product. See you there!

http://unity3d.com/unite/

[536]

Appendix

Free development tools

There are a number of great development tools that integrate well with Unity 3D, like 3D
Studio Max and Maya. However, many of these programs can cost thousands of dollars
(like 3D Studio Max and Maya). Here are some links to free tools that may help you
to develop your games:

Graphics

Blender: A 3D modeling and animation program with its own built-in game engine.
Blender has a steep, often infuriating learning curve, but if you buy a book you'll be fine:

http://www.blender.org/download/

GIMP: A 2D photo manipulation program, somewhat like Photoshop:

http://www.gimp.org/downloads/

Paint.NET: Another 2D photo manipulation program, with perhaps a simpler
interface than GIMP:

http://www.getpaint.net/

Sound

BFXR: For lo-fi sound effects creation. The sounds in this book were created with
SFXR, its precursor:

http://www.bfxr.net

Audacity: For audio editing and processing:

http://audacity.sourceforge.net/

The Unity Asset Store

There were once many different companies that offered packages of Unity-ready
materials and models that you could license for use in your games. Unity consolidated
them under one roof in their online Unity Asset Store. To access the store, open Unity 3D
and navigate to Window | Asset Store. Here are a few stand-out innovations that have
seen a lot of use in the Unity community:

2DToolkit: Prior to the release of Unity 4.3, creating 2D games in Unity was tough, but
not impossible. Packages like 2DToolkit provided sprite sheet and texture packing
systems to ease 2D development.

[537]

Appendix

NGUI: Another very popular package is NGUI, which does a great deal of GUI heavy lifting for

you, using a more user-friendly system than Unity's built-in immediate mode GUI.

playMaker: This snap-together system provides LEGO-like behavior blocks that you

can link together; no programming required.

Asset packs: There is a vast number of asset packages with everything from modeled

airplanes to medieval dungeons that you can use to prototype your games. I strongly urge

you to use whatever help you can to get your game finished. Paying $30 to save yourself

months of work isn't cheating—it's just using your head. If it comes down to a choice

between paying a few bucks and never finishing your game, it's time to break open
your piggy bank.

The cats over at Unity Technologies aren't stupid. If they see a certain tool performing very well

on the Unity Asset Store, it's a safe bet that they're planning to add it to a future release of

Unity. That's why tools like NGUI and 2DToolkit see less use as their popularity peaks:
Unity recreates or even hires the creators of these systems to improve their core product!

Game portals

We kicked off the book by looking at some Unity games. Here are some of the
portals and distribution services specializing in Unity 3D games:

http://www.wooglie.com/

http://blurst.com/

http://www.kongregate.com/unity-games

[538]

Symbols

+= operator 118 2D
array referencing
creating 433-437
2D ToolKit 537
3D cameras

about 85
handling 85

3D Sound 360
3D Studio Max 26

A

aCards array 200
access modifier 139
aEmptySquares array 451
AI

about 408 logic
steps 474 ambient
lights 83 Alpha
Centauri 41 anal
retentive 173
angled paddle 129
AngryBots Demo 24, 25
Animation clip 519
Animation view 522
Arkanoid 55
Artificial Intelligence. See AI
Artillery Live!

about 46
additional features 50, 51

core mechanism 47

Index

feature set 49
skin 48
skinny, on multiplayer 50
URL 46

Assetpacks 538
Asteroid Base 20
Audacity

URL 537
Awake function 238

B

Ball GameObject 99
BEDMAS 124
best practices, function decleration 102
Bezier 526
BFXR about

361 URL
537

Big Fun Racing 18
billboarding 315
Blender

about 26
URL 537

Blurst
about 16
URL 17

Boo 100
Boom Blox 57
bounce

adding, to game object 89, 90
track, keeping 301, 302
tweaking 300, 301

bouncer GameObject
animating 519, 520
moving 521-523

Break-Up game
about 311, 312
animation, registering 326, 327
beer steins, adding 343
bomb script, creating 332 brownstone
model, setting up 324, 325 C#
Addendum 365
character, adding 325, 326
characters animation, interrupting 355, 356
character script, creating 328-330
Collider Component, adding 330
Collider Component, adding to character 331
collision detection, coding 354, 355
DestroyParticleSystem, creating 336, 337
explosion, handling 337
explosion, testing 338, 339 facial
explosion, adding 356, 357
FallingObject script, creating 349-351
game levels 364
game objects, colliding 351, 352
game objects, tagging 353, 354
health points, creating 365
particle system, adding 313-315
particle system, creating 344, 346
particle system, creating for explosion 333-336
particle system, placing into Prefab 348, 349
particle system, poking 316-318
particle system, setting with sharper-

edged texture 346-348
players success, determining 364
Prefab, creating 321-323
Rigidbody Component, adding 330
Rigidbody Component, adding to character 331
score points 364
sound effects, adding 357, 358
sound effects, adding to FallingObject

script 358, 359
sound effects, creating 361 sound
effects, importing 361 sound
effects, modifying for same

event 362, 363
spark material, adding to

particle system 318, 319

timer, adding 364
unlit bombs, catching 365

Bumped Diffuse. See Bump Map shader

Bumped Specular. See Bump Map shader
Bump Map shader

about 291 using
291

Bust-A-Move or Puzzle Bobble 55

C

C#

advantage 100 versus
JavaScript 100

C# addendum 182-186
camera rig

setting up 517, 518

card-flipping function

building 207-210
Cartoon Network television 15
Cascading Style Sheets. See CSS
character rig 326 CheckFor2InARow
function 471, 472 CheckForWin
condition

checking 445
CheckForWin function

using 441
ChuChu Rocket! 22
class 116
ClickSpace function 446
clock

code, preparing 245, 246
countdown logic, creating 246, 247
font texture, changing 240-244 pie
clock, building 258-260 script,
preparing 236
size, shrinking 257
text color, changing 238, 239
text, preparing 237, 238
time, displaying on screen 248-250

clockIsPaused variable 269
ClockScript

C# Addendum 270
C# modifiers

internal 139
private 139

[540]

protected 139
public 139 code

about 95
animating with 116, 117
cleaning up 437
consolidating 452-456
encoring 482, 490
examining 103
need for 113
refactoring 439
unpacking 451, 452

code examination

about 103
ball re-appearing, Mesh Renderer

component used 105
mesh renderer component, searching 103, 104

code hinting 98
comments 132
competitor
catching 476, 478
computer control
adding 450
ComputerTakeATurn function 450, 455,
481 console 103
console statements

enabling 121
content

versus features 40
CSS 150 custom
materials

adding, to models 288-293
Cylinder primitive

using 420

D

Dance Dance Revolution 58
Debug.Log() function

used, for listening to paddle 121, 122
deck-building function

setting up 195
delegating 360
deltaTime property 135
Diablo III 40 Diceworks
18, 19 directional light
84, 409

DisappearMe Script

about 99
C# version 138
viewing 99

DoCountdown() function 246, 248

DrawTexture method 255

E

Electronic Arts 12
Explode() function 399
Exterior-L 476

F

FallingObject script

creating 349-351
sound effects, adding to 359
sound effects, adding to 358

Fallout 3 39
FBX import scale
settings modifying 281,
282 features

versus content 40
Flash 143 Flashbang
Studios 16
flip n' match memory game

match, detecting 213-216

prerequisites 187, 188
random card shuffle, performing 195

floor
creating 421, 422

font texture
creating 296 for
keyword 175
Fortran 9
free development tools

Audacity 537
BFXR 537
Blender 537
GIMP 537
Paint.NET 537

function about
101

naming convention 127
Update 101

using 101

[541]

function declaration

best practices 102
FusionFall

about 14
building 15
URL 14

G

game authoring tool 9
Game Design Document. See GDD
game engine 9
game file 530 game
graphics obtaining
251, 253 game grid
centering 189

centering, horizontally 192, 194
centering, vertically 189-191
game ideas 38
game object

bounce, adding to 89, 90
creating, Unity 3D primitives used 65-67
measurements, changing 71, 72 moving
70
renaming 68
Rigidbody component, adding to 87-89
scripts, adding to 284

GameObject 112, 113, 520
games

complexity, reducing 64, 65
features, reducing 64, 65
inspirations 57
learning 42
making, Unity used 63, 64
orientation 68, 69 paddle,
adding 73-75 re-designing
56
scene, saving 72
testing 86, 87
without features 40

game scene
lights, adding 79, 80
lights, moving 80-82
lights, rotating 80-82

Game window, Scene Window 27
GDD 188
GetCentre function 466
GetComponent command 433
GetEmptySide function 479
GetPlayer function 441, 472
GetRandomEmptySquare() function 464
GIMP

URL 537
Google, online resource 535
Grand Theft Auto game 39
Gran Turismo 40
Graphical User Interfaces. See GUIs
grids 194
Grigon Entertainment 15
GUI.BeginGroup() function 257
GUI.EndGroup() function 257
GUIs 143
GUI techniques

using 253-257
GunBound 48

H

Half-Life game 77
hallwayLight Prefab 516
hallway model

lights, turning off 508-517
main camera, adjusting 506
Mesh Filter 507
Mesh Renderer 507
second camera, creating 504, 505
using 502-504

HandsAndTray GameObject 282
Hand tool 34
hashtable grid

creating 410-412
Head-up display (HUD) 46
HeartBounce script

creating 297
Heart Game Object

creating 284-287
Hierarchy panel 28, 419
Hoagie() function 102

[542]

I

I Dig It 45
I Dig It Expeditions 45
img argument
modifying 200-202
Importing package dialog pops up 276
import statement 171 in-betweening
520
InMotion Software 45
Inspector panel

about 30, 31, 87, 242, 283
used, for rotating player 31-33

installation, Unity Web Player 13, 14
Instantiate command 356, 455
Integrated Development Environment (IDE) 97
Interior-L 476
interpolation 520
int.ToString() method 250
iOS App Store 22
Internet Relay Chat, online resource 536
iterative loop

anatomy 175, 176

J

JavaScript

advantage 100
differentiating, with C# 100

K

Kaboom! 311
Katamari Damacy 58
keep-up game about
65 adjustments 133

for robots 129
Keyframe 520
Kongregate

about 21

URL 21

L

layers and layout dropdowns, Scene Window 33

League of Legends 22

LightingRig GameObject 517
lights

adding, to game 79, 80
moving 80-82 rotating
80-82 toggling 84

turning off 84 light

types ambient 83
directional light 82
point light 82
spotlight 82

Local User Groups,
lose condition
adding 303, 304
Lovers in a Dangerous Spacetime 20
low-polygon model

about 77
building 78

Lunar Lander 44

M

main Camera

adjusting 506
Massively Multiplayer Online Role-

Playing Game (MMORPG) 14
Master of Orion 41 Material
parameter 90, 91 Math
effect 129 Maximize on Play
button 99 Maya 26

mechanic

versus skin 41
memory games 167
mesh

about 66, 75, 77
edges 75 faces 76
vertex 75 mesh
colliders

convex, making 282, 283
Mesh Filter component 66
mesh game objects

color 78

[543]

Mesh Renderer checkbox 294
Mesh Renderer

component about 67
ball re-appcontents 105

Metal Gear Solid 57
Minecraft 78
models

custom Materials, adding to 288-293
exploring 277, 278
getting, in Scene 280

Motherload

about 43
additional features 45
core mechanism 44
feature set 44
skills, improving 46
skin 44
URL 43

MOTS (more-of-the-same) sequel 45
MouseFollow Script

about 284
creating 113-115
mouse y position
following 129
Move tool 34

N

nested loop 176
new keyword 140
NGUI 537
numbers

new number, logging 124
tracking 123

numHits variable 302
Nurse Slipperfoot
handling 526, 527

O

OBJ-C for iOS 143

offline resources, Unity
Local User Groups 536
Unite 536

Off-Road Velociraptor
Safari about 16, 17
features 17

OnCollisionEnter function 390
OnGUI function 254
online resources, Unity

Google 535
Internet Relay Chat (IRC) 536
Twitter 536
Unity 3D Tutorials 536
Unity Answers 535
Unity Manual 535
YouTube 536

OnMouseDown function 432
Open heart surgary 501, 502
origin 68
overloaded method 136

P

Paddle

animating 117, 118
listening to 121, 122
moving 120, 122

paddle angle
creating 130

Paint.NET
URL 537 particle
system adding
313-315 poking
316-318 setting

321
spark material, adding to 318, 319

Peggle
about 55
tips 56 pie
clock about
258

building 258-260
positioning 267, 268
scaling 267, 269 script,
writing 261-264
texture rotation, coding 264-267
textures, rotating 260

point light 82
PlacePiece function 454, 455
planes

working with 128, 129

[544]

Play Again button

about 138, 295
adding 305, 306

playback controls, Scene Window 33
Play button 99
player click-
spamming 457
playMaker 537
polygon 77
Pong

about 52
feature set 54
mechanism 52

PopCap Games 55
P Powerup class 116
Prefab

about 312, 452
creating 321-323

PreventOrCreateTrap function 478
private access 140
programming undependibility 480
Project panel 29, 91, 242
pseudocode

about 124
translating, into actual code 463

public access modifier 139

Q

quaternion 133

Quaternion.Euler function 136

R

random numbers
using, effectively 205
raster images 244
Record button 519
Renderer class
enabled variable 108
functions 108
ResetPosition() function 389
Return-On-Investment (ROI) 235
return value 136
rigging 326 Rigidbody
component

adding, to game object 87-89

robot repair game

Assets package, importing 158
automatic layout areas, creating in

GameScript 178
bucket, building 172
button, centering 161
button creation line, clarifying 162, 164
button UI control, creating 152-155
card faces, randomizing 205 card-
flipping function, building 207-210
cards, flipping 206, 207
checking, for victory 218, 220
clock code, preparing 245, 246
clock Script, preparing 236
clock text color, changing 238, 239
clock text, preparing 237, 238
code, adding to Start function 174
collections 173
countdown logic, changing 246, 247
custom class, writing in GameScript script 168,

169
custom GUI skin, creating 150-152
custom GUI skin, linking 150-152
deck, building 196-200
default look, overriding for UI button 156-158
FlipCardFaceUp, wrapping in conditional

statement 212, 213
flip, dissecting 211, 212
font settings, changing 244, 245
font texture, creating 240-243
game, ending 218-222
game graphics, obtaining 251, 253
game plan 167, 168
game scene, preparing 167
GameScript 222
grid, building of card buttons 179-181
GUI, preparing 147, 148
GUI techniques, using 253-257
img argument, modifying 200-202
iterative loop, anatomy 175, 176
iterative loop, creating 175
material, creating 240- 243 mip-
mapping technique 159 nested
loop 176, 177
random numbers, using effectively 205

robots, breaking 196

[545]

scenes, adding to Build List 165, 166
scenes, setting up 146
sparkly effect, reducing 159
this keyword, using 202
time, displaying on screen 248-250
variables collection 172
waiting game 162

Rock Band game 357
Rotate tool 34
rotation variable 263
runner

animating 524-526 runner
GameObject rotation values,
adding 528

S

Saints Row game 39
Scale tool 34 scene
146
scene controls, Scene Window

about 33
Hand tool 34
Move tool 34
Rotate tool 34
Scale tool 34

Scene window, Unity
Interface about 26
Game window 27
Hierarchy panel 28
Inspector panel 30, 31
playback controls 33
Project panel 29

screen coordinates
versus world coordinates 119, 120

Script
about 95, 517
adding, to game objects 284
sample code, adding to 131-133

second camera
creating 504, 505
setting up, facing hallyway 504, 505

Shoot the Moon
game about 369
bullet, firing 396
Bullet Game Object, building 391

Bullet Game Object, modifying 392 collision
contours, determining for Heroship

model 378-380
collision, detecting 397, 398
creating 370, 371
EnemyShip model, creating 381, 382
EnemyShip Script, adding function 388-391
EnemyShip Script, modifying 384-386
explosion, creating 399
Halo Component, building 393-395
HeroShip model, creating 376, 377
HeroShip Script, adding function 389-391
HeroShip Script, modifying 386-388
missing elements 402
script adjustments 383
space backdrop, adding 371-376
testing 400, 401

ShowStalematePrompt function 446
ShowTime() function 246
ShowWinnerPrompt function
creating 443
single script creating,
setup 413 skin

versus mechanic 41
sky

redefining 58, 59
Skyrim 39
Slerp 135
Slerp() function 134
soft body dynamics 88
solitaire (one-player) flip n' match memory

game building 144, 145
solved game 458
sound effects
adding 357, 358

adding, to FallingObject script 358, 359
creating 361
importing 361

Sphere Collider component 66
Sphere components

Mesh Filter 66
Mesh Renderer 67
Sphere Collider 66

Transform 66

[546]

Spherical linear interpretation. See Slerp
spotlight 82
square

creating 415, 416
fixing 417
x value, setting 416

y value, setting 416
square values setting
418
Staggered Row 476
starfield layer 504 Start
function 435 Start()
function 102, 238
statement block 101
statements 95, 101
Super Mario 64 39 Super
Monkey Ball 57

T

target Quaternion 136
technology 9
Tetris 41
Ticker Taker game

C# Addendum 307
deploying 530, 531
improving 529

Tic Tac Toe game

about 408, 446

bug 446, 447

challenges 432
clickable square, creating 413-415
game tree 458, 459
moves, tracking 445
online playing 431
players 426, 427
players, alternating between 428
playing, by computer player 456
playing, steps 428-430
playing, ways 460, 461
rules 460
scores 469, 470
setting up 409
ShowPlayerPrompt 430
starting again 471-473
techniques 413

Tic Tac Toe game actual

intelligence versus AI 468, 469
TicTac Toe game

positions deciding 462
Tic Tac Toe game tree 458, 459
Tic Tac Toe game victory
checking 441, 443

hunting for 441
post actions 444

Time.deltaTime 135
TimeIsUp() function 246
Transform component

about 66
listing 115

transform.rotation value 134
tray GameObject

tagging 298-300
tri-corner 476 Tri-
Corner trap
detecting 476
True Type Font Importer 244
ttf (TrueType Font) 240
T Transform 116
Twitter, online resource 536

U

Unite, offline resource 536
Unity

3D Sound 360
features 11, 12
limitations 12 Shoot
the Moon 369
used, for game making 63, 64

Unity 3D
about 9, 14
downloading 23

Unity 3D game portals 538
Unity 3D primitives

used, for game objects creating 65-67
Unity 3D Tutorials, online resource 536
Unity Answers, online resource 535
Unity Asset Store

2DToolkit 537
Asset packs 538
NGUI 537
playMaker 537

[547]

Unity game engine 10
Unity graphical user interfaces

steps 181
Unity Language Reference

revisiting 130
Unity Manual, online resource 535
Unity portals 20
Unity project

creating 62, 145
Unity Script

first line, viewing 97
languages 100
removing 111
writing 96-98

Unity Script Reference 105, 107
Unity Technologies 10
Unity User Guide

URL 321
Unity Web Player

about 13
installing 13, 14

Update function 102, 328
Update() function 238, 302, 303
Use Gravity checkbox 87

V

variable

about 125
declaring, for Screen Midpoint storage 126, 127
naming convention 127

VB6 143

W

Wall Front Game Object 294
walls

erecting 293-295
Win function 464

WinOrBlock() function 481

Wooglie
about 17
URL 17
word

picking up 118, 119
word meaning
searching 110, 111
world coordinates

versus screen coordinates 119, 120
World of Warcraft 40
Worms series, Artillery Live! 48

X

XCode 12 XGen
Studios 43 XNA
143
X player pieces

colliding 423, 424
creating 418, 419
fixing, in square script 426
placing 424, 425
placing, multiple times 426

Y

YouTube, online resource 536

Z

Zelda game 46

[548]

Thank you for buying

Unity 4.x Game Development by Example

Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution-based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what you
need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1. A wide range of topics are covered, ranging

in complexity, offering something for every

Unity 4 game developer

2. Every recipe provides step-by-step instructions,

followed by an explanation of how it all works,

and alternative approaches or refinements

3. Book developed with the latest version of
Unity (4.x)

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game Al in Unity3D with a lot of
sample projects and next-generation techniques to
use in your Unity3D projects

1. A practical guide with step-by-step instructions

and example projects to learn Unity3D scripting

2. Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs

3. Implement finite state machines (FSMs),

path following, and steering algorithms

Please check www.PacktPub.com for information on our titles

Unity iOS Game Development
Beginner's Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow using Unity

1. Dive straight into game development with

no previous Unity or iOS experience

2. Work through the entire lifecycle of
developing games for iOS

3. Add multiplayer, input controls, debugging,

in app and micro payments to your game

4. Implement the different business models that

will enable you to make money on iOS games

Unity Shaders and Effects Cookbook
ISBN: 978-1-84969-508-4 Paperback: 268 pages

Discover how to make your Unity projects look
stunning with Shaders and screen effects

1. Learn the secrets of creating AAA quality

Shaders without having to write long algorithms

2. Add realism to your game with stunning
Screen Effects

3. Understand the structure of Surface Shaders through

easy to understand step-by-step examples

Please check www.PacktPub.com for information on our titles

